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In this work, we provide a numerical method to obtain the Bloch–Nordsieck spectral function at finite
temperature in the framework of the 2-particle-irreducible (2PI) approximation. We find that the 2PI results
nicely agree with the exact one, provided we perform a coupling constant matching. In the paper, we
present the resulting finite temperature running of the 2PI coupling constant. This result may apply for the
finite temperature behavior of the coupling constant in QED, too.
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I. INTRODUCTION

The infrared limit of the QEDwas modeled by Bloch and
Nordsieck in 1937, and their treatment of the IR singular-
ities has become a textbook material since. In the frame-
work of the Bloch–Nordsieck (B-N) model, one is able to
resum all of the radiative contributions to the fermionic
Green’s function generated by ultrasoft photons. A detailed
discussion of this calculation can be found in the original
paper of Bloch and Nordsieck [1], in Refs. [2] and [3], and
in Ref. [4].
The relevance of this model is twofold. On the one hand,

it is an exactly solvable gauge theory, and in this respect it
plays a unique role. On the other hand, the model is
designed to describe the real QED in the deep IR limit, and
so this is capable to give a hint about how one has to treat
the IR divergences of gauge theories. In particular, it can be
used to prove IR theorems in QED [5].
Besides an exact solution, one can also give solutions

in different approximations. In particular the 2-particle-
irreducible (2PI) approximation [6] is a well-known tool to
study the quasiparticle properties of the system. One of the
biggest challenge in front of the 2PI techniques is the
representations of symmetries: although the 2PI technique
is capable of realizing all global symmetries [6,7], it is only
at the level of the effective action and not in the compu-
tations. In particular, the treatment of local gauge sym-
metries is rather tedious [8,9]. The study of the B-N model
provides an excellent tool to test the reliability of fixed
gauge calculations.
InRef. [4], we used the 2PI functionalmethod to study the

B-N model at zero temperature. The spectrum could be

obtained by applying numerical calculations. We found on
the one hand the disappointing fact that the fit comparison to
the exact propagator was not very promising (see Ref. [4]);
on the other hand, unlike in the old-fashioned perturbation
theory, the spectrum remained regular even in the highly IR
regime (no IR singularity observed at the mass shell). We
remark that also in other physical situations one can observe
that one needs resummation beyond the 2PI level [10]. The
role of multiple scattering is emphasized also in Ref. [11].
At finite temperature there are several studies in the

literature [12–14] to derive the behavior of the fermion
propagator. In our paper [4], we developed a method to
reproduce the exact result using the Ward–Takahashi iden-
tities at zero temperature (cf. also Ref. [15]). This could have
been generalized to finite temperature in Ref. [16]. With the
help of this method, we managed to obtain a fully analytic
form of the excitation spectrum. Having these analytic
results gives us a perfect opportunity to investigate the
validity of the 2PI quasiparticle description of an interacting
quantum field theory at finite temperature.
The purpose of the present paper is to show how the 2PI

works at finite temperature. We will derive the spectral
function numerically and compare it to the exactly calcu-
lated case. The upshot is there exists a mapping between the
coupling constants of the 2PI and the exact results in such a
way that the two spectral functions overlap almost entirely.
This is a highly nontrivial result, since the exact spectral
function is an asymmetric function of the frequency, rather
different from a simple Lorentzian. The most important
message to the 2PI community is that our result validates
the 2PI approximation method at nonzero temperature, and
only a finite reparametrization of the theory is needed.
From the perturbative point of view, the 2PI technique

resums the 2PI diagrams, but the coupling constant and also
the higher point functions are remained unchanged. So for a
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certain 2PI diagram, there exists another infinite set of
diagrams providing coupling constant modification. In the
sense of the renormalization group, we may try to take
into account the sum of these diagrams effectively as a
temperature-dependent (running) coupling constant. Since
we now know the value of an observable exactly (the
electron spectral function for any frequency and temper-
ature in a given gauge), the best method to extract the
temperature-dependent coupling is to compare the 2PI and
the exact results. This is done in the present paper.
The structure of the paper is as follows. First, we give an

introduction to the B-N model itself and to the conventions
of the finite temperature real time formalism. In Sec. III, we
recap the zero-temperature results: the one-loop correction
obtained from perturbation theory (PT) and the implemen-
tation of the 2PI numerics. In Sec. IV, we derive the one-
loop self-energy at T ≠ 0 and show its consistency with the
zero-temperature result by taking the T → 0 limit. Then, we
calculate the expression for the discontinuity of the self-
energy for the 2PI procedure. The numerical implementa-
tion of the calculation happens in a similar fashion as the
zero temperature one. In Sec. V, we present our results
obtained from the numerics and the comparison to the exact
result [16]. We found a nontrivial mapping of the coupling
between the two calculation methods from which we
conclude the following: the 2PI, although it is an approxi-
mation, at finite temperature gives a perfect qualitative
description of the collective excitation of the system.

II. PROPERTIES OF THE BLOCH–NORDSIECK
MODEL

The B-N model was designed to describe accurately
the low-energy regime of quantum electrodynamics.
Considering the contributions to the fermion self-energy
only from the deep IR photons, reducing the Dirac spinor to
a one-component fermion is well justified. Indeed, at this
energy scale, photons do not have enough energy even to
flip the spin of the fermion, not to mention the pair creation
[1]. In this respect, one can substitute a 4-vector uμ in the
place of the γμ matrices, which is considered as the
4-velocity of the fermion.
The Lagrangian then reads

L ¼ −
1

4
FμνFμν þΨ†ðiuμDμ −mÞΨ; ð1Þ

where the usual notations for the field-strength tensor and
for the covariant derivative are used: Fμν ¼ ∂μAν − ∂νAμ

and Dμ ¼ i∂μ − eAμ, respectively. Later, we will also use
the standard notation α ¼ e2=ð4πÞ. In the above formula,
uμ is a 4-velocity, but we can also choose the form
u ¼ ð1; vÞ, with v ¼ u=u0 by rescaling the fermionic field
as Ψ → Ψ=

ffiffiffiffiffi
u0

p
and the fermion mass by m → mu0.

It is possible to obtain exactly the full fermion propa-
gator associated with this theory both for zero and finite

temperatures as it is presented in Refs. [4] and [16],
respectively. Now, we are going to discuss the notations
and conventions that we are using in this paper.
For the calculations, we use the real-time formalism

(details are in Refs. [16] and [17]). The propagators are
matrices in this convention,

iGabðxÞ ¼ hTCΨaðxÞΨ†
bð0Þi and

iGμν;abðxÞ ¼ hTCAμaðxÞAνbð0Þi; ð2Þ

where TC denotes ordering with respect to the contour
variable (contour time ordering). At finite temperature with
help of the Kubo-Martin-Schwinger relation, we can
determine G12 and G21,

iG12ðkÞ ¼ �n�ðk0ÞϱðkÞ;
iG21ðkÞ ¼ ð1� n�ðk0ÞÞϱðkÞ; ð3Þ

where

n�ðk0Þ ¼
1

eβk0 ∓ 1
and ϱðkÞ ¼ iG21ðkÞ − iG12ðkÞ

ð4Þ
are the distribution functions [Bose–Einstein (þ) and
Fermi–Dirac (−) statistics] and the spectral function,
respectively, while β ¼ 1=T is the inverse temperature.
We will also use R/A formalism [16], where

Grr ¼
G21þG12

2
; Gra ¼G11−G12; ϱ¼ iGra − iGar:

ð5Þ

The Gra propagator is the retarded, the Gar is the advanced
propagator, and Grr is usually called the Keldysh
propagator.
At zero temperature, the (free) fermionic Feynman

propagator reads

G0ðpÞ ¼
1

uμpμ −mþ iε
: ð6Þ

It has a single pole, which means that there are no
antiparticles in the model. Consequently, closed fermion
loops are excluded, and thus there is no self-energy
correction to the photon propagator at zero temperature.
Physically, this means that the energy is not sufficient to
excite the antiparticles. We interpret uμ as the fermionic
4-velocity, and since it is fixed, the soft photons cannot
change it (no fermion recoil). In fact, this means that the
fermion is a hard probe of the system and hence not part of
the thermal medium [12,13]. This is also supported by the
spin-statistics theorem [18], which would forbid a one-
component fermion field. Consequently, we will neglect
the “12” fermion propagator, too: G12 ¼ 0.
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The exact photon propagator reads in the Feynman
gauge

Gab;μνðkÞ ¼ −gμνGabðkÞ; Gra ¼
1

k2

����
k0→k0þiε

;

ϱðkÞ ¼ 2πsgnðk0Þδðk2Þ; ð7Þ

and all other propagators can be expressed using identities
(3) and (5).

III. RECAP OF T ¼ 0 2PI CALCULATIONS

The main idea is to use the exact propagators in the
perturbation theory as building blocks of a loop integral,
where the exact propagator is determined self-consistently
using skeleton diagrams as resummation patterns. The one-
loop 2PI fermion self-energy diagram in the case of the B-N
model generates the resummation of all the “rainbow”
diagrams. One needs to take care of the UV divergences,
too, on which we perform a renormalization with the
same form of divergent parts of the counterterms as in
the one-loop case.
At zero temperature, we have the following self-

consistent system of equations in the 2PI approximation:

GðpÞ ¼ 1

G−1
0 ðpÞ − ΣðpÞ ; ð8Þ

−iΣðpÞ ¼ ð−ieÞ2
Z

d4k
ð2πÞ4 iGμνðkÞiGðp − kÞ: ð9Þ

Here, G0 and G stand for the free and the dressed fermion
propagator. Gμν is the photon propagator.

A. One-loop correction

In strict PTwe use the propagators from Eqs. (6) and (7)
to compute the self-energy. We choose a reference frame in
which uμ ¼ ð1; 0; 0; 0Þ, and we find using dimensional
regularization

Σ1loopðp0Þ ¼
α

π
ðp0 −mÞ

�
− ln

m − p0

μ
þDϵ

�
: ð10Þ

Here, μ is the renormalization scale. The divergent part Dϵ

has the following expression:

Dϵ ¼
1

2ϵ
þ 1

2
ðln 4π − γEÞ: ð11Þ

We renormalized the self-energy using the MS scheme, by
which the counterterms read as

δZ1;MS ¼ δm;MS ¼
α

π
Dϵ; ð12Þ

where δZ1;MS and δm;MS are the wave function renormal-
ization and the multiplicative mass renormalization,
respectively. Hence, the renormalized self-energy is

Σren
1loop ¼ −

α

π
ðp0 −mÞ lnm − p0

μ
: ð13Þ

For details, see Ref. [4].

B. 2PI procedure at T ¼ 0

In the 2PI approach, we treat Eqs. (8) and (9) self-
consistently. Then, we implement the following steps
numerically [4], which will be applied at finite T, too:

(i) Step 1: We calculate the discontinuity of the self-
energy in order to use it for the spectral representa-
tion of the retarded Green’s function. In the B-N
model, due to the missing antiparticles, the retarded
and the Feynman propagators are the same, and so
we can work with the simpler Feynman propagators.
Later, at finite temperature, this procedure will be
used for the retarded Green’s function (cf. Sec. IV):

ΣðpÞ ¼ ie2
Z

d4k
ð2πÞ4 GμνGðp − kÞ

¼ ie2
Z∞

0

dω
2π

Z
d4k
ð2πÞ4

1

k2 þ iϵ
ρðωÞ

p0 − k0 − ωþ iϵ

ð14Þ

ΣðpÞ ¼
Z∞

0

dω
2π

ρðωÞΣ1−loopðp;ωÞ: ð15Þ

Now, we can take the discontinuity

Disc
p0

ΣðpÞ ¼
Z∞

0

dω
2π

ρðωÞDisc
p0

Σ1−loopðp;ωÞ

¼ α

π

Z∞

0

dωðp0 − ωÞρðωÞ: ð16Þ

In both equations, we introduced the fermion spectral
function ρðpÞ. In our algorithm, it serves as an
input, which is usually the free fermion spectral
function ρðpÞ ¼ 2πδðp −mÞ.

(ii) Step 2: Here, we calculate the real part of self-energy
from its discontinuity. For this purpose, we use the
Kramers–Kronig relation:

VALIDATING THE 2PI RESUMMATION: THE BLOCH- … PHYSICAL REVIEW D 90, 045038 (2014)

045038-3



ReΣðp0;pÞ ¼
Z∞

−∞

dω
2π

DiscωiΣðω;pÞ
p0 − ωþ iϵ

: ð17Þ

(iii) Step 3: We renormalize the real part of the self-
energy using the “on-mass-shell” renormalization
scheme:

ReΣðp0 ¼ mÞ ¼ 0; ð18Þ

dReΣðp0Þ
dp0

����
p0¼m

¼ 0: ð19Þ

ð20Þ

(iv) Step 4: From all of this information, we construct the
new spectral function, which reads as

ρðpÞ ¼ 2ImΣðpÞ
ðp0 −m − ReΣðpÞÞ2 þ ðImΣðpÞÞ2 : ð21Þ

(v) Step 5:We set the new spectral function to be our new
input and iterate this procedure until it converges.

(vi) Step 4+: As an additional step, we had to include a
rescaling of the spectral function, which was neces-
sary to stabilize the convergence. This step is not
needed at nonzero temperature.

For the zero-temperature case, we obtained the dressed
propagator for the fermion. From the analysis, it turned out
that this result, being an approximation, is far from the
exact solution, although it is IR finite, which cannot be
claimed about the PT calculation (see Ref. [4]).

IV. NONZERO TEMPERATURE

We are working in the real-time formalism; hence, the
Green’s functions in this picture are going to have a matrix
structure. We choose the R/A basis for the matrix repre-
sentation to calculate the retarded self-energy. First, we are
going to consider the one-loop correction, and then we
present a derivation of the 2PI resummed spectral function
at finite temperature. To evaluate its self-consistent
equations, we will use a numerical approach that is
similar to what we discussed above for the T ¼ 0 case.

The integral equation for the retarded self-energy at
nonzero temperature in the Feynman gauge reads as

ΣarðpÞ¼ ie2
Z

d4k
ð2πÞ4 ½GrrðkÞGraðp−kÞþGraðkÞGrrðp−kÞ�;

ð22Þ

where G and G stand for the propagator of the photon and
the fermion, respectively. In Fig. 1, we can see the pictorial
representation of the fermion self-energy using Feynman
diagrams.
Now, if we take the discontinuity, we will have

Disc
p0

ΣarðpÞ¼e2
Z

d4k
ð2πÞ4 ½GrrðkÞρfðp−kÞþργðkÞGrrðp−kÞ�:

ð23Þ

Here, ρf and ργ are the spectral functions to the fermion and
the photon, respectively. In general, we can express the rr
propagators by the spectral function combining with the
Bose–Einstein or Fermi–Dirac distributions, respectively:

GrrðpÞ ¼
�
1

2
− n−ðp0Þ

�
ρfðpÞ; ð24Þ

GrrðpÞ ¼
�
1

2
þ nþðp0Þ

�
ργðpÞ: ð25Þ

When inserting these expressions into Eq. (23), we get

Disc
p0

ΣarðpÞ ¼ e2
Z

d4k
ð2πÞ4

��
1

2
þ nþðk0Þ

�
ργðkÞρfðp − kÞ þ ργðkÞ

�
1

2
− n−ðp0 − k0Þ

�
ρfðp − kÞ

�

¼ e2
Z

d4k
ð2πÞ4 ð1þ nþðk0Þ − n−ðp0 − k0ÞÞργðkÞρfðp − kÞ: ð26Þ

In the last step of Eq. (26), we get the most general form of the equation, as long as we do not specify the corresponding
spectral functions.

FIG. 1. The diagrammatic representation of the self-energy. The
wavy line corresponds to the free (here also the exact) photon
propagator with a loop momentum k, and the double solid line is
for the exact fermion propagator with momentum p − k. Both the
polarization and the Keldysh indices are shown.
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A. One-loop correction at T ≠ 0

For the one-loop case, we have to plug in the spectral function of the free theory both for the fermion and gauge fields.
By performing this substitution, our equation reads as

Disc
p0

ΣarðpÞ ¼ e2
Z

d4k
ð2πÞ4 ð1þ nþðk0Þ − n−ðp0 − k0ÞÞ2πsgnk0δðk20 − k2Þ2πδðu0ðp0 − k0Þ − uðp − kÞ −mÞ

¼ e2

8π3

Z∞

0

dkk2

Z1

−1

dx
ð2πÞ2
2jkj ½ð1þ nþðjkjÞ − n−ðp0 − jkjÞÞδðu0p0 − up − u0jkj − jujjkjx −mÞ

þ ðnþðjkjÞ þ n−ðp0 þ jkjÞÞδðu0p0 − upþ u0jkj − jujjkjx −mÞ�: ð27Þ

Here, we introduced the variable x, which stands for the cosine of the angle between the two spatial 3-vectors u and k.
For the sake of simplicity, in the following, we are going to use the notations pu≡ p0u0 − pu for the Minkowski product,
and k≡ jkj, u≡ juj for the absolute values of the 3-vectors k and u, respectively.
First, we perform the angular integration for x:

Disc
p0

ΣarðpÞ ¼
e2

4πu

�
Θðpu −mÞ

Zpu−mu−u0

pu−m
uþu0

dkð1þ nþðkÞ − n−ðp0 − kÞÞ þ Θðm − puÞ
Zm−pu
u−u0

m−pu
uþu0

dkðnþðkÞ þ n−ðp0 þ kÞÞ
�
: ð28Þ

Now, we are going to use the fact that the fermion in this
system is a hard probe, and thus it is not part of the heat
bath [12,13]. This manifests already in Eq. (26) in a way
that we need to set the Fermi–Dirac distribution to zero;
otherwise, we would face inconsistencies when trying to
take the T → 0 limit:

nf ≡ 0 ðin the B-N frameworkÞ: ð29Þ

In that case, Eq. (28) simplifies in the following way:

Disc
p0

ΣarðpÞ ¼
e2

4πu

Zpu−mu−u0

pu−m
uþu0

dkð1þ nþðkÞÞ: ð30Þ

Evaluating the integral, we get a result consistent with the
T ¼ 0 case:

Disc
p0

ΣarðpÞ ¼
e2

2π
Θðpu −mÞðpu −mÞ

þ Te2

4πu
ln

�
1 − e−β

pu−m
u−u0

1 − e−β
pu−m
uþu0

�
: ð31Þ

This gives us the desired result for the T → 0 limit,
namely, Disc

p0

ΣarðpÞ ¼ e2
2πΘðpu −mÞðpu −mÞ.

B. Nonzero temperature calculations for
the 2PI scheme

Now, we are going to derive the 2PI resummed result for
the finite-temperature theory. Let us consider Eqs. (8) and
(22). Instead of calculating the one-loop correction by
inserting free propagators, we are going to use the self-
consistent fermion propagator so defining a self-consistent
system of integral equations. We stick to the physical
picture that the fermion is not part of the thermal medium,
Eq. (29). Using the calculation in Eq. (27), we arrive at an
expression for the discontinuity of the self-energy for the
general fermion propagator:

Disc
p0

ΣarðpÞ ¼ e2
Z

d4k
ð2πÞ4 ð1þnbðk0ÞÞργðkÞρfðp− kÞ

¼ e2
Z

d4k
ð2πÞ4 ð1þnbðk0ÞÞ

×
2π

2k
ðδðk0− kÞ− δðk0þ kÞÞρ̄fðup−uk−mÞ:

ð32Þ
Here, we used the free photon propagator as above, and for
the general spectral function of the fermion, we introduced
the notation ρfðpÞ ¼ ρ̄fðup −mÞ. After some algebra, we
find

Disc
p0

ΣarðpÞ ¼
e2

8π2

Z∞

−∞

dk
Z1

−1

dxknbðkÞρ̄fðwþ ðu0 þ uxÞkÞ:

ð33Þ
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Here, we defined w≔ up −m, and x represents the angle
between the spatial parts of kμ and uμ, so xku is the scalar
product of two three-dimensional vectors like in the one-
loop calculation. Actually, this can be written in a more
elegant and, for the numerical implementation, a more
useful way. We introduce the variable z as the argument of
the function ρ̄f:

Disc
p0

ΣarðpÞ ¼
e2

8π2
1

u

Z∞

−∞

dk
Zwþðu0þuÞk

wþðu0−uÞk

dzρ̄fðzÞnbðkÞ

¼ e2

8π2
1

u

Z∞

−∞

dzρ̄fðzÞ
Zz−wu0þu

z−w
u0−u

dknbðkÞ: ð34Þ

In the case in which the length of the 3-velocity tends to
zero, u → 0, we have

Disc
p0

Σarðp0Þ ¼
α

π

Z∞

−∞

dzρ̄fðzÞðp0 −m − zÞ

× ð1þ nbðp0 −m − zÞÞ: ð35Þ

For u ≠ 0,

Disc
p0

ΣarðwÞ ¼
α

2π

Z∞

−∞

dzρ̄fðzÞ
T
u
ln
1 − e−β

z−w
u0−u

1 − e−β
z−w
u0þu

: ð36Þ

We set m ¼ 0, and this can be done without the loss of
generality since the two expressions in Eqs. (35) and (36)
depend on the variable w ¼ up −m only. That means the
theory is not sensitive where the mass-shell is placed; it can
be anywhere on the real line.

V. 2PI RESULTS

We are implementing the same numerical method that we
used for the zero-temperature case (step 1–step 5 inSec. III B),
using the finite-temperature formofEq. (16),which is given in
Eqs. (35) and (36). In thenumerical procedure,we fix thevalue
of the coupling and the numerical value of the temperature and
perform the iteration until it converges. The physical temper-
ature is a dimensionful quantity; therefore, dimensionless
quantities must depend only on the temperature only through
the other dimensionful parameter. If there were no renorm-
alization problem, then the only quantity, which can make
temperature dimensionless, would bew, and the results would
depend on βw. However, renormalization leads to the appear-
ance of a quantum scale through dimensional transmutation
(for the B-N model; see Ref. [4]). This can be characterized,
for example, by the value of the Landau pole ΛBN ; then, the
results will implicitly depend on βΛBN . In the numerics, it
shows up as a dependence of the physical results not only on
βw but also separately on the numerical value of the temper-
ature. We will refer this numerical value as “dimensionless
temperature,” knowing that only ratios of these dimensionless
temperature values have physical meaning.
The result of the iteration is the spectral function. First,

we observe that a small thermal mass ΔmT is generated,
in dimensionless units in the order of ΔmT=T ∼ 10−3.
Interestingly, this thermal mass is negative; it shifts the
spectral function to the left. In the exact solution inRef. [16],
we found a zero thermal mass, and thus we can consider it as
an artifact of the 2PI approximation, which can be incorpo-
rated into the mass and finally into w ¼ up −m − ΔmT .

A. Zero-velocity case

By applying the algorithm described in Sec. III. B, we
can obtain the spectral function derived from the 2PI
approximation for the theory, using Eq. (35) as the self-
energy input. In Fig. 2, we can see the spectral function for

T 1,
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FIG. 2 (color online). The coupling constant dependence of the spectral function in the 2PI approximation (a) at fixed temperature
T ¼ 1 and (b) at a fixed coupling value, α ¼ 0.5. The curves widen with growing coupling and growing temperature.
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different coupling values and for different temperatures.
The spectrum exhibits a pole, and its width is growing
with increasing coupling constant and with increasing
temperature.
In the Dyson–Schwinger approach, the exact spectral

function can be derived in a closed form (at least in the
zero-velocity case). We wish to compare the 2PI results to
our analytic expression obtained in Ref. [16]:

ρðwÞ ¼ Nαβ sinðαÞeβw=2
coshðβwÞ − cosðαÞ

1

jΓð1þ α
2π þ i βw

2πÞj2
: ð37Þ

Here, we use the notation w ¼ p0 −m again, and Nα is a
normalization factor. Both for the 2PI approximation and

the Dyson–Schwinger calculation, we assumed a normali-
zation prescription, which assigned by the

R
w ρ ¼ 1 sum

rule.
To check the quality of the 2PI approximation, we can

compare the resulting spectral function with the exact
one. The comparison can be seen on Fig. 3. We can see
immediately that the two spectra are not very similar. The
reason is, as we discussed in the introduction, that the 2PI
approximation does not sum up all the diagrams, in
particular, the coupling constant corrections. To improve
the 2PI calculation, therefore, we can try to take into
account the resummation of these diagrams effectively in
a renormalization-group-inspired way, as a temperature-
dependent coupling constant. We should use a non-
perturbative matching procedure and choose a value of
α2PI that reproduces the exact result the most accurately.
For a perfect matching, not only the coupling constant
but also the higher point functions should also be
resummed. But we may hope that the most important
effect comes from the relevant couplings, in this case
from α2PI.
Therefore, our strategy will be to find the best,

temperature-dependent value of the coupling constant
α2PI that yields the best match between the exact and the
2PI spectral functions. As we can see in Fig. 4, there exists
such a value, for which the matching is almost perfect. We
can observe that the fit is excellent not just at the close
vicinity of the peak region but also for a much larger
momentum regime, and it can give an account also for
the asymmetric form of the exact spectral function. For
asymptotically large momenta, we expect that the two
curves do not agree, according to Ref. [4], and this can also
be observed in Fig. 4. This result is a strong argument
in favor of the usability of the 2PI technique at finite
temperature also for gauge theories.

4 2 0 2 4
0

1

2

3

4

w

Exact
2PI

FIG. 3 (color online). Comparing the 2PI resummed spectral
function to the exact one. The solid red line is obtained from the
2PI resummation, while the dashed blue line is the exact spectral
function. Both of them are at T ¼ 1, and the couplings
are αex ¼ α2PI ¼ 0.5.
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FIG. 4 (color online). The fitting of the exact spectral function on the 2PI spectrum on (a) linear and (b) logarithmic plots. On the plot,
the curves are normalized to the same height for better visibility. We can see an exact match at the peak and a small deviation in the
asymptotics. The fit yields α2PI ¼ 0.5 for αex ¼ 0.293 at T ¼ 1.
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Hence, we can say that the coupling, which takes the
value of α2PI ¼ 0.5 in the 2PI resummation at T ¼ 1, is
equivalent to αex ¼ 0.293 in the Dyson–Schwinger calcu-
lation at the same temperature. One can also conclude that
the vertex corrections (which are absent in the 2PI self-
energy calculations) have a role to modify the value of the
renormalized coupling. In the following, we are going to
look for a general relation between α2PI and αex.
We can repeat the strategy above for different temper-

atures. In this way, we can determine a relation α2PIðαex; TÞ
[technically, it is simpler to obtain αexðα2PI; TÞ and invert
this relation]. This provides the finite-temperature depend-
ence, or finite-temperature “running,” of the 2PI coupling
constant.
We expect that for small couplings the exact and the

perturbative values agree, since the perturbation theory
gives αex ¼ α2PI þOðα22PIÞ. This is indeed the case. For
larger couplings, however, the linear relation changes.

Interestingly, we can observe that two different types of
functions describe the relation between the couplings
depending on the temperature. The first type of function,
which gives the mapping between the two couplings, is
valid in the interval T ∈ ½0; 12.03�. This relation can be
obtained by a one-parameter fit between the 2PI and the
exact couplings, namely,

α2PI ¼ ATðe
αex
AT − 1Þ: ð38Þ

The result is shown in Fig. 5(a), and the fit parameters (AT)
are listed in Tables I and II. From this relation, we
immediately see that for small α2PI the relation of the
couplings is linear:

α2PI ≈ αex þO
�
α2ex
AT

�
: ð39Þ

data T 0.11
data T 0.25
data T 0.5
data T 1
data T 2
data T 4
data T 7.14
data T 10
data T 12.03

fit T 0.11
fit T 0.25
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fit T 1
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fit T 10
fit T 12.03
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FIG. 5 (color online). The relation between the 2PI and the exact coupling at u ¼ 0 for temperatures (a) T ∈ ½0; 12.03� and
(b) T ∈ ð12.03;∞Þ, respectively. The dashed red line indicates the limiting function at T ¼ 12.03; for details, see the text.

TABLE I. The fit parameters in the low-temperature case. The error of the parameters is �0.001.

T 0.11 0.25 0.5 1 2 4 7.14 10 12.03

AT 0.213 0.242 0.27 0.305 0.343 0.384 0.414 0.426 0.429

TABLE II. The fit parameters in the high-temperature case.

T 20 50 100 200 500 1000 2000

BT 1.03� 0.003 1.118� 0.008 1.217� 0.014 1.312� 0.017 1.381� 0.016 1.38� 0.012 1.3� 0.006
CT 1.107� 0.001 1.668� 0.025 2.654� 0.054 4.241� 0.083 6.937� 0.105 8.951� 0.1 9.991� 0.055
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This tells us that the 2PI and the exact couplings are the
same for the perturbative region, meaning that we can rely
on the results obtained by 2PI calculations in this regime.
Thus, if we are using couplings that are in the order of the
fine structure constant of QED (α ¼ 1=137), for instance,
one does not even have to worry about the temperature
dependence of Eq. (38).
From Eq. (38), it is obvious that the relation depends on

the temperature through the fit parameter AT ; this is shown
in Fig. 6(a). We can fit the temperature dependence in the
form

AT ¼ aðtanhTbÞc; ð40Þ

where a ¼ 0.438� 0.002, b ¼ 0.123� 0.01, and c ¼
0.17� 0.002.
Let us consider the zero-temperature limit:

limT→0AT ¼ 0. This tells us that in the zero-temperature
limit all αex corresponding to any α2PI by Eq. (38) vanish.
To see this, it is easier to invert the relation and then take the
limit, i.e., limT→0AT lnðα2PI=AT þ 1Þ ¼ 0. This is consis-
tent with the fact that at T ¼ 0 the coupling drops out from
the 2PI propagator [4]. More precisely, at T ¼ 0 close to the
peak,

G2PIðwÞ ∝
1

w
; while GexðwÞ ∝

1

w1þαex
π

����
αex¼0

¼ G2PI:

ð41Þ

Therefore, the diverging α2PI=αex relation does not signal a
physical singularity; it just means that in order to match the
exact theory we have to take into account other diagrams
not included in the resummation.
The relation in Eq. (40) is valid up to the dimensionless

temperature T ¼ 12.03. Above this temperature, the trend
of the curves can be seen in Fig. 5(a), namely, that they are
more and more shallow for increasing temperature changes.
The α2PIðαexÞ curve becomes steeper and steeper, as can be

seen in Fig. 5(b). We find for small couplings the expected
universal linear relation α2PI ¼ αex þ…. We can also
observe that the α2PIðαexÞ curves diverge at some limiting
value of αex. This can also be seen from the following fit
which describes the numerically determined curve quite
well:

α2PI ¼
αex

BT − CTαex
: ð42Þ

The fit parameters can be seen in Table II. This function has
a pole at BT=CT at each temperature. This is a temperature-
dependent quantity; the running of the position of the pole
can be seen in Fig. 6(b).
Equation (42) can be interpreted from the point of view

of the scale dependence of the coupling constant. For the
B-N model, the one-loop running is exact [4] and provides
a Landau pole. The value of the coupling for which we find
the pole is αðμ0Þ ¼ π

ln μ=μ0
. If we associate μ ∼ T for high

temperatures, this would suggest that the finite-temperature
dependence also exhibits a Landau-type pole at αex∼
ðln fTÞ−1. In fact, a two-parameter fit is
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FIG. 6 (color online). The running of (a) AT and (b) BT=CT with respect to the temperature. This latter quantity is the position of the
pole [cf. Eq. (42)]. One can see the best matching on higher temperatures.
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FIG. 7 (color online). Finite-temperature running of α2PI for
fixed αex ¼ 0.25. One can observe the high-temperature (Landau)
pole and the T → 0 divergence.
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BT

CT
¼ d

lnðfTÞ ; ð43Þ

where d ¼ 0.576� 0.03 and f ¼ 0.035� 0.003 describes
the finite temperature behavior for large temperatures.
The finite-temperature running of α2PI for fixed αex can

be seen in Fig. 7. According to our earlier analysis, we can
identify the following characteristic features of this run-
ning. For small temperatures, the running of the perturba-
tive coupling is determined by the soft IR physics, the

photon cloud. At very small temperatures, seemingly, we
find a divergence, but this is not a physical singularity; it
just reflects the fact that at zero temperature the 2PI
approximation fails to describe the exact spectrum for
any couplings, cf. Eq. (41). At high temperatures, the
perturbative running is the dominant effect with the
association μ ∼ T. Again, we find a pole there that comes
from the Landau pole of the perturbative running. But,
again, this singularity is not a physical one; the exact
spectrum is regular for αex larger than the pole value. But
with the 2PI calculation with the original action, we cannot
reproduce this result, and one would need to take into
account higher point vertices, too. Between the low-
temperature and high-temperature regimes, there is a point
where dα2PIðTÞ=dT ¼ 0; in our case, this is at the dimen-
sionless temperature value T ¼ 12.03. This is a “fixed
point” of the running and loosely determines a “critical
temperature” separating the two physically different
temperature regimes.

B. Finite-velocity case

We can repeat the same analysis for the finite-velocity
case, too. Since the findings are very similar to the u ¼ 0
case, we just briefly overview the results.
For the finite-velocity case, we obtained in our previous

article [16] the formula in real time,

ρðtÞ ∝ zðtÞρu¼0ðt; αeffÞ; ð44Þ

where we defined an effective coupling that incorporates
the information about the finite velocity
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FIG. 8 (color online). The 2PI spectral functions with different
rapidities [η ¼ tanh−1ðvÞ, where v ¼ u=u0] at fixed temperature
T ¼ 1 and coupling α ¼ 0.5. The shrinking of the width can be
observed as the velocity grows, which is the same effect that we
had for the exact solution [16].
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FIG. 9 (color online). The relation between the 2PI and the exact coupling for u ¼ ffiffiffi
3

p
at temperatures (a) T ∈ ½0; 12.03� and

(b) T ∈ ð12.03;∞Þ, respectively. The dashed red line indicates the limiting function at T ¼ 12.03; for details, see the text.
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αeff ¼
αu0ð1 − v2Þ

2v
ln
1þ v
1 − v

; ð45Þ

and here v ¼ u
u0
. zðtÞ is a function of time, which is

defined as

zðtÞ ¼ exp

8<
:
u0ð1 − v2Þα

2πv

Zu0ð1þvÞ

u0ð1−vÞ

ds
s2

ln
sinh πtTs
ðsinh πTtÞs

9=
;: ð46Þ

In momentum space, the product in Eq. (44) turns into a
convolution, and thus one can derive the finite-velocity
spectral function only by using numerics. In the 2PI case,
we are going to use the same numerical calculation that we
had for the u ¼ 0 case, and the only difference is that this
time we use the formula in Eq. (36) for the discontinuity of
the self-energy. The spectral functions obtained from 2PI
for different u > 0, but fixed temperature and coupling
constant, can be seen in Fig. 8.
To fit the u > 0 spectral functions, we are applying exactly

the same procedure that we used for the u ¼ 0 case. For this
purpose, we choose the value u ¼ ffiffiffi

3
p

(or v ¼ ffiffiffi
3

p
=2).

In Fig. 9, we can find the relation between the 2PI and the
exact couplings, and in Tables III and IV, we can find the
corresponding fit parameters, but this time for u ¼ ffiffiffi

3
p

. For
thegiven finiteu, we have almost the samepicture thatwe had
for theu ¼ 0 case, and just the fit parameters,AT ,BT , andCT ,
are different. Interestingly, the threshold temperature stayed
at T ¼ 12.03, but the running of the parameter as a function
of the temperature is slightly modified. Now, we have
AT ¼ a tanhðbATÞc, where this time a ¼ 0.55� 0.01,
b ¼ 0.075� 0.01, and c ¼ 0.183� 0.004. For the running
of the pole, we have [BT=CT ¼ d= lnðfTÞ] d ¼ 0.623�
0.04 and f ¼ 0.032� 0.003.

VI. CONCLUSION

We gave a numerical implementation of the 2PI resum-
mation for the fermionic spectral function in the B-N model
at nonzero temperature. In our former paper [16], we
showed a derivation of the exact spectral function in an
analytic way and obtained a closed form. Hence, this

analytic formula provides us a good basis point in the
benchmarking of the 2PI approximation. The 2PI tech-
nique, being an approximation, cannot provide us a full
solution, but we can still compare it to the exact result.
Our first main result is that the 2PI approximation works

excellently at finite temperatures, and the spectrum coming
from the 2PI approximation could be fitted to the exact
spectrumwith very good accuracy. The two curves could be
fitted into each other, not just in the vicinity of the peak but
also for much larger momentum interval. This demonstrates
that the 2PI resummation is in fact a physically appropriate
approximation for gauge theories, too.
Nevertheless, the 2PI and the exact results could be fitted

to each other after properly choosing the 2PI coupling
α2PIðαex; TÞ as a function of the coupling of the exact
formula (αex) and the temperature. For a fixed αex, this
describes a temperature-dependent running coupling con-
stant. Our second main result is to provide this function
for the B-N model.
This temperature dependence has two distinct regimes for

small and large temperatures.At small temperatures, the deep
IR physics dominate the running, and the corresponding
α2PIðTÞ decreases with the temperature. For high temper-
atures, the finite-temperature running is compatible with the
perturbative scale dependence with the choice μ ∼ T, and
there α2PIðTÞ grows with the temperature. At zero temper-
ature and at some (coupling-dependent) high temperatures,
we find divergences in α2PIðTÞ, and in the high-temperature
case, it can be associated with the Landau pole. But none of
these poles mean physical singularity, just the breakdown
of the perturbation theory. Between the two regimes, there
is a temperature at which the temperature derivative of
α02PIðTÞ ¼ 0. The critical temperature of this fixed point is
in dimensionless units T ¼ 12.03, and this signals the
limiting temperature of the soft and perturbative domains.
The success of the 2PI method extended by a non-

perturbative running of the coupling constant encourages
one to try this strategy also in the cases of other (gauge)
theories. The basis of the temperature running could be the
matching of a nonperturbatively (e.g., in Monte Carlo
simulations) determined physical quantity. Then, using
temperature-dependent 2PI couplings, one could perform

TABLE III. The fit parameters in the low-temperature case for u ¼ ffiffiffi
3

p
.

T 0.11 0.25 0.5 1 2 4 7.14 10 12.03

AT 0.235� 0.002 0.266� 0.002 0.298� 0.002 0.338� 0.002 0.386� 0.002 0.442� 0.002 0.488� 0.002 0.507� 0.001 0.517� 0.001

TABLE IV. The fit parameters in the high-temperature case for u ¼ ffiffiffi
3

p
.

T 20 50 100 200 500 1000 2000

BT 1.016� 0.001 1.108� 0.007 1.2� 0.014 1.29� 0.017 1.371� 0.0175 1.389� 0.0145 1.35� 0.009
CT 0.908� 0.002 1.422� 0.023 ¼ 2.275� 0.048 3.629� 0.075 6.113� 0.102 8.216� 0.105 9.8318� 0.079
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other calculations and give predictions for other, numeri-
cally hardly accessible physical quantities.
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