
Uð1Þ gauge field localization on a Bloch brane with Chumbes-Holf
da Silva-Hott mechanism

Zhen-Hua Zhao,1,* Yu-Xiao Liu,2,† and Yuan Zhong2,3,‡
1Department of Applied Physics, Shandong University of Science and Technology, Qingdao 266590,

People’s Republic of China
2Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China

3IFAE, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
(Received 9 March 2014; published 25 August 2014)

We follow the Chumbes–Holf da Silva–Hott mechanism to study the (quasi)localization of the Uð1Þ
gauge field on the Bloch brane. The localization and resonances of the Uð1Þ gauge field are discussed for
four kinds of Bloch brane solutions: the original and generalized Bloch brane solutions, as well as the
degenerate Bloch brane solutions I and II. With the Chumbes–Holf da Silva–Hott mechanism, we find that
the mass spectrum of the gauge field Kaluza-Klein modes is continuous and there is no tachyonic mode.
The zero mode is localized on all the branes and there are resonant Kaluza-Klein modes on the degenerate
Bloch branes.
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I. INTRODUCTION

In braneworld theory, gravitons can be localized on the
Randall-Sundrum (RS) thin brane [1,2] and on the thick
brane [3], naturally. In addition to graviton localization, the
localization of Standard Model particles is also an impor-
tant issue for any braneworld model.
The localization of fermions on the brane can be realized

by introducing the usual Yukawa coupling between the
background scalar field and the fermion field [4–10] when
the background scalar field has a kinklike configuration
interpolating between the two different vacua at the two
sides of the brane. However, when the scalar field is an even
function of the extra dimension, one needs to introduce the
new localization mechanism presented in Ref. [11]. Real
scalar fields can be localized on a brane as long as the
graviton is localizable [5].
For the Uð1Þ gauge field, however, localization is more

complex than for the fermion and scalar fields. In the RS
thin brane scenario, theUð1Þ gauge field with the following
standard five-dimensional action,

S ∼
Z

d5x
ffiffiffiffiffiffi
−g

p
FMNFMN; ð1Þ

cannot be localized [12]. Here, FMN ¼ ∂MAN − ∂NAM is
the field strength of the Uð1Þ gauge field. In order to
localize the Uð1Þ gauge field on the RS brane, many ideas
were proposed [13–21].
In the thick brane scenario, the Uð1Þ gauge field with the

action (1) can be localized on some thick branes. For

example, it can be localized on the thick de Sitter (dS) brane
[22–24], the Weyl thick brane [25], and the brane with
finite extra dimension [26]. In Ref. [23], especially, the
potentials in the corresponding Schrodinger equations for
the Kaluza-Klein (KK) modes of the vector field are
modified Poschl-Teller potentials, which lead to the locali-
zation of the vector zero mode on the brane as well as to
mass gaps in the mass spectra, but it cannot be localized on
thick brane models that are asymptotically RS.
In order to localize the gauge field on the thick brane,

Kehagias and Tamvakis (KT) proposed a general mecha-
nism, in which a coupling between the gauge field and an
extra dilaton field is introduced [27]. The Kehagias and
Tamvakis mechanism has been applied in many different
braneworld scenarios to localize the vector [28–31] and
Kalb-Ramond fields [31–34]. Recently, Chumbes, Holf da
Silva, and Hott (CHH) proposed a new mechanism to
localize gauge and tensor fields on a thick brane [35]. In
their method, gauge and tensor fields are directly coupled to
a function of the background scalar field.
On the other hand, the thick brane is usually generated

by a background scalar field. In Ref. [36], Bazeia and
Gomes introduced the Bloch brane generated by two real
scalar fields. This brane model was further generalized in
Ref. [37] and investigated in Refs. [11,30,34,38–40]. It is
known that the Uð1Þ gauge field with the action (1) cannot
be localized on the Bloch brane [30]. In Ref. [30] the
localization of the gauge field on the Bloch brane was
discussed with the KT mechanism. In order to localize the
zero mode on the Bloch brane, an extra dilaton scalar field
is introduced in Ref. [30].
In this paper, we will investigate the localization

of the Uð1Þ gauge field with the CHH mechanism. In
this mechanism the third dilaton scalar field, which
appears in Ref. [30], is not needed. The localization and
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quasilocalization of the gauge field for four kinds of Bloch
brane solutions are discussed and the localized zero mode
and resonant KK modes are found.
This paper is constructed as follows. In Sec. II, the Bloch

brane scenario and its four kinds of solutions are reviewed
briefly. The localization and quasilocalization of the Uð1Þ
gauge field are discussed in Sec. III. Finally, we give our
conclusions in Sec. IV.

II. REVIEW OF THE BLOCH BRANE

The action for the Bloch brane model reads [36]

S ¼
Z

d4xdy
ffiffiffiffiffiffi
−g

p �
1

4
R −

1

2
∂Mϕ∂Mϕ −

1

2
∂Mχ∂Mχ

− Vðϕ; χÞ
�
; ð2Þ

where g ¼ detðgMNÞ, R is the scalar curvature of the five-
dimensional space-time, M, N ¼ 0, 1, 2, 3, 4, and ϕ, χ are
two real scalar fields depending only on the extradimen-
sional coordinate y for the static flat brane model.
The line element for the five-dimensional space-time is

assumed as

ds2 ¼ gMNdxMdxN ¼ e2αðyÞημνdxμdxν þ dy2; ð3Þ

where e2αðyÞ is the warp factor, αðyÞ is only the function of
the extradimensional coordinate y, and ημν¼diagð−1;1;1;1Þ.
From the above action (2), one can get the equations of
motion of ϕ, χ, and the Einstein equations [36],

ϕ00 ¼ −4α0ϕ0 þ ∂Vðχ;ϕÞ
∂ϕ ; ð4Þ

χ00 ¼ −4α0χ0 þ ∂Vðχ;ϕÞ
∂χ ; ð5Þ

α00 ¼ −
2

3
ðϕ02 þ χ02Þ; ð6Þ

α02 ¼ 1

6
ðϕ02 þ χ02Þ − 1

3
Vðϕ; χÞ; ð7Þ

where the prime stands for the derivativewith respect to y. By
introducinga superpotentialWðϕ; χÞ, theaboveequations can
be reduced to the following first-order form,

ϕ0 ¼ ∂Wðχ;ϕÞ
∂ϕ ; ð8Þ

χ0 ¼ ∂Wðχ;ϕÞ
∂χ ; ð9Þ

α0 ¼ −
2

3
Wðχ;ϕÞ; ð10Þ

and the scalar potential is determined in terms of the super-
potential by

V ¼ 1

2

��∂Wðχ;ϕÞ
∂ϕ

�
2

þ
�∂Wðχ;ϕÞ

∂χ
�

2
�
−
4

3
W2ðχ;ϕÞ:

ð11Þ

Then for the superpotential,

Wðϕ; χÞ ¼ ϕ

��
1 −

1

3
ϕ2

�
− bχ2

�
; ð12Þ

where b is a real parameter, the solution of Eqs. (8)–(10) is
given by [36]

ϕðyÞ ¼ tanhð2byÞ; ð13aÞ

χðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

b
− 2

r
sechð2byÞ; ð13bÞ

αðyÞ ¼ 1

9b
½ð1 − 3bÞtanh2ð2byÞ − 2 ln coshð2byÞ�; ð13cÞ

where the parameter b satisfies the constraint 0 < b < 1=2.
The above two-field solution represents a Bloch wall. When
b → 1=2, one will get the Ising wall of the one-field
solution [36].
In addition to the above original Bloch brane solution,

the generalized Bloch brane solution was found in Ref. [37]
by using the following generalized superpotential,

Wðϕ; χÞ ¼ ϕ

�
a

�
v2 −

1

3
ϕ2

�
− bχ2

�
; ð14Þ

where a, b, and v are positive constants. It reads [37]

ϕðyÞ ¼ v tanhð2bvyÞ; ð15aÞ

χðyÞ ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a − 2b

b

r
sechð2bvyÞ; ð15bÞ

αðyÞ ¼ v2

9b
½ða − 3bÞtanh2ð2bvyÞ − 2a ln coshð2bvyÞ�;

ð15cÞ

where a > 2b > 0.
Other solutions of the Bloch brane were also found in

Ref. [37] for the same superpotential (14) with a ¼ b and
a ¼ 4b, namely, the degenerated Bloch brane solutions.
They are

ϕðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 − 4

p
v sinhð2bvyÞffiffiffiffiffiffiffiffiffiffiffiffiffi

c20 − 4
p

coshð2bvyÞ − c0
; ð16aÞ
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χðyÞ ¼ 2vffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 − 4

p
coshð2bvyÞ − c0

; ð16bÞ

αðyÞ ¼ 1

2

�
4v2ð−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 − 4

p
c0 coshð2bvyÞ þ c20 − 4Þ

9ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 − 4

p
coshð2bvyÞ − c0Þ2

−
4ðc20 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 − 4

p
c0 − 4Þv2

9ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 − 4

p
− c0Þ2

�

þ 1

2
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 − 4

p
− c0ffiffiffiffiffiffiffiffiffiffiffiffiffi

c20 − 4
p

coshð2bvyÞ − c0

�4v2
9
; ð16cÞ

for c0 < −2 and a ¼ b, and

ϕðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16c0

p
v sinhð4bvyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 16c0
p

coshð4bvyÞ þ 1
; ð17aÞ

χðyÞ ¼ 2vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16c0

p
coshð4bvyÞ þ 1

p ; ð17bÞ

αðyÞ ¼ 1

2

�
4ð8c0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16c0

p þ 1Þv2
9ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 16c0
p þ 1Þ2

−
4v2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 16c0
p

coshð4bvyÞ þ 8c0 þ 1Þ
9ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 16c0
p

coshð4bvyÞ þ 1Þ2
�

þ 1

2
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16c0

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16c0

p
coshð4bvyÞ þ 1

�8v2
9
; ð17cÞ

for c0 < 1=16 and a ¼ 4b.
In this paper we will call solutions (13), (15), (16), and

(17) the original, generalized, degenerate I and degenerate
II Bloch brane solutions, respectively.
From the above solutions one can see that the Bloch

brane has a rich inner structure. The details of the above
solutions can be found in Refs. [36,37].

III. LOCALIZATION AND QUASILOCALIZATION
OF THE GAUGE FIELD

As was analyzed in Ref. [30], for a gauge field with the
following standard five-dimensional action,

S ∼
Z

d5x
ffiffiffiffiffiffi
−g

p
FMNFMN; ð18Þ

the corresponding zero mode cannot be localized on the
Bloch brane. In order to localize the gauge field on the
Bloch brane, the authors of Ref. [30] extended the Bloch
brane scenario to the so-called dilatonic Bloch brane
model, which is described by the following action,

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

4
R −

1

2
ð∂ϕÞ2 − 1

2
ð∂χÞ2 − 1

2
ð∂πÞ2

− Vðϕ; χ; πÞ
�
; ð19Þ

where the scalar fields ϕ and χ generate the brane, and the
dilaton scalar field π is used to localize the gauge field on
the brane. The action of the gauge field is assumed to be

S ∼
Z ffiffiffiffiffiffi

−g
p

d5xe−2λπ
ffiffiffiffiffiffi
2=3

p
FMNFMN; ð20Þ

where the coupling between the dilation field π and the
gauge field is introduced. With the action (20), the zero
mass mode of the gauge field was found to be localized on
the brane, and some massive resonant modes were also
found [30].
The method used in Ref. [30] was first proposed by

Kehagias and Tamvakis (KT) in Ref. [27]. In this paper we
will follow another mechanism proposed by CHH in
Ref. [35] and study the localization and quasilocalization
of the gauge field. Compared with the KT mechanism, the
dilation scalar field is not needed in the CHH mechanism.
We will show that the Uð1Þ gauge field can be localized on
the standard Bloch brane by introducing a coupling between
the gauge field and the background scalar field χ. The action
of the five-dimensional Uð1Þ gauge field reads

S ¼ −
1

4

Z
d5x

ffiffiffiffiffiffi
−g

p
χðyÞFMNFMN: ð21Þ

By means of the decomposition of Aμ ¼
P

naμðxÞρnðyÞ and
the gauge ∂μAμ ¼ 0 and A4 ¼ 0, the above action (21) can
be reduced to

S ¼ −
1

4

Z
dyχðyÞρnðyÞ2

Z
d4xðfμνfμν − 2m2

naμaμÞ;
ð22Þ

where fμν ¼ ∂μaν − ∂νaμ is the four-dimensional gauge
field strength tensor, and ρnðyÞ should satisfy the equation

ρ00n þ
�
χ0

χ
þ 2α0

�
ρ0n ¼ −m2

nρne−2α: ð23Þ

The localization of the gauge field requires

I ≡
Z þ∞

−∞
dyχðyÞρ2nðyÞ < ∞: ð24Þ

A. Zero mode

First we discuss the localization of the zero mode of the
gauge field. Let m0 ¼ 0, then Eq. (23) reads

ρ000 þ
�
χ0

χ
þ 2α0

�
ρ00 ¼ 0: ð25Þ

By introducing the filed transformation [35]

ρ0 ¼ e−γðyÞρ̂0ðyÞ ð26Þ
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with γðyÞ satisfies 2γ0 ¼ 2αþ χ0=χ, Eq. (25) can be
reduced to

−ρ̂000 þ ðγ00 þ γ02Þρ̂0 ¼ 0 ð27Þ

or �
d
dy

þ γ0
��

−
d
dy

þ γ0
�
ρ̂0 ¼ 0: ð28Þ

The solution of the above equation is ρ̂0 ¼ C1eγðyÞ, where
C1 is a constant. So the zero mode solution is ρ0 ¼ C1. The
localization of the zero mode needs

I ¼
Z þ∞

−∞
dyχðyÞρ20ðyÞ

¼ C2
1

Z þ∞

−∞
χðyÞdy < ∞: ð29Þ

Because the function χðyÞ is continuous, the convergence
of the above integration is decided by the asymptotic
behavior of χðyÞ at the infinity of extra dimension.
In addition to the above four kinds of analytic solutions,

there may exist some other solutions of the Bloch brane.
And to check the localization condition (29) for all of
these brane solutions one by one is not efficient. Therefore,
in the following we will try to find out the general
asymptotic solution of χðyÞ at the infinity and give a
general conclusion.
In the Bloch brane scenario, the configuration of the

scalar ϕðyÞ is a kink, and its asymptotic solution is

ϕðy → �∞Þ → �v; ð30Þ

where v is the vacuum expectation value of ϕ. Substituting
the general superpotential (14) into Eq. (9) yields

χ0 ¼ −2bϕχ: ð31Þ

When y → �∞, we have

χ0ðy → �∞Þ → ∓2bvχðy → �∞Þ; ð32Þ

from which we can obtain the asymptotic solution of χ:

χðy → �∞Þ → e−2bvjyj: ð33Þ

With the above asymptotic solution, we know that the
integration in Eq. (29) is convergent because the constants
b and v are positive. So the zero mode of the vector field
can be localized on the general Bloch brane.
Now we will calculate explicitly the normalization

constant C1 for the four kinds of Bloch brane solutions.
For the original and generalized Bloch brane solutions

(13) and (15), the normalization constants are, respectively,
given by

C1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b

1 − 2b

rs
; ð0 < b < 1=2Þ ð34Þ

C1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b

a − 2b

rs
; ð0 < b < a=2Þ; ð35Þ

which are finite.
For the degenerate Bloch solutions I (16) and II (17), the

results are, respectively,

C1 ¼
�
−
2

b
arctanh

�
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 − 4

q
þ c0

���
− 1
2
;

ðc0 < −2Þ ð36Þ

C1 ¼

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16c0

p þ 1
p
4K

�
1 − 2

ffiffiffiffiffiffiffiffiffiffiffi
1−16c0

pffiffiffiffiffiffiffiffiffiffiffi
1−16c0

p
þ1

�
3
75
1
2

; ðc0 < 1=16Þ; ð37Þ

where the function KðxÞ [41] gives the complete elliptic
integral of the first kind.
To sum up, with the CHH mechanism, the zero mode of

the Uð1Þ gauge field can be localized on the Bloch brane.

B. Massive modes

Next we investigate the (quasi)localization of the mas-
sive modes of gauge field. In this part, it is more convenient
to rewrite the metric (3) in a conformally flat form, namely,

ds2 ¼ e2AðzÞðημνdxμdxν þ dz2Þ: ð38Þ
With the above metric (38) and the gauge choice A4 ¼ 0,
the action of the five-dimensional gauge field (21) is
reduced to

S ¼ −
1

4

X
n

Z
dz~ρ2nðzÞ

Z
d4xðfðnÞμν fðnÞμν − 2m2

na
ðnÞ
μ aðnÞμÞ;

ð39Þ
where ~ρn ¼ ρnχ

1=2eA, and ~ρnðzÞ satisfies the following
Schrödinger-like equation,

−~ρ00n þ VðzÞ~ρn ¼ m2
n ~ρn; ð40Þ

where the effective potential is given by

VðzÞ ¼ 1

2
A00ðzÞ þ 1

4
A02ðzÞ þ A0ðzÞχ0ðzÞ

2χðzÞ þ χ00ðzÞ
2χðzÞ −

χ02ðzÞ
4χ2ðzÞ ;

ð41Þ
and the prime denotes the derivative with respect to z. The
above equation (40) can be recast to

T †T ~ρn ¼ m2
n ~ρn; ð42Þ
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where

T † ¼ −
d
dz

þ Γ; T ¼ d
dz

þ Γ;

and

Γ ¼ −
1

2

�
χ0

χ
þ A0

�
:

Equation (42) means that there is no tachyonic mode with
m2 < 0 in the spectrum of the KK modes [42]. Note that, in
order to get the effective action (39) of the four-dimensional
gauge fields from the five-dimensional one (21), we have
introduced the orthonormalization condition between dif-
ferent massive modes:Z

dz~ρmðzÞ~ρnðzÞ ¼ 0. ðm ≠ nÞ: ð43Þ

So the localization condition for ~ρnðzÞ isZ
dz~ρ2nðzÞ < ∞: ð44Þ

The property of ~ρn is determined by the effective potential
VðzÞ in (41). There are two methods to get the explicit
expression of the effective potential. The first one is to
resolve the Einstein equations and the equations of motion of
the background scalar fields with the line element (38). From
our knowledge, with this method, there is no analytic
solution. The second one is to write the expression of
VðzðyÞÞ in the y coordinate by the use of the coordinate
transformation dz ¼ e−αðyÞdy, and the result is

VðzðyÞÞ ¼ 1

2
e2αðyÞ

�
α00ðyÞ þ 2α0ðyÞχ0ðyÞ

χðyÞ þ 3

2
α02ðyÞ

þ χ00ðyÞ
χðyÞ −

χ02ðyÞ
2χ2ðyÞ

�
: ð45Þ

Then, we can use the numerical relation between y and z,
y ¼ yðzÞ, to obtain VðzÞ from (45).
For all the Bloch brane solutions, the effective potentials

VðzÞ are of the volcano type, and they tend to vanish at the
infinity of extra dimension, i.e.,

Vðz → �∞Þ → 0: ð46Þ
So the mass spectrum of the gauge field is continued and
m ≥ 0. For the massive KK mode, the solution of ~ρnðzÞ
oscillates when far away from the brane along the extra
dimension. And when m2 ≫ Vmax, where Vmax is the
maximum of the VðzÞ, ~ρnðzÞ approaches the plane wave
solution. The shapes of ~ρnðzÞ are shown in Fig. 1 for a
typical potential.
Since the effective potential tends to vanish at the

boundary of the extra dimension, the massive KK modes
cannot be normalized.
In order to investigate the structure of the mass spectrum

of these nonlocalized KK modes, we use the relative
probability method introduced in Ref. [43]. The relative
probability function is defined as [43]

PðmÞ ¼
R
zb
−zb ~ρ

2ðzÞdzR
zc
−zc ~ρ

2ðzÞdz ; ð47Þ

where zc > zb and 2zb is about the thickness of the
brane. Here and after, we set zc ¼ 10zb. If m2 ≫ Vmax
the solution of ~ρ will be approximately a plane wave, so
PðmÞ ≈ zb=zc ¼ 0.1. In order to get the solution of
Eq. (40), we introduce two boundary conditions:

~ρð0Þ ¼ 0; ~ρ0ð0Þ ¼ 1 ð48Þ
for the odd parity solution and

~ρð0Þ ¼ 1; ~ρ0ð0Þ ¼ 0 ð49Þ
for the even one. Next, we give the definition of a resonant
or quasilocalized KKmode with the P −m curve defined in

FIG. 1 (color online). The shapes of the effective potential VðzÞ and ~ρnðzÞ for the original Bloch brane solution. The parameters are set
to for b ¼ 0.4, m2 ¼ 0.2 (left), and m2 ¼ 1 (right).
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Eq. (47), which is usually solved by numerical method. If
there is one or more peaks in the P −m curve, then those
peaks having full width at half maximum are called
resonant peaks and the corresponding KK modes is defined
as resonant KK modes. We explain this definition more
explicitly. For the nth peak in the P −m curve located at
m ¼ mn, whose value is denoted as PðmnÞ, there must exist
two minima around the peak—one at the left-hand side of
the peak (with m ¼ m−

n ) and another at the right-hand side
(with m ¼ mþ

n ), denoted as Pðm−
n Þ and Pðmþ

n Þ, respec-
tively. If the half value of the nth peak is larger than both
Pðm−

n Þ and Pðmþ
n Þ, i.e., PðmnÞ=2 > Pðmþ

n Þ, then this peak
has full width at half maximum and the corresponding

massive KK mode with mass m ¼ mn is a resonant KK
mode. The full width at half maximum Γn ≡ Δmn is
defined as the decay width of the nth resonant KK mode
and τn ≡ 1=Γn is defined as its lifetime. So we can use the
P −m curve to check whether there are resonant modes or
not in the spectrum of the vector KK modes. Note that, if a
peak has no full width at half maximum, then we cannot
give the lifetime for the corresponding KK mode. Such a
peak is not a resonance according to our definition.
It is worth noting that in particle physics, the resonance is

defined as a peak located around a certain energy found in
the cross section which is a function of the total energy of
colliding particles. For example, for a resonant scattering

FIG. 2 (color online). The shapes of the effective potential VðzÞ for the original Bloch brane solution with different values of the
parameter b.

FIG. 3 (color online). The shapes of PðmÞ as a function of m for different values of the parameter b for the original Bloch brane
solution.
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from an initial two-body state n to a final two-body state n0,
the corresponding cross section reads [44]

σðn → n0; EÞ ∝ ΓnΓn0

ðE − ERÞ2 þ Γ2=4
; ð50Þ

where ER is the energy of the resonance, Γn0 is the
probability for the resonance decay into the final two-body
state n0, and Γ is the total decay rate which is the sum of all
Γn0 . The lifetime of a resonance is given by τ≡ 1=Γ
according to the uncertainty principle, where Γ is the
width of the peak at the half maximum. After some time
(lifetime) the resonant particle will decay into more stable
particles. While in our definition, the resonances are some
mass states for four-dimensional KK particles, which are
governed by the Schrödinger-like equation (40). The life-
time of a resonance is the time for a four-dimensional KK
particle living on branes. Because a resonant KK mode is
not localizable, the corresponding KK mode particle will
spread into the extra dimension after some time (lifetime).
The function PðmÞ in this paper has a similar status with the
cross-section function σðEÞ in the scattering theory, and the

same for m and E. Corresponding to the cross-section σ in
Eq. (50), PðmÞ does not have an analytical form in our
paper, but it is effective for us to find out the resonant
KK modes.
For the original Bloch brane solution, the shapes of the

effective potential VðzÞ for different values of the parameter
b are shown in Fig. 2, and the corresponding P −m curves
are plotted in Fig. 3. The results are similar for the
generalized Bloch solution and we do not show them. A
large range of values of the parameters are checked for both
the original and generalized Bloch solutions, but no
resonant mode is found.
For the degenerate Bloch brane solutions I and II, the

shapes of VðzÞ are shown in Fig. 4, which shows that the
width of the potential well increases with the parameter d
and there are two potential wells and two barriers with
vanishing potential between them when d is large enough or
c0 → −1 and c0 → 1=16 for solutions I and II, respectively.
Here, the parameter d is related to c0 by c0 ¼ −2 − 10−d and
c0 ¼ 1=16 − 10−d for for solutions I and II, respectively.
With the degenerate Bloch brane solutions I and II, we

find resonances. In order to show the result intuitively, we

FIG. 4 (color online). The shapes of the effective potential VðzÞ with different values of the parameter c0 for the degenerate Bloch
brane solutions I (16) (left) and II (17) (right). The other parameters are set to v ¼ 1 and b ¼ 1.

FIG. 5 (color online). The P −m curves for the degenerate Bloch brane solution I (16). The parameters are set to b ¼ 1, v ¼ 1,
c0 ¼ −2 − 10−10 (d ¼ 10) (Left), and c0 ¼ −2 − 10−20 (d ¼ 20) (Right).
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plotted some curves of PðmÞ in Figs. 5 and 6 for the
degenerate Bloch brane solutions I and II, respectively. In
the curves of PðmÞ, every peak corresponds to a resonant
mode. And by comparing Figs. 5 and 6, we find that the
number of the resonant modes increases with the width of
the degenerate Bloch branes. The shapes of the resonant
modes corresponding to the three peaks in Fig. 5 are shown
in Fig. 7, from which it can be seen that the resonant KK
modes with larger mass and shorter lifetime are nearly
plane waves, while the resonances with lower mass and
longer lifetime are quasibound modes.

IV. CONCLUSIONS

We have studied the localization of the U(1) gauge field
on the Bloch brane with the CHH mechanism. There are
two scalar fields in the Bloch brane model. In the CHH
mechanism, one of the scalar fields couples directly to
the U(1) gauge field. So, compared to the KT mechanism,
the CHH mechanism is a simpler way to to study the
localization of the Uð1Þ gauge field in the Bloch brane
scenario.
In this paper, four kinds of Bloch brane solutions were

discussed—the original, generalized, and degenerate I and
II Bloch brane solutions, respectively. With the CHH
mechanism, the Schrödinger-like equation for the vector
KK modes can be recast to the supersymmetric quantum

mechanics form, so the tachyonic KK modes are excluded.
We found that the zero mode of the U(1) gauge field can be
localized on the brane and the mass spectrum is continuous
withm2 ≥ 0. The resonant modes in the KK spectrum were
also discussed. For the original and generalized Bloch
brane solutions, we did not find any resonant mode. While
for the degenerate Bloch brane I and II solutions, we found
some resonant modes, and the number of resonant modes is
related to the inner structure of the Bloch brane and
increases with the brane width.
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FIG. 6 (color online). The P −m curves for the degenerate Bloch brane solution II (17). The parameters are set to b ¼ 1, v ¼ 1,
c0 ¼ 1=16 − 10−10 (d ¼ 10) (Left), and c0 ¼ 1=16 − 10−20 (d ¼ 20) (Right).

FIG. 7. The shapes of the resonant modes corresponding to the three peaks in Fig. 5(a).
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