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Using large-N technique at fixed dimension (d = 3), I examine the multicritical behavior of a U(N/2) x
U(N/2) Ginzburg-Landau theory of two multicomponent complex fields interacting through gauge fields
described by Maxwell terms and a mixed Chern-Simons term. This model is relevant to the dynamics of
Cooper pairs and vortices in a self-dual Josephson junction array system near its superconductor-insulator
quantum transition. I present calculations of the various critical exponents including 1/N corrections to the
N = oo saddle point. I investigate in the scaling region the behavior of the renormalized zero-momentum
four-point quartic couplings u and w in the action, and I calculate the 1/N correction to the -functions and
their fixed-point values. It is shown that the decoupled fixed point is destabilized in the presence of the
mixed Chern-Simons term at the next-to-leading order. Finally, I examine the universal character of the
conductivity at the critical point up to the next-to-leading order in 1/N expansion.
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I. INTRODUCTION

The continuous quantum phase transition (QPT) [1] in
Josephson junction arrays systems (JJA) provides an ideal
example to study quantum fluctuations at zero temperature.
Near a quantum critical point [2], scale invariance and
universality emerge, and the long-distance low energy
properties of the system are characterized by critical
exponents that are insensitive to the microscopic details
of the model [2]. A topological two-field Ginzburg-Landau
theory interacting through gauge fields was introduced in
[3] as a phenomenological model to study the QPT in JJA
systems. Via a duality transformation, the currents of Cooper
pairs (p,) and vortices (€,) in the underlying microscopic
model are represented as the dual field strength of fictitious
gauge fields p, = ¢*9,b; and €, = e"*d,a;, with ¢€,,,
(u,v, 4 =0,1,2) being the antisymmetric Levi-Civita sym-
bol [4]. When written in terms of the gauge fields, these
currents are trivially conserved due to the presence of
the €,,, symbol. In the dual description, kinetic terms for
charges and vortices are expressed by Maxwell terms for a,,
and b,,, while the Lorentz force exerted by the vortices on the
charges and the Magnus force exerted by the charges on the
vortices are expressed by a mixed Chern-Simons term
e””aﬂavb,l [4]. Along with emerging gauge fields, two
complex scalar fields are introduced to account for quantum
disorder due to electric and magnetic excitations in the
system. The resulting low energy effective model is a
Ginzburg-Landau theory with two disorder fields coupled
to a Maxwell-mixed-Chern-Simons gauge theory [3].
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The competition between the disordering fields exhibits
multicritical point behavior. This was investigated in a
recent paper [3] where a rich phase diagram was found. The
renormalization group (RG) analysis was done at fixed
dimension D =3 and not in D =4 —¢ as is often done
because of the presence of the Chern-Simons term, which
is an intrinsically three-dimensional object. This fixed-
dimension approach to critical phenomena was introduced
by Parisi in his study of a pure u¢* theory [5]. It draws on
the fact that near the critical point the system has only one
relevant length scale, the correlation length, which diverges
at this point. This length is used to convert dimensionful
coupling constants into dimensionless ones. The dimen-
sionless bare coupling g, = u/m used in the expansion
diverges when the mass m goes to zero, resulting in a
useless perturbative expansion near the transition. To find a
more suitable expansion parameter other than the bare
coupling, one introduces a field renormalization and a
renormalized dimensionless coupling constant g as in four
dimensions, and one looks for an infrared (IR) stable zero
in the corresponding Callan-Symanzik f(g)—function. It
ensues that the renormalized coupling has a finite limit
g. when the bare coupling becomes large. In contrast with
the e-expansion, however, at fixed dimension no small
parameter is available to control the calculation. In the
absence of a parameter other than the nonlinearity ¢ to
systematically control the computation, accurate determi-
nations of the fixed-point (FP) value of the coupling and all
other physical quantities hinge on the analytic properties of
the series, in addition to the number of terms available [6].
This limitation of the approximate one-loop renormaliza-
tion group at fixed dimension prompts us to look for
another method to solve our model beyond perturbation
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theory and obtain confirmation of the perturbative results
found in [3].

In this paper I concentrate on the critical behavior of
the d =2 + 1 dimensional U(N/2) x U(N/2) Ginzburg-
Landau-mixed-Chern-Simons theory in the framework of
the 1/N expansion. Large-N expansion has many appli-
cations in quantum field theory and statistical mechanics.
Since this method applies to any dimension of space, it was
particularly useful in revealing some of the most funda-
mental aspects of critical phenomena. The study of spin
systems in the large-N limit began with the work of Stanley
[7], who studied the N vector model using the saddle point
technique. Its application to critical phenomena was carried
out by Ma [8], who calculated 1/N corrections to the
critical exponents and explained in the same context the
Wilson renormalization group ideas. Calculations in con-
tinuum field theory were performed in [9] and nonlinear
sigma models [10]. The advantage of such a technique is
that 1/N provides a new expansion parameter that allows
the summation of infinite classes of Feynman graphs and
the results have a nonperturbative interpretation. It turns out
that this model is renormalizable in the 1/N expansion, and
its critical exponents can be obtained in a systematic way.
The critical exponents v, 7, and y are calculated to the
O(1/N). Next we study the renormalized zero-momentum
four-point couplings of the model by applying the 1/N
expansion. We compute the next-to-leading 1/N correction
to the renormalized couplings as a function of the bare
couplings and the renormalized mass. From these we find
the 1/N correction to the f-functions and the fixed-point
values. Finally, I examine the universal character of the
conductivity at the critical point up to the next-to-leading
order in 1/N expansion.

II. THE CONTINUUM MODEL

The low energy effective field theory describing the
dynamics of Cooper pairs and vortices in a self-dual
Josephson junction array consists of two complex fields
associated with disordering due to electric charges (V) and
magnetic charges (®) interacting through fictitious gauge
fields a, and b,. The derivation has been presented before
[3], and the Euclidean Lagrangian is given by

L:Ls+U+LG, (1)
Ls=|(0,—ia,)V|*+|(d,—ib,)®|?

u
U=r(I\If|2+|¢>I2)+7°(I\PI4+|<I>|4)+wOI\PIZI<I>\2, ()

1 1 .
Lo =g fht g0 +ikbe 0,0, (3)
a

Because of quantum fluctuations and RG iterations, we start
with the most general Landau-Ginzburg-Wilson Lagrangian
that is symmetric under U(1) x U(1) transformations and
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contains up to quartic interaction terms described by
couplings u and w between ¢ and V¥ fields. The first two
terms in L are the usual Maxwell terms for the gauge fields
b,, a,, associated with the currents of Cooper pairs and
vortices in the JJA system. Notice that we have two different
gauge couplings, which are related to the parameters of
the JJA system: e5 = 8E( and e} = 4n°E; where E,, the
Josephson coupling energy, measures the strength for the
phase coupling between two superconducting islands and
E(, the charging energy required to add extra charges to
neutral islands. The mixed Chern-Simons term has a
coefficient k = 1 /7 [3].

III. ONE-LOOP RENORMALIZATION GROUP
ANALYSIS IN THREE DIMENSIONS

Before we construct the 1/N expansion of the massive
scaling regime, it is instructive to summarize some proper-
ties of this field theory from the point of view of perturbative
RG in the same regime. This way one will be able to compare
large-N results with RG predictions. We note that the
construction of the perturbative renormalization expansion
in the massless regime of model (1) was recently reported in
[3]. At one-loop and for N/2-component complex scalar
fields, one introduces renormalized Wy, ®g, a, g, and b, p
fields, which are proportional to the bare ones:

U, = 7,7, ap =Zs'"%a

box =Z,'"%b,. (4)

Op = Z5'%0,

The constants of proportionality are fixed by imposing
normalization conditions on the one-particle irreducible
two-point [®® (k) and four-point I (0, 0, 0, 0) functions

(2)R
F(Z)R(k _ 0) = m?, or 2(k) =1, (5)
K |y

r11%(0,0,0,0) = 1$)%(0,0,0,0) = 3mig,  (6)

4)R

r1%(0,0,0,0) = miby, (7)
10 w 1
7 P (T ()]eco = (8)
10 v (2)R 1
EW [Pl;" (k)rb,yﬂ (k)}k,() - méi . 5 (9)

where the mass m was used to define the renormalized
dimensionless coupling constants with hats and P (k) is
the transverse projection given by P4 (k) = & — k*k" /K.
Up to one-loop order, the relevant Feynman diagrams for
the four-point F(li? and F(fg functions at zero external
momenta are shown in Fig. 1. These lead to the flow
equations in three space-time dimensions:
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FIG. 1 (color online). (a) FY? and (b) F(é) to one loop. The solid
lines represent the scalar field propagators with 1 corresponding
to ¥ and 2 to ®. The wiggly lines represent the gauge propagators
with 1 corresponding to a, and 2 to b,.

. diig
ﬁ(uR) dln(m)
_ N+8., N
= (2ny — Ditg + 167 ”?ﬁ'm % (10)
L dwg
2 ~2
= (ne +ny — 1)vg + aRWR+ﬂ’ (11)
47
g2y =L _p (1-N e (12)
“R7 dIn(m) @R 48z “R )
52 dej 52 N
ﬂ(eb,R) = d1n(m) ==, _@eb,R ) (13)

where the #-exponents, which characterize the anomalous
dimensions of the two-point correlation functions, are
given by

A2 52
2 eur 2 eup

I N — T T A A 14
ey T Ty 1Y

Ny =

with M = k&, &, z. Note that the beta functions for the
gauge charges can also be given exactly in terms of the
anomalous dimensions of the gauge fields by f(e% ) =
&ir(na—1) and (2} ) =2} g(n, — 1), where 75, =
dIn(Z,)/dIn(m) and 5, = dIn(Z,)/d In(m). In this form,
the existence of a charged fixed point, &2  # 0, éi’ » # 0,has
the immediate consequence that n, = 1, 1, = 1 [11]. The
beta functions associated with the gauge couplings have
nontrivial solutions when &2 = 48z/N and &; = 48x/N.
These lead to the fully charged FPs with respect to both
gauge fields. There exist four fixed points: (1) Gaussian, at
i=w=0, (2) U(N) symmetric, at a=w=_8x(1-2x)/
(N+4), (3) decoupled fixed point, at & = 16z(1—21)/
(N+8) and w=0, and (4) mixed, at @t = 8x(l —
2n)/(N* +8) and w = 8z(1 —25)(4 — N)/(N? + 8). The
flows of the interaction coupling constants for different
numbers of component N in the critical planes &3 = &7 =
487/ N are depicted in Fig. 2. The infrared stability of these
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FIG. 2 (color online). One-loop renormalization group flows in
the (&, W) plane at fixed dimension d = 3.

fixed points is done as usual through the positivity
analysis of the eigenvalues of the matrix M;; = %ﬁ,’),
A = (@1, W, @2, 27), at each fixed point. The result of such
study shows that for N < 2, the stable fixed point is the one
with the enlarged U(N) symmetry. For 2 < N < 4, on the
other hand, the mixed fixed point becomes the stable one.

Finally, for N > 4 the decoupled fixed point is stable.

IV. LARGE-N EXPANSION

The calculation proceeds in standard fashion, making
the assumption that u and w are both of order 1/N. The
complex scalar fields have both N/2 components. The
solution of the model in the large-N limit is inspired by
the central limit theorem [12]. It can be expected that, for N
large, O(N) invariant quantities like |®|? self-average and
therefore have small fluctuations. This suggests taking |®|?
and |W¥|? as dynamical variables, rather than ® and W. To
implement this idea, one introduces auxiliary fields 4, and
P and imposes the constraint p; (x) = |[¥|>/N and p,(x) =
|®|?/N by integrals over 1, and A,. The new representation
of the partition function is

Z= / dVdd|ddp;|da,db, exp|—S)
s= [ {stl(w-w+mz<|<1>|2—zvpz>

N
+NU+5LG], (15)

where the integration is over (2 4 1)-dimensional space and
imaginary time and U(py,p,) =r(py+p2) +u(pi+p3)/2 +
wp;p,. The field integral is then Gaussian in ¢ and ¥ and
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can be performed making the dependence of the partition
function on N more explicit:

Z= / [dA;dp;)da,db,

N
X exp |:—/ <2LG+NU+N(llp1 +ﬂzp2)>:|

X exp—%[tr In ((i0, + a,)* — iky)
+tr In((i0, + b,)* — idy)]. (16)

The integration over each component of ® and U has
generated the determinant of a differential operator, which
is not a simple quantity since 4;, 4,, a,, and b, are
fluctuating fields. Fortunately, the calculations that follow
require only a perturbative definition valid when 4; and 4,
fluctuate only weakly around some constant imaginary
value. Furthermore, since the potential U is quadratic the
integral over p; and p, is Gaussian and can thus be
calculated explicitly. One finds

7= /[d/li}daﬂdbﬂ exp [—Sesr]

N
Seft = 5/ Lo+ +r)AR+8)2+ 0" —r )ik

- 2iry+(ll +ﬂ,2)]
N
+ [tr In ((i0,, + a,)* — iAy)
+tr In ((i0, + b,)* — i), (17)

where y* = 1/(ug £+ wy). In the large-N limit, Seg is of
order N and the integral can thus be evaluated by the
steepest descent method. We look for a uniform saddle
point A, = im?, a = 1, 2 with m > 0. Differentiating S
with respect to 4,, we find saddle point equation

1 1
S Iy U - 18
rem 2y+lk2—|—m2 (18)

where we now adopt the convention that the Fourier
transform integral [, = [dk/(2x)?, which we will use
throughout this paper. At N = oo the system becomes
critical when m =0, i.e., at r =r,. The saddle point
equation becomes

@ P _fe8 ... B
2 +m?

B.a

FIG. 3.

0ag (91 +92),
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7:m2+

8oy’ (19)

where 7 = r —r, characterizes the deviation from the
critical point. From the gap equation we can obtain the
scaling of the mass and thus the exponent v at the leading
order. The leading m-dependent contribution for m — 0
gives m = 1 /& ~ 7, which shows that the exponent v = 1 is
no longer Gaussian.

V. THE 1/N CORRECTIONS

The large-N technique allows one to generate a system-
atic 1/N expansion. The evaluation of the Feynman rules
shown in Fig. 3 is straightforward. Differentiating twice the
action with respect to the shifted fields o, ,, defined as
Ao = im* + 6, a = 1, 2, one obtains the o,-propagators,
represented diagrammatically by dotted lines throughout
the paper. At an intermediate step we find

s:=5 [ (a0 a-0)5@(00). @)

Z—l( - ((7+ +77)/2+31(q)

(rt-v)/2 )
(rt=vr7)/2 '

(rt+7r7)/2+3(q)
(21)

Taking the inverse of the 2 x 2 matrix we find the ;-
propagators (i, j = 1, 2)

Dyy(4) = 3,8 (9) =5 [A. (.m) + (25, = DA_(g.m)],

(22)

1

Ap(g.m)=———-,
- 7+ +%H(‘]>

(23)

1 1
I(q) _A(k2+m2)[(k+q)2+m2] = Grg (g/2m).

(24)

o p

Agp(p.m?) :

T —i0agbany

(8] 144

>< —20080 11

B H

Feynman rules for the 1/N expansion.
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FIG. 4. One-loop diagrams that determine the effective action
of the gauge fields at large N.

Similarly differentiating twice the large-N action with

respect to the gauge fields and setting A, = im?, one
obtains at an intermediate step
2 N
3 [ ata(%r@)ha
(L 1) )orb
+bu(=a){ 5 +T(q) |5.b,(q)
b
= 2xb, (—q)€,42.920,(q)- (25)

Here, 87, = (8,, — 4,9,/4*) and where the T'(g) term
arises from the one-loop polarization diagrams shown in
Fig. 4, which are expressed as

2/ 5/41/ _ / [Zk}t + ‘Iﬂ] [2kv + CIU] —
k2 +m? o (B +m?)((k+ q)* +m?)

['(q)6,,-

(26)

At zero temperature, a full analytic evaluation of the
integrals is possible using the standard steps [13], and the
result is

I(q) = @A <q> _n (27)

871q 2m 4z

The resulting gauge propagators in Landau gauge are then

(a.fp = a,b)

Gl (q) = % [Fo(q)50,67 + G(q)eunaqs(1 = 67)].  (28)
B q*/e} +T(q)

Fod) = st r@) s e &

G(q) ° (30)

T (/2T (@) +T(q) + ¢k

VI. CRITICAL EXPONENTS

Using the propagators derived in the previous section,
we are now ready to compute two independent critical
exponents associated with the singularity at the critical
point (y and #) including one-loop corrections about the
N = oo saddle point. The critical exponent of interest v is
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obtained from the scaling relation v = y/(2 — ). We begin
by calculating 7, which is obtained from the two-point
vertex function T'®)(p, m = 0) = p>~ by picking up the
coefficient of the p?In p. The self energy diagrams that
enter the two-point W correlation function at order 1/N are
diagrams (a) and (b) shown in Fig. 5. Their contribution
gives

Ir'®(p.m=0)=p? +%/q A (g) L%_iz}

q+p) q
8 [p°—(pPa)}/d
[P P pg. o)
N (¢ +p)
In the critical region, A (g,m =0)=16g and

F.(q) ~T(q)/[?(q) + ¢*<*]. Evaluating these diagrams
asymptotically gives the divergent part

F(2)(p, m = O)

8
= p? 21n(A
Pt NP n(A/p)
128 1

- WWIU(A/P)- (32)

From this expression we read off the critical exponent 7
by re-exponentiating the p-terms

8 128
3N#?

1 5+ o(1/N?), (33)

= _3N7z21+c

where ¢ = 16k. Consideration of two limiting cases of this
result yields some expected results. First, it is consistent
with the critical exponent 7 of the O(N) symmetric scalar
field model [6] when ¢ — oo corresponding to the decou-
pling of the gauge fields. Second, it is consistent with [14]
when the Chern-Simons term is absent (¢ = 0).

The critical exponent y determines how the mass of the
scalar fields goes to zero at the critical point, i.e.,
I'®(p =0,m) ~m’. The relevant self-energy diagrams
that enter the two-point vertex function at order 1/N are all
the diagrams shown in Fig. 5 [diagram (b) gives zero
contribution when p = 0].

Evaluating these diagrams, we find

Ayi(q) A+(O m)/ Ayi(q)

)
r'“(p=0,m)= m+N/

g*+m* 16zmN qq2+4m2
A+(0,m)/ tan~!(q/2m)
—— | F(q)—————. 34
TN, O — (34)

Evaluating these integrals asymptotically gives the diver-
gent part
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FIG. 5.

24m> (A
ré(p= = m? 1
(p=0,m)=m*+ N n<m>

128m?(1 =3c¢?) . (A
—————"In| — |.
+ Nz*(1 + c*)? n<m> (35)

Re-exponentiating the logarithmic terms gives

152 128 C2(02 +5)
-_——t 1/N?). 36
N77,'2+N7t2 (1+c?)? +o(1/N%) (36)

We can now calculate the coefficient v by using a scaling
relation v =y /(2 — 1),

96 256 c*(c?+4)
vl e e
Nz* 3Nz (1+¢?)

o(1/N?). (37)
This result is consistent with the critical exponent v of the
O(N) symmetric scalar field model [6] when one takes the
limit ¢ — oo corresponding to the decoupling of the gauge
fields. It is also consistent with the result of [14] when the
Chern-Simons term is absent (¢ = 0).

VII. THE RENORMALIZED COUPLINGS

Using the propagators derived in the previous section, we
now investigate the renormalized dimensionless zero-
momentum four-point couplings &t and W in the scaling

M

0 C 90 ?

Self-energy diagrams that enter the two-point scalar fields correlation function at order 1/N.

region and obtain their fixed-point values for arbitrary N and
at fixed dimension. We compute the relevant Feynman
diagrams that contribute to the next-to-leading 1/N correc-
tion to the renormalized coupling as a function of the bare
coupling and the renormalized mass. These are used to find
the 1/N correction to the f§ — functions (it) = m,di/dm,
and (W) = m,dWw/dm, and the fixed-point values i* and
w*. Renormalization is performed according to the follow-
ing prescription for the two- and four-point functions of the
fields ¥ and ®:

I (p) =TS (p) = 27\ [m2 + p* + O(p*)]. (38)
() 3LAt
11(0,0,0,0) = 22" m,, (39)
N
3
r11(0,0,0,0) = z- 2ﬁwm (40)

In terms of the self-energy X( p, m) found from the diagrams
in Fig. 5, the two-point function and the renormalized mass
m, are given by

r@(p) = p*+m*—2(p.m), (41)

m? = m* —2(0,m) + m? {M} . (42)
8]7 p=0
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FIG. 6. Diagrammatic4 scalar field contributions to the four-
point vertex function I'}7.

The renormalized couplings & and W are given by

i {1+2{M} }rg‘f}(o,o,o,o), (43)
p=0

W= [1+2{82(p’2’")} ]rﬁ“)(o,o,o,oy (44)
817 p=0 '

&N ©
b-© -0

CRO- &) @

el b

Zow cHENGE

& o

CRMoI0Y & B

.

-
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The relevant Feynman diagrams that contribute to the next-
to-leading 1/N correction to F(lill and Flég are, respectively,
shown in Figs. 6-7 and Figs. §-10.

In order to obtain finite results, # and W must be
expressed in terms of the renormalized mass m,. To achieve
this, we express m in terms of m, by inverting Eq. (42),

IX(p,m,)

0P (45)

m* = m? +2(0,m,) —m%{

p=0

and the scalar propagators at zero momentum are
expressed as

D%l (0* mr) + D%2(07 mr)
327m’}

Dy, (0,m) = Dy (0,m,) +

Dy, (0, mr)Dlz(O, mr)
167m;}

Dy,(0,m) = Dy,(0,m,) +

As a consequence, the divergences contained in the
tadpole insertions (the first four tadpole diagrams in
Fig. 6 and the first ten diagrams in Fig. 7) cancel out.
In terms of the renormalized mass, we obtain the
following representation of the renormalized couplings:

[y

(4)

FIG. 7. Diagrammatic gauge field contributions to the four-point vertex function I'} ;.
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FIG. 8. Diagrammatic scalar field contributions to the four-point vertex function F(f%.

N _i Ayi(q) 1 i Ayi(q) i _ﬁ

it = 803(0) = 3, (A0 0) =) [ St DL (a0 @4 %) [ L (m00)-F)
Ayi(q) 2m; 0 Ayi(q) 1 [Ai(q)+A2(q) [ 3m; 2
X/(q2+4m2) N (A“(O)—i_g)/(q —|—m2)3 2N (q* + 4m?2)? [6]2+m2+y+A+(0)}

1 [A(q)A(q) [ 3m 2 24m} 3y F(q) 168, [ F(q)
N (q++4m) [qﬂmﬁﬁ&m)} N (A”(O)_7>/(q TR (g Amd) | 3N o+ m?

26, tan~'(q/2m,) 26, / o a )\ 86 / 80, /
F2 r 2 t 1 FZ 2,2
N (q)—q + qu( g)tan om) "N J, (q)+—N qu(Q)

A%l 4H2N /q F(g [tan a/2m, )} +A”(20732AA'[2(0) L G*(q) {tan‘l (2%,)]2+0<$>’ (48)

er—Alz(O)—16]meA11(O)A12(0)/( Ayi(g) _A12(0> <8—A“<0))/( Ayi(g)

¢ (@ +m?)(g*+4m?) 3N 16zm ) J, (g*+m?)?

80 [ R O ?g;m)/,

2N/A2q +::12 2 { 3:1 77 A } NJ, (g +4m ! [qS—T 2 y‘A‘w)r

SN s (2—?'6',5;) e (e

y L F2(q)m_l(+/2’m+%<ml(0)—w> / 4G*(q)tan™! <%) +2ir"j](\?)<1—?16‘ﬂ(2> /q F2(q)
10 (14000 SO BLO) [ o) An0onal0) [ o [ laf2m))

+A%1(0)447;2A%2(0) /q 6a) [tan_l<2’i )] +0< % ) (49)
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FIG. 9. Diagrammatic gauge field contributions to the four-point vertex function I" 543
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FIG. 10. Diagrammatic gauge field contributions to the four-point vertex function 1“52.
where 8, =y,A%(0)+y_A2(0); &, fy+Ai(O) —y_A2(0); By introducing a rescaled integration variable x = q/m,., it
53 = y2 A2(0) + y2A2(0)); 64 = y2A2(0) — y2A%(0). becomes apparent that all the dependence on the renor-

We note that when w = 0 and in the absence of gauge  malized mass and the bare couplings can only come
fields Eq. (48) reduces to Eq. (24) of Ref [15] where an  through the dimensionless combinations 7, = m,y, and
O(N) invariant scalar field theory was considered. Of & = ¢?/m,. In the large-N limit, these equations reduce to
course the theory analyzed here is more complicated since
it not only deals with two interacting multicomponent

1 1
i =8n <A + = > (50)
scalar fields, but it involves fluctuating gauge fields, too. Pe+1lo7o+1
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FIG. 11 (color online).
constants for N = oo.

The flow of the interaction coupling

1 1
WzSzr(A - ) (51)
Pe+1l 7-+1

and therefore the large-N limit of the f-functions reduce to

~ AD A2
©0)/n ~ dit L +w

u ) - r - - ) 52

Bu (i, W) M i+ — (52)
B (0, ) = m Wy (53)
YA dm, 8z’

These have four fixed points (see Fig. 11): (i1,, Ww,) = (0,0),
the Gaussian fixed point, which is unstable in both direc-
tions in the & — W plane; (i, W, ) = (16x,0), the decoupled
fixed point, which is stable; (it,,W,) = (8x,8x), the
enlarged U(N) symmetric fixed point, which is unstable,
and (i1,, w,) = (8, —8x), which is also unstable.

The 1/N expanded f-functions of the model are con-
structed from Egs. (48) and (49) by using the relations

Pu u,w):m,%:ﬁg})(w,w)—ﬁ—ﬁ il)(u’w)"'O(Nz)’
(54
A dw U | R 1
) =m0 )+ 0.9+ 0 3.
(53

To find expressions of the O(1/N) contributions to the
p-functions, it is convenient to work with the new coupling
constants 4, = it = W that from Egs. (48) and (49) can be
expressed as

PHYSICAL REVIEW D 90, 045028 (2014)

167 1 1
Ay = —hy (o 7_.8) + 0| — 56
=) o) 56)

and that lead to the following f-functions:
Bu(tt, W) = (B, +51)/2, (57)

ﬁw(ﬁf") = (ﬁzl+ —ﬁz,)/z’ (58)

where

i,

:B/Lr =m,——

1 0 [h,(A,,A_,e*
T+ )

oL g0 0y)

Ohy (A, A_,e?) &0h, (A, ,A_,e?)
OA_ N L

+o($), (59)

1
P ()

da_
m,—=
"dm,

b=

é2
PG+ [ )

oL g
Oh_(AA_,@®) &0h_(AyA_,8?)
OAy N 0@?

+0<$>, (60)

[0
P ()

A
B ) = —@(1 —lg;). (61)

Regarding the fixed-point values of & and W, these can be
easily obtained directly from Eqs. (48)—(49) by taking the
limit 7, — 0 and &> — oo and evaluating the remaining
integrals. The result in integral form is

a4 [ dx x 89
(2z)3arctan(x/2)(x2+1)2\x2+1  x*>+4

16z N
24 [ d’x Q(x)
N | (27)° (Q*(x)+x2k?) (x> + 1) (x> +4)

4 [ d’x [Q(x)arctan(x/2)]?
e Gy et o
., 642 [ dx [ arctan(x/2) ]2
N J (22)® [Qz(x) +x2K2:| ' (63)

where Q(x)=(x*>+4)tan"!(x/2)/(87x)—1/4x. Numerical
evaluation of these integrals for the relevant value x = 1/x
gives it* = 16x(1 —3.545/N) and W* = 34/N.
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VIII. CONDUCTIVITY NEAR THE
CRITICAL POINT

It is interesting to examine the conductivity near the
quantum critical point. This may be computed as the
response of the system to a weak external electromagnetic
field A,,. Since the charged bosons in the system are Cooper
pairs whose current is p, = (1/x)e**0,b,, the probing
electromagnetic field A, will enter the partition function
through the term 2eA,J, = 2¢A,e"*0,b,; in Eq. (3). The
effective action of the external electromagnetic gauge
fields A, is obtained after integrating out the fluctuations
inb,, a,, resulting in Seee[A,] = 1/2 [A,(—q)K,,(q)A,(q)
where K;w( ) (28/7[) eﬂT/f DpaQaCIﬁ<bT( )bp(CI» The
resulting conductivity (per flavor) is o¢;;(w) = K;;(q =
0,0)/w = o(w)d;; with

(®) 20 w*/el +T(w)
o) =— ;
7R, (w*/el +T(w))(@?/e} + T(w)) + o’k?
(64)
here, R, = 2zh/ 4¢? is the quantum resistance for Cooper
pairs. Near the critical region, this reduces to
1 0]
=—fl—), 65
olo) = -1 () (65)
2 xQ(x)
fx) = (66)

7Q(x) + 2%

At the critical point m = 0, the conductivity is a universal
number

b2 1
= 67
7 T8R,1+27/16 (67)

This is the leading (zeroth) order in 1/N expansion. To
obtain the first order correction to the universal conduc-
tivity in the 1/N expansion, we need the corrections to the
propagators of the gauge fields a, and b,, Eq. (28), by
adding new diagrams constructed by substituting complex
scalar loops to each vertex in diagrams of Fig. 4 and
attaching to it the propagators in all possible ways. The
needed diagrams are shown in Figs. 12-13.

The tadpole insertion diagrams in Fig. 12 cancel out once
we express the leading order polarization tensor in Eq. (26)
in terms of the renormalized mass in Eq. (42):

=T(q,m,) + i [2(0’ mr) = my [%P’;nr)} ,,:(J

x [%arctan (2}1) - 1}. (68)

The other graphs in Fig. 13 contribute to the 1/N
correction to the polarization tensor. Gauge invariance is

['(g,m)

O
-O-

PHYSICAL REVIEW D 90, 045028 (2014)

FIG. 12. Contributions with tadpole insertion to the vacuum
polarization tensor to order 1/N.

O =
wQ(;)QM O»O (8) ~Q(Q.,\

FIG. 13.
order 1/N.

?

Contributions to the vacuum polarization tensor to

preserved since each internal gauge field propagator is
combined with its corresponding seagull diagram. As we
show in Appendix A, diagrams (1) and (2) combine to give
a finite and transverse contribution to the polarization
tensor. Similarly, the combination of diagrams (3), (4),
(5), and (6) is finite and transverse. Finally, diagrams (7),
(8), and (9) combine to give also a finite and a transverse
contribution. The result is a transverse polarization tensor
11,,(q) = I1(q)5},. The resulting momentum integrals at
the critical point (m, = 0) are presented in Appendix A. It
is important to note that at the critical point the contribution
to the mixed Chern-Simons term at the 1/N order is zero.
This is because such a contribution could only result from
diagrams with two loops like diagram (8) involving an
internal scalar field propagator D;,(gq). However, such a
propagator is proportional to 7, — 7_ and hence gives zero
contribution at the critical point. This is consistent with a
known fact that in a topological field theory the Chern-
Simons term does not renormalize [13]. The b,-gauge
propagator at the critical point (m, = 0) including correc-
tions to the leading order in 1/N is then

I'(q) -
(T(q) -

1(q)/N 7

<bﬂ(_q)bu(Q)> = ( )/N) 2 25/41/7 (69)
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where  TI(q) = 4q/(97%) — 2q(7/3z* + 0.11) /(1 + ¢?).
The resulting universal dc conductivity to O(1/N) is

. 1+1c2—1 64+ 32 7 ol
c=o0 — -t . .
Nc24+1| 972 2 +1\37%

(70)

For Josephson junction array systems N = 2, this yields
6 = 0.21(2¢)?/h. Thus, the next-to-leading order correc-
tion to the universal conductivity in the 1/N expansion
reduces the value by about 14%.

IX. CONCLUSION

In summary, the critical behavior of a U(N/2) x U(N/2)
Ginzburg-Landau theory containing two multicomponent
complex fields coupled to gauge fields described by Maxwell
terms and a Mixed-Chern-Simons term was investigated in
the framework of the 1/N expansion at fixed dimension
d = 3. The critical exponents v, , and y are calculated to the
O(1/N). We computed the dependence of the renormalized
zero-momentum four-point quartic couplings # and Ww from
the renormalized mass m, and the bare couplings to order
O(1/N). The resulting beta functions and the fixed-point
values of the couplings were also obtained within the same
approximation. In the limit of an O(N) invariant scalar field
theory (w = 0 and no fluctuating gauge fields) our result for
the fixed-point value of the coupling u agrees with that of
[15]. For nonzero four-point quartic couplings & and w, it is
found that the decoupled fixed point that was stable within
the approximate one-loop renormalization group for N > 4
is destabilized in the framework of the 1/N expansion since
w* # 0. This is attributed to the interaction mediated by the
mixed Chern-Simons term. The dc conductivity that includes
corrections to the leading order in 1/N is found to be
universal. It is important to note here that the universal
conductivity is obtained when both chargelike and magnet-
iclike modes are simultaneously excited and when both
fluctuating gauge fields are taken into account. In this regard
our result is more general than that of [16], which considered
the dynamics of a single complex field (representing charge-
like modes only) and in the absence of fluctuating gauge
fields. Furthermore, here we recover the result of [16] in the
limit of extremely massive magnetic modes. In fact in this

|

vosaapDla+ f = d/2)T(d/2 = )T (d/2 - )

PHYSICAL REVIEW D 90, 045028 (2014)

case the P field decouples form the theory and the gauge field
b, now essentially plays the role of a Lagrange multiplier that
imposes the constraint a, = —2eA, where the probing
electromagnetic field A, enters the Lagrangian in Eq. (3)
through the term 2eA,J, = 2¢A,e"*9,b,. The resulting
effective action reduces then to the standard Landau—
Ginzburg theory considered in [16] with only chargelike
modes W coupled to A,,. In this case the next-to-leading order
correction to the conductivity involves only diagrams (1) and
(2) in Fig. 13 and the result is

T 64
= (-2, 71
’ 8Rq< 97z2N> (70)

which reproduces Eq. (5.25) of [16] (note that here
N/2 = M).

It would be interesting to investigate higher corrections
to the conductivity at finite temperature when chargelike
and magneticlike modes are simultaneously excited. This
effect is known to involve crossover phenomena between
different dimensions when the temperature varies from zero
to infinity. Large-N technique is particularly well suited to
study such a crossover situation. We hope to tackle these
points in future works.
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APPENDIX A: EVALUATION OF THE
POLARIZATION TENSOR TO ORDER 1/N

In this appendix, we provide more details on how we
evaluate the momentum integrals appearing in the two- and
three-loop diagrams for the gauge propagator to order 1/N
at the critical point. We show that all momentum-dependent
singularities from different diagrams mutually cancel to
1/N and that the polarization tensor is transverse. Most
calculations at order 1/N rely on the evaluation of the
generic d-dimensional integrals

1
e AT @I P d-a-p) Ay
/ ky _aapllat f—d/2)(d/2 - )T (d/2 -+ 1) (A2)
¢ (kv pyea — PP (A0 P @ (T d—a—p+1)
/ Kby pre {15 Fla+f—dj2— )I(d/2 —a+ D(d/2—p+1)
k (k+p),®  (4n)PT(@ (B (d —a=p+2) |27
+ %F(a - dJ2)T(d)2 - a)T(d)2 - +2) } (A3)
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In what follows d = 3 — ¢, and the singularities appear
as poles in 1/e. If one chooses a hard cutoff and restricts the
integration to values k < A, the residue of the pole yields
the coefficient of pIn(A/p). The expression of the first
diagram with a scalar self-energy correction is

(1) _ [2k/4 + Pﬂ][zku +plq 1 B i
11, (p) = 8qu k4(k—|— p)z [(k—l— q)2 612].
(A4)

The integration over q is done first with the intermediate
result

(1) 4 (1 vy 8 /[Zkﬂ-i-pﬂ][Zk,/-l—py]
M, =———(-—2-In(2)+= .
’ ( " )+3> e Kkt p)?

(A5)
Next, the integration over k is done with the result
(1) p 147 T lpﬂpl/
IT,, =—|l-+—=-7]6, ——=|. (A6
o | CA e LARS Lo AT

The expression of the second diagram with a scalar
vertex correction is

(2) o Q[Zky + p[l] [Zkv + 2‘11/ + Pu]
I (p) = -8 2 2 2 R
kg K*(k+p)*(k+q)*(k+p+q)
(A7)

We find it useful to decompose this polarization tensor in
terms of its transverse part and its longitudinal part

I (p)éf (p) + Iy (p) P25

) (p) = (A8)

The integral giving the longitudinal part can be reduced
by means of the formula
2%k-p=(k+p)-p-& (A9)

and, after performing the q integration, the intermediate
integral is

> 8 (1 y 8
n?(p) = “3a <€—2—1n(2)+3+ O(e)

/p2+2k-p
x [ —— 1.
k ké(k+ p)?

Next, the integration over k is done with the result

(A10)

2)

n?(p) = -2

~5- (Al1)

To get the transverse part of H,(,zy) (p), we first find the trace

H,(,z)”(p) and use the relation H,(,Z)”(p):(d—l)l'[,(p) +
IT, (p). Repeated use of formula (A9) gives

PHYSICAL REVIEW D 90, 045028 (2014)
(2u 4q
0 — -8
i (P) / 2t )2k + 4
q(2¢* + p?)

TRR T ks Pk pr gt A1

The first part in (A12) is easily done by integrating first
over q using the generic formula (A1) followed by another
generic k-integration. The second part in (A12) requires
more work and is of the generic form

1
/ﬂwkz k?"lkgnz(kl + p)2n3 (k2 + p)2n4(kl _ k2)2n5

_ 2d-Zn;
=P d "’G(”l,nz,”3»n4»n5>-

(A13)

These types of integrals are handled by finding
recurrence relations (known as triangle relations) for
G(ny,ny, n3, ny, ns), which are obtained by applying the
operators 0 - (k; —k,) and O, -k, to the integrand of
(A13). Relevant to the integrals needed in (A12), these
relations are

(d=3)G(1,1,1,1,1/2) + (2d = 5)G(1,1,1,1,-1/2)
= f(=1/2), (A14)

(d—1)G(1,1,1,1,-1/2) + (2d = 3)G(1,1,1,1,-3/2)

— £(=3/2), (AlS)
where
f(ns) =2(G(2,n5)G(1,3 + ns —d/2)
-G(l,ns+1)G(2,n5+3-d/2), (A16)

T(n+m—d/2)T(d/2—-n)['(d/2 — m)

G(n,m) =
(n.m) () 0(n)T(m)T(d — n — m)
(A17)
The resulting transverse part is
31
0 (p) = - L +5. (A

C6n%e 127% | 612

Adding the two polarization tensors with corrections
from the scalar field self-energy and vertex contributions,
taking into account a combinatorial factor 2 for the self-
energy diagram, gives

2p

1 2
21 (p) + 1 (p) = o

(A19)
We verify that the two longitudinal components and the 1/¢

singularities in the transverse parts both sum to O as they
should.
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Next, we proceed to evaluate the diagrams with gauge
field propagators. We find it convenient to combine directly
diagrams (3) and (5) as the logarithmic singularities in each
diagram cancel out and their combination gives a finite
contribution to the polarization tensor. We verified that
both calculations using a hard cutoff and dimensional
regularization give the same answer,

diagram(3) + (5)
_ 2/ [2k/4 + pu] [2]{,, + pv] [2]{2 + q/i]G/l-r(q)[Zkr + QT}
k.q

k*(k+ p)? (k+4q)

2k, + p,] 2k, + q.] G,:(q)
_4lﬂ Rt p? krqr HY

(A20)

Note the factors 2 and 4 in front of each integral, which
account for the fact that there are two self-energy insertions
for the diagram of type (3) and the two diagrams of type (5),
each has a factor —2 at the vertex where two gauge field

|
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lines meet. We first perform a generic integration over ¢,
and, simplifying the combined integrands, we get at an
intermediate step

diagram(3) + (5)

128 k,p, k, ¥
:_ﬁ/ (k)2 +2p,4 +2p”p . (A21)
3n7(1+¢*) Ji k*(k+p)
It is easy to check that the trace H,(EH)” (p) and the

longitudinal part are given by the same integral. As a
result, the transverse part is zero.

The remaining k-integration can be done easily, result-
ing in

(3+5) 8p PuPy
I, = . A22

H (p) 371_2(1 +C2) p2 ( )

The diagram (4) with a gauge field vertex correction is
expressed by the following integral:

n(p) / 2k, + pyl2k, +2q, + p.]12k; + 4,1G1:(9)[2k; + 2p: + ¢4
. kq R(k+p)(k+q)*(k+p+q)°

It is finite. TIts longitudinal part H(L4)( p) =
pﬂﬂﬁ) (p)p,/p* can be easily obtained by using formula
(A9) and then performing the g-integration using (A1-A3),

7
372(1+¢%)’

4)

Y (p) = (A24)

Its transverse part is finite, but it requires more work.

We first find its trace Hff)” (p) and make use repeatedly

of formula (A9). This generates several terms in the
integrand that can be computed easily with the help of
(A1) and one term that is of the type (Al13). At an
intermediate step, we get

4 1 70p
Y (p) = i (—@+32p46(1, 1,1,1,1/2)
1 (70p 4p (x> 1
=-——— S5+ (=+zn(1+V2
1+C2<97r2+7r2 <12+2“( V)
x In(2 + 2v/2) + dilog(1 + V2)
+ dilog(2 + \5)) ) : (A25)

G(1,1,1,1,1/2) is the integral defined in (A13) (see
Appendix C for its computation). The resulting transverse
part is

(A23)

@) L (32p p 2p
H = —_— _— —_ _—
r () 1+c? <97r2 + 6

x (%m(l +V2)In(2 +2v?2) + dilog(1 + V2)

+dilog(2 + \/§)> > . (A26)

Diagram (6) is expressed by the following integral:

©) G (q)
M (p) = A,q (k+ p)*(k+q)*

(A27)

This is easily computed with the use of (A1)-(A3) and
the result is

)4 PuPy
e — ) . A28
ﬁu+ﬂ<w+zﬂ> (A28)

Note that when diagrams (3), (4), (5), and (6) are added
the result is transverse. This is the same as in the two-loop
diagrams of scalar QEDj; the only difference is the form of
the internal gauge propagator.
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3) (4) (5) ) N\ _ p
Iy (p) + M/ (p) + 1w (p) + 1w (p) = — 2013 (%

PHYSICAL REVIEW D 90, 045028 (2014)

_ p;f”) (491 + 62 +1In(1 4 v2)In(2 +2v2)

+ 2dilog(1 + V2) + 2dilog(2 + x/§)>

Diagram (7) is expressed by the following integral:

PuPu (1
-5 )(—2+0.1102531>. (A29)
P T
I
(7) p PuPy
L) (p) =5+ |0 : A31
H (p) 7[2(1+C )|:/4 + p :| ( )

o G, (q9)D(p + q)
I (p) = —4 /k.q‘l R(k+p+q)PPI+p+q)?
(A30)

With the help of (A1) we first perform the two separate
integrations over k and over /; then with the help of (A3) we
compute the resulting integration over ¢. The result is

|

It is important to notice that when diagrams (7), (8), and
(9) are combined, the resulting tensor is transverse and its
expression is convergent. Gauge invariance is preserved
since each gauge propagator is combined with its seagull
diagram. Diagram (8) is expressed by the following
integral:

H(S) o [Zkﬂ + pﬂ][ZII/ + pv] [Zk/l + q/l] [211 + q‘r}G/lr(Q)D(p - Q>
w(p)=—4 2 2 37 2 2 : (A32)
kal k2 (k + p)*(k+q)* (1 + p)*(l + q)
Diagram (9) is given by
o (p) = 4 / 20, + p] { 2L — 4] 2L +2p. + 4] ]
’ ket (k+p+q) [P(1+p)P(U-q)? P(l+p)PU+p+a)
X Gu:(9)D(p + ). (A33)
With the help of the following formulas (see Appendix B for their derivation),
k, 1 (p,, du >
= 421, A34
Akz(kﬂ?)z(kﬂ])2 8p-dal(p+q+Ip-d|) q (A34)
/ buks = A8, +B + C( + )+ D (A35)
f kz(k+ p)z(k+ q)z - 1172 pypu prv Qypb Q/l%n
1 2 -
16(p +4q+Ip—4ql) 16plp —ql(p +q+[p—ql)
1 2 —
_ . _ p+q+p—q . (A37)
16|p —q|(p + ¢ +[p —ql) 169lp —ql(p + ¢ +[p—ql)
The two separate integrations over k and over [ in Hff,) (p) yield
8) q pﬂpﬂ q;lp/l
n(p) = - (Ip=altp-+ q+ o - ap 2 2224 2%)
g (1+c)Jglp—dal(p+q+Ip-a))? P g
Opc | PuPe | duPs 94
< (Ip=alp-tqtlp-ah e PP D) (5, 9 (A3%)
q p q q’
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Its longitudinal part H(LS)( )_pMH,(w( )p,/p? s
given by

2p

H<LS) (p) = m (A39)

Similarly, the longitudinal part H(Lg) (p) is found to be

4p

H(Lg)(l’) = —m- (A40)

The transverse part of the combined diagrams (8) and
) is

Tp

iy (p )+H '(p) = ey

(A41)

Note that when diagrams (7), (8), and (9) are added the

result is transverse,
4 5 _PuPv
3 (1+cH\ " p* )’

(A42)

7 8 9
) (p) + 11 (p) +11%) (p) =

APPENDIX B: EVALUATION OF (A34) AND (A35)

In this appendix we derive identities (A34)-(A35),
which are crucial for the derivation of the polarization
tensors H,(,,,)( ) and I'[;(w)( ). We write the integral in terms
of Lorentz invariant amplitudes

=Ap, + Bq,. (B1)

kﬂ
/k (k4 p)*(k + q)*

By contracting with p, and g,, we derive a system of
linear equations for A and B:

Ap* +Bp-q=1, (B2)
Ap-q+ Bg*> =, (B3)
with
k-p
= , B4
| ear i ar Y
k-q
J = . B5
| ear i =
Using 2k - p = (k + p)* — p> — k? in the integrand, we

can easily calculate I and J with the help of (Al) and of
formula (D1) (see Appendix D):

1

- B6
16qlp —q (B6)

(lp—ql-p-9),

PHYSICAL REVIEW D 90, 045028 (2014)

1
= (p-q|-p-9q). B7
16p|p_q|(lp q-p-q) (B7)

Solving the system of linear equations, we get

T

Substituting the expressions of / and J and simplifying,
we get the results used in Appendix A.

Similarly, we write the other integral in terms of Lorentz
invariant amplitudes:

kk
= as,, +b
/ckz(k—kp)z(k—f—q)z @O OPuPy

+ c(puq, + qup.) +dq,q,,
(B10)

By contracting with §,,, p,, and g,, we obtain a system

of linear equations for a, b, ¢, and d:

3a+bp*>+2c(p-q)+dg*> =K
aq®>+b(p-q)* +2cq*(p-q) +dg* =L
ap*+bp*+2cp*(p-q)+d(p-q)* =M

)
a(p-q)+bp*(p-q)+c(p*q*+(p-q)*) +dq*(p-q) =N,

where K, L, M, and N are basic integrals defined as follows:

1
k= / (k+p)2(k+q7
:/ (k-q)*
k*(k + p)z(k +q)*

M= /2

K> (k + p)? k+q)
N — / (k- Q(k p)

5 )
K2 (k+ p)*(k+q)?

(B12)

These basics integrals can be easily computed by using
integral (A1) and (D1) after reducing the integrand when
necessary with the formula 2k - p = (k+ p)> — p* — k°.
Solving the system of linear equations, and simplifying the
expressions, we get expressions for a, b, ¢, and d as given
in Appendix A.
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LARGE-N ANALYSIS OF THE CRITICAL BEHAVIOR ...
APPENDIX C: EVALUATION OF G(1,1,1,1,1/2)

In this appendix we compute G(1, 1,1, 1, 1/2). First, we
simplify the integrand by multiplying and dividing by 2p -
g and using the following formula: 2p - ¢ = (k+ p + ¢)* —
(k+p)?—(k+q)*+k* in the numerator to reduce the
number of propagators in the denominator to 4.
This step gives, after some shifts in the variable of
integration,

PHYSICAL REVIEW D 90, 045028 (2014)

1
G(1.1.1.1.1/2 :/
( /2) kg @2 (k+ p)*(k+q)*(k+ p +q)*

1 1
- 2/k.q q(p-q) K (k+ p)*(k+q)*
(C1)

Integrating over k first using formula (D1) (see
Appendix D) gives

G(1,1,1,1,1/2) =

dgq 1

1/ 1 o
4p Je¢*(p-q)lp—dq| 167%p

/qu/l du
> Jo —-1ur/p* + q* = 2pqu

1 /00
8z°p* Jo ¢ \/q2+p
+=In

1 2
~ 8 [12 2

APPENDIX D: EVALUATION OF THE
SCALAR INTEGRAL (D1)

In this appendix we derive the following identity:

| |
- A KR(k+ pPk—q?  8pgs’ (b1

where s = |p + q|. Using a Feynman parametric represen-
tation, we transform this integral into

lx
dx/

[x(1—x)g* +y(1 - y)p2

Z——
16

x (D2)

+2xy(p-q)P*

(1+v2)In(2 4+ 2v?2) + dilog(1 + V2) + dilog(2 + V2)|.

\/q +p* + g - pl]

Ny

(€2)

The integration over y is done first, and the expres-
sion obtained is greatly simplified with the help of
Maple by using 2q - p = (q + p)* — p*> — ¢* beforehand.
We obtain

q+s 1

\/ (1=x) x+u’

Z= (D3)

8ﬂqs 52— p?)

where u = p?/[(q + s)* — p?]. Finally, the integration over
x gives the desired result.
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