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We investigate the vacuum polarization and Casimir energy of a Dirac field coupled to a scalar potential
in one spatial dimension. Both of these effects have a common cause, which is the distortion of the
spectrum of the Dirac field due to its coupling with the background field. Choosing the potential to be a
symmetrical square well renders the problem exactly solvable, and we can obtain the whole spectrum of the
system analytically. We show that the total number of states and the total density remain unchanged as
compared with the free case, as one expects. Furthermore, since there is a reflection symmetry between
positive- and negative-energy eigenstates of the fermion, the total density and the total number of negative
and positive states remain unchanged, separately. This, along with the fact that there is no zero mode,
mandate that the vacuum polarization in this model is zero for any choice of the parameters of the potential.
It is important to note that although the vacuum polarization is zero due to the symmetries of the model, the
Casimir energy of the system is not zero in general. In the graph of the Casimir energy as a function of the
depth of the well, there is a maximum approximately when the bound energy levels change direction and
move back towards their continuum of origin. The Casimir energy for a fixed value of the depth is an almost
linear increasing function of the width. Moreover, the Casimir energy density (the energy density of all the
negative-energy states) and the energy density of all the positive-energy states are exactly the mirror images
of each other. Finally, we compute the total energy of a valence fermion present in the lowest positive-
energy fermionic bound state. We find that taking into account the Casimir energy does not result in the
appearance of any local minima in the graphs of the total energy as a function of the parameters of the
model, and this is in sharp contrast to the cases where there are levels crossing the line E ¼ 0.
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I. INTRODUCTION

During the last 40 years the concept of the vacuum
polarization (VP) of fermions due to their interactions with
other fields has attracted much interest. It has been studied
extensively in many branches of physics, such as particle
physics [1–10], condensed-matter physics [11], polymer
physics [12], atomic physics [13] and cosmology [14].
Most of the authors have considered the coupling of scalar
and pseudoscalar fields to fermions and obtained many
interesting and unexpected results. In this category of
problems, solitary waves and solitons have been chosen
extensively as background fields. When a fermion interacts
with a soliton, an interesting phenomenon can occur, which
is the fractionalization of the fermion number of the
solitonic states. This was first pointed out by Jackiw and
Rebbi [1]. They showed that in the fermion-soliton models
in which the soliton is in the form of a prescribed scalar
field and the system possesses the charge conjugation
symmetry, the existence of a zero-energy fermionic mode
implies that the soliton is a degenerate doublet with fermion
number �1=2. This interesting result has motivated much

of the work in VP for many different physical systems in
the literature.
Two important tools for studying the vacuum polariza-

tion were invented in the early 1980s. The first one, called
the adiabatic method, was introduced by Goldstone and
Wilczek [2]. In this method the nontrivial configuration of
the external background field is considered to form con-
tinuously and adiabatically from the trivial configuration.
Using their adiabatic method for coupled fermion-soliton
systems which do not possess charge conjugation sym-
metry, they concluded that the fermion number of the
soliton could be any real value, not just�1=2. Later on, the
limitation of this method, i.e. the requirement of adiaba-
ticity for the external field, was lifted by MacKenzie and
Wilczek [3]. In this modified method one computes the
energy spectrum of the fermion as the prescribed field is
formed. They applied this method to compute the vacuum
polarization of a Dirac field, induced by an infinitely sharp
soliton as an example [15]. Using their method they
concluded that sharply varying solitons do not carry any
fermionic charge. According to their method, there are in
general two contributions to VP. First is the adiabatic
contribution which comes from the change in the total
number of energy levels in the Dirac sea, caused by the
presence of the disturbance. The second contribution,
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which is called the nonadiabatic contribution, is due to the
bound states crossing the line E ¼ 0. In the expansion of
the Fermi field operator in terms of the fermionic states in
the presence of the disturbance, they chose the coefficients
of the bound states to be always the annihilation operator.
With this choice just the adiabatic contribution is included
in VP and one has to add the other contribution by hand.
However, we choose the coefficients of the bound states
with positive and negative energy to be the annihilation and
creation operator, respectively, as one does for the con-
tinuum states. This choice leads to a complete formula for
VP, in which both contributions are automatically included.
With the aid of the method of MacKenzie and Wilczek,
Gousheh and Mobilia [6] computed the vacuum polariza-
tion by solitons for an exactly solvable model. Their model
is a Fermi field chirally coupled to a pseudoscalar field with
a simple form similar to the kink or the soliton of the sine-
Gordon model. By the use of this exactly solvable model,
they concluded that, for systems without fermion-number
conjugation symmetry, the vacuum polarization induced by
solitons is in general less than or equal to their topological
charge, and only the infinitely sharp solitons can never
polarize the vacuum.
Another manifestation of the distortion of the fermionic

spectrum is the Casimir effect. The Casimir effect was
proposed theoretically by Casimir [16] and Casimir and
Polder [17] in 1948. Their works led to the prediction of the
existence of a net attractive force between two grounded
infinite parallel metallic plates in a vacuum without any
external electromagnetic field. The plates change the zero
energies of the quantized fields and this gives rise to forces
between them. In 1958 Marcus Sparnaay [18] conducted
the first experimental attempt to observe this phenomenon
for two parallel metallic plates. However, the results had a
very poor accuracy since two parallel plates would require
accurate alignment to ensure they are parallel. In 1997
Steve K. Lamoreaux [19] opened the door to precise
measurements of the Casimir force, using a plate and a
metallic spherical shell. Since then, many different experi-
ments have been performed to measure the Casimir forces
for various geometries [20]. Although many theorists refer
to the Casimir force as good evidence for the reality of
quantum zero-point fluctuations, some authors [21] dis-
agree. The Casimir effect can be observed when the
presence of some nontrivial boundary condition or back-
ground field (e.g. a soliton) changes the vacuum energy of a
quantum field. Also, the value of the Casimir energy
depends on the number of spatial dimensions, the type
of fields, type of topology, and geometry. Since the Casimir
work, many papers have been written on the Casimir
energy for different geometries [16,22–24], using many
different techniques [25] to remove the divergences. There
are many recent works in which the authors study the
practical applications of the Casimir effect. The Casimir
forces which are normally neglected in macro systems have

to be considered for micro and nano electromechanical
systems (MEMS and NEMS) [26].
As mentioned above, the zero-point energy can also be

affected by the presence of nontrivial background fields
such as solitons. Several authors have used various methods
to compute the Casimir energy caused by the presence of
solitons and specially to compute the corrections to the
soliton mass, such as the dimensional regularization, zeta
function analytic continuation and scattering phase shift
method [5,7,27–30]. Also, the Casimir effect appears in
supersymmetric models to investigate the validity of the
BPS saturation by supersymmetric solitons [31]. Choosing
a soliton as the background field for investigating the
Casimir energy in the presence of the nontrivial back-
ground fields, usually makes the problem analytically
unsolvable and the problems of this kind which are exactly
solvable are very rare [28,29]. The use of numerical
methods might hide some important physical aspects of
these problems. Therefore, choosing simple background
fields which give rise to exactly solvable problems could
clarify some of the physical aspects of the Casimir effect and
also the vacuum polarization. For this purpose we choose a
simple model in which a Dirac field is coupled to a scalar
potential in (1þ 1) dimensions. The simple functional form
chosen for the potential which is a symmetrical square well
makes the problem exactly solvable. Our model has the
symmetries C, P and T, separately. The charge conjugation
operator in this model has the property of taking a solution
with positive energy E into the one with the negative energy
−E. Also, we observe that for the scalar potential chosen
here there is no zero-energy bound state. This fact and the
existence of the symmetry between the negative- and
positive-energy eigenstates lead to some interesting results
for VP and the Casimir energy of this model, which we shall
state and study throughout this paper.
It is worth mentioning that it is traditional to discuss of

and study the Casimir effect when a dynamical field
interacts with nontrivial boundary conditions or a nontrivial
topological background field. However, some authors
extend the notion of the Casimir effect to the situation
in which a nontrivial “nontopological” background field,
like the one we consider in this paper, is present and
changes the vacuum energy of the dynamical field (see for
example [32]).
In Sec. II we introduce the model and present the

complete spectrum of the Fermi field in the presence of
the potential. In Sec. III we compute the vacuum charge of
this system by the use of the method proposed by
MacKenzie and Wilczek [3]. In this section we show that
not only the change in the total number of levels due to the
potential well is always zero, but also the total number of
levels with negative and positive energy, separately, is
exactly the same as the case of free Dirac field. Therefore,
the two contributions for VP in our model always cancel
each other, i.e.the scalar potential coupled to the Fermi field
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never polarizes the vacuum. In Sec. IV we calculate and
depict the densities of bound states and the difference
between the spatial densities of the wave functions in the
presence and absence of the potential for the negative
continuum and also the positive continuum, for comparison.
By the use of these investigations we conclude that the
spatial density of the spectrum remains uniform in the
presence of the square well. Furthermore, for this problem
the total density of states for states withE < 0 andE > 0 are
separately unchanged from the free case. This also happens
due to the symmetry in the energy spectrum of the fermion.
In Sec. Vwe thoroughly explore the behavior of the Casimir
energy and the energy densities for our model. First, we
present a general expression for the Casimir energy of a
Fermi field in the presence of a general disturbance (a
background field or nontrivial boundary condition), by
subtracting the zero-point energies in the presence and
absence of the disturbance [28]. Then, we obtain an exact
expression for the Casimir energy of our model and
investigate the behavior and properties of this energy as
we vary the depth and width of the potential well. We
conclude that although VP is always zero for our model, its
Casimir energy is in general nonzero. Then, we explore the
behavior of the distortion of the energy densities in the
continua and see that the total negative-and positive-energy
densities are exactly the mirror images of each other. In
Sec. VI we compute the total energy for a system consisting
of a valence fermion in the lowest positive bound state and
conclude that the inclusion of the Casimir energy does not
lead to any stationary points in the graphs of the total energy
as a function of the parameters of the potential. In Sec. VII
we summarize the results and state some conclusions.

II. THE SPECTRUM OF A DIRAC PARTICLE
IN A ONE-DIMENSIONAL SQUARE-WELL

POTENTIAL

The Dirac equation in a one-dimensional scalar potential
can be written as

½iγμ∂μ − ðm0 þ VðxÞÞ�ψðx; tÞ ¼ 0; μ ¼ 0; 1: ð1Þ

We choose the functional form of VðxÞ to be a symmetrical
square-well potential with depth −V0 ≤ 0 and width 2a,
where the values for a are in units of the inverse mass of the
fermion, m0. The simple functional form chosen for VðxÞ
renders the problem exactly solvable. The potential well
acts as a background field that modifies the Dirac spectrum.
In particular the number of states in the positive and
negative continua changes and bound states appear. As
is well known, these changes are the sources for the vacuum
polarization and Casimir energy. To investigate these
interesting phenomena, we first need to study the complete
spectrum of the fermion in the presence of the background
field. The spectrum of this system can be inferred from
some literature, e.g. [33]. Therefore, we only present the

wave functions and energies of the Dirac field to set up our
notation. We choose the following representation for the
Dirac matrices: γ0 ¼ σ1 and γ1 ¼ iσ3, in which the Dirac
equation becomes

½iσ1∂t − σ3∂x − ðm0 þ VðxÞÞ�ψðx; tÞ ¼ 0: ð2Þ
In (1þ 1) dimensions the Fermi field can be written as
ψ ¼ ðψ1

ψ2
Þ. We define

ξðx; tÞ ¼ e−iEt
�
ξ1ðxÞ
ξ2ðxÞ

�
¼

�
ψ1 þ iψ2

ψ1 − iψ2

�
: ð3Þ

The resulting bound states in this representation are of the
following form

ξbðxÞ ¼

8>>>>>>>>>><
>>>>>>>>>>:

N

�
1

− ðλþiEÞ
m0

�
eλðxþaÞ; x ≤ −a;

�
ceiμx þ de−iμx

cfþeiμx þ df−e−iμx

�
; −a ≤ x ≤ a;

b

�
1

ðλ−iEÞ
m0

�
e−λðx−aÞ; x ≥ a;

ð4Þ

where μ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−ðm0−V0Þ2

p
, λ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0−E2
p

, fþ ¼ −iðEþμÞ
ðm0−V0Þ,

f− ¼ −iðE−μÞ
ðm0−V0Þ. From the continuity of ξb at x ¼ �a and the

normalization condition we obtain the coefficients which
are shown in the Appendix A. The bound state energies are
solutions to the following equation

μλ

m0V0

cotð2aμÞ þ λ2

m0V0

¼ 1: ð5Þ

After some calculations, this equation can be written in the
form EV0

λμ sinð2aμÞ ¼ �1 in which � signs refer to the
parity eigenvalues. Notice that since the Hamiltonian is
invariant under parity, the eigenfunctions of the
Hamiltonian can be chosen to be eigenfunctions of the
parity operator as well. In the first representation the parity
operation is given by Pψðx; tÞ ¼ σ1ψð−x; tÞ. In the
representation of Eq. (3) (γ0 ¼ σ2 and γ1 ¼ iσ1) it
becomes Pξðx; tÞ ¼ −σ2ξð−x; tÞ.
Throughout this paper we demonstrate most of the

results for 0 ≤ V0 ≤ 4m0. Also, we rescale the quantities
of the system with respect to the fermion mass (m0) and
work with the dimensionless quantities, for simplicity. We
illustrate the results of bound state energies obtained using
Eq. (5) in Fig. 1. The parities of the bound states are
indicated on the graphs by � signs. Our Lagrangian has all
the symmetries C, P and T, separately. The charge con-
jugation operator in the first representation (γ0 ¼ σ1 and
γ1 ¼ iσ3) is σ3 which relates the positive- and negative-
energy eigenstates as σ3ψ�

E ¼ ψ−E. Therefore, this operator
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has the property of taking a solution with eigenvalue E into the one with the eigenvalue−E. This symmetry is obvious from
the graphs of the bound energy levels.
The explicit expression for the eigenfunctions in the continua is as follows (� signs refer to the parity eigenvalues)

ξ�p ðxÞ ¼

8>>>>>>>>>><
>>>>>>>>>>:

h

�
1

−i ðpþEÞ
m0

�
eipðxþaÞ þ k

�
1

i ðp−EÞm0

�
e−ipðxþaÞ; x ≤ −a;

N�

�
1

i ðV0−m0Þ
ðE−μÞ

�
eiμx � N�

� ðm0−V0Þ
ðE−μÞ
−i

�
e−iμx; −a ≤ x ≤ a;

� k

� ðE−pÞ
m0

−i
�
eipðx−aÞ � h

� ðpþEÞ
m0

−i
�
e−ipðx−aÞ; x ≥ a;

ð6Þ

where p2 ¼ E2 −m2
0. The explicit expressions for all the

parameters in this equation are given in the Appendix A.
We have normalized the wave functions by the following
relation

X
j¼�

Z þ∞

−∞
ξj†p ðxÞξjp0 ðxÞdx ¼ 2πδðp − p0Þ: ð7Þ

Moreover, the states of the free Dirac particle are given by

ξfreek ðxÞ ¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðEþ kÞp

�
1

−i ðkþEÞ
m0

�
eikx: ð8Þ

III. THE VACUUM CHARGE

In this section we explore the vacuum polarization of the
Fermi field in the presence of the potential well. The
potential well acts as a background field that generates a
distortion in the whole spectrum of the fermion. First, we
show that the normalized vacuum charge is related to the
difference between the number of negative-energy levels in
the presence and absence of the disturbance, or equally the
difference between the number of positive-energy levels
with an overall minus sign. The eigenfunctions of the free
Dirac Hamiltonian form a complete set. We assume that the
set of solutions in the presence of the disturbance is also

complete. Hence, the Fermi field operator can be expanded
in terms of either of these two complete orthonormal bases
as follows,

ΨðxÞ ¼
Z þ∞

−∞
dk
2π

½bkukðxÞ þ d†kvkðxÞ� ð9Þ

¼
Z þ∞

0

dp
2π

X
j¼�

½ajpμjpðxÞ þ cj†p ν
j
pðxÞ�

þ
X
i

½eiχ1biðxÞ þ f†i χ2biðxÞ�; ð10Þ

where we have denoted ξfreek ðxÞ by ukðxÞ and vkðxÞ for the
states with E > 0 and E < 0, respectively. Similarly ξpðxÞ
which are the wave functions for the continua in the
presence of the well, are denoted by μpðxÞ in the positive
continuum and by νpðxÞ in the negative continuum. Also,
the bound state wave functions, ξbðxÞ, are separated into
positive-energy ones denoted by χ1biðxÞ and negative-
energy ones denoted by χ2biðxÞ. We choose the annihilation
(creation) operator for the bound states with positive
(negative) energy, as we do for the continuum states. We
shall see one of the advantages of this choice when we
compute the vacuum polarization and Casimir energy.
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FIG. 1. Left graph: The energies of the bound states as a function of V0 at a ¼ 5. Right graph: The energies of the bound states as a
function of a at V0 ¼ 1.2. The values obtained are the solutions to the transcendental Eq. (5). The parity of each of the bound states is
indicated on the graphs by � signs. Note that no bound state crosses E ¼ 0.
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Imposing the usual anticommutation relations between Ψ
and Ψ†, or the resulting anticommutation relations between
the creation and annihilation operators, the number oper-
ator in the free case becomes

N ¼ b†kbk − d†kdk: ð11Þ
Using orthonormality of both sets of eigenfunctions, one
can express b and d operators in terms of e, f, a and c.
Then, the number operator becomes

N ¼ e†i ei þ aj†p a
j
p − cj†p c

j
p þ hχ2bi jχ2bii þ hνjpjνjpi

− hvkjvki: ð12Þ
The last two terms are the difference between the total
number of levels in the Dirac sea in the presence and
absence of the disturbance and the term hχ2bi jχ2bii is the
number of the negative-energy bound states. The changes
in the number of levels in the negative continuum (Qsea)
and positive continuum (Qsky ¼ hμjpjμjpi − hukjuki) are
given by

Q sky
sea

¼
X
p

�
ξp sky

sea

����ξp sky
sea

�
−X

k

hξfreek jξfreek i

¼
X
j¼�

Z þ∞

0

dp
2π

Z þ∞

−∞
dxξj†p sky

sea

ξjp sky
sea

−
Z þ∞

−∞
dk
2π

Z þ∞

−∞
dxξfree†k ξfreek : ð13Þ

Our prescription for subtracting the two divergent integrals
in Eq. (13) and the other similar relations to follow is to
combine the integrals and subtract the integrands with the
same values of p and k. The integral over the spatial
variable in Eq. (13) can be performed analytically.
However, the leftover integral over p cannot be performed
analytically and we calculate it numerically and show the
results in Fig. 2, along with the graphical representation of
the number of bound states and the total number of levels as
a function of V0 for a ¼ 5. From this figure we observe that
the general trend for Qsea is constant superimposed with
jumps of minus one whenever a bound state peels off
(separates) from the sea (at E ¼ −m0). At the points where
the separation occurs, the jump is −1=2. There is a jump of
plus one whenever a bound state joins the sea and at the
points where the joining occurs, the jump is þ1=2. As can
be seen from the figure, the deficiency in the number of
continuum states with negative energy is minus one for
V0 > 2 and this happens because for these values of V0

there are only two bound states with the energies approach-
ing E ¼ 0. As expected from the symmetry of the system
for the negative- and positive-energy levels, there is an
exactly similar trend for Qsky. In this figure we have also
plotted the total number of levels as compared with the free

case, i.e. the sum of the changes in the number of levels in
the sea and the sky and the number of bound states. Note
that the change in the total number of levels, as compared
with the free case, is zero for all values of V0. If we denote
the number of bound states by Nb, we can express this
conclusion by the following equation:

Qsea þQsky þ Nb ¼ 0: ð14Þ

We can define Nb ¼ n> þ n<, where n> and n< denote the
number of bound states with positive and negative energy,
respectively. Since the fermionic vacuum is defined as the
state in which all of the negative-energy states are filled and
the positive ones are empty, the vacuum polarization (VP)
is simply given by the following equation:

VP ¼ Qsea þ n< ¼ −ðQsky þ n>Þ: ð15Þ

The last equality is obtained by the use of Eq. (14). One can
obtain this formula for VP with the aid of the relation we
obtained for the number operator in Eq. (12). To this end, one
should compute thevacuumexpectationvalue of the number
operator in Eq. (12). Therefore, only three last terms
contribute in the VP. As we mentioned before, the term
hχ2bi jχ2bii is the number of bound states with negative
energy (n<). The automatically appearance of this term in

Bound States

Total 0

Sky or Sea

0.5 1.0 1.5 2.0 2.5
V0

4

2

0

2

4

6

8

Number of States

FIG. 2. The change in the number of energy levels in the
negative continuum (Qsea), positive continuum (Qsky), and the
number of bound states, all due to the presence of the background
field, and the total number of levels as a function of V0 for a ¼ 5.
We see that the trend for bothQsea andQsky is exactly the same, as
an expected result of the particle conjugation symmetry of the
Lagrangian. Note that the number of states associated with each
of the continua is actually the difference between the number of
levels in that continuum in the presence and absence of the
potential well.
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the definition of the number operator is the advantage of
including both annihilation and creation operators for the
bound states in the expansion of the Fermi field in the
presence of the disturbance. By using some changes in
the computation of the number operator, the last three terms
in Eq. (12) could be replaced by −hχ1bi jχ1bii − hμjpjμjpi þ
hukjuki, which corresponds to the last equality in
the Eq. (15).
Now, we compute VP of the fermion in the presence of

the potential well by using Eqs. (13,15) and the information
contained in Fig. 1 about n<. We conclude that as expected
the vacuum polarization is zero, regardless of the values of
the parameters, i.e. a and V0. Note that this result is mainly
due to the reflection symmetry of the fermion states with
respect to the line E ¼ 0. Since this symmetry is present in
our problem, the change in the total number of levels with
negative energy is always zero. Then, the absence of a zero-
energy mode mandates that VP is equal to zero. However,
for systems which do not possess this symmetry, the
presence of the potential could in general polarize the

vacuum (e.g. [2,3,6,10,34]). On the other hand, in the case
of the Jackiw-Rebbi (JR) model [1], although it possesses
the charge conjugation symmetry and therefore the states
are symmetric with respect to the line E ¼ 0, the vacuum
polarization is not zero. In fact a zero-energy fermionic
mode which is always present is the origin of the nonzero
VP in the JR model [35].

IV. DENSITIES OF THE SOLUTIONS

The change in the density of states for the Dirac sea and
sky is given by

ρ sky
sea

ðxÞ ¼
X
j¼�

Z þ∞

0

dp
2π

ξj†p sky
sea

ðxÞξjp sky
sea

ðxÞ

−
Z þ∞

−∞
dk
2π

ξfree†k ðxÞξfreek ðxÞ; ð16Þ

where � signs refer to the positive and negative parity.
Also, the bound state densities are simply

ρboundðxÞ ¼
X
i

ξ†b;iðxÞξb;iðxÞ: ð17Þ

The explicit form of the densities can be found in the
Appendix A. As shown in Fig. 1, there are eight fermionic
bound states in the potential well with a ¼ 5 and V0 ¼ 1.2.
In Fig. 3 we show the density of these bound states, along
with their sum. The individual densities are depicted with
various dashed lines and their energies are indicated on the
graph. Note that each curve shows the density for two
bound states with the same absolute value of energy but
opposite signs and this is due to the symmetry in the
fermionic spectrum. Solid line in this figure shows the total
density of all bound states. Since each of the bound states is
normalized, the area under the graph of total bound states is
eight. When a is large, the densities are contained for the
most part inside the region bounded by �a.

0.979586
0.716077
0.435708
0.047310

Total

3 a 2 a a 0 a 2 a 3 a
0.

0.2

0.4

0.6

0.8

1.

x

bo
un

d
x

FIG. 3. The bound state densities for the potential well with
a ¼ 5 and V0 ¼ 1.2. The individual densities are depicted with
various dashed lines, as indicated on the graph, and their total
sum with the solid line.
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FIG. 4. Left graph: The spatial densities of the negative continuum (Dirac sea) and the bound states with negative energy, and right
graph: The spatial densities of the positive continuum (Dirac sky) and the bound states with positive energy for the potential well with
a ¼ 5 and V0 ¼ 1.2.
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Now,we compute the total changes in the spatial densities
of the negative (ρ<ðxÞ) and positive (ρ>ðxÞ) parts of the
spectrum, separately. These densities are defined by ρ<ðxÞ¼
ρseaðxÞþρ<boundðxÞ and ρ>ðxÞ ¼ ρskyðxÞ þ ρ>boundðxÞ, where
ρ≷boundðxÞ denote the densities of all the bound states with
positive and negative energy, and ρseaðxÞ and ρskyðxÞ denote
the spatial densities of the spectral deficiencies in the
continua. The left graph in Fig. 4 displays ρseaðxÞ and
ρ<boundðxÞ and the right graph of this figure shows ρskyðxÞ and
ρ>boundðxÞ for the parametersa ¼ 5 andV0 ¼ 1.2. From these
graphs, it is obvious that ρ<ðxÞ and ρ>ðxÞ are zero,
separately. That is the total spatial density of states, for
the positive- and negative-energy parts of the spectrum
remain unchanged, as compared with the free case, sepa-
rately. This shows that the change in the total density of all
positive-and negative-energy states is identically zero at
each point of space. Therefore, the total number of states and
the total density remain unchanged as compared with the
free case, and the total density remains uniform.

V. THE CASIMIR ENERGY FOR THIS MODEL

In order to obtain the Casimir energy, we should subtract
the zero-point energy in the absence from the presence of
the background field. We have already obtained an expres-
sion for the Casimir energy in Ref. [28], which can be
expressed as follows,

ECasimir ¼ hΩjHjΩi − h0jHfreej0i

¼
Z þ∞

−∞
dx

Z þ∞

0

dp
2π

X
j¼�

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

0

q �
νj†p ν

j
p

þ
Z þ∞

−∞
dx
X
i

ðEi<
boundÞχ†2biχ2bi

−
Z þ∞

−∞
dx

Z þ∞

−∞
dk
2π

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

0

q �
v†kvk; ð18Þ

where the < superscript on Ei<
bound denotes the bound state

with negative energy, and we have denoted the vacuum

state in the presence (absence) of the background field by
jΩi (j0i). Note that for our problem the whole spectrum is
symmetric with respect to the line E ¼ 0. Therefore, the
expression for the Casimir energy, which is only in terms of
negative energies, is obviously equivalent to the conven-
tional one where one would sum over all modes symmet-
rically with a factor of 1=2, while preserving the sign. It is
worth noticing that we have seen that even for the models
without such a symmetry in the spectrum, like the one in
[28], the same argument is true and as we stated there, we
can calculate the Casimir energy using only the negative-
energy states, or only the positive-energy states, or the sum
of all the states divided by two and these three ways are
equivalent.
Substituting the expressions for the eigenstates in the

absence and presence of the potential into Eq. (18), we
obtain the Casimir energy for our model. In the left graph of
Fig. 5 we show the Casimir energy as a function of V0 for
a ¼ 5. As can be seen, there is a maximum in this graph
which occurs when the bound states change the direction
and start to return to their continuum of origin. At V0 ¼ 2,
the Casimir energy becomes zero and when the depth of the
potential well is increased from this value, the Casimir
energy becomes negative. Note that, as can be seen in
Fig. 1, only the first two bound states remain for V0 > 2,
with their energies approaching zero. Therefore, for
V0 > 2, the only effect of the well is the changes in the
continuum states, which in turn affect the Casimir energy.
We also show the Casimir energy as a function of the

width of the potential well, a, for V0 ¼ 1.2 in the right
graph of Fig. 5. As can be seen, the Casimir energy is an
approximately linearly increasing function of a for fixed
V0. Since regardless of the value of V0 none of the bound
states crosses E ¼ 0 (see Fig. 1), there are no cusps in the
graphs of the Casimir energy (see the cusps of the Casimir
energy graphs in [28,34]).
We have observed that in the process inwhich the depth of

the potential well increases from zero to its final value,
spectral deficiencies develop in both of the continua and
bound states appear. When the bound states return to the

0 1 2 3 4
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30
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ECasimir

0 1 2 3 4 5
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ECasimir

FIG. 5. Left graph: The Casimir energy as a function of V0 at a ¼ 5. Right graph: The Casimir energy as a function of a at V0 ¼ 1.2.
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continua of their origin, spectral deficiencies in the continua
decrease. We now compute the resulting changes in the
energy densities of the states with E > 0 and E < 0,
separately. The changes in the energy densities of the
Dirac sea and sky (i.e. the difference between the energy
densities in the presence and absence of the background
field) are given by

ε sky
sea

ðxÞ ¼
X
j¼�

Z þ∞

0

dp
2π

E≷ξj†p sky
sea

ðxÞξjp sky
sea

ðxÞ

−
Z þ∞

−∞
dk
2π

E≷
freeξ

free†
k ðxÞξfreek ðxÞ; ð19Þ

where E≷ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

0

p
, E≷

free ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

0

p
, ξjp ¼

μjpðνjpÞ for the interacting Dirac sky (sea) (the superscript
j denotes the parity of the states), and ξfreek ¼ ukðvkÞ for the
free Dirac sky (sea). The bound state energy densities are

ε≷boundðxÞ ¼
X
i

Ei≷
boundξ

†
b;iðxÞξb;iðxÞ; ð20Þ

where the≷ superscripts refer to the sign of the bound state
energies. The explicit form of the energy densities can be
easily obtained using the expressions given in the
Appendix A for the densities of the states.
We display all these energy densities for a potential well

with a ¼ 5 and V0 ¼ 1.2 in Fig. 6. The left graph in this
figure shows the energy densities of the sum of bound states
with negative (ε<boundðxÞ) and positive (ε>boundðxÞ) energy,
separately. Moreover, this graph shows the energy densities
of continuum states with negative (εseaðxÞ) and positive
(εskyðxÞ) energies. The sum of εseaðxÞ and ε<boundðxÞwhich is
the total energy density of states with negative energy is
depicted in the right graph of this figure. Note that this
density is in fact the Casimir energy density (εCasimirðxÞ).
Furthermore, we show the total energy density of states
with positive energy (ε>ðxÞ ¼ εskyðxÞ þ ε>boundðxÞ), for
comparison. As can be seen from the figure, ε<ðxÞ and
ε>ðxÞ are exactly the mirror images of each other. This
result shows that for the system chosen here, as we stated
before, the Casimir energy can be calculated by any of the
following relations:

15 10 5 5 10 15
x

1.0

0.5

0.5

1.0

x

15 10 5 5 10 15
x

1.0

0.5

0.5

1.0

x

FIG. 6. The energy densities as a function of x for a potential with parameters a ¼ 5 and V0 ¼ 1.2. Left graph: Solid (dotted) line
shows the energy density of the negative (positive) continuum states and dashed (dotdashed) line shows the sum of the energy densities
of negative (positive) bound states. Right graph: Solid line shows the sum of the energy densities of the negative-energy bound and
continuum states (the Casimir energy density) and dashed line shows the sum of the energy densities of the positive-energy bound and
continuum states.
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FIG. 7. The graphical representation of the total energy (the sum of the energy of a valence fermion in the lowest positive-energy
bound state and the Casimir energy). Left graph shows the total energy as a function of V0 when a ¼ 5 and right graph shows this energy
as a function of a when V0 ¼ 1.2.
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ECasimir ¼
Z þ∞

−∞
dxεseaðxÞ þ

X
i

Ei<
bound

¼ −
�Z þ∞

−∞
dxεskyðxÞ þ

X
i

Ei>
bound

�

¼ 1

2

�Z þ∞

−∞
dxεseaðxÞ þ

X
i

Ei<
bound

�

− 1

2

�Z þ∞

−∞
dxεskyðxÞ þ

X
i

Ei>
bound

�
: ð21Þ

VI. STABILITY OF THE SOLUTIONS

In this section we consider a system consisting of a single
fermion present in the lowest positive-energy fermionic
bound state, taking into account the Casimir energy. The
total energy for such a system is the sum of the energy of
the bound state and the Casimir energy. Figure 7 shows this
energy. The left graph shows the total energy as a function of
the depth of the potential, V0, when a ¼ 5 and the right
graph shows this energy as a function of the width of the
potential, a, when V0 ¼ 1.2. As can be seen, there are no
minima in these two graphs.Hence,we conclude that there is
no region in the parameter space where the energy of the
system is stationary with respect to small variations in
parameters. This result is in sharp contrast to the cases (such
as [34]) where there is no reflection symmetry in the
spectrum and the energy levels can cross the line E ¼ 0.

VII. CONCLUSION

In this paper we have computed the vacuum polarization
and Casimir energy for a very simple model. The model
includes a Fermi field coupled to a scalar potential in (1þ 1)
dimensions. Since the scalar potential has the simple form of
a symmetrical square well, we are able to obtain the whole
spectrum of the coupled Dirac field. This model possesses
all the symmetries C, P and T, separately. In this model the
charge conjugation operator relates the positive-energy
solutions of the fermion to the negative-energy ones. Due
to this symmetry, the energy spectrum of the system is
completely symmetric, i.e. for every positive-energy sol-
ution there is a solution with an energy of the same absolute
value but opposite sign. This symmetry is obvious in the
graph of the bound state energies. We have computed the
spectral deficiencies in the continua and found that as we
increase the depth of the potential with the appearance of the
bound states, deficiencies develop in both continua and
when the bound states re-join the continua, deficiencies
decrease. We also observe that the general trend for
deficiencies in both of the continua is exactly the same,
when the potential depth increases from zero. Moreover, we
have displayed the spatial densities of both the bound states
and the deficiencies in the continua.We have concluded that

due to the symmetries of the model, not only does the total
density remain unchanged as compared with the free case,
but so do the total negative and positive densities, separately.
The result that the total number of states and the total density
of states remain unchanged, as compared with the free case,
confirms that the spectrum remains complete in the presence
of the potential well. The vacuum polarization has been
computed for this model and as is obvious from the
completeness of negative states, the VP is zero for any
choice of the parameters of the potential well. In the second
part of the paper we have computed the Casimir energy for
our model. Since we have all the eigenfunctions and
eigenvalues of the system, we are able to calculate the
Casimir energy of the system by the direct subtraction of
the zero-point energy in the presence and absence of the
disturbance. The interesting result is that although the
vacuum polarization is always zero for the square-well
scalar potential due to the charge conjugation symmetry, the
Casimir energy is not in general zero. In the graph of the
Casimir energy as a function of the depth of the potential
there is a maximumwhich occurs when the bound levels are
closest to the E ¼ 0 line, and after that point they change
direction and start to return to the continua of their origin.
When the potential depth is 2ðm0Þ, the Casimir energy is
zero and after this depth the Casimir energy is always
negative. We have also displayed the Casimir energy as a
function of the width of the well and found that the Casimir
energy increases almost linearly as the width of the well
increases and since none of the bound energy levels crosses
the line of E ¼ 0, there is no cusp in this graph. Then, we
have depicted the Casimir energy density and the energy
density of all the states with positive energy for comparison
and found that these two densities are exactly the mirror
images of each other. Finally, considering a system con-
sisting of a valence fermion present in the lowest positive-
energy bound state, we conclude that there is no region in the
parameter space where the total energy of the system is
stationary with respect to small changes of the parameters.
This is in sharp contrast to the cases where the bound state
energy levels cross the E ¼ 0 line.

APPENDIX:

The explicit expressions for the coefficients of the bound
states given in Eq. (4) are as follows,

N ¼ Normalization of bound states;

b ¼ N

�
λðm0 − V0Þ − iEV0

m0μ
sin½2aμ� þ cos½2aμ�

�
;

c ¼ −N
2m0μ

eiμa½EV0 −m0μþ iλðm0 − V0Þ�;

d ¼ N
2m0μ

e−iμa½EV0 þm0μþ iλðm0 − V0Þ�; ðA1Þ

where the normalization factor for the bound states is
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N ¼
	
1

λ
− λ

m0ðm0 − V0Þ
þ sin ½4aReðμÞ�

×

�
1

4ReðμÞ
�
2 − λ2ðE2 þ ðm0 − V0Þ2Þ þ E2V2

0

m2
0jμj2

−m2
0jμj4 − 2m0V0E2jμj2 þ E4V2

0

m2
0jμj2ðm0 − V0Þ2

�

þ ðm0 − V0ÞReðμÞ
m0jμj2

�

þ cos ½4aReðμÞ�
�−λE2 þ λjμj2 − λðm0 − V0Þ2

2m0jμj2ðm0 − V0Þ
− λ2ðm0 − 2V0Þ −m0V2

0

2m0λjμj2
þ 1

2λ

�

þ sinh ½4aImðμÞ�

×

�
1

4ImðμÞ
�
2þ λ2ðE2 þ ðm0 − V0Þ2Þ þ E2V2

0

m2
0jμj2

þm2
0jμj4 − 2m0V0E2jμj2 þ E4V2

0

m2
0jμj2ðm0 − V0Þ2

�

þ ðm0 − V0ÞImðμÞ
m0jμj2

�

þ cosh ½4aImðμÞ�
�
λjμj2 þ λE2 þ λðm0 − V0Þ2

2m0jμj2ðm0 − V0Þ
�
þm0V2

0 þ λ2ðm0 − 2V0Þ
2m0λjμj2

þ 1

2λ

�
−1=2
: ðA2Þ

The explicit expressions for the coefficients of the continuum states given in Eq. (6) are as follows:

N� ¼ Normalization of continuum states;

h ¼ N�
2p

�
e−iμa

�
m0ðm0 − V0Þ

ðE − μÞ þ ðp − EÞ
�
þ eiμa

�
�m0 �

ðV0 −m0ÞðE − pÞ
ðE − μÞ

��
;

k ¼ N�
2p

�
e−iμa

�
m0ðV0 −m0Þ

ðE − μÞ þ ðpþ EÞ
�
þ eiμa

�
∓ m0 ∓ ðV0 −m0ÞðEþ pÞ

ðE − μÞ
��

; ðA3Þ

where the normalization of the continuum states is (� signs refer to the parity of the states)

N� ¼
	
cosh ½2aImðμÞ�

�
2E2ðV2

0 −m2
0Þ

p2ðE2 þ jμj2 − 2EReðμÞÞ þ
2E2

p2
− 4m0EðV0 −m0ÞReðμÞ
p2ðE2 þ jμj2 − 2EReðμÞÞ

�

∓ 2 cos ½2aReðμÞ�
�
m0E
p2

þm0EðV0 −m0Þ2 þ 2E2ðV0 −m0ÞðE − ReðμÞÞ
p2ðE2 þ jμj2 − 2EReðμÞÞ

�
−1=2
: ðA4Þ

The change in the number of levels of the continua are as follows:

Q sky
sea

¼ − 1

2
þ
Z þ∞

0

dp
πp2

	
−2ap2 þ ðjNþj2 þ jN−j2Þ sinh½2aImðμÞ�

×

�
2m0ðm0 − V0ÞImðμÞ
E2 þ jμj2 − 2EReðμÞ þ

p2

ImðμÞ
�
1þ ðm0 − V0Þ2

E2 þ jμj2 − 2EReðμÞ
��

þ ðjNþj2 − jN−j2Þ sin½2aReðμÞ�

×

�
m0

�
1 − ðm0 − V0Þ2

E2 þ jμj2 − 2EReðμÞ
�
þ 2p2ðm0 − V0ÞðE − ReðμÞÞ
ReðμÞðE2 þ jμj2 − 2EReðμÞÞ

�

: ðA5Þ

The spatial densities for the bound states and the continua are obtained in the following forms for jxj ≥ a:
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ρ sky
sea

ðxÞ ¼
Z

∞

0

dp
πp2

	
ðjNþj2 þ jN−j2Þ

�
cosh ½2aImðμÞ� cos ½2pðjxj − aÞ�

×

�
2m0Eðm0 − V0ÞðE − ReðμÞÞ

E2 þ jμj2 − 2EReðμÞ −m2
0 − m2

0ðm0 − V0Þ2
E2 þ jμj2 − 2EReðμÞ

�

þ sinh ½2aImðμÞ� sin ½2pðjxj − aÞ�
�
2m0pðm0 − V0ÞImðμÞ
E2 þ jμj2 − 2EReðμÞ

��

þ ðjNþj2 − jN−j2Þ
�
cos ½2aReðμÞ� cos ½2pðjxj − aÞ�

×

�
m0Eþ m0Eðm0 − V0Þ2

E2 þ jμj2 − 2EReðμÞ −
2m2

0ðm0 − V0ÞðE − ReðμÞÞ
E2 þ jμj2 − 2EReðμÞ

�

þ sin ½2aReðμÞ� sin ½2pðjxj − aÞ�
�
m0p − m0pðm0 − V0Þ2

E2 þ jμj2 − 2EReðμÞ
��


;

ρ�boundðxÞ ¼ 2N2e−2λðjxj−aÞ; ðA6Þ

and for jxj ≤ a:

ρ sky
sea

ðxÞ ¼
Z þ∞

0

dp
π

	
−1þ ðjNþj2 þ jN−j2Þ

�
1þ ðm0 − V0Þ2

E2 þ jμj2 − 2EReðμÞ
�
cosh ½2ImðμÞx�

þ 2ðm0 − V0ÞðjNþj2 − jN−j2Þ
�

E − ReðμÞ
E2 þ jμj2 − 2EReðμÞ

�
cos ½2ReðμÞx�



;

ρ�boundðxÞ ¼
N2

2m2
0jμj2

	
cosh ½2ImðμÞðxþ aÞ�

×

��
λ2 þ E2V2

0 þm2
0jμj2

ðm0 − V0Þ2
�
ðE2 þ jμj2Þ − 4m0V0E2ReðμÞ2

ðm0 − V0Þ2
þ λ2ðm0 − V0Þ2

þ E2V2
0 þm2

0jμj2
�
þ 2 sinh ½2ImðμÞðxþ aÞ�m0λImðμÞ

�
E2 þ jμj2
ðm0 − V0Þ

þm0 − V0

�

þ cos ½2ReðμÞðxþ aÞ�
��

λ2 þ E2V2
0 −m2

0jμj2
ðm0 − V0Þ2

�
ðjμj2 − E2Þ − 4m0V0E2ImðμÞ2

ðm0 − V0Þ2
− λ2ðm0 − V0Þ2

− E2V2
0 þm2

0jμj2
�
þ sin ½2ReðμÞðxþ aÞ�m0λReðμÞ

�
E2 − jμj2
ðm0 − V0Þ

þm0 − V0

�

: ðA7Þ
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