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We investigate the possibility of spatially homogeneous and inhomogeneous chiral fermion-antifermion
condensation and superconducting fermion-fermion pairing in the (1þ 1)-dimensional model by Chodos
et al. [Phys. Rev. D 61, 045011 (2000)] generalized to continuous chiral invariance. The consideration is
performed at nonzero values of temperature T, electric charge chemical potential μ and chiral charge
chemical potential μ5. It is shown that at G1 < G2, where G1 and G2 are the coupling constants in the
fermion-antifermion and fermion-fermion channels, the ðμ; μ5Þ-phase structure of the model is in a one-to-
one correspondence with the phase structure atG1 > G2 (called duality correspondence). Under the duality
transformation the (inhomogeneous) chiral symmetry breaking (CSB) phase is mapped into the
(inhomogeneous) superconducting (SC) phase and vice versa. If G1 ¼ G2, then the phase structure of
the model is self-dual. Nevertheless, the degeneracy between the CSB and SC phases is possible in this case
only when there is a spatial inhomogeneity of condensates.
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I. INTRODUCTION

In recent years much attention has been devoted to the
investigation of dense quark (or baryonic) matter. The
interest is motivated by the possible existence of quark
matter inside compact stars or its creation in heavy ion
collisions. In many cases, as e.g., in the above-mentioned
heavy ion collision experiments, the quark matter densities
are not too high, so the consideration of its properties is not
possible in the framework of perturbative weak coupling
QCD. Usually, different effective theories such as the
Nambu–Jona-Lasinio (NJL) model, σ model etc. are more
adequate in order to study the QCD and quark matter phase
diagram in this case. A variety of spatially nonuniform
(inhomogeneous) quark matter phases related to chiral
symmetry breaking, color superconductivity, and charged
pion condensation phenomenon etc. (see, e.g., [1–12] and
references therein) was predicted in the framework of
NJL-like models at rather low values of temperature and
baryon density. [A recent interesting review on current
model results for inhomogeneous phases in (3þ 1)-dimen-
sional systems is presented in [13].]
Moreover, the phenomenon of spatially nonuniform

quark pairing was also intensively investigated within
different (1þ 1)-dimensional models which can mimic
qualitatively the QCD phase diagram. In this connection,
it is necessary to mention Gross-Neveu (GN) type models
with four-fermion interactions, symmetrical with respect to
the discrete or continuous chiral transformations (in the last
case we shall use for such models the notation NJL2) and
extended by baryon and isospin chemical potentials. In the

framework of these models both the inhomogeneous chiral
[14–16] and charged pion condensation phenomena were
considered [17,18]. [In order to overcome the prohibition
on the spontaneous breaking of a continuous symmetry in
(1þ 1) dimensions, the consideration is usually performed
in the limit of large N, where N is the number of quark
multiplets.] Inhomogeneous phases in some one-
dimensional organic materials and nonrelativistic Fermi
gases were recently studied, correspondingly, in [19]
and [20] in terms of (1þ 1)-dimensional theories with
four-fermion interaction.
Among a variety of GN-type models, there is one

which describes competition between quark-antiquark (or
chiral) and quark-quark (or superconducting) pairing at
nonzero temperature T and quark number chemical
potential μ [21]. Originally, the model was called for
to shed new light on the color superconductivity phe-
nomenon in real dense quark matter. Moreover, in [21]
the consideration is performed in the supposition that
chiral and superconducting condensates are spatially
homogeneous. In this case it was shown there that if
G1 > G2, where G1 and G2 are the coupling constants in
the chiral and superconducting channels, correspond-
ingly, then at rather high values of quark number
chemical potential μ the superconducting phase is real-
ized in the system.
Since in the true ground state of any system with nonzero

density the condensates could be inhomogeneous, the aim
of the present paper is to investigate such a possibility.
Namely, we shall study the phase structure of the extended
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model [21] [which is symmetric with respect to a continu-
ous UAð1Þ chiral group], assuming that both quark-anti-
quark and quark-quark condensates might have a spatial
inhomogeneity in the form of the Fulde-Ferrel single plane
wave ansatz [22], for simplicity. Moreover, in addition to
the particle (or quark) number chemical potential μ, we also
introduce into consideration the chiral charge chemical
potential μ5, which is responsible for a nonzero chiral
charge density n5, i.e. to a nonzero imbalance between
densities of left- and right-handed quarks (fermions). In
literature, there are some investigations of QCD-like
effective theories with μ and μ5 chemical potentials, related
to a possible parity breaking phenomena of dense quark
gluon plasma (see, e.g., [23,24]). Moreover, it was recently
established that in heavy ion collision experiments a
nonzero chiral charge density n5 can be induced, leading
to the so-called chiral magnetic effect [25,26]. So, we hope
that studying the above-mentioned (1þ 1)-dimensional
NJL model with two chemical potentials, μ and μ5, one
can shed new light on the new phenomena of the dense
baryonic matter.
The paper is organized as follows. In Sec. II the duality

property of the model is established. It means that there is
a correspondence between properties (phase structure) of
the model at G1 < G2 and G1 > G2. After obtaining the
thermodynamic potential (TDP), we will first investigate
it in the next Sec. III under the supposition that both
superconducting and chiral condensates are spatially
homogeneous. In this section a rather rich ðμ; μ5Þ-phase
structure of the model is established at G1 > G2. In
addition, we will show here that there is an invariance
of the TDP with respect to a duality transformation (when
G1 ↔ G2, μ ↔ μ5 and superconductivity ↔ chiral sym-
metry breaking). As a result, the ðμ; μ5Þ-phase structure of
the model at G1 < G2 is a dual mapping of the phase
portrait at G1 > G2. In Sec. IV the phase structure of the
model is investigated in the assumption that both con-
densates might be spatially inhomogeneous. Then at
G1 > G2 the chiral density wave phase is realized for
arbitrary values of μ ≠ 0 and μ5 ≠ 0. On the other hand, at
G1 < G2 there is an inhomogeneous superconducting
phase in the whole ðμ; μ5Þ plane. Note that there is a
dual correspondence between these phases. Finally,
Sec. V presents a summary and some concluding
remarks. The discussion of some technical problems
are relegated to four Appendixes.

II. THE MODEL AND ITS THERMODYNAMIC
POTENTIAL

A. The duality property of the model

Our investigation is based on a (1þ 1)-dimensional
NJL-type model with massless fermions belonging to a
fundamental multiplet of the OðNÞ flavor group. Its
Lagrangian describes the interaction in the fermion-

antifermion and scalar fermion-fermion channels,

L ¼
XN
k¼1

ψ̄k½γνi∂ν þ μγ0 þ μ5γ
0γ5�ψk

þ G1

N

��XN
k¼1

ψ̄kψk

�
2

þ
�XN

k¼1

ψ̄kiγ5ψk

�
2
�

þ G2

N

�XN
k¼1

ψT
k ϵψk

��XN
j¼1

ψ̄ jϵψ̄
T
j

�
; ð1Þ

where μ is a fermion number chemical potential (conju-
gated to a fermion, or electric charge, number density) and
μ5 is an axial chemical potential conjugated to a nonzero
density of chiral charge n5 ¼ nR − nL, which represents an
imbalance in densities of the right- and left-handed fer-
mions [25]. As it is noted above, all fermion fields ψk
(k ¼ 1;…; N) form a fundamental multiplet of the OðNÞ
group. Moreover, each field ψk is a two-component Dirac
spinor (the symbol T denotes the transposition operation).
The quantities γν (ν ¼ 0, 1), γ5, and ϵ in (1) are matrices in
the two-dimensional spinor space,

γ0 ¼
�
0 1

1 0

�
; γ1 ¼

�
0 −1
1 0

�
≡ −ϵ;

γ5 ¼ γ0γ1 ¼
�
1 0

0 −1

�
: ð2Þ

It follows from (2) that μ5γ
0γ5 ¼ μ5γ

1. Clearly, the
Lagrangian L is invariant under transformations from the
internal OðNÞ group, which is introduced here in order to
make it possible to perform all the calculations in the
framework of the nonperturbative large-N expansion
method. Physically more interesting is that the model (1)
is invariant under transformations from the UVð1Þ ×UAð1Þ
group, where UVð1Þ is the fermion number conservation
group, ψk → expðiαÞψk (k ¼ 1;…; N), and UAð1Þ is the
group of continuous chiral transformations, ψk →
expðiα0γ5Þψk (k ¼ 1;…; N).1 The linearized version of
Lagrangian (1) that contains auxiliary scalar bosonic fields
σðxÞ, πðxÞ, ΔðxÞ, Δ�ðxÞ has the following form:

L≡LðG1;G2;μ;μ5Þ¼ ψ̄k½γνi∂νþμγ0þμ5γ
1−σ− iγ5π�ψk

−
N
4G1

ðσ2þπ2Þ− N
4G2

Δ�Δ

−
Δ�

2
½ψT

k ϵψk�−
Δ
2
½ψ̄kϵψ̄

T
k �: ð3Þ

1Earlier in [21] a similar model symmetric under discrete γ5

chiral transformation was investigated. However, only the pos-
sibility for the spatially homogeneous chiral and difermion
condensates was considered there. In our paper, the invariance
of the model considered by Chodos et al. [21] is generalized to
the case of continuous chiral symmetry in order to study the
inhomogeneous chiral condensates in the form of chiral spirals
(or chiral density waves).
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(Here and in what follows, summation over repeated
indices k ¼ 1;…; N is implied.) Clearly, the Lagrangians
(1) and (3) are equivalent, as can be seen by using the
Euler-Lagrange equations of motion for scalar bosonic
fields which take the form

σðxÞ ¼ −2
G1

N
ðψ̄kψkÞ; πðxÞ ¼ −2

G1

N
ðψ̄kiγ5ψkÞ;

ΔðxÞ ¼ −2
G2

N
ðψT

k ϵψkÞ; Δ�ðxÞ ¼ −2
G2

N
ðψ̄kϵψ̄

T
k Þ: ð4Þ

One can easily see from (4) that the (neutral) fields σðxÞ
and πðxÞ are real quantities, i.e. ðσðxÞÞ† ¼ σðxÞ,
ðπðxÞÞ† ¼ πðxÞ (the superscript symbol † denotes the
Hermitian conjugation), but the (charged) difermion
scalar fields ΔðxÞ and Δ�ðxÞ are Hermitian conjugated
complex quantities, so ðΔðxÞÞ† ¼ Δ�ðxÞ and vice versa.
Clearly, all the fields (4) are singlets with respect to the
OðNÞ group.2 If the scalar difermion field ΔðxÞ has a
nonzero ground state expectation value, i.e. hΔðxÞi ≠ 0,
the Abelian fermion number UVð1Þ symmetry of the
model is spontaneously broken down. However, if
hσðxÞi ≠ 0 then the continuous chiral symmetry of the
model is spontaneously broken.
Before studying the thermodynamics of the model, we

want first of all to consider its duality property. To this end,
it is very useful to form an infinite set F composed of all
Lagrangians LðG1; G2; μ; μ5Þ (3) when the free model
parameters G1, G2, μ and μ5 take arbitrary admissible
values, i.e. LðG1; G2; μ; μ5Þ ∈ F at arbitrary fixed values
of coupling constants G1 > 0, G2 > 0 and chemical
potentials μ, μ5. Then, let us perform in (3) the so-called
Pauli-Gursey transformation of spinor fields [27], accom-
panied with corresponding simultaneous transformations of
auxiliary scalar fields (4),

ψkðxÞ →
1

2
ð1 − γ5ÞψkðxÞ þ

1

2
ð1þ γ5Þϵψ̄T

k ðxÞ;

σðxÞ ⇄ ΔðxÞ þ Δ�ðxÞ
2

; πðxÞ ⇄ ΔðxÞ − Δ�ðxÞ
2i

: ð5Þ

Taking into account that all spinor fields anticommute with
each other, it is easy to see that under the action of the
transformations (5) each element (auxiliary Lagrangian)
LðG1; G2; μ; μ5Þ of the set F is transformed into another
element of the set F according to the following rule

LðG1; G2; μ; μ5Þ → LðG2; G1;−μ5;−μÞ ∈ F ; ð6Þ

i.e. the set F is invariant under the field transformations
(5). Owing to the relation (6) there is a connection between
properties of the model when free model parameters G1,

G2, μ and μ5 vary in different regions. Due to this reason,
we will call the relation (6) the duality property of
the model.

B. The thermodynamic potential at T ¼ 0

We begin an investigation of a phase structure of the
four-fermion model (1) using the equivalent semibosonized
Lagrangian (3). In the leading order of the large-N
approximation, the effective action Seffðσ; π;Δ;Δ�Þ of
the considered model is expressed by means of the path
integral over fermion fields:

expðiSeffðσ; π;Δ;Δ�ÞÞ

¼
Z YN

l¼1

½dψ̄ l�½dψ l� exp
�
i
Z

Ld2x
�
;

where

Seffðσ; π;Δ;Δ�Þ ¼ −
Z

d2x

�
N
4G1

ðσ2ðxÞ þ π2ðxÞÞ

þ N
4G2

ΔðxÞΔ�ðxÞ
�
þ ~Seff : ð7Þ

The fermion contribution to the effective action, i.e. the
term ~Seff in (7), is given by

expði ~SeffÞ ¼
Z YN

l¼1

½dψ̄ l�½dψ l� exp
�
i
Z �

ψ̄kðγνi∂ν þ μγ0

þ μ5γ
1 − σ − iγ5πÞψk −

Δ�

2
ðψT

k ϵψkÞ

−
Δ
2
ðψ̄kϵψ̄

T
k Þ
�
d2x
�
: ð8Þ

The ground state expectation values hσðxÞi, hπðxÞi, etc. of
the composite bosonic fields are determined by the saddle
point equations,

δSeff

δσðxÞ¼ 0;
δSeff

δπðxÞ¼ 0;
δSeff

δΔðxÞ¼ 0;
δSeff

δΔ�ðxÞ¼ 0: ð9Þ

In vacuum, i.e. in the state corresponding to an empty
space with zero particle density and zero values of the
chemical potentials μ and μ5, the above-mentioned
quantities hσðxÞi, etc. do not depend on space coordi-
nates. However, in a dense medium, when μ ≠ 0 and/or
μ5 ≠ 0, the ground state expectation values of bosonic
fields (4) might have a nontrivial dependence on the
spatial coordinate x. In particular, in this paper we will
use the following ansatz:

hσðxÞi¼Mcosð2bxÞ; hπðxÞi¼M sinð2bxÞ;
hΔðxÞi¼Δexpð2ib0xÞ; hΔ�ðxÞi¼Δexpð−2ib0xÞ; ð10Þ

2Note that the ΔðxÞ field is a flavor OðNÞ singlet, since the
representations of this group are real.
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where M, b, b0 and Δ are real constant quantities. [It
means that we suppose for hσðxÞi and hπðxÞi the chiral
spiral (or chiral density wave) ansatz, and the Fulde-
Ferrel [22] single plane wave ansatz for difermion

condensates.] In fact, they are coordinates of the global
minimum point of the thermodynamic potential
ΩðM; b; b0;ΔÞ.3 In the leading order of the large
N-expansion it is defined by the following expression:

Z
d2xΩðM; b; b0;ΔÞ ¼ −

1

N
SefffσðxÞ; πðxÞ;ΔðxÞ;Δ�ðxÞg

���
σðxÞ¼hσðxÞi;πðxÞ¼hπðxÞi;…

;

which gives

Z
d2xΩðM; b; b0;ΔÞ ¼

Z
d2x

�
M2

4G1

þ Δ2

4G2

�
þ i
N
ln

�Z YN
l¼1

½dψ̄ l�½dψ l� exp
�
i
Z

d2x

�
ψ̄kDψk−

Δ expð−2ib0xÞ
2

ðψT
k ϵψkÞ

−
Δ expð2ib0xÞ

2
ðψ̄kϵψ̄

T
k Þ
���

; ð11Þ

where D ¼ γρi∂ρ þ μγ0 þ μ5γ
1 −M expð2iγ5bxÞ. In prin-

ciple, one way to evaluate the path integral in (11) is to
extend the technique of the paper [16], where a more simple
model with single quark-antiquark channel of interaction
was investigated, to the case under consideration, i.e. to the
GN model (1) with additional superconducting interaction
of quarks. The rigorous method of [16] is based on finding
the resolvent function corresponding to the Hamiltonian of
the system. However, technically it is very difficult to use

this approach in the framework of the model (1). So, in
order to simplify the problem we first perform in (11)
Weinberg (or chiral) transformation of spinor fields [28],
qk ¼ exp½iðγ5b − b0Þx�ψk and q̄k ¼ ψ̄k exp½iðγ5bþ b0Þx�.
Since Weinberg transformation of fermion fields does not
change the path integral measure in (11),4 we see that the
system is reduced by the Weinberg transformation from a
spatially modulated to a uniform one; i.e. we obtain the
following expression for the thermodynamic potential:

Z
d2xΩðM; b; b0;ΔÞ ¼

Z
d2x

�
M2

4G1

þ Δ2

4G2

�

þ i
N
ln

�Z YN
l¼1

½dq̄l�½dql� exp
�
i
Z

d2x

�
q̄kDqk −

Δ
2
ðqTk ϵqkÞ −

Δ
2
ðq̄kϵq̄Tk Þ

���
; ð12Þ

where

D ¼ γνi∂ν þ ðμ − bÞγ0 −M þ γ1ðμ5 − b0Þ: ð13Þ

The path integration in the expression (12) is evaluated in Appendix A5 (see also [30] for similar integrals), so we have for
the TDP

ΩðM;b; b0;ΔÞ≡ΩunðM; b; b0;ΔÞ ¼ M2

4G1

þ Δ2

4G2

þ i
2

Z
d2p
ð2πÞ2 ln½λ1ðpÞλ2ðpÞ�; ð14Þ

3Here and in what follows we will use a conventional notation “global” minimum in the sense that among all our numerically found
local minima the thermodynamical potential takes in their case the lowest value. This does not exclude the possibility that there exist
other inhomogeneous condensates, different from (10), which lead to ground states with even lower values of the TDP.

4Strictly speaking, performing Weinberg transformation of fermion fields in (11), one can obtain in the path integral measure a factor,
which however does not depend on the dynamical variables M, Δ, b, and b0. Hence, we ignore this unessential factor in the following
calculations. Note that only in the case when there is an interaction between spinor and gauge fields there might appear a nontrivial, i.e.
dependent on dynamical variables, path integral measure, generated byWeinberg transformation of spinors. This unobvious fact follows
from the investigations by Fujikawa [29].

5In Appendix A we consider for simplicity the case N ¼ 1; however the procedure is easily generalized to the case with N > 1.
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where λ1;2ðpÞ are presented in (A8) and the superscript
“un” denotes the unrenormalized quantity. Note, the TDP
(14) describes thermodynamics of the model at zero
temperature T. In the following we will study the behavior
of the global minimum point of this TDP as a function of
dynamical variables M, b, b0, Δ vs the external parameters
μ and μ5 in two qualitatively different cases: (i) the case of
homogeneous condensates, i.e. when in (10) and (14) both
b and b0 are supposed from the very beginning, without any
proof, to be zero, and (ii) the case of spatially inhomo-
geneous condensates, i.e. when the quantities b and b0 are
defined dynamically by the gap equations of the TDP (14).
Moreover, the influence of temperature T on the phase
structure is also taken into account.

III. THE HOMOGENEOUS CASE OF THE ANSATZ
(10) FOR CONDENSATES: b ¼ 0 AND b0 ¼ 0

A. Dual invariance of the TDP

In the present section we suppose that all the condensates
are spatially homogeneous, i.e. we put in the ansatz (10)
and in the TDP (14) b≡ 0 and b0 ≡ 0. So, the TDP is
considered a priori as a function of only two variables, M
and Δ (μ and μ5 are treated as external parameters). Note
that the subject and results of the section are largely
preparatory for considering the main purpose of the paper,
i.e. to clarify (see the next section) a genuine ground state
structure of the model in the framework of the inhomo-
geneous ansatz (10) for condensates.
Taking into account the expressions (A8) for λ1;2ðpÞ, we

obtain the unrenormalized TDP in this case:

ΩunðM;ΔÞ ¼ M2

4G1

þ Δ2

4G2

þ i
2

Z
d2p
ð2πÞ2 ln½det B̄ðpÞ�; ð15Þ

where

det B̄ðpÞ ¼ λ1ðpÞλ2ðpÞjb¼0;b0¼0

¼ Δ4 − 2Δ2ðp2
0 − p2

1 þM2 þ μ25 − μ2Þ
þ ðM2 þ ðp1 − μ5Þ2 − ðp0 − μÞ2Þ
× ðM2 þ ðp1 þ μ5Þ2 − ðp0 þ μÞ2Þ: ð16Þ

Expanding the right-hand side of (16) in powers of M, one
can obtain an equivalent expression for det B̄ðpÞ. Namely,

det B̄ðpÞ ¼ M4 − 2M2ðp2
0 − p2

1 þ Δ2 þ μ2 − μ25Þ
þ ðΔ2 þ ðp1 − μÞ2 − ðp0 − μ5Þ2Þ
× ðΔ2 þ ðp1 þ μÞ2 − ðp0 þ μ5Þ2Þ: ð17Þ

We would like to stress once more that there is an identical
equality between the expressions (16) and (17).
Obviously, the functionΩunðM;ΔÞ (15) is symmetric with

respect to the transformations M → −M and/or Δ → −Δ.
Moreover, it is invariant under the transformations μ5 → −μ5

and/orμ → −μ.6 Hence, without loss of generality, we restrict
ourselves by the constraints: M ≥ 0, Δ ≥ 0, μ ≥ 0, and
μ5 ≥ 0. However, there is one more discrete transformation
of the TDP (15), which leaves it invariant. It follows from a
comparison between (16) and (17). Indeed, if in (16) for
det B̄ðpÞ the transformations μ ↔ μ5 and M ↔ Δ are
performed simultaneously, then the expression (17) will be
obtained, which is equal to the original expression (16) for
det B̄ðpÞ. So the TDP (15) is invariant with respect to the
following duality transformation D:

D∶ G1 ↔ G2; μ ↔ μ5; M ↔ Δ: ð18Þ

Taking into account that the TDP (15) is symmetric with
respect toμ5 → −μ5 and/orμ → −μ, it is possible to conclude
that the dual invariance D of the TDP (15) is a particular
realization of the dual property (6) of the initial model.
Suppose now that at some fixed particular values of themodel
parameters, i.e. at G1 ¼ A, G2 ¼ B and μ ¼ α, μ5 ¼ β, the
global minimum point of the TDP lies at the point (M ¼ M0,
Δ ¼ Δ0). Then it follows from the dual invarianceD (18) of
the TDP that the permutation of the coupling constant and
chemical potential values (i.e. atG1 ¼ B,G2 ¼ A andμ ¼ β,
μ5 ¼ α) moves the global minimum point of the TDP to the
point (M ¼ Δ0, Δ ¼ M0). In particular, if in the original
model with G1 ¼ A, G2 ¼ 0 and μ ¼ α, μ5 ¼ 0 the global
minimumpoint of theTDP lies at the point (M ¼ M0,Δ ¼ 0)
[as a result, in this case the continuous chiral symmetryUAð1Þ
is spontaneously broken down], then in the model with
G1 ¼ 0, G2 ¼ A and μ ¼ 0, μ5 ¼ α the global minimum
point of the TDP lies at the point (M ¼ 0, Δ ¼ M0) and the
symmetry UVð1Þ is spontaneously broken. The duality
correspondence between these two particular cases of the
original model (1) was discussed in [31]. (Even earlier, a
special case with μ ¼ μ5 ¼ 0 of the duality between chiral
symmetry breaking and superconductivity phenomena was
considered in the framework of the simplest two-dimensional
Gross-Neveu model [32,33].) Hence, a knowledge of a phase
structure of the model (1) at G1 < G2 is sufficient to
construct, by applying the duality transformation D (18),
the phase structure at G1 > G2; i.e. in the model under
consideration there is a duality correspondence between
chiral symmetry breaking and superconducting phases.
To investigate the TDP (15) it is necessary to renorm-

alize it.

B. The vacuum case: μ ¼ 0, μ5 ¼ 0

First of all we will consider the renormalization pro-
cedure and the phase structure of the model in the vacuum
case, i.e. when μ ¼ 0, μ5 ¼ 0. Putting μ ¼ 0 and μ5 ¼ 0

6Indeed, if simultaneously with μ5 → −μ5 and/or μ → −μ
transformations we perform in the integral (15) the following
change of variables, p1 → −p1 and/or p0 → −p0, then one can
easily see that the expression (16) remains intact.
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in (15), we have in this case the following expression for
the unrenormalized effective potential Vun

0 ðM;ΔÞ (in vac-
uum TDP is usually called an effective potential):

Vun
0 ðM;ΔÞ ¼ M2

4G1

þ Δ2

4G2

þ i
2

Z
d2p
ð2πÞ2 ln½ðp

2
0 − p2

1

− ðΔ −MÞ2Þðp2
0 − p2

1 − ðΔþMÞ2Þ�; ð19Þ

Integrating in (19) over p0 (see Appendix B in [18] for
similar integrals) and cutting the integration p1 region,
jp1j < Λ, one obtains the regularized effective potential
Vreg
0 ðM;ΔÞ:

Vreg
0 ðM;ΔÞ ¼ M2

4G1

þ Δ2

4G2

−
Z

Λ

0

dp1

2π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ ðM þ ΔÞ2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ ðM − ΔÞ2

q 

: ð20Þ

Since this expression diverges at Λ → ∞, it is necessary to
renormalize it, assuming that G1 ≡ G1ðΛÞ and G2 ≡ G2ðΛÞ
have appropriateΛ dependencies. It is easy to establish that if

1

4G1

≡ 1

4G1ðΛÞ
¼ 1

2π
ln
2Λ
M1

;

1

4G2

≡ 1

4G2ðΛÞ
¼ 1

2π
ln
2Λ
M2

; ð21Þ

where M1 and M2 are some finite and cutoff independent
parameters with dimensionality of mass, then integrating in
(20) over p1 and ignoring there an unessential term Λ2=2π
one can obtain in the limit Λ → ∞ a finite and renormaliza-
tion invariant expression for the effective potential,

4πV0ðM;ΔÞ ¼ M2 ln
jM2 − Δ2j

M2
1

þ Δ2 ln
jM2 − Δ2j

M2
2

þ 2MΔ ln

����M þ Δ
M − Δ

���� − Δ2 −M2: ð22Þ

Now two remarks are in order. First, sinceM1 andM2 can be
considered as free model parameters, it is clear that the
renormalization procedure of the NJL2 model (1) is accom-
panied by the dimensional transmutation phenomenon.
Indeed, there are two dimensionless bare coupling constants
G1;2 in the initial unrenormalized expression (19) for
Vun
0 ðM;ΔÞ, whereas after renormalization the effective

potential (22) is characterized by two dimensional, M1 and
M2, free model parameters. Moreover, M1 and M2 are
renormalization invariant quantities; i.e. they do not depend
on the normalization points. (The physical sense of M1 and
M2 will be discussed below.) Second, the transposition
G1 ↔ G2 of the bare coupling constants before renormaliza-
tion is equivalent, as it is clear from (21), to the transposition
M1 ↔ M2 after renormalization procedure. Hence, the vac-
uum effective potential V0ðM;ΔÞ (22) of the model is

invariant with respect to the duality transformation (18)
which now, i.e. in vacuum, looks like M1 ↔ M2, M ↔ Δ.
Note also that the effective potential V0ðM;ΔÞ written in

the form (22) has a singularity at M ¼ Δ, which is really
fictitious. Indeed, the expression (22) may be presented in
an equivalent form that is more convenient for both
numerical and analytical investigations:

4πV0ðM;ΔÞ ¼ δΔ2 − Δ2 −M2 þ ðM − ΔÞ2 ln
����M − Δ

M1

����
þ ðM þ ΔÞ2 ln

�
M þ Δ
M1

�
; ð23Þ

where

δ

4π
≡ 1

4G2

−
1

4G1

¼ 1

2π
ln
M1

M2

: ð24Þ

The expression (23) is now a smooth function atM ¼ Δ. As
it is clear from (23), instead of two massive M1 and M2

parameters the renormalized model can be characterized by
one massive and one dimensionless parameter M1 and δ,
respectively. (In this case only the partial dimensional
transmutation phenomenon takes place.) Just this set of
parameters, i.e.M1 and δ, was used in early investigations of
the initial model (1) at μ5 ¼ 0 [21]. In spite of the fact that
the dual invariance D (18) of the effective potential in the
form (23), i.e. its symmetry with respect to simultaneous
transformationsM1 ↔ M2 andM ↔ Δ, is not so evident as
in the form (22), in the following we will treat the model
properties in terms of the parameters M1 and δ as well.
So, if δ > 0, i.e., as is easily seen from (24) and (21), at

G1 > G2 orM1 > M2, the global minimum of the effective
potential (23) lies at the point (M ¼ M1, Δ ¼ 0). This
means that if interaction in the fermion-antifermion channel
is greater than that in the difermion one, then the chiral
symmetry of the model is spontaneously broken down and
fermions acquire dynamically a nonzero Dirac mass, which
is equal just to the free model parameter M1. Further, in
order to establish the phase structure of the model [or,
equivalently, to find the global minimum point of the
function V0ðM;ΔÞ] at δ < 0, i.e. at G1 < G2, we do not
need a straightforward analytical (or numerical) study of
the function (23) on the extremum. In this case it is enough
to take into account the dual invariance (18) of the TDP
(15) [at μ ¼ μ5 ¼ 0 it is reduced to a symmetry of the
effective potential V0ðM;ΔÞ with respect to simultaneous
permutations M1 ↔ M2, M ↔ Δ] and conclude [see also
the discussion just after (18)] that at δ < 0 the effective
potential (23) has a global minimum at the point (M ¼ 0,
Δ ¼ Δ0), where Δ0 ¼ M2 ¼ M1 expð−δ=2Þ. Since in this
case only the difermion condensate, which is equal to M2,
is nonzero, the fermion number Uð1Þ symmetry is sponta-
neously broken and the superconducting phase is realized
in the model. Hence, the parameter M2 is a Majorana mass
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of fermions, which appears dynamically in the super-
conducting phase of the model.

C. The case μ > 0, μ5 > 0 and T ¼ 0

Taking into account the expression (B16) (see
Appendix B), in this case the unrenormalized TDP (15)
can be presented in the following form,

ΩunðM;ΔÞ ¼ M2

4G1

þ Δ2

4G2

−
Z

∞

0

dp1

4π
fjp01j þ jp02j þ jp̄01j þ jp̄02jg;

ð25Þ
where quasiparticle and quasiantiparticle energies p01, p02

and p̄01, p̄02, respectively, are presented in (B5). It is shown
in Appendix B [see the text below formula (B13)] how one
can find the asymptotic expansion of the integrand in (25)
at jp1j → ∞. As a consequence of this prescription we have
obtained the asymptotic expansions (B14) and, as a result,
the following jp1j → ∞ expansion:

jp01jþjp02jþjp̄01jþjp̄02j¼4jp1j

þ2ðM2þΔ2Þ
jp1j

þOð1=jp1j2Þ:
ð26Þ

It means that the integral in (25) is an ultraviolet (UV)
divergent, so we need to renormalize the TDP ΩunðM;ΔÞ.
Using themomentumcutoff regularization scheme,weobtain

ΩregðM;ΔÞ¼ M2

4G1

þ Δ2

4G2

−
Z

Λ

0

dp1

4π
fjp01jþjp02jþjp̄01jþjp̄02jg ð27Þ

¼ Vreg
0 ðM;ΔÞ−

Z
Λ

0

dp1

4π
ðjp01j þ jp02j þ jp̄01j þ jp̄02j

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ ðM þΔÞ2

q
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ ðM −ΔÞ2

q
Þ;

ð28Þ

whereVreg
0 ðM;ΔÞ is given in (20). Note that the leading terms

of the asymptotic expansion (26) do not depend on μ and μ5.
So the quantity

ðjp01j þ jp02j þ jp̄01j þ jp̄02jÞjμ¼0;μ5¼0

≡ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ ðM þ ΔÞ2

q
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ ðM − ΔÞ2

q
ð29Þ

has the same asymptotic expansion (26) at jp1j → ∞. Hence,
the integral term in (28) is a convergent one, and all UV
divergences are located in the first term Vreg

0 ðM;ΔÞ. The UV
divergences are eliminated if the Λ dependencies (21) of the
bare coupling constantsG1 andG2 are supposed. In this case
we have from (28) atΛ → ∞ the following expression for the
renormalized TDP:

ΩrenðM;ΔÞ ¼ V0ðM;ΔÞ

−
Z

∞

0

dp1

4π

n
jp01j þ jp02j þ jp̄01j þ jp̄02j

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ ðMþΔÞ2

q
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ ðM −ΔÞ2

q o
;

ð30Þ

whereV0ðM;ΔÞ is the TDP (effective potential) (22)–(23) of
themodel at μ ¼ 0 andμ5 ¼ 0. Let us denote by ðM0;Δ0Þ the
global minimum point (GMP) of the TDP (30). Then,
investigating the behavior of this point vs μ and μ5 it is
possible to construct the ðμ; μ5Þ-phase portrait (diagram)
of the model. A numerical algorithm for finding the quasi
(anti)particle energies p01, p02, p̄01, and p̄02 is elaborated
in Appendix B. Based on this, it can be shown numerically
that GMP of the TDP can never be of the form
(M0 ≠ 0, Δ0 ≠ 0). Hence, at arbitrary fixed values of M1

andM2, i.e. at arbitrary values of δ (24), it is enough to study
the projections F1ðMÞ≡ΩrenðM;Δ ¼ 0Þ and F2ðΔÞ≡
ΩrenðM ¼ 0;ΔÞ of the TDP (30) to the M and Δ axes,
correspondingly. Taking into account the relations (B18) and
(B19) for the sum jp01j þ jp02j þ jp̄01j þ jp̄02j at Δ ¼ 0 or
M ¼ 0, it is possible to obtain the following expressions for
these quantities,

F1ðMÞ ¼ −
μ25
2π

−
M2

4π
þM2

2π
ln

�
M
M1

�
−
θðμ −MÞ

2π

 
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −M2

q
−M2 ln

μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −M2

p
M

!
; ð31Þ

F2ðΔÞ ¼ −
μ2

2π
−
Δ2

4π
þ Δ2

2π
ln

�
Δ
M2

�
−
θðμ5 − ΔÞ

2π

0
B@μ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ25 − Δ2

q
− Δ2 ln

μ5 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ25 − Δ2

q
Δ

1
CA: ð32Þ
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(Details of the derivation of these expressions are given in
Appendix C.) Now, to find the GMP of the whole TDP (30)
and, as a consequence, to obtain the phase structure of the
model, it is sufficient to compare the minimal values of the
functions (31) and (32). Recall that, up to an unessential
constant, each of the functions F1ðMÞ and F2ðΔÞ is just a
well-known TDP of the usual massless Gross-Neveu model
at zero temperature and nonzero chemical potential. It was
investigated, e.g., in [34]. So, one can conclude that at μ <
μc ≡M1=

ffiffiffi
2

p
(μ5 < μ5c ≡M2=

ffiffiffi
2

p
) the GMP of the func-

tion F1ðMÞ [of the function F2ðΔÞ] lies at the point M ¼
M1 (at the point Δ ¼ M2). Whereas at μ > μc (at μ5 > μ5c)
the GMP is at the point M ¼ 0 (Δ ¼ 0). Moreover, the
corresponding minimal values are the following:

F1ðM1Þ ¼ −
μ25
2π

−
M2

1

4π
; F2ðM2Þ ¼ −

μ2

2π
−
M2

2

4π
;

F1ð0Þ ¼ F2ð0Þ ¼ −
μ25
2π

−
μ2

2π
: ð33Þ

Comparing the least values (33) of the TDPs (31) and (32) for
different values of the chemical potentials μ and μ5, it is
possible to obtain the ðμ; μ5Þ-phase portrait of the model,
which consists of only three phases, the chiral symmetry
breaking phase, the superconducting phase and, finally,
symmetrical phase. Moreover, it is evident that in the CSB
phase the GMP of the TDP (30) has the form ðM1; 0Þ, and in
the SC phase it lies at the point ð0;M2Þ, whereas in the
symmetrical phase the least value of the TDP (30) is reached
at the point (M ¼ 0,Δ ¼ 0). Note that the phase structure of
themodel depends essentially on the relation betweenM1 and
M2. Indeed, let us first suppose thatM1 > M2. In this case the
typical ðμ; μ5Þ-phase portrait of the model is presented in
Fig. 1. It is evident that the region fμ > μc; μ5 > μ5cg of the
figure corresponds to the symmetrical phase of the model.
Moreover, in the region fμ < μc; μ5 > μ5cg (in the region
fμ > μc; μ5 < μ5cg) of the figure the CSB phase (the SC
phase) is arranged. The competition between CSB and SC
phases takes place in the region fμ < μc; μ5 < μ5cg. Namely,
the critical curve l of Fig. 1 is defined by the equation
F1ðM1Þ ¼ F2ðM2Þ, i.e. by the equation

ΩrenðM ¼ M1;Δ ¼ 0Þ ¼ ΩrenðM ¼ 0;Δ ¼ M2Þ: ð34Þ
The curve l divides this region into two subregions. To the left
of l the CSB phase is arranged, whereas to the right of l we
have the SC phase. Furthermore, it is clear from (34) and (33)
that it is possible to obtain an exact analytical expression for l,

l ¼
(
ðμ; μ5Þ∶μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ25 þ

M2
1 −M2

2

2

r )
: ð35Þ

In a similar way it is possible to construct a ðμ; μ5Þ-phase
portrait of the model when M1 < M2 (the typical
ðμ; μ5Þ-phase portrait is presented in Fig. 2). The critical
curve ~l of the figure is given by the relation

~l ¼
(
ðμ; μ5Þ∶μ5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þM2

2 −M2
1

2

r )
: ð36Þ

Finally, if M1 ¼ M2, then the typical ðμ; μ5Þ-phase portrait
of the model is given in Fig. 3.
Suppose that the values of M1 and M2, for which the

phase portrait of Fig. 2 is drawn, are obtained by rear-
rangement of the corresponding M1, M2 values for which
Fig. 1 is depicted (and vice versa). For example, let us
assume that M1 ¼ m1, M2 ¼ m2 (m1 > m2) in Fig. 1, but
Fig. 2 is obtained for values M1 ¼ m2 and M2 ¼ m1.

FIG. 1. The typical ðμ; μ5Þ-phase structure of the model in the
homogeneous case of the ansatz (10) for condensates (b ¼ 0,
b0 ¼ 0), whenM1 > M2. The notations CSB and SC are used for
the chiral symmetry breaking and superconducting phases,
respectively. μc ¼ M1=

ffiffiffi
2

p
, μ5c ¼ M2=

ffiffiffi
2

p
. The boundary l

between CSB and SC phases is defined by (35).

FIG. 2. The typical ðμ; μ5Þ-phase structure of the model in the
homogeneous case of the ansatz (10) for condensates (b ¼ 0,
b0 ¼ 0), whenM1 < M2. The notations CSB and SC are used for
the chiral symmetry breaking and superconducting phases,
respectively. μc ¼ M1=

ffiffiffi
2

p
, μ5c ¼ M2=

ffiffiffi
2

p
. The boundary ~l be-

tween CSB and SC phases is defined by (36).
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Then it is easy to show that Figs. 1 and 2 are dually
connected; i.e. Fig. 2 can be obtained from Fig. 1 by
applying the duality transformationD (18) (and vice versa).
Indeed, the transformationD can be divided into three more
simple steps. (i) First, performing the μ ↔ μ5 transforma-
tion in Fig. 1, we rename the coordinate axes of the figure.
(ii) Second, when the coordinates of the GMP are trans-
posed, i.e.M0 ↔ Δ0, we have renaming of the phases. [For
example, in this case the GMP of the CSB phase, i.e. the
point ðM1; 0Þ, is transformed into the point ð0;M1Þ and, as
a result, the CSB phase is transformed into the SC phase.]
(iii) Finally, performing the transpositionM1 ↔ M2 [which
corresponds to G1 ↔ G2 of (18)] and directing vertically
(horizontally) the μ5 axis (the μ axis), we obtain just
Fig. 2, corresponding to M2 ¼ m1 > M1 ¼ m2.
It is interesting to note that at M1 ¼ M2, i.e. at G1 ¼ G2

or δ ¼ 0, the phase portrait of the model (see Fig. 3) is
dually invariant, or self-dual. Moreover, in spite of self-
duality at G1 ¼ G2 of the phase structure of the model, the
CSB and SC ground states are not degenerate in this case.
Indeed, at μ5 > μ the CSB phase is preferable, but at μ5 < μ
the ground state of the SC phase has a lower energy (at
μ < μc). The degeneracy between ground states of these
phases occurs in this case only at the critical curve L (see
Fig. 3), where μ ¼ μ5.
The knowledge of the GMP ðM0;Δ0Þ of the TDP (30)

provides us with particle number density n and chiral
charge density n5:

n ¼ −
∂ΩrenðM0;Δ0Þ

∂μ ; n5 ¼ −
∂ΩrenðM0;Δ0Þ

∂μ5 : ð37Þ

So, to obtain the behavior of these quantities in the
symmetrical, CSB and SC phases of Figs. 1, 2 one can

use directly the least values (33) of the TDP (32) in these
phases. For example, we have for densities n and n5 in the
CSB phase

njCSB ¼ −
∂F1ðM1Þ

∂μ ≡ 0;

n5jCSB ¼ −
∂F1ðM1Þ

∂μ5 ¼ μ5
π
: ð38Þ

By analogy, in the SC and symmetrical (SYM) phases we
have for densities n and n5

n5jSC≡0; njSC¼
μ

π
; njSYM¼μ

π
; n5jSYM¼μ5

π
: ð39Þ

It is clear from (38) that atM1 > M2 (or atG1 > G2) theCSB
phase is realized at sufficiently small values of μ for arbitrary
values of μ5 (see Fig. 1). Hence, in this case and under a
supposition of a spatially homogeneous structure of the
condensates the particle density n of the system is always
equal to zero at sufficiently lowvalues of chemical potentialμ.
Correspondingly, in the case M1 < M2 (or at G1 < G2) the
chiral charge density n5 is equal to zero at sufficiently small
values of μ5 and for arbitrary values of μ [see Fig. 2 and (39)].
On the basis of the obtained results, we study in the next

section the phase structure of the model when condensates
are allowed to be inhomogeneous in the framework of the
ansatz (10).

IV. INHOMOGENEOUS CASE OF THE ANSATZ
(10): b ≠ 0 AND b0 ≠ 0

A. Renormalization procedure

Taking into account the results of the Appendix B, it is evi-
dent that in the case under consideration the unrenormalized
TDP (14) can be obtained from the TDP (25), corresponding
to the case b ¼ 0 and b0 ¼ 0, by simple replacements,
μ → ~μ≡ μ − b and μ5 → ~μ5 ≡ μ5 − b0. So we have

ΩunðM;b;b0;ΔÞ ¼ M2

4G1

þ Δ2

4G2

−Ω1−Ω2 −Ω3 −Ω4; ð40Þ

where

Ω1 ¼
Z

∞

0

dp1

4π
jP01j; Ω2 ¼

Z
∞

0

dp1

4π
jP02j;

Ω3 ¼
Z

∞

0

dp1

4π
jP̄01j; Ω4 ¼

Z
∞

0

dp1

4π
jP̄02j; ð41Þ

and the quantitiesP01,P02, P̄01, P̄02 are now the quasiparticle
energies (B5), in which the above-mentioned changes of the
chemical potentials shouldbedone,μ → ~μ andμ5 → ~μ5. As it
follows from the discussion below (17), it is sufficient to study
the TDP (40) atM ≥ 0,Δ ≥ 0, ~μ ≥ 0, and ~μ5 ≥ 0. Moreover,
the TDP (40) is invariant with respect to the duality trans-
formation ~D:

FIG. 3. The typical ðμ; μ5Þ-phase structure of the model in the
homogeneous case of the ansatz (10) for condensates (b ¼ 0,
b0 ¼ 0), when M1 ¼ M2. All the notations are the same as in
Figs. 1, 2 except the boundary L between CSB and SC phases,
which is defined by the relation μ ¼ μ5.
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~D∶ G1 ↔G2; μ↔ μ5; M↔Δ; b↔ b0: ð42Þ

[Recall that after the renormalization procedure the trans-
positionG1 ↔ G2 is equivalent toM1 ↔ M2, or to changing
the sign of the parameter δ (24), δ → −δ.]
To find a finite renormalized expression for the TDP

(40), we should first regularize it and then perform a
renormalization procedure in order to remove at Λ → ∞ the
UV divergences by demanding an appropriate behavior of
the bare coupling constants G1;2 vs the cutoff parameter Λ.
In the case of spatially homogeneous condensates all
regularization schemes are usually equivalent. However,
in the case of spatially inhomogeneous condensates the
translational invariance over one or several spatial coor-
dinates is lost. So, the corresponding (spatial) momenta are
not conserved. Then, if one uses the momentum-cutoff
regularization technique, as in the previous section, non-
physical (spurious) b, b0-dependent terms appear, and the
TDP acquires some nonphysical properties such as
unboundedness from below with respect to b, b0, etc. In
order to obtain a physically reliable TDP (or effective
potential), in this case an additional substraction procedure
is usually applied (for details see [9,17]). On the other hand,
if one uses more adequate regularization schemes such as
Schwinger proper-time [2,4,5] or energy-cutoff regulariza-
tions [10,18], etc., such spurious terms do not appear.7

In the present paper the energy cutoff regularization
scheme of [10] is adopted. (See also [17,18,35,36], where a
similar regularization was used in searching for chiral
density waves and inhomogeneous charged pion and
Cooper condensates in some NJL2 models.) Namely, we
require that only quasiparticle energies with momenta p1,
constrained by the relations

jP01j<Λ; jP02j<Λ; jP̄01j<Λ; jP̄02j<Λ; ð43Þ

contribute to the regularized expressions of the integrals
(41) in Ω1;…;Ω4, correspondingly. At sufficiently high
values of the cutoff Λ it is possible to use in (43) only the
leading terms of the asymptotic relations (B14) for jP01j,
P02j, jP̄01j, and jP̄02j. As a result, we have the following
expressions, regularized in the framework of the energy
cutoff scheme:

Ωreg
1 ¼

Z
Λþ~μ−~μ5

0

dp1

4π
jP01j ¼

Z
Λ

0

dp1

4π
jP01j

þ
Z

Λþ ~μ−~μ5

Λ

dp1

4π
jP01j;

Ωreg
2 ¼

Z
Λ−~μþ~μ5

0

dp1

4π
jP02j ¼

Z
Λ

0

dp1

4π
jP02j

þ
Z

Λ− ~μþ ~μ5

Λ

dp1

4π
jP02j;

Ωreg
3 ¼

Z
Λ−~μ−~μ5

0

dp1

4π
jP̄01j ¼

Z
Λ

0

dp1

4π
jP̄01j

þ
Z

Λ− ~μ− ~μ5

Λ

dp1

4π
jP̄01j;

Ωreg
4 ¼

Z
Λþ~μþ~μ5

0

dp1

4π
jP̄02j ¼

Z
Λ

0

dp1

4π
jP̄02j

þ
Z

Λþ ~μþ~μ5

Λ

dp1

4π
jP̄02j: ð44Þ

Using these expressions instead of Ωi in (40) (i ¼ 1;…; 4),
one can obtain the following regularized TDP,

ΩregðM;b;b0;ΔÞ¼ ~ΩregðM;ΔÞ−
Z

Λþ~μ−~μ5

Λ

dp1

4π
jP01j

−
Z

Λ−~μþ~μ5

Λ

dp1

4π
jP02j−

Z
Λ− ~μ− ~μ5

Λ

dp1

4π
jP̄01j

−
Z

Λþ~μþ~μ5

Λ

dp1

4π
jP̄02j; ð45Þ

where ~ΩregðM;ΔÞ is the TDP (27) of the previous section,
regularized by a momentum cutoff approach, in which
the replacements μ → ~μ and μ5 → ~μ5 should be performed.
It is evident that in the limit Λ → ∞ we obtain from
~ΩregðM;ΔÞ the renormalized TDP ~ΩrenðM;ΔÞ which
is the TDP (30), obtained for the case of homogeneous
condensates with μ → ~μ and μ5 → ~μ5. So, in the limit
Λ → ∞ we get from (45) the following expression for the
renormalized TDP in the case of inhomogeneous
condensates,

ΩrenðM; b; b0;ΔÞ ¼ ~ΩrenðM;ΔÞ þ ~μ2

2π
þ ~μ25
2π

−
μ2

2π
−
μ25
2π

:

ð46Þ

[To obtain the second and third terms in the right-hand side
of (46), one should take into account that at Λ → ∞ it is
possible to use in (45) the asymptotic expansions (B14) for
the integrand functions P01, P02, P̄01, P̄02. Then the
integration can be easily done. Moreover, we also add to
the expression (46) unessential b, b0-independent terms,
−μ2=2π and −μ25=2π, in order to reproduce at b, b0 ¼ 0 the

7As discussed in the recent papers [2,5,10,17,18], an adequate
regularization scheme in the case of spatially inhomogeneous
phases consists in the following: for different quasiparticles the
same restriction on their region of energy values jp01j;…; jp̄02j
should be used in a regularized thermodynamic potential.
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TDP (30), corresponding to a spatially homogeneous chiral
condensate.8]

B. Phase structure at T ¼ 0

It is clear that to find the phase portrait of the model at
T ¼ 0, one should investigate the global minimum point
(GMP) of the TDP ΩrenðM; b; b0;ΔÞ (46) vs the dynamical
variables M, b, b0, Δ. Since in our case the variables b and
b0 are absorbed by the chemical potentials μ and μ5, the
TDP (46) is indeed a function of four variables M, Δ, ~μ≡
μ − b and ~μ5 ≡ μ5 − b0. Thus, searching for the GMP of
this function consists effectively of two stages. First, one
can find the extremum of this function over M ≥ 0 and
Δ ≥ 0 (taking into account the results of Sec. III C)9 and
then one should minimize the obtained expression over the
variables ~μ ≥ 0, ~μ5 ≥ 0. Following this strategy, let us
introduce for arbitrary fixed values of the usual chemical
potentials μ and μ5 the quantity

ωð ~μ; ~μ5Þ ¼ min
M≥0;Δ≥0

fΩrenðM;b; b0;ΔÞg: ð47Þ

Taking into account the results of the investigation of the
GMP of the TDP (30) (see Sec. III C), it is easy to show that
if a point ð~μ; ~μ5Þ belongs to the CSB regions of the ð~μ; ~μ5Þ
plane (see, e.g., Fig. 1 with replacements μ → ~μ and
μ5 → ~μ5), then, as it follows from (33), we have for the
function (47)

ωð~μ; ~μ5ÞjCSB ¼ ~μ2

2π
−
M2

1

4π
−
μ2

2π
−
μ25
2π

: ð48Þ

In a similar way, it is easily seen from (47), (46) and (33)
that if a point ð~μ; ~μ5Þ lies in the SC or symmetrical region of
the above-mentioned ð ~μ; ~μ5Þ plane, then the function
ωð~μ; ~μ5Þ is reduced to the expressions

ωð ~μ; ~μ5ÞjSC ¼ ~μ25
2π

−
M2

2

4π
−
μ2

2π
−
μ25
2π

;

ωð ~μ; ~μ5ÞjSYM ¼ −
μ2

2π
−
μ25
2π

; ð49Þ

correspondingly. [Note that in (48) and (49) the chemical
potentials without tildes, μ and μ5, are some fixed external
parameters.] It is evident that the function ωð~μ; ~μ5Þ,
presented by the expressions (48) and (49), is a continuous
one in the region ~μ ≥ 0, ~μ5 ≥ 0. Further, to find the least
value of this function over variables ~μ ≥ 0 and ~μ5 ≥ 0 as
well as the points where it is achieved, we consider three
qualitatively different cases, (i) M1 > M2, (ii) M1 < M2,
and (iii) M1 ¼ M2.

(i) The caseM1 > M2 (G1 > G2). In this case it is easy
to see from the relations (48)–(49) that the function
(47) ωð~μ; ~μ5Þ reaches its minimal value on the ~μ5
axis, i.e. at ~μ≡ μ − b ¼ 0. The set of these points
lies in the CSB region of the ð ~μ; ~μ5Þ plane corre-
sponding to the (M0 ¼ M1, Δ0 ¼ 0)-extreme point
of the TDP (30). Since in this case the modulus of
the difermion condensate is equal to zero, Δ0 ¼ 0,
we are free to put b0 ¼ 0, i.e. ~μ5 ¼ μ5. Hence, at
M1 > M2 and at arbitrary fixed values of chemical
potentials μ ≥ 0, μ5 ≥ 0 the global minimum of the
TDP (46) ΩrenðM; b; b0;ΔÞ is arranged at the point
(M ¼ M1, b ¼ μ, b0 ¼ 0, Δ ¼ 0), where

ΩrenðM¼M1;b¼μ;b0 ¼0;Δ¼0Þ

¼ωð~μ¼0; ~μ5¼μ5Þ¼−
M2

1

4π
−
μ2

2π
−
μ25
2π

: ð50Þ

As a result, one can see that for arbitrary values of
μ ≥ 0, μ5 ≥ 0 the spatially inhomogeneous phase in
the form of chiral spirals (chiral density waves) is
more preferable in the model than any of the three
homogeneous phases (symmetrical, homogeneous
chiral symmetry breaking and homogeneous super-
conducting phases) or inhomogeneous supercon-
ducting phase.
Taking into account the definitions of the particle

number density n and chiral charge density n5 (37),
it is possible, using the least value (50) of the TDP
(46), to find these quantities in the inhomogeneous
chiral density wave phase. Namely, we have in this
phase

n ¼ μ

π
; n5 ¼

μ5
π
: ð51Þ

Let us compare the relations (51) with expressions
(38)–(39), obtained for n and n5 densities in the case
of homogeneous condensates. We see that at M1 >
M2 and in the supposition of spatially homogeneous
condensates the particle density n of the system
always vanishes in the CSB phase, i.e. at sufficiently

8In fact these summands may be obtained as a result of
subtracting the terms with b ¼ 0 and b0 ¼ 0 in evaluating
Eqs. (B16) with the help of a symbolic formula (B15), which
is itself defined up to an appropriate subtraction (see, e.g., [37],
p. 248). On the other hand, it is obvious that such a “by-hand”
addition of the last two terms in (46) does not influence the phase
structure of the model. However, we guess that this by-hand
subtracting procedure could be avoided in the framework of our
approach only in the case of taking into account the factor arising
in the path integral (11)–(12) after the Weinberg transformation
(see the comments in the footnote 4). This factor could have an
appropriate μ and μ5 dependence in order to reproduce the correct
expression (46) for the TDP.

9As in the case with b ¼ 0 and b0 ¼ 0, in the inhomogeneous
case we could not find local minimum points of the TDP (46), in
which both M ≠ 0 and Δ ≠ 0.
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small values of μ [see Fig. 1 and (38)]. In contrast, if
spatial inhomogeneity of condensates is allowed in
the framework of the model (1) at δ > 0, then in its
ground state, corresponding to a chiral density wave
phase (at arbitrary values of μ > 0 and μ5 > 0), a
nonzero particle density n is generated in the system
even at infinitesimal values of μ, as it follows
from (51).

(ii) The case M1 < M2 (G1 < G2). There is no need to
study the phase structure of the model in this case as
detailed as at M1 > M2, because the phase structure
of the model at G1 < G2 can be obtained using the
invariance of the TDP (46) with respect to the
duality transformation (42). Indeed, at M1 > M2,
i.e. at G1 > G2, the TDP (46) has a global minimum
at the point of the form (M ¼ M1, b ¼ μ, b0 ¼ 0,
Δ ¼ 0). Applying the duality transformation (42) to
this TDP, i.e. performing the replacementsG1 ↔ G2

or M1 ↔ M2, b ↔ b0, etc., we obtain the TDP,
corresponding to the case M1 < M2, whose least
value is achieved at the point (M ¼ 0, b ¼ 0,
b0 ¼ μ5, Δ ¼ M2), corresponding to a ground state
of the inhomogeneous superconducting phase.
Hence, at M1 < M2 for arbitrary values of μ > 0
and μ5 > 0 the nonuniform SC phase is realized in
the model. The expressions for particle density n and
chiral charge density n5 in this phase are still
represented by the relations (51).
Recall that in the case of a homogeneous ansatz

for condensates and at M1 < M2 the superconduct-
ing phase with n5 ¼ 0 is arranged at rather small
values of an axial chemical potential μ5 (see Fig. 2).
However, if the possibility of spatial inhomogeneous

condensates in the form (10) is taken into account,
then at M1 < M2 the nonuniform superconducting
phase is realized, in which n5 ≠ 0 even at arbitrary
low values of μ5.

(iii) The case M1 ¼ M2 (G1 ¼ G2). In this case, using
the technique of point (i), it is possible to show that
at arbitrary fixed μ > 0 and μ5 > 0 the TDP (46),
ΩrenðM; b; b0;ΔÞ, has a degenerated least value,
which is reached in two different points,
(M ¼ M1, b ¼ μ, b0 ¼ 0, Δ ¼ 0) and (M ¼ 0,
b ¼ 0, b0 ¼ μ5, Δ ¼ M1), corresponding to ground
state expectation values of inhomogeneous chiral
symmetry breaking and superconducting phases. It
means that at M1 ¼ M2 there is a degeneracy
between inhomogeneous chiral symmetry breaking
and inhomogeneous superconductivity in the whole
ðμ; μ5Þ plane. In contrast, in the homogeneous case
of the ansatz (10) for condensates a degeneracy
between spatially uniform CSB and SC phases is
absent, except the line μ ¼ μ5 of this plane, where
μ < M1=

ffiffiffi
2

p
.

The degeneracy of these ground states means that
for arbitrary fixed values of chemical potentials
μ > 0 and μ5 > 0 in the space, filled with the chiral
density wave phase, a bubble of the inhomogeneous
superconducting phase (and vice versa) can be
created.

C. Phase structure at T > 0

To introduce finite temperature into the above consid-
eration, it is very convenient to use the following repre-
sentation of the unrenormalized TDP (40):

ΩunðM;b; b0;ΔÞ ¼ M2

4G1

þ Δ2

4G2

þ i
2

Z
d2p
ð2πÞ2 ln½ðp0 − P01Þðp0 − P02Þðp0 − P̄01Þðp0 − P̄02Þ�: ð52Þ

[Integrating in (52) over p0 with the help of relation (B15), one obtains the expression (40) for the unrenormalized TDP.]
Then, to find the temperature-dependent unrenormalized TDP Ωun

T ðM; b; b0;ΔÞ one should replace in (52) the integration
over p0 in favor of the summation over Matsubara frequencies ωn by the ruleZ

∞

−∞

dp0

2π
ð� � �Þ → iT

X∞
n¼−∞

ð� � �Þ; p0 → p0n ≡ iωn ≡ iπTð2nþ 1Þ; n ¼ 0;�1;�2;…: ð53Þ

Summing over Matsubara frequencies in the obtained expression (see e.g., [38] and Appendix D), we have

Ωun
T ðM; b; b0;ΔÞ ¼ M2

4G1

þ Δ2

4G2

−
Z

∞

0

dp1

4π
fjP01j þ jP02j þ jP̄01j þ jP̄02jg

− T
Z

∞

0

dp1

2π
ln f½1þ e−βjP01j�½1þ e−βjP02j�½1þ e−βjP̄01j�½1þ e−βjP̄02j�g; ð54Þ

where β ¼ 1=T. The last integral in (54) is a convergent one, whereas other terms form the zero temperature unrenormalized
TDP (40). Hence, it is sufficient to renormalize just this component of the whole TDP (54), using the energy-cutoff
regularization scheme of the previous Sec. IVA. As a result, one can obtain finite and renormalized expression for the TDP
at nonzero T,
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Ωren
T ðM; b; b0;ΔÞ ¼ ΩrenðM; b; b0;ΔÞ − T

Z
∞

0

dp1

2π
ln f½1þ e−βjP01j�½1þ e−βjP02j�½1þ e−βjP̄01j�½1þ e−βjP̄02j�g; ð55Þ

where ΩrenðM; b; b0;ΔÞ is the zero temperature TDP (46).
Based on the numerical algorithm for finding the quasi-
particle energies P01, P02, P̄01, P̄02 (see Appendix B), it is
possible to show that at fixed values of the variables ~μ and
~μ5 the least value of the TDP (55) can never be achieved at
the point ðM;ΔÞwith both nonzero coordinates,M ≠ 0 and
Δ ≠ 0. So to investigate the global minimum of this TDP it
is sufficient to deal with the restrictions of the TDP (55) on
the manifolds Δ ¼ 0 and M ¼ 0, i.e. with the quantities

Ω1TðM; b; b0Þ≡Ωren
T ðM; b; b0;Δ ¼ 0Þ;

Ω2TðΔ; b; b0Þ≡Ωren
T ðM ¼ 0; b; b0;ΔÞ; ð56Þ

correspondingly. Note that at Δ ¼ 0 we have from (16) that
each of the quasiparticle energies P01, P02, P̄01, and P̄02 is

equal to one of the expressions ~μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 − ~μ5Þ2

p
or

−~μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 þ ~μ5Þ2

p
, whereas at M ¼ 0 one can

easily see from (17) that each of these quantities is
represented by one of the expressions ~μ5 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðp1 − ~μÞ2

p
or − ~μ5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðp1 þ ~μÞ2

p
. Then,

one should take into account the expression (46) for the
TDP ΩrenðM;b; b0;ΔÞ as well as the relations (31) and (32)
for particular values of the TDP (30) at Δ ¼ 0 and M ¼ 0.
Finally, when converting the integral term of (55) we use
essentially the following relation:

ln ð1þ e−xÞ ¼ −xþ ln ð1þ exÞ:

As a result, we obtain the following expressions for the
TDPs (56):

Ω1TðM; b; b0Þ ¼ M2

2π
ln

�
M
M1

�
−
M2

4π
þ ~μ2

2π
−
μ2

2π
−
μ25
2π

− T
Z

∞

0

dq
π
ln f½1þ e−βð

ffiffiffiffiffiffiffiffiffiffiffi
M2þq2

p
þ~μÞ�½1þ e−βð

ffiffiffiffiffiffiffiffiffiffiffi
M2þq2

p
− ~μÞ�g; ð57Þ

Ω2TðΔ; b; b0Þ ¼
Δ2

2π
ln

�
Δ
M2

�
−
Δ2

4π
þ ~μ25
2π

−
μ2

2π
−
μ25
2π

− T
Z

∞

0

dq
π
ln f½1þ e−βð

ffiffiffiffiffiffiffiffiffiffi
Δ2þq2

p
þ ~μ5Þ�½1þ e−βð

ffiffiffiffiffiffiffiffiffiffi
Δ2þq2

p
−~μ5Þ�g: ð58Þ

Note that the function (57) [the function (58)] does not
depend on the variable b0 (variable b). Due to this fact, it
is possible to establish that the TDP (57) has two
stationary points, (M ¼ M0ðTÞ, b ¼ μ, b0 ¼ 0) and
(M ¼ 0, b ¼ 0, b0 ¼ 0), where M0ðTÞ vs T behaves like
the gap in the ordinary Gross-Neveu model with zero
chemical potential and T ≠ 0 [38], i.e. M0ð0Þ ¼ M1 and
M0ðTc1Þ ¼ 0, where Tc1 ¼ M1eγ=π (here γ is the Euler’s
constant, γ ¼ 0.577…). By analogy, the TDP (58) also
has two stationary points, (Δ ¼ Δ0ðTÞ, b ¼ 0, b0 ¼ μ5)
and (Δ ¼ 0, b ¼ 0, b0 ¼ 0), with similar properties of the
gap Δ0ðTÞ vs T: Δ0ð0Þ ¼ M2 and Δ0ðTc2Þ ¼ 0, where
Tc2 ¼ M2eγ=π. Comparing the values of the TDPs (57)
and (58) in the above-mentioned stationary points, it is
possible to find the genuine GMP of the initial TDP (55)
and, as a consequence, to establish the phase structure of
the model at each fixed value of chemical potentials and
temperature. It turns out that at M1 > M2 the inhomo-
geneous chiral symmetry breaking (or chiral density
wave) phase is realized in the model at T < Tc1 for
arbitrary μ > 0 and μ5 > 0 values. However, at T > Tc1
one can observe in this case the symmetrical phase. In
contrast, at M1 < M2 the dual phase portrait is realized in
the model: in this case we have an inhomogeneous
superconducting phase at T < Tc2 and a symmetrical
phase at T > Tc2. If M1 ¼ M2, then at T < Tc1 there
is a degeneracy between inhomogeneous CSB and

inhomogeneous SC phases, whereas at T > Tc1 the
symmetrical phase is realized.
Finally, a few words are in order about the behavior of

the particle number n and chiral charge n5 densities at
nonzero temperature. Recall that to find these quantities we
should first of all obtain the value of the TDP (55) in its
global minimum point ðM0; b0; b00;Δ0Þ. Then, particle
number density n (chiral charge density n5) is the derivative
of the quantity ΩrenðM0; b0; b00;Δ0Þ with respect to chemi-
cal potential μ (chemical potential μ5). Hence, taking into
account the above consideration of the phase structure, it is
possible to conclude that both at M1 > M2 and M1 < M2

the same simple expressions for densities,

n ¼ μ

π
; n5 ¼

μ5
π
; ð59Þ

are valid for arbitrary temperatures, i.e. in the symmetric
phase, in the inhomogeneous chiral symmetry breaking
phase (at T < Tc1 if M1 > M2) and in the inhomogeneous
superconducting phase (at T < Tc2 if M1 < M2).

V. SUMMARY AND DISCUSSIONS

In this paper, some thermodynamical properties of the
(1þ 1)-dimensional system, which is characterized by
ground states with nonzero particle number as well as
the chiral charge densities, are considered. The microscopic
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Lagrangian, describing physics of the system, is chosen in
the form (1); i.e. we deal with the (1þ 1)-dimensional NJL
model, containing two types, or channels, of interaction. In
the first, chiral, channel the interaction between particles
and antiparticles is characterized by coupling constant G1,
whereas in the second, superconducting channel, we have
particle-particle interaction with coupling G2. The phase
structure of the model is investigated in the paper in terms
of particle number μ and chiral charge μ5 chemical
potentials.
There are several reasons for taking into consideration

two types of chemical potentials. The first and the most
important one is to bring the investigation of the duality
between chiral symmetry breaking and superconductivity
to a single platform, i.e. to extend the investigation
of the duality to the framework of a more general
(1þ 1)-dimensional model (1), rather than the way it
was done earlier in [31]. Recall that in [31], a connection
was found (duality) between properties of two different
models, the GN model with chemical potential μ, describ-
ing quark interaction in the qq̄ channel only, and the GN
model with chemical potential μ5, describing the interaction
in the qq channel only. In contrast, in our model (1) there is
a competition between these two types of interaction and, in
addition, there are both types of chemical potentials, μ and
μ5. The second reason is already a “traditional” motivation,
which is common in all investigations of low-dimensional
theories, i.e. the possibility and the hope to perform a
deeper consideration of a new physical phenomena in terms
of toy models. In our case these are the parity breaking
[23,24] and the chiral magnetic [25] effects of dense quark-
gluon matter, accompanied by a nonzero chiral charge
density n5 (or μ5 ≠ 0).
Moreover, the finite temperature effect is also taken into

account. It is well known that in any dense system there
might appear a spontaneous breaking of spatial transla-
tional invariance, resulting in a spatial dependence of order
parameters, or condensates. So we investigated a phase
structure of the model, assuming the Fulde-Ferrel [22]
single plane wave ansatz (10) for condensates. [In particu-
lar, for the chiral condensate the ansatz (10) is known as a
chiral density wave or chiral spiral.] For comparison, we
investigate a phase structure of the model in two particular
cases of the ansatz (10): (i) when b ¼ 0 and b0 ¼ 0, i.e. the
condensates are put as spatially homogeneous by hand, and
(ii) when the parameters b, b0 are dynamical quantities,
defined by gap equations. The main results of the paper are
the following.
(1) First of all, we have established that in the homo-

geneous case of the ansatz (10) for condensates (at
b ¼ 0 and b0 ¼ 0) the thermodynamic potential of
the model is invariant under the duality transforma-
tion D (18). It means that if at G1 > G2 [or,
equivalently, at M1 > M2, where the connections
between G1;2 and M1;2 are represented in (21)] the

CSB phase (SC phase) is realized in the model at
some fixed values of chemical potentials, e.g., at
μ ¼ α, μ5 ¼ β, then at G1 ↔ G2 the system is in the
SC phase (CSB phase) at μ ¼ β, μ5 ¼ α. Taking into
account this duality correspondence property of the
model, it is sufficient to study the ðμ; μ5Þ-phase
diagram only at G1 > G2, i.e. atM1 > M2 (see, e.g.,
Fig. 1). Then the phase portrait of the model atM1 <
M2 (see Fig. 2) is simply the dual mapping of Fig. 1.

(2) At G1 ¼ G2 (or at M1 ¼ M2) the ðμ; μ5Þ-phase
diagram of the model in the homogeneous case of
the ansatz (10) for condensates is presented in Fig. 3.
Clearly, this diagram is invariant with respect to the
duality transformation D (18); i.e. one can say that
the model is self-dual in this case. Nevertheless, we
would like to emphasize that in the homogeneous
case of the ansatz (10) and at μ ≠ μ5 the self-duality
property of the model does not mean the degeneracy
of the CSB and SC ground states at G1 ¼ G2. The
CSB-SC degeneracy appears only on the line L of
Fig. 3, i.e. at μ ¼ μ5.

(3) If a spatially inhomogeneous behavior of conden-
sates is assumed in the form (10), where the
parameters b and b0 must be found by gap equations,
then the ðμ; μ5Þ-phase structure of the model is
considerably simplified. Indeed, in this case at
G1 > G2, i.e. at M1 > M2, (at G1 < G2) only the
inhomogeneous chiral density wave phase (only
inhomogeneous SC phase) is realized in the model
for arbitrary values of μ and μ5. The critical temper-
ature, at which the inhomogeneous chiral density
wave phase (the inhomogeneous SC phase) is
destroyed and the symmetrical phase appears, is
equal to Tc1 ¼ M1eγ=π (equal to Tc2 ¼ M2eγ=π).
[In contrast, if b and b0 are equal to zero a priori, i.e.
condensates are assumed to be homogeneous from
the very beginning, then, depending on the relation
between μ and μ5, spatially uniform CSB and SC
phases are present on a model phase portrait both at
G1 > G2 and G1 < G2 (see, e.g., Figs. 1, 2).] Note
also that if G1 ≠ G2, then the inhomogeneous chiral
density wave phase is a dual mapping of the
inhomogeneous SC phase and vice versa. Moreover,
in this case the degeneracy between the above-
mentioned inhomogeneous phases is absent.

(4) It is interesting to note that at G1 ¼ G2 and for
arbitrary fixed values of the chemical potentials μ
and μ5 the self-dual and degenerated phase portrait
of the above-mentioned inhomogeneous phases
appears. It means that for each fixed value of μ
and μ5 there is an equal opportunity for the emer-
gence as one or the other inhomogeneous phase in
the system. Moreover, the coexistence of these
phases is not excluded. In contrast, in the homo-
geneous case of the ansatz (10) for condensates the
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degeneration between CSB and SC ground states of
the model is absent (at μ ≠ μ5), in spite of a self-dual
phase portrait of the model at G1 ¼ G2 (see Fig. 3).

(5) Note that if the condensates are homogeneous and
T ¼ 0, then in the CSB phase the particle density n
is identically zero, whereas the chiral charge density
n5 vanishes in the SC phase [see (38) and (39)].
However, if a possibility of spatial inhomogeneity
for condensates in the form (10) is taken into
account, then both in the ground state corresponding
to an inhomogeneous chiral density wave phase and
in the inhomogeneous SC phase the nonzero particle
number density, n ¼ μ=π, and nonzero chiral charge
density, n5 ¼ μ5=π, appear. Moreover, at T ≠ 0 and
in the case of an inhomogeneous ansatz (10) for
condensates both particle density n and chiral charge
density n5 do not depend on temperature and have
the same behaviors (59) in all possible phases of the
model, symmetrical, inhomogeneous chiral density
wave, and inhomogeneous superconducting phases.

We are aware of the fact that some of the above
properties [such as the appearance of an inhomogeneous
phase at arbitrarily low chemical potentials or a change of
the nature of the inhomogeneous phase (CSB vs SC) if the
SC coupling becomes larger than the CSB one] are
peculiarities of the above-considered (1þ 1)-dimensional
model (1) and, perhaps, have no relation to reality.
However, there are results (e.g., the extension of inhomo-
geneous phases to high values of chemical potentials) that
are predicted by (3þ 1)-dimensional QCD-like models as
well [13].
It is also worth noting that in the recent paper [24] the

(3þ 1)-dimensional NJL model with several quark-
antiquark interaction channels was investigated at zero
temperature and in the presence of two chemical potentials,
μ and μ5. The only homogeneous ansatz for condensates is
taken into account in this research, which is devoted to the
study of the parity breaking effects in QCD at high
densities. As it was established in [24], in dense quark
matter, i.e. at μ ≠ 0, and at a rather high values of μ5 the
chiral symmetry breakingþ parity breaking phase is
allowed to exist (see Fig. 7 in [24]). In some ways our
work is related to the same problem, but only considered in
the framework of a simple NJL2 toy model (1). Indeed, we
have shown that at T < Tc1 and G1 > G2 an inhomo-
geneous CSB phase, in which parity is also spontaneously
broken down, is realized in the model (1). So, there is an
alternative mechanism to achieve parity breaking in dense
QCD, based on spatially nonuniform condensates.10

Moreover, we have demonstrated that, in comparison with

the NJL model [24], a reduced number of quark-antiquark
channels of interaction is needed in order to obtain
spontaneous parity and chiral symmetry breaking at μ ≠ 0.
Finally, note that inhomogeneous phases are observed in

a phase diagram of the NJL2 model (1) only at small
temperatures, i.e. at T < Tc1 if G1 > G2 or at T < Tc2 if
G1 < G2. At high temperatures the symmetric phase with
n ≠ 0 and, especially, with nonzero chiral charge density n5
is realized (see in Sec. IV C). It is well known that in a
heavy ion collision scenario both the temperature and
magnetic field can be an extremely high. Due to high
temperatures a sphaleron transition might occur, which is
accompanied by an appearance of a nonzero chiral density
n5 (or chemical potential μ5 ≠ 0) in the system [25,26].
Due to strong magnetic fields the dynamics of the system
becomes essentially one dimensional. So we believe that in
the high temperature region the model (1) reflects in some
details the physics of quark-gluon plasma and, furthermore,
the (1þ 1)-dimensional models with μ5-chemical potential
deserve to be investigated.

APPENDIX A: THE PATH INTEGRATION OVER
ANTICOMMUTING FIELDS

Let us calculate the following path integral over anti-
commuting two-component Dirac spinor fields qðxÞ, q̄ðxÞ:

I¼
Z

½dq̄�½dq�exp
�
i
Z

d2x½q̄Dq−
Δ
2
ðqTϵqÞ−Δ

2
ðq̄ϵq̄TÞ�

�
;

ðA1Þ

where we use the notations of Sec. II. In particular, the
operatorD is given in (13) and ϵ is defined in (2). Note that
the integral I is equal to the argument of the lnðxÞ function
in the formula (12) in the particular case N ¼ 1. Recall that
there are general Gaussian path integrals [39]:Z

½dq� exp
�
i
Z

d2x

�
−
1

2
qTAqþ ηTq

��

¼ ðdetðAÞÞ1=2 exp
�
−
i
2

Z
d2x½ηTA−1η�

�
; ðA2Þ

Z
½dq̄� exp

�
i
Z

d2x

�
−
1

2
q̄Aq̄T þ η̄q̄T

��

¼ ðdetðAÞÞ1=2 exp
�
−
i
2

Z
d2x½η̄A−1η̄T �

�
; ðA3Þ

where A is an antisymmetric operator in coordinate and
spinor spaces, and ηðxÞ, η̄ðxÞ are spinor anticommuting
sources which also anticommute with q and q̄. First,
let us integrate in (A1) over q fields with the help of the
relation (A2) supposing there that A ¼ Δϵ, q̄D ¼ ηT , i.e.
η ¼ DTq̄T . Then

10As it follows from our consideration, the role of the chiral
chemical potential μ5 in this approach is simply to supply a
nonzero chiral charge density n5 ¼ μ5=π (59) in the chiral density
wave phase, where both parity and chiral symmetry are broken
spontaneously.
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I¼ðdetðΔϵÞÞ1=2

×
Z

½dq̄�exp
�
−
i
2

Z
d2xq̄½ΔϵþDðΔϵÞ−1DT �q̄T

�
: ðA4Þ

Second, the integration over q̄ fields in (A4) can be easily
performed with the help of the formula (A3), where one
should put A ¼ ΔϵþDðΔϵÞ−1DT and η̄ ¼ 0. As a result,
we have

I ¼ ðdetðΔϵÞÞ1=2ðdet½ΔϵþDðΔϵÞ−1DT �Þ1=2
¼ ðdet½−Δ2 −DϵDTϵ�Þ1=2; ðA5Þ

where we took into account that ϵϵ ¼ −1 and ϵ−1 ¼ −ϵ.
For the following one should remember the well-known
relations: ð∂νÞT ¼ −∂ν, ϵðγνÞTϵ ¼ γν, where ν ¼ 0, 1.
Hence,

I ¼ ðdet½−Δ2 þDþD−�Þ1=2 ≡ ðdetBÞ1=2; ðA6Þ

where D� ¼ γνi∂ν − M � ððμ − bÞγ0 þ ðμ5 − b0Þγ1Þ.
Using the general relation detB ¼ expðTr lnBÞ, we get
from (A6):

ln I ¼ 1

2
Tr ln ð−Δ2 þDþD−Þ

¼
X2
i¼1

Z
d2p
ð2πÞ2 lnðλiðpÞÞ

Z
d2x: ðA7Þ

(A more detailed consideration of operator traces is
presented in Appendix A of the paper [40].) In this formula
the symbol Tr means the trace of an operator both in the
coordinate and internal spaces. Moreover, λiðpÞ (i ¼ 1, 2)
are eigenvalues of the 2 × 2 Fourier transformed matrix
B̄ðpÞ of the operator B, i.e.

λ1;2ðpÞ ¼ p2
0 − ~μ2 −p2

1 þ ~μ25 þM2 −Δ2

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2p2

0 −M2p2
1 þ ~μ2p2

1 − 2p0 ~μ5 ~μp1 þp2
0 ~μ

2
5

q
;

ðA8Þ

where ~μ ¼ μ − b and ~μ5 ¼ μ5 − b0.

APPENDIX B: EVALUATION OF THE TDP (15)

In order to renormalize and then to investigate the TDP
(15), it is necessary to modify the initial expression (15).
First let us obtain a more convenient expression for
det B̄ðpÞ. With this aim we use the following alternative
form of the relation (16), namely

detB̄ðpÞ¼p4
0−2ðM2þΔ2þμ2þμ25þp2

1Þp2
0

þ8μ5μp1p0þp4
1−2p2

1ðμ2þμ25−M2−Δ2Þ
þðΔ2−M2þμ2−μ25Þ2≡p4

0þαp2
0þβp0þγ;

ðB1Þ

where, evidently,

α ¼ −2ðM2 þ Δ2 þ μ2 þ μ25 þ p2
1Þ;

β ¼ 8μ5μp1;

γ ¼ p4
1 − 2p2

1ðμ2 þ μ25 −M2 − Δ2Þ
þ ðΔ2 −M2 þ μ2 − μ25Þ2: ðB2Þ

It is very convenient to present the fourth-order polynomial
of the variable p0 (B1) as a product of two second-order
polynomials (this way is proposed in [41]); i.e. we assume
that

p4
0 þ αp2

0 þ βp0 þ γ ¼ ðp2
0 þ rp0 þ qÞðp2

0 − rp0 þ sÞ

¼
��

p0 þ
r
2

�
2

þ q −
r2

4

���
p0 −

r
2

�
2

þ s −
r2

4

�
≡ ðp0 − p01Þðp0 − p02Þðp0 − p̄01Þðp0 − p̄02Þ; ðB3Þ

where r, q and s are some real valued quantities, such that

α ¼ sþ q − r2; β ¼ rs − qr; γ ¼ sq: ðB4Þ

Then, using expansion (B3), it is easy to present all the
roots p01, p02, p̄01, and p̄02 of the polynomial (B1)–(B3) vs
p0 in the following form:

p01 ¼ −
r
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

4
− q

r
; p02 ¼

r
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

4
− s

r
;

p̄01 ¼ −
r
2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

4
− q

r
; p̄02 ¼

r
2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

4
− s

r
: ðB5Þ

The expressions (B5) are usually called the dispersion laws
(or relations) of the model. So, the quantities p01 and p02

are the energies of two quasiparticles, whereas p̄01 and p̄02

are the energies of their quasiantiparticles. Since in (B3) the
energy parameter p0 is shifted by �r=2, one may interpret
the quantity r=2 as an effective chemical potential. In the
following we are going to use just the quantities (B5) in our
numerical calculations, so it is necessary to express the
coefficients r, q and s in (B3) in terms of α, β, γ quantities.
Suppose first that μ ¼ 0 and μ5 ¼ 0 (other variables, M,

Δ, and p1, are nonzero). Then, as it is clear from (19),
r ¼ 0, s ¼ −p2

1 − ðM − ΔÞ2 and q ¼ −p2
1 − ðM þ ΔÞ2. In

particular, it means that in this case
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ðjp01j þ jp02j þ jp̄01j þ jp̄02jÞjμ¼0;μ5¼0

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ ðM þ ΔÞ2

q
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ ðM − ΔÞ2

q
: ðB6Þ

In the general case, when both μ ≠ 0 and μ5 ≠ 0, one can
solve the system of equations (B4) and find

q¼1

2

�
αþR−

βffiffiffiffi
R

p
�
; s¼1

2

�
αþRþ βffiffiffiffi

R
p
�
; r¼

ffiffiffiffi
R

p
;

ðB7Þ
where R is an arbitrary positive real solution of the equation

X3 þ AX ¼ BX2 þ C ðB8Þ

with respect to a variable X, and

A ¼ α2 − 4γ

¼ 16½μ25Δ2 þM2μ2 þ Δ2M2 þ μ25μ
2 þ p2

1ðμ2 þ μ25Þ�;
B ¼ −2α ¼ 4ðM2 þ Δ2 þ μ2 þ μ25 þ p2

1Þ;
C ¼ β2 ¼ ð8μ5μp1Þ2: ðB9Þ

Numerical investigation shows that for any fixed values of
μ > 0, μ5 > 0,M > 0,Δ > 0 and p1 the discriminant of the
third-order algebraic equation (B8), i.e. the quantity
18ABC − 4B3Cþ A2B2 − 4A3 − 27C2, is always positive.
So the equation (B8) vs X has three different real solutions
R1, R2 and R3 (this fact is presented in [41]). Moreover,
since the coefficients A, B and C (B9) are positively defined,
it is clear that all the roots R1, R2 and R3 are positive
quantities. So we are free to choose the quantity R from (B7)
as one of the solutions R1, R2 or R3. In each case, i.e. for
R ¼ R1, R ¼ R2, or R ¼ R3, we will obtain the same set of
the roots (B5) (possibly rearranged), which depends only on
μ, μ5,M, Δ and p1, and does not depend on the choice of R.
Using standard methods, it is possible to find the

following p1 → ∞ asymptotic expansions of the roots
R1, R2 and R3,

R1 ¼ 4μ2 þ 4Δ2μ2½μ2 −M2 − μ25�
ðμ25 − μ2Þp2

1

þOð1=p4
1Þ; ðB10Þ

R2 ¼ 4μ25 þ
4M2μ25½μ25 − Δ2 − μ2�

ðμ2 − μ25Þp2
1

þOð1=p4
1Þ; ðB11Þ

R3 ¼ 4p2
1 þ 4ðM2 þ Δ2Þ

þ 4ðμ25M2 þ μ2Δ2 −M2Δ2Þ
p2
1

þOð1=p4
1Þ: ðB12Þ

It is clear from these relations that R3 is invariant, whereas
R1 ↔ R2 under the duality transformation (18). Note that
the expansions (B10) and (B11) are valid only at μ5 ≠ μ. If
μ5 ¼ μ, then at p1 → ∞ we have for R1;2 the expansions

R1;2 ¼ 4μ2 � 4μΔM
jp1j

þ 2Δ2M2 − 2μ2Δ2 − 2μ2M2

p2
1

þOð1=p3
1Þ: ðB13Þ

[In this particular case each of the roots R1;2;3 is invariant
with respect to the duality transformation (18).] It was
mentioned above that the quantity r=2 can be interpreted as
an effective chemical potential [see the text after (B5)].
Moreover, it is clear from (B10) that just the choice R ¼ R1

supports this interpretation, since at p1 → ∞ we have
r=2 ¼ ffiffiffiffiffiffi

R1

p
=2 → μ. Besides, if the quantity R from (B7)

is equal to the root R1, then it is easy to obtain asymptotic
expansions at p1 → ∞ of quasiparticle energies,

jp01j ¼ jp1j − μþ μ5 þ
Δ2 þM2

2jp1j
þOð1=p2

1Þ;

jp̄01j ¼ jp1j þ μþ μ5 þ
Δ2 þM2

2jp1j
þOð1=p2

1Þ;

jp02j ¼ jp1j þ μ − μ5 þ
Δ2 þM2

2jp1j
þOð1=p2

1Þ;

jp̄02j ¼ jp1j − μ − μ5 þ
Δ2 þM2

2jp1j
þOð1=p2

1Þ; ðB14Þ

which follow from (B10)–(B12) as well as from the
relations (B7) and (B5). As a result, it can be established
from (B14) the asymptotic expansion (26). We would like
to emphasize once again that the asymptotic behavior (26)
does not depend on which of the roots R1, R2 or R3 of the
equation (B8) is taken as the quantity R from the rela-
tions (B7).
Now, taking into account the relations (B1) and (B3) one

can integrate over p0 in (15), using the well-known formula

Z
∞

−∞
dp0 ln ðp0 − AÞ ¼ iπjAj ðB15Þ

(obtained rigorously, e.g., in Appendix B of [18] and true
up to an infinite term independent on the real quantity A).
As a result, we have

i
2

Z
d2p
ð2πÞ2 ln ½det B̄ðpÞ� ¼ −

Z
∞

−∞

dp1

8π
fjp01j þ jp02j þ jp̄01j þ jp̄02jg

¼ −
Z

∞

0

dp1

4π
fjp01j þ jp02j þ jp̄01j þ jp̄02jg; ðB16Þ
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where the expressions for energies of quasiparticles, p01 and p02, as well as for energies of quasiantiparticles, p̄01 and p̄02, are
given in (B5).Note that the last equality in (B16) is due to the fact that the sum ðjp01j þ jp02j þ jp̄01j þ jp̄02jÞ is an even function
of p1, as it is easily seen from (B5) and (B7). Moreover, due to (B5) one can obtain an equivalent expression for (B16),

i
2

Z
d2p
ð2πÞ2 ln ½det B̄ðpÞ� ¼ −

Z
∞

0

dp1

4π

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4q

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4s

p

þ ðr −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4q

q
Þθðr −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4q

q
Þ þ ðr −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4s

p
Þθðr −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 4s

p
Þ
o
; ðB17Þ

where r, q and s are defined in (B3)–(B7) and θðxÞ is the
Heaviside step function. It is very convenient to use this
relation in the cases r ¼ ffiffiffiffiffiffi

R1

p
and r ¼ ffiffiffiffiffiffi

R2

p
. In these cases

an ultraviolet divergence of the integral (B17) is due to the
first two terms in the braces, whereas the terms with θðxÞ
functions do not generate any divergences there.
Finally, in addition to (B6), we would like to present

two other particular cases, in which the expressions

for the quasiparticle energies (B5) and the sum
ðjp01j þ jp02j þ jp̄01j þ jp̄02jÞ can be given in an exact
analytical form. Namely, if Δ ¼ 0 then we have from
(16) that each of p01, p02, p̄01, and p̄02 is given by
one of the expressions μ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 − μ5Þ2

p
or

−μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 þ μ5Þ2

p
. Therefore, their sum is repre-

sented by

ðjp01j þ jp02j þ jp̄01j þ jp̄02jÞjΔ¼0 ¼
X
η¼�

����μþ η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 − ημ5Þ2

q ���þ ���μþ η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 þ ημ5Þ2

q ���
: ðB18Þ

Analogously, at M ¼ 0 we have from (17)

ðjp01j þ jp02j þ jp̄01j þ jp̄02jÞjM¼0 ¼
X
η¼�

����μ5 þ η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðp1 − ημÞ2

q ���þ ���μ5 þ η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðp1 þ ημÞ2

q ���
: ðB19Þ

APPENDIX C: DERIVATION OF
THE RELATION (31)

If Δ ¼ 0 and M ≠ 0, then the quasiparticle energies
(B5) can be easily found from the expression (16). In
this case each of p01, p02, p̄01, and p̄02 is given by
one of the expressions μ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 − μ5Þ2

p
or

−μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 þ μ5Þ2

p
; therefore their sum is repre-

sented by the formula (B18). Taking this relation into
account as well as using the well-known relations jxj ¼
xθðxÞ − xθð−xÞ and θðxÞ ¼ 1 − θð−xÞ, it is possible to

bring the expression (30) at Δ ¼ 0 and M ≠ 0 to the
following form:

ΩrenðM;Δ ¼ 0Þ ¼ −
M2

4π
þM2

2π
ln

�
M
M1

�
−U − V; ðC1Þ

where

U ¼
Z

∞

0

dp1

2π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 þ μ5Þ2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 − μ5Þ2

q
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

1

q �
; ðC2Þ

V ¼
Z

∞

0

dp1

2π

��
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 − μ5Þ2

q �
θ

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 − μ5Þ2

q �

þ
�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 þ μ5Þ2

q �
θ

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 þ μ5Þ2

q ��
: ðC3Þ

The convergent improper integral U can be represented in the form

U ¼ lim
Λ→∞

�Z
Λ

0

dp1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 þ μ5Þ2

q
þ
Z

Λ

0

dp1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðp1 − μ5Þ2

q
− 2

Z
Λ

0

dp1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

1

q �
: ðC4Þ
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Denoting the first (second) integral in the braces of (C4) as
U1 (as U2) and carrying out there the change of variables,
q ¼ p1 þ μ5 (q ¼ p1 − μ5), one can obtain

U1 ¼
Z

Λþμ5

μ5

dq
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q

≡
�Z

Λ

0

þ
Z

0

μ5

þ
Z

Λþμ5

Λ

�
dq
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q
; ðC5Þ

U2 ¼
Z

Λ−μ5

−μ5

dq
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q

≡
�Z

Λ

0

þ
Z

0

−μ5
þ
Z

Λ−μ5

Λ

�
dq
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q
: ðC6Þ

Substituting (C5) and (C6) in (C4) and taking into account
that �Z

0

μ5

þ
Z

0

−μ5

�
dq
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q
¼ 0; ðC7Þ

we have after a direct integration

U ¼ lim
Λ→∞

�Z
Λþμ5

Λ
−
Z

Λ

Λ−μ5

�
dq
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q
¼ μ25

2π
: ðC8Þ

Analogously, the quantity V (C3) can be represented as a
sum of two integrals, in which one should perform a change
of variables similar to U1 and U2, correspondingly. As a
result, we have

V ¼
Z

∞

−μ5

dq
2π

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q 

θ
�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q 


þ
Z

∞

μ5

dq
2π

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q 

θ
�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q 


¼ θðμ −MÞ
Z ffiffiffiffiffiffiffiffiffiffi

μ2−M2
p

0

dq
π

�
μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

q 

: ðC9Þ

Direct integration in (C9) gives us the following expression
for V:

V¼θðμ−MÞ
2π

�
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2−M2

q
−M2 ln

μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2−M2

p
M

�
: ðC10Þ

Hence, taking into account the relations (C10), (C8), and
(C1), we are convinced of the validity of the formula (31).
By analogy, one can derive the expression (32).

APPENDIX D: SUMMATION OVER
MATSUBARA FREQUENCIES

Let us sum the series

SðaÞ ¼
X∞
n¼−∞

lnðiωn − aÞ; ðD1Þ

where ωn ¼ πTð2nþ 1Þ and a, T are some real quantities.
The expression can be modified in the following way:

SðaÞ ¼
X∞
n¼0

flnðiωn − aÞ þ lnð−iωn − aÞg

¼
X∞
n¼0

lnða2 þ ω2
nÞ: ðD2Þ

It is easy to find from (D2)

dSðaÞ
da

¼ 2a
X∞
n¼0

ða2 þ ω2
nÞ−1 ¼

β

2
tanh

�
βa
2

�
; ðD3Þ

where we have used the well-known relation

X∞
n¼0

ðb2 þ ð2nþ 1Þ2Þ−1 ¼ π

4b
tanh

�
πb
2

�
:

Finally, integrating both sides of the relation (D3) with
respect to the variable a and omitting an unessential
constant independent on the quantity a, one can obtain

SðaÞ ¼ ln ½expðβa=2Þ þ expð−βa=2Þ�
¼ ln ½expðβjaj=2Þ þ expð−βjaj=2Þ�

¼ βjaj
2

þ ln ½1þ expð−βjajÞ�: ðD4Þ
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