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Elements are given of a calculation that identifies the size of a proton in the Schrödinger equation for
lepton-proton bound states, using the renormalization group procedure for effective particles (RGPEP) in
quantum field theory, executed only up to the second order of expansion in powers of the coupling constant.
Already in this crude approximation, the extraction of size of a proton from bound-state observables is
found to depend on the lepton mass, so the smaller the lepton mass the larger the proton size extracted from
the same observable bound-state energy splitting. In comparing hydrogen and muon-proton bound-state
dynamics, the crude calculation suggests that the difference between extracted proton sizes in these two
cases can be a few percent. Such values would match the order of magnitude of the currently discussed
proton-size differences in leptonic atoms. Calculations using the RGPEP of higher than second order are
required for a precise interpretation of the energy splittings in terms of the proton size in the Schrödinger
equation. Such calculations should resolve the conceptual discrepancy between two conditions: that the
renormalization group scale required for high accuracy calculations based on the Schrödinger equation is
much smaller than the proton mass (on the order of a root of the product of reduced and average masses of
constituents) and that the energy splittings due to the physical proton size can be interpreted by ignoring
corrections due to the effective nature of constituents in the Schrödinger equation.
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I. INTRODUCTION

The approach suggested here for research on questions
concerning the size of a proton in lepton-proton bound
states differs from several approaches to bound-state dynam-
ics that are available in the literature [1–12]. The suggested
approach is not meant to easily achieve the accuracy that
could rival advanced quantitative calculations. Instead, this
article addresses the conceptual issue of the effective nature
of constituents in the nonrelativistic Schrödinger quantum
mechanics, focusing on the correction to a lepton-proton
ground-state binding energy that results from the size of the
proton’s electric charge distribution.
The constituents seen in bound states are considered here

not the same as the quanta of an underlying theory. They
are instead treated as calculable, effective quanta in the
renormalized theory. The required method of calculation is
the renormalization group procedure for effective particles
(RGPEP), whose recent summary can be found in Ref. [13].
The effective particles and their interactions depend on the
RGPEP scale parameter. The discussion of the proton
size that follows accounts for the presence of such a scale
parameter in the two-body Schrödinger eigenvalue equa-
tion, and it traces the consequences of its presence for
the interpretation of specific ground-state binding energy
corrections in terms of the proton radius.
The effective nature of the two-body Schrödinger approxi-

mation has an implication that the lepton-proton interaction
cannot be precisely local. The nonlocality is associated with
the finite value of the RGPEP scale parameter required to
justify the approximation of a bound state in terms of just

two constituents in the Schrödinger equation. The range of
the nonlocality is small in comparison to the distances that
characterize dominant effects in the bound-state dynamics.
The small nonlocality range can be estimated on the general
grounds of universality of the Schrödinger equation for
systems bound by electromagnetic interactions, using scal-
ing with the fine-structure constant α. The point of this article
is that the nonlocality is important in the interpretation of
corrections to ground-state binding energies due to the
physical proton radius, with an accuracy comparable to 1%.
The argument presented here is purely heuristic. It is

based on a crude estimate of the coefficient, denoted here
by da, in front of the proton radius parameter squared, r2p, in
the ground-state lepton-proton binding energy correction
due to the proton radius [cf. Eq. (121) in Sec. V B],

ΔEr ¼ da
2πα

3
r2pjψ̂ð0Þj2: ð1Þ

The parameter da must deviate from 1 in an effective theory.
The size of the deviation depends on the value of the number
a which says how much the RGPEP scale parameter, λ ¼
1=s (where s has the interpretation of the size of effective
particles), differs from a special value selected on the basis of
the universality of the electric charge and the Schrödinger
quantum mechanics. One infers that

λ ¼ a
ffiffiffiffiffiffiffi
μM

p
; ð2Þ

where μ is the reduced mass and M the average mass of
constituents in a two-body bound state. With this choice, one
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obtains the bound-state picture that universally scales with α
if one uses the same a in different systems. This means that
one changes λ when masses of the constituents change. On
the other hand, when one uses the same λ to discuss different
systems in one and the same effective theory, one obtains
different values of a for different values of the constituent
masses.
It follows from Eq. (2) that a is reduced by a factor of

about
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mμ=me

p
∼ 14 when one goes from the electron-

proton to muon-proton system without changing λ in the
effective theory. The associated change in the coefficient da
in Eq. (1) can reach unexpectedly large values such as 8%.
The surprise comes from the fact that the corrections result
from a nonperturbative factor that, when formally expanded
in powers of α, appears to correspond to corrections of
order α4 ∼ 10−9 to Rydberg. The expansion is not valid,
however, due to the ultraviolet divergences it illegitimately
creates. On the other hand, without taking into account the
nonperturbative result that da ≠ 1 in Eq. (1), one might
have an impression that the proton radius could be greater
in the electron-proton system by about 4% than in the
muon-proton system.
The possibility of obtaining an effect on the order of a

few percent in the proton radius extracted from one term in
a theory of energy splittings does not mean that the proton
radius puzzle is explained. On the contrary, this finding
provides evidence that the effective nature of the
Schrödinger picture for lepton-proton bound states must
be brought under mathematical control as a function of the
relevant scale parameter before one can arrive at firm
conclusions. In exact calculations, observables cannot
depend on the choice of scale for effective theory. But
when one relies on approximations and does not have
mathematical control over the effective theory dependence
on the scale parameter, an artificial dependence of the proton
radius on the system it is extracted from cannot be excluded.
The RGPEP appears to be a candidate for attempts to remove
this ambiguity and to compare the underlying theory with
data including the proton radius effects.
In this context, it should be stressed that the RGPEP

approach can also be applied to other bound-state observ-
ables, such as the hyperfine structure, or to observables
accessible in the electron-proton scattering. Application of
the RGPEP to hyperfine structure involves derivation of the
effective lepton-proton Hamiltonian including at least the
terms of formal order α2, and there are significantly more of
these terms in the effective theory than there are in the order
α considered here. The higher-order terms in the effective
Hamiltonian are needed for precise control of the bound-
state spin effects in the presence of the effective-theory
scale parameter. There is no reason to doubt that the
required RGPEP calculations can be attempted using the
fourth-order formulas [13].
Regarding scattering observables, it is interesting to note

that the RGPEP scale parameter automatically disappears

from the on-energy-shell scattering amplitudes of order α
when the RGPEP Hamiltonian is calculated also to order α,
which is the only order discussed here. Thus, also in
the scattering case, a calculation of order α2 or higher is
required to identify consequences of the presence of the
scale parameter in the effective theory for extracting
the proton size from data. This means that the theoretical
interpretation of available electron-proton scattering data
in terms of the proton radius, with or without including
dispersion analysis (see e.g. the recent discussion in
Ref. [12]), may benefit from development of the RGPEP
approach beyond the simple pilot study described here.
This paper starts with an introduction of the proton

radius in Sec. II. The effective nature of the Schrödinger
equation is discussed in Sec. III, illustrated by a derivation
in Sec. IV. The effective size of the proton is considered in
Sec. V, and Sec. VI concludes the paper. Appendix A shows
an example of the construction of a canonical Hamiltonian.
An outline of the RGPEP is given in Appendix B. Details of
the effective lepton-proton interaction are discussed in
Appendix C, and a few details concerning the evaluation
of integrals are given in Appendix D.

II. PROTON SIZE IN QUANTUM MECHANICS

In the instant form (IF) of Hamiltonian dynamics [14], the
effective proton size in lepton-proton bound states can be
introduced using the nonrelativistic Schrödinger equation,

~p2

2μ
ψð~pÞ þ

Z
d3k
ð2πÞ3 Vð~p;

~kÞψð~kÞ ¼ −EBψð~pÞ; ð3Þ

where the kernel Vð~p; ~kÞ describes the interaction, ~k and ~p
denote the relative momenta in the lepton-proton center-
of-mass system before and after the interaction, μ is the
reduced mass, andEB is the binding energy, which is defined
as the difference between the sum of the constituent masses,
expressed here by the average mass M,

ml þmp ¼ 2M; ð4Þ

and the bound-state mass MB,

MB ¼ 2M − EB: ð5Þ

In the first approximation for lepton-proton bound states,
Vð~p; ~kÞ is equal to the spin-independent Coulomb potential
for pointlike charges, Vpt

Cð~qÞ, where ~q ¼ ~p − ~k and

Vpt
Cð~qÞ ¼ −

4πα

~q2
: ð6Þ

In this approximation, the proton size can be accounted for
by the replacement of Vpt

C with

VCð~qÞ ¼ Vpt
Cð~qÞGEð~q2Þ; ð7Þ
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where GE denotes the proton electric form factor, cf. Eq. (2)
in Ref. [12].
The proton radius, denoted by rp, enters in the inter-

action Vð~p; ~kÞ in a known way because the momentum
transfers ~q between constituents in the lepton-proton bound
states are small in comparison with the inverse of the proton
size, and the proton form-factor dependence on such small
momentum transfers is described by the formula

GEð~q2Þ ¼ 1 −
1

6
r2p~q2 þ oð~q2Þ: ð8Þ

Thus, the interaction can be approximated by

VCð~qÞ ¼ Vpt
Cð~qÞ þ

2πα

3
r2p: ð9Þ

In position variables,

VCð~rÞ ¼ −
α

j~rj þ
2πα

3
r2pδ3ð~rÞ: ð10Þ

Since the parameter rp is meant to describe a physical
feature of the proton [15], there is no obvious reason to
expect that rp differs in the electron-proton and muon-
proton bound states.
However, splittings in the muon-proton bound-state

spectra are measured with an accuracy much better than
the magnitude of corrections caused by the term

δVð~p; ~kÞ ¼ 2πα

3
r2p; ð11Þ

or, in its position representation,

δVð~rÞ ¼ 2πα

3
r2pδ3ð~rÞ: ð12Þ

Differences between observed splittings in the spectra of
electron-proton and muon-proton bound states [16] can be
interpreted, including insight from Eqs. (11) and (12), as
resulting from rp being about 4% greater in the electron-
proton bound states than in the muon-proton bound states
[12]. While the available data suggest this interpretation,
it is difficult to explain variation of the proton radius in
theory. Therefore, the 4% difference is called the proton
radius puzzle.
We suggest that a resolution of the proton radius puzzle

may originate in details of the relationship between the
Schrödinger equation, Eq. (3), and quantum field theory
(QFT). Namely, one needs to precisely define the steps
through which the complex bound-state dynamics of
relativistic QFT is reduced to a nonrelativistic equation
for the two particles that interact with each other through
the instantaneous Coulomb potential, as a first approxima-
tion. Once this issue is clarified, the question then becomes
if such precisely determined interactions can be different in
the electron-proton and muon-proton bound states and, if

they can, if the relevant differences can be partly described
by effectively changing the magnitude of parameter rp in
δVð~p; ~kÞ by amounts comparable with the measured effect.
We suggest that the answers to both of these questions may
be positive.
The procedure used here to define how the interaction

Vð~p; ~kÞ can be calculated in QFT is called the RGPEP,
which evolved from the similarity renormalization group
procedure [17,18] via introduction of the creation and
annihilation operator calculus [19,20]. A succinct summary
of a recent perturbative version of the RGPEP is available in
Ref. [13]. One can use the perturbative version because the
relevant coupling constant, α ∼ 1=137, is small. Originally,
the RGPEP was developed for calculating the effective
Hamiltonians in QCD, where the coupling constant is large
and one has to deal with confinement. The small value of α
and the fact that leptons are not confined to protons greatly
simplify the lepton-proton bound-state theory in compari-
son with QCD, but many of the steps in the procedure of

deriving Vð~p; ~kÞ for lepton-proton bound states are similar
to the steps needed in QCD [21,22].

III. EFFECTIVE NATURE OF THE
SCHRÖDINGER EQUATION

The description of bound states in relativistic QFT faces
a conceptual difficulty which can be identified in various
ways. For example, if one writes a bound-state equation
using Feynman diagrams [1,2], one needs the interaction
kernel that properly summarizes contributions of all rel-
evant Green’s functions [23]. If instead one considers a
Hamiltonian approach in some form of dynamics [14], one
needs to account, in the Hamiltonian eigenvalue problem,
for couplings among all relevant sectors in the Fock space.
Both the Green’s function and the Hamiltonian approach
generate divergences due to integration to infinity over
momenta of virtual constituents. The conceptual difficulty
is to unambiguously limit the dynamics of an infinite and
diverging set of amplitudes or wave functions to a manage-
able subset that can serve as a first step in a scheme of
successive approximations.
For a bound state of a lepton and a proton, the

first-approximation picture is physically verified to be the
nonrelativistic Schrödinger equation for two particles inter-
acting through the instantaneous Coulomb potential. If one
wishes to connect perturbative diagrams with this non-
perturbative picture, one needs a scheme of rules that allow
one to decide which diagrams to include and how. If one
wishes to use the Hamiltonian approach, one needs to
account for the Fock sectors with additional photons and
lepton-antilepton pairs, which all induce changes in the first-
approximation Schrödinger eigenvalue problem.
The Hamiltonian approach can be pursued using the

RGPEP. The physical proton radius is introduced in the
initial theory and survives all steps of the procedure in
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which one reduces the complex QFT dynamics to the
simple Schrödinger equation for two effective particles.
Therefore, the RGPEP can be carried out as if the proton
were pointlike, which is simple to present, and then the
proton radius effect can be inserted in the result. Finding a
corresponding scheme in the diagrammatic approach would
require separate research outside the Hamiltonian dynam-
ics, and such studies are not pursued here.
Consequently, here the starting point of the RGPEP is the

canonical QFT Hamiltonian for leptons and protons
coupled to photons that is described in Appendix A.
This Hamiltonian is regularized, supplied with counter-
terms calculated using the RGPEP and eventually trans-
formed into the scale-dependent effective Hamiltonian for
which one can write an eigenvalue problem that resembles
the first-approximation Schrödinger equation. The physical
proton radius inserted in the theory at the beginning
resurfaces in the effective two-body eigenvalue problem,
and this illustrates how the proton-radius puzzle can be
addressed.
The physical consequence of the scale dependence of the

effective Hamiltonian is that the effective constituents, the
lepton and proton describable using the Schrödinger
equation, no longer interact through the pure Coulomb
potential. Namely, the Coulomb potential is corrected by a
scale-dependent form factor that limits the range of energy
changes that the interaction can cause. This form factor
introduces corrections that can be interpreted in terms of an
apparent variation of the proton radius. Moreover, the
magnitude of the variation can be changed by changing
the scale of effective theory. The result for realistic values
of parameters is that the same physical proton radius shows
up in the effective Schrödinger equations for muon-proton
and lepton-proton bound states with different coefficients.
The associated energy corrections follow from a formula
that does not have a finite expansion in powers of the
coupling constant around zero, and the quantity one may
interpret as a proton radius differs a bit from the physical
proton radius, depending on the bound state one considers.
In summary, the lepton and proton that appear in the

nonrelativistic Schrödinger equation for electron-proton
and muon-proton bound states are not the same as the
bare quanta in QFT. Instead, they are the effective particles
that are needed to represent the complex bound-state
dynamics in QFT in terms of the universal Schrödinger
picture of only two constituents and a potential. The price
to pay for the simplification depends on the lepton mass,
and the corresponding corrections manifest themselves as if
the proton radius depended on the lepton mass.

IV. DERIVATION OF THE SCHRÖDINGER
EQUATION FROM QFT

The bare regularized Hamiltonian that we start from is
given in Appendix A. The counterterms it requires are
found using the RGPEP in the process of evaluating the

Hamiltonian for effective particles of size s (see below) and
securing that its matrix elements in the basis states of
small invariant mass do not depend on regularization. The
effective Hamiltonian is evaluated here using second-
order solutions to the RGPEP equations. Subsequently,
the eigenvalue equation for lepton-proton bound states in
the whole effective-particle basis in the Fock space is
artificially limited to just two sectors: the lepton-proton
sector and the lepton-proton-photon sector. The artificial
limitation is legitimate because the effective interactions
cannot change the free invariant mass of interacting
particles by much more than the inverse of their size,
and the ignored sectors do not contribute to the leading
Coulomb potential in the lepton-proton sector. Reduction
of the limited eigenvalue problem to the lepton-proton
sector is carried out using a formal expansion in α and
keeping only terms of order 1 and α. The resulting FF
Schrödinger equation for two effective particles is obtained
in the form suitable for consideration of the proton-radius
puzzle. The entire calculation resembles the RGPEP
approach to physics of heavy quarkonia except that the
handling of photons is much simpler than in the case of
gluons [22] because the effective photons are treated as
massless. The description that follows is limited to key
points.
The size of effective particles, s, is introduced in the

RGPEP by defining the effective quantum fields,

ψ s ¼ Usψ0U
†
s ; ð13Þ

where the transformation Us acts on the field ψ0 which is
the quantum field operator built from creation and anni-
hilation operators for bare quanta of a local QFT. The
canonical Hamiltonian density in Appendix A is written
using fields ψ0. All bare creation and annihilation operators
are commonly denoted by q0. All creation and annihilation
operators for effective particles of size s are commonly
denoted by qs. The field operators ψ s are built from
operators denoted by qs.
The RGPEP starts with the equality

HsðqsÞ ¼ H0ðq0Þ; ð14Þ

which says that the same dynamics is expressed in terms
of different operators for different values of s. The
Hamiltonian is assumed to be a polynomial in qs with
coefficients cs. For example, the canonical Hamiltonian in
Appendix A only contains terms bilinear, trilinear and
quadrilinear in q0. For dimensional reasons, it is convenient
to use the parameter t ¼ s4 instead of s. With the initial
condition set at t ¼ 0, variation of the coefficients ct with t
is described by the RGPEP operator equation. Derivation of
the FF Schrödinger equation requires solutions to the
RGPEP equation for the operators of order 1, e, and e2,
where e denotes electric charges of fermions.
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A. Initial condition

To write down the required RGPEP solutions for Ht, we
denote the initial condition at t ¼ 0 by H0 ¼ H0ðq0Þ ¼
P̂− þ CT, where P̂− is the operator that is obtained from
the canonical Hamiltonian in the form of Eq. (A19) in
Appendix A by replacing the fields ψnþ and A⊥ in Eq. (A7)
by the operators defined in Eqs. (A13) and (A14) and
performing normal ordering. The initial condition includes
the counterterms CT that are found using single fermion
eigenvalue equations (see below).
To order e2, which is required for derivation of the FF

Schrödinger equation, we need only consider

H0 ¼ Hfγ þ
X3
n¼1

Hn0; ð15Þ

where

Hn0 ¼ Hfn þ enYn0 þ e2Σn0 þ
X3
l¼1

enelXnl0: ð16Þ

The subscript γ corresponds to photons, and n; l ¼ 1; 2; 3
correspond to electrons, muons, and protons, respectively.
The terms Hf denote the free bilinear terms, Σs stand
for fermion mass counterterms (there is no need here to
consider the photon mass-squared counterterm), Ys stand
for trilinear terms (there is no need for the counterterm of
type Y for the terms of lower order than e3), and Xs stand
for quadrilinear terms in fields in Eq. (A7) in Appendix A.
The counterterms will be established below using the
effective eigenvalue equations for single fermions.

B. Solution for effective Hamiltonians

The solutions obtained in Eqs. (B11), (B12) and (B13)
up to second order in a power series in e for the terms in
Ht that are relevant to the FF Schrödinger lepton-proton
bound-state eigenvalue problem take the form

Ht ¼ HtðqtÞ ¼ Hft þHIt; ð17Þ

where

Hft ¼ Hfγ þ
X3
n¼1

Hfn; ð18Þ

HIt ¼ f
X3
n¼1

enYn0 þ e2
X3
n¼1

½Σn0 þ ðFYn0Yn0ÞΣ�

þ f
X3
n;l¼1

enel½Xnl0 þ ðFYn0Yl0ÞX�: ð19Þ

All the terms in Ht are polynomial functions of qt. The
free parts, i.e., all terms in Hf, differ from Hf only by

replacement of the bare creation and annihilation operators,
q0, by the effective ones, qt. The subscripts Σ and X
indicate extracting from the product of Ys the operator of
type Σ or X, respectively. The form factors f and F are
given in Eqs. (B8), (B14) and (B15).

C. Physical fermion states and mass counterterms

The eigenvalue equation for a fermion involves a priori
infinitely many sectors no matter what value of t one uses.
Although the smallest-mass eigenstate with quantum num-
bers of a fermion n is meant to represent a free physical
particle in empty space-time, the eigenstate is a combina-
tion of components with a virtual effective fermion, a
virtual effective fermion and a photon, and a virtual
effective fermion with more photons than one and/or
additional fermion-antifermion pairs. However, the larger
the size s of the effective particles, i.e., the larger t ¼ s4, the
more restrictive the form factor f in Eq. (19) for the
effective interaction HIt. This means that the coupling of
the virtual effective fermion to other sectors off shell
decreases when t increases. Therefore, the spread of
physical fermion states into the virtual Fock components
decreases with an increase of t, and one can limit the
physical-fermion eigenvalue problem to a few components
when t is sufficiently large. The value of t required for
obtaining a universal Schrödinger picture for lepton-proton
bound states will be estimated later.
Since the electromagnetic coupling constant α ¼

e2=ð4πϵ0ℏcÞ ∼ 1=137 is small, to fix the counterterm
Σn0 it is sufficient to solve the eigenvalue equation for a
physical fermion of type n with an accuracy to the terms of
order α in the formal expansion in powers of e. Thus, the
physical-fermion state of momentum p and spin s can be
approximately represented in terms of effective particles of
size s by writing

jni ¼ j1i þ j2i; ð20Þ

where 1 refers to one effective fermion and 2 to the
fermion-photon component at scale t.
The two-particle component can be eliminated from the

eigenvalue equation using perturbation theory [24,25]. The
reason for this is that the component j2i is generated from
component j1i with factor enY, which is formally of orderffiffiffi
α

p
, and the probability of two effective constituents is of

formal order α. So, the eigenvalue problem

Htjni ¼ p−jni ð21Þ

in the approximation to just two sectors is a pair of coupled
equations (we drop t)

Hfj2i þ fenYn0j1i ¼ p−j2i; ð22Þ

fenYn0j2i þ ðHf þ e2Σn0Þj1i ¼ p−j1i; ð23Þ
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and the effective Hamiltonian in sector j1i has the form

H1 ¼ Hf þ e2Σn0 þ e2ðFYn0Yn0ÞΣ
þ e2

�
fYn0

1

p−
1 − p−

2

fYn0

�
Σ
: ð24Þ

The fermion eigenvalue has the form p− ¼ ðp⊥ 2þ
m2

n physÞ=pþ.
According to Appendix B and using the notation adopted

in Eqs. (B14) and (B15), the eigenvalue condition takes the
form (we drop n)

p−
1 þ e2Σ0þ e2

X
2

p1212þp1212

122þ212
½1−e−tð122þ212Þ�Y012Y021

þ e2
X
2

fY012

1

p−
1 −p−

2

fY021 ¼p−: ð25Þ

This formula is written in detail to illustrate how the
RGPEP calculation of a counterterm is carried out. The
formula can be considerably simplified by multiplication
by pþ, canceling p⊥ on both sides, expressing Σ in terms of
the mass-squared counterterm added to m2

n, denoted by
e2δm2

n (remembering that we drop n), observing that

p−
1 − p−

2 ¼ ðm2 −M2
2Þ=pþ ð26Þ

and 12 ¼ −21 ¼ m2 −M2
2, and using f ¼ expð−t122Þ.

Namely, we have

m2 þ e2δm2 þ e2pþX
2

1 − f2

p−
1 − p−

2

Y012Y021

þ e2pþX
2

Y012

f2

p−
1 − p−

2

Y021 ¼ m2
phys; ð27Þ

which results in the expression for the mass-squared
counterterm,

e2δm2 ¼ m2
phys −m2 − e2pþX

2

jY012j2
p−
1 − p−

2

; ð28Þ

as expected in second-order perturbation theory. The same
result is obtained for both of the RGPEP generators in
Eqs. (B4) and (B5) because ab ¼ 0 in Eq. (B15). This
result is obtained in the no-cutoff limit on single fermion
momenta pþ and p⊥ in quantum fields. An alternative way
that leads to the same result is to use cutoffs on the relative
⊥ momenta and fractions of þ momenta for quanta in the
interaction vertices.
Thus, the fermion mass-squared counterterm Σn0 results

in a rule: substitute m2
n → m2

n phys in Hfn and ignore self-
interactions. This rule works in the lepton-proton bound
state equations discussed in the next section. Therefore, one
can assume that the free Hamiltonian Hf contains physical

masses m2
n phys instead of arbitrary m

2
n. This implies that the

fermion physical masses also appear in the RGPEP form
factors f and F , cf. Eqs. (B8), (B14) and (B15).

D. Lepton-proton bound-state equations

In the discussion that follows we omit the subscript t,
keeping in mind that the effective eigenvalue problem
determines the bound-state wave functions for effective
constituents of the RGPEP size s ¼ t1=4. We also omit the
subscript n for leptons, since one can focus on the electron-
proton bound state knowing that the muon-proton bound
state is described in a precisely analogous way by changing
the electron mass to the muon mass.
The full-Fock-space bound-state eigenvalue problem,

HjBi ¼ E−jBi; ð29Þ

determines the eigenvalue

E− ¼ ðP⊥2 þM2
BÞ=Pþ; ð30Þ

where ðPþ; P⊥Þ denote kinematical components of the
arbitrary total momentum and MB denotes the bound-state
mass. In fact, Pþ and P⊥ can be eliminated, and the
resulting boost-invariant eigenvalue equation determines
the mass MB, instead of the energy that depends on the
bound-state motion (see below). This boost-invariant
eigenvalue equation will be shown below to reduce to
the well-known two-body Schrödinger equation in the
bound-state rest frame, with a tiny correction to the
Coulomb potential that is related to the proton-radius
puzzle.
Our reasoning is analogous to the one in Ref. [22] for

heavy quarkonia, but we take advantage of the simplifica-
tions that occur thanks to the smallness of α and absence of
confinement in the lepton-proton systems. For the RGPEP
parameter s much greater than the proton size, one can
initially treat the proton as pointlike and subsequently
account for its size by adding the required corrections.
The RGPEP vertex form factors in the effective

Hamiltonian prevent effective particles from direct cou-
pling to states with large virtuality and, since the coupling
constant is small, the full eigenstate can be approximated
by a superposition of just two sectors,

jBi ¼ j2i þ j3i; ð31Þ

where 2 refers to the effective lepton-proton and 3 refers to
the effective lepton-proton-photon states. This approxima-
tion is sufficient for calculating the Coulomb potential in
the effective electron-proton sector and observing the new
feature of an effective theory that is relevant to the proton-
radius puzzle.
Using Eqs. (17), (18), (19) and (31), one can write the

eigenvalue Eq. (29) in the form
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ðHf þHIÞðj2i þ j3iÞ ¼ E−ðj2i þ j3iÞ: ð32Þ

Since we work now in the subspace spanned by only two
sectors made of effective particles, the eigenvalue problem
is replaced by two coupled equations,�

Hf þ e2
X2
n¼1

½Σn0 þ ðFYn0Yn0ÞΣ�

− fe2½X0 þ ðFYl0Yp0 þ FYp0Yl0ÞX�
�
j2i

þ feðYl0 − Yp0Þj3i ¼ E−j2i; ð33Þ
feðYl0 − Yp0Þj2i þHfj3iÞ ¼ E−j3i: ð34Þ

Following Refs. [24,25] and Eqs. (56)–(58) in Ref. [22], we
obtain the reduced Hamiltonian in the electron-proton
sector in the form

H2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R†R
p ð1þ R†ÞHð1þ RÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R†R
p ; ð35Þ

where the operator R expresses the three-body component
in terms of the two-body component and, to the first order
in e, satisfies the equation

½R;Hf� ¼ feY0: ð36Þ

The effective particle three-body component contributes to
the two-body component eigenvalue equation through the
operator Hγ whose matrix elements between the effective
two-body basis states jii and jji are

hijHγjji ¼
1

2

X
3

hijfeðYl0 − Yp0Þ
�

1

p−
i − p−

3

þ 1

p−
j − p−

3

�

× feðYl0 − Yp0Þjji: ð37Þ

The denominators never cross zero because the invariant
mass of a lepton-proton-photon state is never smaller than
the invariant mass of the lepton-proton state in which the
photon is created or which emerges as a result of annihi-
lation of the photon in the three-body sector. The denom-
inators approach zero only when the photon momentum
approaches zero, but such long-wavelength photons decou-
ple from neutral lepton-proton bound states.
To order α, the effective two-body Hamiltonian matrix

elements, including Hγij ¼ hijHγjji, are

H2ij ¼ Hfij þ e2
X2
n¼1

½Σn0 þ ðFYn0Yn0ÞΣ�ij − fe2½X0 þ ðFYl0Yp0 þ FYp0Yl0ÞX�ij

þ 1

2

X
3

feðYl0 − Yp0Þi3
�

1

p−
i − p−

3

þ 1

p−
j − p−

3

�
feðYl0 − Yp0Þ3j: ð38Þ

This Hamiltonian matrix is used to identify the concept of
size for a proton in the Schrödinger equation.
In terms of the matrix H2ij, the lepton-proton bound-

state eigenvalue problem reads

X
j

H2ijψ j ¼ E−ψ i; ð39Þ

where ψ i denotes the lepton-proton wave function in the
component j2i. Since the component j2i is made of two
fermions, the wave function ψ i for a lepton-proton bound
state of total momentum P and spin S is denoted by
ψPS
slspðpl; ppÞ, where the subscript l refers to the lepton and

p to the proton. Thus, the sum over i in Eq. (39) means
summing over the constituents’ spins and momenta. Using
conventions introduced in Appendix A,

j2i ¼
X
slsp

Z
plpp

ψPS
slspðpl; ppÞb†ltplsl

b†ptppsp j0i; ð40Þ

where b†lt and b
†
pt denote the creation operators for effective

fermions corresponding to the RGPEP scale parameter

t ¼ s4 [see Eq. (13) and Sec. IV B]. Normalization of the
state j2i differs by a small amount from the normalization
of the bound state jBi due to the presence of component j3i
in Eq. (31). In the leading approximation to be discussed
below, the norm correction can be ignored, but it has to be
accounted for in a precise calculation.

1. Self-interaction terms

The counterterm found in Eq. (28) and the terms coming
from the emission and absorption of effective photons in
Eq. (38) combine in the diagonal part of the effective two-
body Hamiltonian,

Hiδij ¼ Hfij þ e2
X2
n¼1

½Σn0 þ ðFYn0Yn0ÞΣ�ij

þ e2

2

X
3

ðjfYl0i3j2 þ jfYp0i3j2Þ
2δij

p−
i − p−

3

; ð41Þ

where

Hi ¼
X
n¼l;p

Hn ð42Þ
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is a sum of terms for the lepton and proton. In the same
fashion as in Eq. (25), but for two and three effective
particle states instead of for one and two, we have

Hn ¼ p−
n þ e2Σn0 þ e2

X
2

1 − f2

p−
n − p−

2=3

jY012j2

þ e2
X
3

jfY023j2
p−
2 − p−

3

: ð43Þ

The spectator fermion energy cancels in the denominator
in the last term. Therefore, the denominator is the same as
the denominator in the third term, where p2=3 denotes the
momentum of the two interacting particles, out of the three,
including a spectator. These terms combine to get

Hn ¼ p−
n þ e2Σn0 þ e2

X
2

jY012j2
p−
n − p−

2

: ð44Þ

Using Eq. (28) withm2 ¼ m2
n phys, one obtains the net result

that the fermion counterterm cancels self-interactions: in
order α, the fermion masses in the bound-state eigenvalue
equation are equal to their physical values, m2

n phys, as
dictated by the spectrum of free physical particles described
by the same theory. Identification of effects such as the
Lamb shift requires a calculation of the finite binding
effects due to lepton-proton interaction in specified eigen-
states, rather than in the QFT effective Hamiltonian itself.

2. Lepton-proton interaction

With counterterms chosen above, the effective lepton-
proton Hamiltonian matrix elements are

H2ij ¼ Hfij − fe2½X0 þ ðFYl0Yp0 þ FYp0Yl0ÞX�ij
−
e2

2

X
3

ðfYl0i3fYp03j þ fYp0i3fYl03jÞ

×

�
1

p−
i − p−

3

þ 1

p−
j − p−

3

�
; ð45Þ

where the RGPEP factors f and F are given in Eqs. (B8),
and (B14) or (B15). The sum over the three-body compo-
nent in the effective photon-exchange term amounts
to the contraction of the effective photon annihilation
and creation operators and the sum over photon polar-
izations. Therefore, using notation introduced in Eqs. (B8)–
(B15) and explained below the latter, one can write the
Hamiltonian matrix as

H2ij ¼ Hfij − e2Wij; ð46Þ

where the interaction term is

Wij ¼ fX0ij þ fF ðYl0i3Yp03j þ Yp0i3Yl03jÞ

þ ff
2
ðYl0i3Yp03j þ Yp0i3Yl03jÞ

�
pi3

i3
þ p3j

j3

�
: ð47Þ

The notation employed here can be understood using Fig. 2
in Appendix B. A symbol such as i3 denotes a difference of
squares of two invariant masses, i3 ¼ M2

i3 −M2
3i, which

implies its antisymmetry, i3 ¼ −3i. Hence, for example,
i32 ¼ ðM2

i3 −M2
3iÞ2, etc. The invariant mass Mi3 is the

mass of particles in the state labeled by i that are influenced
by the interaction leading to the state labeled by 3, while the
invariant mass M3i is the mass of particles in the state
labeled by 3 that are influenced by the interaction leading to
the state labeled by i. The same rules hold for the symbol
3j. The symbols pi3 and p3j denote the þ momentum of
the interacting particles in the states labeled by i and j,
respectively. These notational rules are explained in detail
below Eq. (B15) in Appendix B.
Using the explicit formula for F ,

F i3j ¼
pi3i3þ pj3j3

i32 þ 3j2 − cij2
½1 − e−tði32þ3j2−cij2Þ�; ð48Þ

with the coefficient c equal to 0 in the case of Eq. (B14) and
1 in the case of Eq. (B15), one arrives at

Wij ¼ fijX0ij þ F ijðYl0i3Yp03j þ Yp0i3Yl03jÞ; ð49Þ

where the complete RGPEP factor for the photon exchange
interaction is

F ij ¼
pi3i3þ pj3j3

i32 þ 3j2 − cij2
½fij − fi3f3jfijf−1cij�

þ fi3f3j
2

�
pi3

i3
þ p3j

j3

�
: ð50Þ

The form factors f are supplied here with subscripts to
indicate the states which are used in evaluating their
arguments. The factor F ij can be rewritten as

F ij ¼ fijF ij int þ F ij cor; ð51Þ

where

F ij int ¼
pi3i3þ pj3j3

i32 þ 3j2 − cij2
½1 − fi3f3jf−1cij�

þ fi3f3j
2

�
pi3

i3
þ p3j

j3

�
; ð52Þ

F ij cor ¼ ð1 − fijÞ
fi3f3j
2

�
pi3

i3
þ p3j

j3

�
: ð53Þ

The labels “int” and “cor” correspond to the dominant
interaction and a correction, respectively.
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The correction part F ij cor is small in the FF Schrödinger
equation for lepton-proton bound states because fij differs
from 1 by terms on the order of relative lepton-proton
momentum to the fourth power, which is order α4, and the
form factors fi3 and f3j are small for the corresponding
photon momentum. In brief, Eq. (B8) shows that the fourth
power comes from the square of a difference between the
kinetic energies of leptons in relative motion with respect to
the proton before and after exchange of a virtual photon,
while the factor fi3f3j secures exponentially fast falloff
with the fourth power of the momentum transfer and the
coefficient in the exponent is large [see Appendix C 3,
Eqs. (C37) and (C38)]. Thus, one can neglect the second
term in Eq. (51) while making the crude estimates in this
article. Precise calculations must include the second term.
With the dominant factor F ij int in Eq. (51), the lepton-

proton Hamiltonian matrix in Eq. (46) has the form

H2ij ¼ Hfij − e2fijVij; ð54Þ
where

Vij ¼ X0ij þ F ij intðYl0i3Yp03j þ Yp0i3Yl03jÞ: ð55Þ
Details of evaluation of Vij are summarized in Appendix C.
Using the notation of Eqs. (C7)–(C11), illustrated in Fig. 2
in Appendix B, and applying Eqs. (C26), (C29) and (C35),
one obtains

Vij ¼ ~δijδsisjδrirj
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞyð1 − yÞp ðml þmpÞ2

ðk⊥ − l⊥Þ2 þ ðml þmpÞ2z2
: ð56Þ

3. The FF Schrödinger equation

Generally, the wave function ψPS
slspðpl; ppÞ in Eq. (40)

can be written in the form

ψPS
slspðpl; ppÞ ¼ NPþ ~δ ψ slspðx; k⊥Þ; ð57Þ

where N is the normalization factor, ~δ secures conservation
of the total kinematical momentum of the bound state, and
ψ slspðx; k⊥Þ is a function of the FF boost-invariant relative
momentum variables

x ¼ pþ
l =P

þ; ð58Þ

k⊥ ¼ ð1 − xÞp⊥
l − xp⊥

p : ð59Þ
The bound-state eigenvalue has the form

E− ¼ P⊥2 þM2
B

Pþ : ð60Þ

Since the interaction in Eq. (56) does not change spins, all
four spin configurations of a lepton-proton system are
described in the leading approximation by one and the
same wave function,

ψ slspðx; k⊥Þ ¼ ψðx; k⊥Þ: ð61Þ

In a precise calculation, spin splittings can be treated
in similar ways as in quarkonia. Projection of the FF
Schrödinger equation (39) with the Hamiltonian of
Eqs. (54) and (55) on the lepton-proton basis states

jii ¼ b†ltlisib
†
ptpiri j0i ð62Þ

yields, in the notation of Eqs. (C7)–(C11) and Fig. 2 in
Appendix B, the eigenvalue equation

M2ðx; k⊥Þ~δ ψðx; k⊥Þ − e2
Z
ljpj

~δijf ~Vðx; k⊥; y; l⊥Þ~δ ψðy; l⊥Þ

¼ M2
B
~δ ψðx; k⊥Þ; ð63Þ

where

M2ðx; k⊥Þ ¼ k⊥2 þm2
1

x
þ k⊥2 þm2

p

1 − x
; ð64Þ

f ¼ e−t½M2ðx;k⊥Þ−M2ðy;l⊥Þ�2 ; ð65Þ

~Vðx; k⊥; y; l⊥Þ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞyð1 − yÞp ðml þmpÞ2

ðk⊥ − l⊥Þ2 þ ðml þmpÞ2z2
: ð66Þ

Integration over lj and pj allows one to factor out of the
equation the momentum conservation δ-function ~δ, and one
obtains the bound-state mass-eigenvalue problem in the
form

M2ðx; k⊥Þψðx; k⊥Þ − e2
Z
yl⊥

f ~Vðx; k⊥; y; l⊥Þψðy; l⊥Þ

¼ M2
Bψðx; k⊥Þ; ð67Þ

where

Z
yl⊥

¼
Z

dyd2l⊥
2yð1 − yÞð2πÞ3 : ð68Þ

Both sides of the eigenvalue equation can be divided by
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

to yield

M2ðx;k⊥Þϕðx;k⊥Þ−2e2
Z

dyd2l⊥
ð2πÞ3 fVðx;k⊥;y;l⊥Þϕðy;l⊥Þ

¼M2
Bϕðx;k⊥Þ; ð69Þ

where

Vðx; k⊥; y; l⊥Þ ¼ ðml þmpÞ2
ðk⊥ − l⊥Þ2 þ ðml þmpÞ2z2

ð70Þ

and
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ϕðx; k⊥Þ ¼ ψðx; k⊥Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp : ð71Þ

This is the raw form of the effective FF Schrödinger
equation for lepton-proton bound states that one can derive
from QFT using the RGPEP. The new element in this
equation that we focus on is the RGPEP form factor f.

4. The RGPEP form factor

The form factor f of Eq. (65) appears in Eq. (69) as the
sole indicator of the effective nature of the FF Schrödinger
equation. All other elements in the eigenvalue problem can
be derived in the canonical theory assuming that one can
reduce the bound-state eigenvalue problem to the Fock
sector of a bare proton and a bare lepton, instead of the
effective particles at the appropriate RGPEP scale. One can
even arrive at the lepton and proton mass terms equal to
their individually measurable values in the bound-state
eigenvalue equation if one uses the approximation that
a physical fermion is equal to a superposition of a bare
fermion and a bare fermion-photon state, instead of a
superposition of the effective quanta.
For large values of the RGPEP parameter t ¼ s4 ¼ 1=λ4,

which means for a sufficiently small width parameter λ, the
form factor strongly limits the range of values that the
variable z ¼ x − y can take. This is because even a small
change of the lepton momentum fraction from y to x results
in a large value of the argument of the exponential function
in f. Namely, in the form factor

f ¼ e−tðΔM2Þ2 ; ð72Þ

where

ΔM2 ¼ M2ðx; k⊥Þ −M2ðy; l⊥Þ; ð73Þ

the argument of the exponential is −t times the square of

ΔM2 ¼ k⊥2 þm2
l

x
þ k⊥2 þm2

p

1 − x
−
l⊥2 þm2

l

y
−
l⊥2 þm2

p

1 − y
:

ð74Þ

When x differs from y, the mass-squared difference obtains
a contribution from the mass terms

ΔM2
mass ¼ ðx − yÞ

�
m2

p

ð1 − xÞð1 − yÞ −
m2

l

xy

�
: ð75Þ

This contribution is small if z is small and the quantity
in square brackets that z multiplies is not large. For the
bracketed terms to be small, x and y must be close to

β ¼ ml

mp þml
; ð76Þ

cf. Eq. (C32). Writing x ¼ β þ Δx and y ¼ β þ Δy, one
obtains

ΔM2
mass ∼

�ðml þmpÞΔxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð1 − βÞp �

2

−
�ðml þmpÞΔyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βð1 − βÞp �
2

: ð77Þ

This is the limit of small Δx and Δy in the exact formula

ΔM2
mass ¼

ðml þmpÞ2
βð1 − βÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð1 − βÞ
xð1 − xÞ

s
ðx − βÞ

�2

−
ðml þmpÞ2
βð1 − βÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð1 − βÞ
yð1 − yÞ

s
ðy − βÞ

�2
: ð78Þ

The latter form follows the definition of the effective
constituent relative momentum introduced in Ref. [26],
Eqs. (106) and (107). Namely,

k⊥cons ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð1 − βÞ
xð1 − xÞ

s
k⊥; ð79Þ

kzcons ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð1 − βÞ
xð1 − xÞ

s
ðml þmpÞðx − βÞ: ð80Þ

Using the three-dimensional variable ~kcons, one obtains the
free invariant mass of the lepton and proton system, with
both particles assigned their physical masses, in the form

M2ðx; k⊥Þ ¼ ðml þmpÞ2 þ
~k2cons

βð1 − βÞ ; ð81Þ

which implies

ΔM2 ¼
~k2cons − ~l2cons
βð1 − βÞ ð82Þ

in the RGPEP form factor f. The z-component part of this
result is the content of Eq. (78).
Note that the definition of k⊥cons differs only by the

constant factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð1 − βÞp

from the transverse momentum
variable conjugated to the transverse relative position
variable ζ⊥ in a quark-antiquark system in the light-front
holography approach to hadronic physics [27], the latter
being motivated by a correspondence between the light-
front wave-function description of hadrons and AdS/CFT
duality [28]. If QED is approached in a similar spirit, the
two-body lepton-proton Schrödinger equation [29] can be
looked at as corresponding to QFT, according to the
Ehrenfest correspondence principle [30].
It follows from Eqs. (65) and (82) for sizable values of

the RGPEP parameter t that the interaction term in Eq. (69)
vanishes exponentially fast as a function of the difference

between j~kconsj and j~lconsj. In addition, by writing j~kconsj2 −
j~lconsj2 ¼ ðj~kconsj þ j~lconsjÞðj~kconsj − j~lconsjÞ one can see that
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the form factor suppresses changes of the size of the relative
lepton-proton momentum exponentially stronger for large
momenta than it does for small ones. At the same time, the
interaction kernel V of Eq. (70) appears with a negative
sign in Eq. (69), and the smaller the difference

~q ¼ ~kcons − ~lcons ð83Þ

the stronger the interaction. Consequently, the interaction
draws the relative-motion wave function of the bound
lepton-proton system to configurations with momenta that
are small in comparison with the constituents’ masses (see
below). This happens because the photon is massless and
the denominator in V may vanish for small ~q.
In the absence of the RGPEP form factor f in Eq. (69),

approximations to QFT that are focused on the small values
of z and k⊥ − l⊥, or ~q, could not be easily justified.
A priori, the momenta could be very large because
the numerator momentum-dependent spin factors (see
Appendix C) could cause the region of large momenta
to count, producing contributions that could compete in
size with and even exceed the small-momentum contribu-
tions, especially when the momenta integrated over in the
eigenvalue problem are allowed to be arbitrarily large and
one uses the expansions in powers of momenta that are
valid only for small momenta. Such long-range correlations
in momentum space are eliminated by the RGPEP form
factor, which is a characteristic feature of this method for
deriving effective theories. It is precisely this feature of the
RGPEP that makes it suitable for reducing a complex QFT
dynamics to the effective-particle dynamics that is as
simple as a two-body Schrödinger equation.
How large the changes of invariant masses of effective

particles can actually be due to their interactions is
determined by the RGPEP scale λ ¼ 1=s. It should be
smaller than the proton mass to eliminate the interactions
that can produce virtual proton-antiproton pairs. Such pairs
could be created by photons in a local theory, but pairs of
composite baryons are not easily created by single photons.
On the other hand, the effects due to the physical size of

protons, being of order 1 fm, may only be visible in the
effective theory that includes contributions from momen-
tum changes that are not negligible in comparison with the
inverse fm, which means that λ cannot be negligible in
comparison with 200MeV. To allow for the photon vacuum
polarization caused by lepton-antilepton pairs, λ should not
be smaller than the lepton mass since the vacuum polari-
zation due to leptons is required in atomic physics; e.g.,
see [12].
For the first approximation to effective theory to match

major features of the available QED picture, one may
assume that λ in the lepton-proton bound states is some-
where between the lepton mass and the proton mass.
Using these general arguments, one could propose that
the average mass,

M ¼ ðml þmpÞ=2; ð84Þ

is a candidate for the RGPEP λ that is most useful for
discussing proton-size effects in atomlike systems in simple
terms. The choice of average mass also makes sense from
the point of view of the assumption that the two-body
forces in many-body systems do not significantly depend
on the number of bodies, as if indeed the average mass were
a suitable scale rather than a sum.
However, Eq. (82) for the argument of the RGPEP form

factor f includes the coefficient

1

βð1 − βÞ ¼ 2
M
μ
; ð85Þ

in front of the constituents’ relative momentum squared,
where μ is the reduced mass. This coefficient depends on
the constituents’ masses in a more complex way than
just through the average mass. At the same time, the
Schrödinger equation with electromagnetic interactions is
understood to be universally valid irrespective of the values
of reduced or average masses of the constituents.
The verified universality of the Schrödinger equation

with the Coulomb interaction would demand that for a
simple RGPEP derivation of the Schrödinger equation with
electromagnetic interactions, one uses λ of such a value that
the dependence of the form factor f on the constituent
masses drops out. The resulting mass-independent quantum
potential would match the Coulomb potential in the
classical limit.
A suitable choice for λ is found on the basis of a well-

known universal bound-state structure scaling with the
coupling constant α. The scaling is discussed below in
Sec. IV D 5 using a variational principle in the presence of
the RGPEP form factor f. The resulting effective potential
matches exactly the Coulomb potential on shell, which
guarantees that it has the right form in the classical limit.
The off-shell corrections one obtains to the Coulomb
potential due to the RGPEP form factor f are estimated
in Sec. V. They are important in the interpretation of
calculations that concern the effective proton radius.

5. Bound-state scaling with α

The free invariant mass squared of effective constituents
in Eq. (69) is shown in Eq. (81) to be quadratic in ~kcons. The
interaction term in Eq. (69) involves the integral over y or,
equivalently, lzcons ¼ zðml þmpÞ, which includes the mass
factor taken out of the kernel V. The dynamically deter-
mined scale p of momenta that characterize the ground-
state results from the minimum of the expectation value

EðpÞ ¼ p2

βð1 − βÞ − ~a2e2ðml þmpÞp; ð86Þ

where ~a is some dimensionless parameter (assuming
ℏ ¼ c ¼ 1). The above estimate for EðpÞ follows from
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the expectation value of a Hamiltonian (mass squared)
of Eq. (69) in a trial state characterized by the momentum
scale p without consideration of any details of the wave
function. Equating ∂E=∂p to zero yields the estimate

p ¼ ~ae2μ: ð87Þ

This estimate is valid in the relativistic effective theory that
includes the RGPEP form factor f. The relativistic effects
that might yield a different scaling result due to divergen-
ces, caused by spin factors for fermions and photons, are
exponentially suppressed by f.
Knowing that p is proportional to e2μ, or αμ, one can

consider the limit of infinitesimal α that facilitates the
analysis based on the nonrelativistic approximation. In this
limit, momenta ~kcons, ~lcons and ~q can be considered small in
comparison with the reduced and average masses of the
constituents, the former always being smaller than the
latter. The square roots in Eqs. (79) and (80) become 1, and
the integral over y changes to the integral over lzcons from
−∞ to þ∞. Once the wave function is written as

ϕðx; k⊥Þ ¼ ψð~kÞ; ð88Þ

~k≡ ~kcons; ð89Þ

etc., the effective FF lepton-proton bound-state eigenvalue
Eq. (69) takes the form

�
ðml þmpÞ2 þ

~k2

βð1 − βÞ
�
ψð~kÞ − 2αðml þmpÞ

×
Z

d3l
ð2πÞ3

f4π

ð~k − ~kÞ2
ψð~lÞ ¼ M2

Bψð~kÞ; ð90Þ

where

f ¼ exp−
� ~k2 − ~l2

βð1 − βÞλ2
�2
: ð91Þ

In distinction from the IF Schrödinger equation in non-
relativistic quantum mechanics, the eigenvalue that comes
out of the RGPEP effective Hamiltonian is the bound-state
mass squared, instead of its energy. The latter would
depend on the frame of reference. The RGPEP removes
this difficulty. The origin of this relativistic result lies in the
boost invariance of the FF of Hamiltonian dynamics.
Taking advantage of the change of variables

~k ¼ αμ~p; ð92Þ

~l ¼ αμ~p0; ð93Þ

to dimensionless variables ~p and ~p0 that are expected to be
of order 1 in the ground-state solution, one arrives at

ð4M2þ α22Mμ~p2Þψð~pÞ− 4α2μM
Z

d3p0

ð2πÞ3
f4π

ð~p− ~p0Þ2ψð~p
0Þ

¼M2
Bψð~pÞ; ð94Þ

where M ¼ ðml þmpÞ=2 and

f ¼ exp−
�
α2

2μM
λ2

ðj~pj2 − j~p0j2Þ
�
2

: ð95Þ

This relativistic FF effective lepton-proton bound-state
equation can be reduced to its nonrelativistic approximation
using the smallness of α. The reduction is required for
comparison with the IF Schrödinger equation for the same
system.

6. Nonrelativistic limit of the FF Schrödinger equation

The nonrelativistic approximation to Eq. (94) is obtained
by writing, cf. Eqs. (4) and (84),

MB ¼ 2M − EB; ð96Þ
and neglecting terms of order E2

B, which is equivalent to
evaluating an approximate square root of Eq. (94). The
dominant terms of order M2 cancel out, and the result is

α22Mμ~p2ψð~pÞ − 4α2μM
Z

d3p0

ð2πÞ3
f4π

ð~p − ~p0Þ2 ψð~p
0Þ

¼ −4MEBψð~pÞ; ð97Þ

which confirms that EB must tend to zero as α2 when α
tends to zero. Division of both sides by 4α2μ2M yields

~p2

2
ψð~pÞ −

Z
d3p0

ð2πÞ3
f4π

ð~p − ~p0Þ2 ψð~p
0Þ ¼ −

EB

α2μ
ψð~pÞ: ð98Þ

If the RGPEP form factor f were set to 1 in this equation,
the eigenvalues on its right-hand side would be −1=ð2n2Þ
with natural n. The ground-state wave function would fall
off as j~pj−4 for j~pj much larger than 1.
These results merely indicate that the equation with f ¼ 1

would match exactly the momentum-space version of the
original Schrödinger equation [29] for an electron-proton
bound state, written in terms of the dimensionless variable
~p that describes the relative momentum of the lepton with
respect to the proton in units of αμ. In fact, QEDwas built on
the basis of the Schrödinger equation maintaining its validity,
and it should not be surprising that the RGPEP reproduces
the Schrödinger equation in QFT in Appendix A.
It is clear from Eq. (95) that setting f to 1 is justified if

the RGPEP parameter λ is sufficiently large. Namely, for

λ2 ≳ μM; ð99Þ
the form factor f does not differ from 1 over some
considerable range of j~pj below α−1. Since the wave
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functions for f ¼ 1 fall off as j~pj−4 for j~pj ≫ 1, the form
factor limitations on j~pj are not important numerically in
rough estimates. However, this is important in seeking high
precision. Namely, by naive expansion of f in powers of α,
one might expect a negative correction to Rydberg on the
order of α4 ∼ 3 × 10−9.
On the other hand, λ cannot be made too large, as

discussed in Sec. IV D 4. The discussion suggests that the
average mass of constituents, M, provides a reasonable
estimate of the upper bound.
There must exist an optimal value of λ for the unquestion-

able physical accuracy of the Schrödinger equation in atomic
physics to result from QFT already in the lowest-order
RGPEP derivation described here. Such a value of λ must
have the property that the corresponding Schrödinger equa-
tion follows from the RGPEP irrespective of the masses of
constituents, which is exemplified by the success of quantum
mechanics in describing two-body systems greatly differing
inmasses of their constituents, such as positronium,muonium
and the hydrogen atom. This universality is also the basis of
trust in the Schrödinger equation in the description of systems
such as deuteron and various quarkonia, despite the fact
that the underlying dynamics is quite different than in the
electromagnetic case. In those cases, the RGPEP indicates
that the extended validity of the Schrödinger equation may
still be based on the proper choice of effective constituents.
In the case of binding through the Coulomb potential,

one can see in Eq. (95) that the form factor f will take a
universal shape irrespective of the constituents’masses if λ2

is proportional to the product of the reduced mass μ and the
averaged mass M,

λ2 ¼ a2μM: ð100Þ
The constant a is not determined. There is no distinct
reason known to the author for choosing an a that
considerably differs from 1.
Varying the constant a means varying the RGPEP

parameter λ. In exact RGPEP calculations, all observables,
including the bound-state mass eigenvalues, are by con-
struction entirely independent of λ. In contrast, changing
the constant a in f in the approximate Eq. (98) does lead to
minuscule changes in the interaction and hence also in
the eigenvalues. To avoid changes in the eigenvalues, the
coupling constant needs to vary with a, which is explained in
Ref. [31] in numerical detail using an exact RGPEP solution
in a model. However, to correct for the effect of the fourth
power of α ∼ 1=137 in the exponential in f, the required
changes of α are very small (see next section) and can be
ignored in the first approximation, while a phenomenologi-
cally correct value of a is expected to be on the order of 1.

V. EFFECTIVE SIZE OF THE PROTON

Reinstating the Bohr momentum unit αμ in Eq. (98) for
comparison with Eq. (3), one obtains

~p2

2μ
ψð~pÞ þ

Z
d3k
ð2πÞ3 Vað~p; ~kÞψð~kÞ ¼ −EBψð~pÞ; ð101Þ

where for the pointlike proton the interaction Vað~p; ~kÞ has
the form

Vpt
a ð~p; ~kÞ ¼ faðp; kÞVpt

Cð~qÞ ð102Þ

and

faðp; kÞ ¼ e−4ðp2−k2Þ2=ðaμÞ4 ; ð103Þ
with the RGPEP parameter a ∼ 1. According to Eq. (7), the
finite proton size can be included in the theory by
multiplying the Coulomb potential for the pointlike proton,
Vpt
Cð~qÞ, by the proton electric charge form factor GEð~q2Þ. In

fact, the entire RGPEP calculation described here can
be carried out with the proton form factors inserted into
the Hamiltonian of QFT in Appendix A. As a result, the
potential Vað~p; ~kÞ obtains the form

Vað~p; ~kÞ ¼ faðp; kÞVpt
Cð~qÞGEð~q2Þ ð104Þ

and can be approximated by

Vað~p; ~kÞ ¼ faðp; kÞ
�
Vpt
Cð~qÞ þ

2πα

3
r2p

�
: ð105Þ

The RGPEP form factor f appears in the role of a regulator
of the δ-function potential in Eq. (12). The procedure thus
removes an illusion that the nonrelativistic Schrödinger
equation describes the dynamics of pointlike charges.
Instead, the equation applies to effective degrees of free-
dom whose RGPEP size scale corresponds to the inverse of
the root of the product of their reduced and average masses.
In summary, the effective lepton and effective proton

form a bound state due to the interaction

Vað~p; ~kÞ ¼ Vpt
Cð~qÞ þ δVf þ δVrp; ð106Þ

where

δVf ¼ ½faðp; kÞ − 1�Vpt
Cð~qÞ ð107Þ

and

δVrp ¼ faðp; kÞ
2πα

3
r2p: ð108Þ

These corrections are discussed below separately, one after
another, focusing on estimates of the proton radius.

A. Correction due to δVf

The correction to the binding energy, EB, due to δVf in
the theory that takes the proton size into account, is the
same as in the theory with a pointlike proton. One may
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think that this correction can be estimated in perturbation
theory by expanding the RGPEP form factor,

faðp; kÞ ¼ e−4ðp2−k2Þ2=ðaμÞ4 ð109Þ

∼ 1 − 4ðp2 − k2Þ2=ðaμÞ4 þOðα8Þ; ð110Þ

since momenta in the Schrödinger bound-state theory are
on the order of αμ. The ground-state expectation value of
the lowest-order correction to 1 thus appears to be

ΔEf ¼ −
Z

d3p
ð2πÞ3

Z
d3k
ð2πÞ3 ψðpÞ

4ðp2 − k2Þ24πα
q2ðaμÞ4 ψðkÞ:

ð111Þ

However, the Schrödinger ground-state wave function ψ
falls off as the fourth power of its argument. Therefore,
the integral diverges and requires extra care to identify the
role of ln α in the answer. Instead, one can evaluate the
correction numerically without expanding f,

ΔEf ¼
Z

d3p
ð2πÞ3

Z
d3k
ð2πÞ3 ψðpÞ½faðp; kÞ − 1� 4πα

q2
ψðkÞ:

ð112Þ

In terms of the dimensionless momentum variables in units
of αμ, the quantity to evaluate is

ΔEf ¼ df
μα2

2
; ð113Þ

where (see Appendix D)

df¼
2
R
d3p

R
d3p0 1

ð1þp2Þ2 ½e−4α
4ðp2−p02Þ2=a4 −1� 4π

ð~p−~p0Þ2
1

ð1þp02Þ2

ð2πÞ3R d3p 1
ð1þp2Þ4

:

ð114Þ

For physical values of the parameters and for a ¼ 1, one
obtains df ∼ 2.4 × 10−5. Increasing a to 2 yields a df nearly
an order of magnitude smaller, while reducing a to 1=2
produces a df nearly an order of magnitude larger. Change of
the ground-state wave function by the factor exp ½−4ðp=λÞ4�,
see Sec. V B for explanation of this change, reduces the
correction by about 1=3 for a ¼ 1=2 and a ¼ 1, and by
about a half for a ¼ 2. The corrections are thus on the order
of α3 to α2 and as such are comparable with other corrections
of similar order, such as spin effects or the Lamb shift. It is
clear that the effective particle picture cannot be fully
assessed without extensive calculations of a new type for
a whole set of corrections that are already known to be
important in other approaches.
One can compare the correction due to the RGPEP form

factor to the vacuum-polarization correction due to

electron-positron pairs in photon propagation in the elec-
tron-proton bound-state regime. The latter correction
changes the coupling constant αð0Þ by the factor

αðQ2Þ
αð0Þ ∼ 1þ αð0Þ

15π
Q2=m2

e þOðα2Þ: ð115Þ

The RGPEP form factor fa can be crudely estimated by

fa ¼ exp ½−4ðpþ kÞ2ðp − kÞ2=ðameÞ4� ð116Þ

∼ exp ½−ð2=aÞ4α2Q2=m2
e�; ð117Þ

which corresponds to λ ¼ a
ffiffiffiffiffiffiffi
μM

p
, and replacements of

pþ k by 2αme and p − k by Q. The vacuum polarization
introduces a positive effect of order

v ∼
α

15π
Q2=m2

e ð118Þ

and the RGPEP form factor a negative effect of order

r ∼ ð2=aÞ4α2Q2=m2
e: ð119Þ

These two effects tend to cancel each other. The ratio

r=v ¼ ð2=aÞ415πα ∼ 0.34ð2=aÞ4; ð120Þ

says that the RGPEP form factor causes off-shell correc-
tions to the Coulomb potential that are comparable with the
corrections due to the vacuum polarization for a ∼ 1.5.
However, the RGPEP form factor deviates from 1 only off
energy shell, while the vacuum polarization acts off and on
energy shell, which means that values of a closer to 1 than
1.5 are more likely.
The above estimates show that an unambiguous

determination of corrections due to the effective nature
of constituents in lepton-proton bound states requires a
RGPEP calculation carried out with an accuracy matching
the contemporary QED calculations [12]. Such a major
undertaking is far beyond the scope of this article. The only
statement one can make at this point is that exact calcu-
lations of binding energies must produce results that do not
depend on the RGPEP parameter a and only the individual
corrections that come from different terms can depend on a.
Irrespective of the difficulty of precise calculations, the

correction ΔEf does not incorporate effects due to the
proton size, which is tiny on the atomic scale. Interpretation
of energy splittings in terms of the proton radius depends
instead on the correction caused by δVrp.

B. Corrections due to δVrp

Comparison of Eqs. (11) and (108) shows that the
interpretation of observed energy splittings in terms of
the proton radius should take into account that the
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Schrödinger equation provides a valid approximation to
QFT if and only if one considers the constituents as
effective particles of appropriate size scale λ ¼ a

ffiffiffiffiffiffiffi
μM

p
.

Therefore, the corrections due to physical proton radius
should be interpreted using Eq. (108) rather than (11). The
results of the measurement of relevant bound-state energy
splittings should be compared with

ΔEr ¼ da
2πα

3
r2pjψ̂ð0Þj2 ð121Þ

where da is

da ¼
1

jψ̂ð0Þj2
Z

d3p
ð2πÞ3

Z
d3k
ð2πÞ3 ψðpÞfaðp; kÞψðkÞ; ð122Þ

assuming that the wave function is normalized to 1, in
which case

ψð~kÞ ¼ N
ðk2 þ α2μ2Þ2 ; ð123Þ

N ¼ 8
ffiffiffi
π

p ðαμÞ5=2; ð124Þ

jψ̂ð0Þj2 ¼ ðαμÞ3
π

: ð125Þ

Thus, the correction due to the proton radius is

ΔEr ¼ da
4

3
ðαμrpÞ2

μα2

2
: ð126Þ

Due to the ratio of the proton radius to the Bohr radius,
αmerp ∼ 10−5=2, this correction is of order 10−10=4 times
Rydberg in hydrogen atoms and about ðmμ=meÞ3 ∼ 2003 ¼
8 × 106 times larger in the muon-proton bound states.
Discussion of the size of da can be carried out using the

momentum variables in units of αμ. Since fa ≤ 1, the result
for da is smaller than 1. Since fa does not depend on the
angles, one is left with the ratio of two integrals,

da ¼
R∞
0 dp

R∞
0 dp0 p2

ð1þp2Þ2 e
−4α4ðp2−p0 2Þ2=a4 p0 2

ð1þp0 2Þ2R
∞
0 dp

R
∞
0 dp0 p2

ð1þp2Þ2
p0 2

ð1þp0 2Þ2
: ð127Þ

Since the exponential contains ðα=aÞ4, one might think that
da differs from 1 by terms order ðα=aÞ4 ∼ 3 × 10−9=a4.
However, this estimate is false because the coefficient

of ðα=aÞ4 is badly divergent. The dominant part of the
difference between da and 1 cannot be calculated by the
simplest expansion in powers of α. Instead, one has to
account for the limited range of the allowed invariant mass
changes in the theory of effective particles. The effective
particles interact in a way that differs from the interactions
of pointlike quanta in a nonperturbative way.

Figure 1 shows the plot of da as a function of the RGPEP
parameter a for α ¼ 1=137.035999. The lower curve results
from calculating da from Eq. (127). The upper curve is
obtained from a similar calculation in which only the
ground-state wave function ð1þ p2Þ−2 is changed to
ð1þ p2Þ−2 exp ½−4α4ðp=aÞ4�. This change is made to
mimic and thus estimate the effect on wave functions of
the presence of the RGPEP form factor in the effective
theory with λ given in Eq. (100). If the wave functions were
calculated in a precisely derived effective theory that
includes the RGPEP form factors, the wave functions
would not be the same as in the ideal Schrödinger equation,
Eq. (3), with a local Coulomb potential for pointlike
particles. Wave functions of eigenstates of a Hamiltonian
including the RGPEP form factor f fall off faster for large
momenta than the wave functions of eigenstates of a
Hamiltonian without f. This feature is modeled by the
introduction of the exponential factor in the wave function
only for orientation regarding the orders of magnitude. A
rigorous estimate would require a RGPEP calculation of the
effective Hamiltonian including all the terms in expansion
in powers of α that count in comparison of theory with
current data. As mentioned more than once before, such an
extensive research program is far beyond the scope of this
article, which merely indicates a need for carrying out such
a program.

C. Interpretation of da in terms
of a change in proton radius

The effective Schrödinger equation (101) for lepton-proton
bound states takes the universal scaling form of Eq. (98)
when the value of the RGPEP parameter λ is chosen differ-
ently for different leptons [see Eq. (100)]. This means that the
standard Schrödinger picture corresponds to choosing

λ ¼ a
ffiffiffiffiffiffiffi
μM

p
ð128Þ

or

λ ∼
ffiffiffi
μ

p
: ð129Þ

Since the electron and muon differ in masses by a factor of
about 200, the required choices of λ differ by a factor of the
order of 14.
The scaling picture of standard Schrödinger quantum

mechanics for different lepton-proton systems in one and
the same effective theory can be described using the param-
eter a, which changes by a factor of about 14 between
electron-proton and muon-proton bound states. Figure 1
shows that a change of suchmagnitude in a can be correlated
with a change in the coefficientda inEq. (121) on the order of
8%. Since the interpretation of the correction in terms of a
change in theprotonradius requires takingasquare rootofda,
the accompanied variation in the extracted proton radius can
beon theorder of 4%.Sinceda is smaller for a heavier lepton,
application of the standard Schrödinger equation to both

CALCULATION OF SIZE FOR BOUND-STATE CONSTITUENTS PHYSICAL REVIEW D 90, 045020 (2014)

045020-15



types of lepton-proton bound states will produce a smaller
proton radius for a heavier lepton.
In other words, if one uses the same effective theory for

muon-proton and electron-proton bound states, the form
factor f with one and the same value of λ will fall off as a
function of the relative muon-proton momentum in muonic
hydrogen at the rate about

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mμ=me

p
times slower than as a

function of the relative electron-proton momentum in hydro-
gen. But the relative momenta of effective constituents in the
muon-proton bound states are mμ=me times greater than in
the electron-proton bound states. The resulting reduction of
range of the off shellness in the muon-proton interaction is
relatively greater than in the electron-proton interaction and
this causes that the proton radius extracted using standard
Schrödinger equation from muonic hydrogen is smaller than
the one so extracted from electronic hydrogen, for fixed
values of the observed energy splittings.

VI. CONCLUSION

The RGPEP corrections in the Schrödinger equation
due to the effective nature of bound-state constituents are
discussed here in the leading approximation. The correc-
tions result solely from the form factors in the effective
interactions. The form factors depend on the RGPEP scale
parameter s ¼ 1=λ and make the Coulomb potential
slightly nonlocal at short distances. The nonlocality results
from the upper bound order λ on the changes of energy
(actually, invariant mass) that can be caused by the
Coulomb interaction in the dynamics of effective particles.
More precisely, the upper bound on momentum changes

in the RGPEP comes from an exponential function of the
fourth power of the ratio of momentum to the parameter
λ. Since λ needs to be on the order of masses for the
effective theory to match the universal Schrödinger

quantum mechanics with electromagnetic interactions, the
argument of the exponential function scales as α4, on top of
the Schrödinger bound-state picture which yields binding
energies that scale as α2. Despite the high power of α, the
RGPEP form factor can generate a noticeable correction in
the extracted proton radius because it affects the lepton-
proton relative-motion wave function at the origin.
The conceptual import of the RGPEP is that the bound-

state constituents in the nonrelativistic Schrödinger quan-
tum mechanics are not pointlike, and they interact at short
distances with a potential that slightly differs from the
Coulomb potential for pointlike charges. Effects of the type
computed here in the case of the proton radius are expected
to also impact other observables, and these could be used to
further test the RGPEP procedure. While it is clear that the
effective nature of constituents can be studied using the
RGPEP in QFT, quantitative verification of the approach
requires calculations of a new type for a whole set of correc-
tions that are known to be important in other approaches.
Although the reasoning offered in this article is focused

on a specific term in the lepton-proton bound-state dynam-
ics, the RGPEP used in this reasoning also offers access to
corrections due to the effective nature of particles in all
areas of physics where equations of the Schrödinger type
apply. This means that in all such cases one is obliged to
determine the scale of energy changes that an effective
interaction can cause, and the presence of such a scale must
be taken into account in the interpretation of precise
comparisons between theory and experiment.
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APPENDIX A: CANONICAL HAMILTONIAN

The local action to consider is

S ¼
Z

d4xL ¼ 1

2

Z
dxþdx−d2x⊥L; ðA1Þ

where

L ¼ −
1

4
FμνFμν þ

X3
n¼1

ψ̄nði∂ − enA −mnÞψ ; ðA2Þ

and subscripts n ¼ 1, 2, 3 refer to electrons, muons, and
protons, respectively. At this point, the proton is considered
pointlike, essentially with the same properties as leptons
except for opposite charge and different mass. The
corresponding canonical FF Hamiltonian in the gauge
Aþ ¼ 0 is [32]

P− ¼ 1

2

Z
dx−d2x⊥Tþ−: ðA3Þ

Weuse the same convention for components of all tensors as
in the caseofMinkowski’s space-timecoordinates, forwhich

FIG. 1 (color online). The lower curve shows the coefficient da
in Eq. (127) as a function of the RGPEP parameter a in the region
relevant to phenomenology. The upper curve differs from the
lower one by the rough estimate of theoretical errors that is
described in the text. The dots on the curves indicate the value
da ¼ 0.92 that might correspond to a 4% change in the proton
radius extracted from observed energy levels.
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x� ¼ x0 � x3; ðA4Þ
x⊥ ¼ ðx1; x2Þ: ðA5Þ

Thecoordinatexþ playstheroleof theevolutionparameter,or
FF“time,”andx⊥ andx− playtherolesofspacecoordinates in
the front hyperplane in space-time.
The energy-momentum tensor density component

Tþ− is

Tþ− ¼ A⊥ði∂⊥Þ2A⊥ þ
X3
n¼1

ψ†
nþ½ði∂⊥α⊥ þ βmnÞ − enA⊥α⊥�

×
2

i∂þ ½ði∂⊥α⊥ þ βmnÞ − enA⊥α⊥�ψnþ

þ
X3
n¼1

2enψ
†
nþψþn

2

i∂þ i∂⊥A⊥

þ
X3
n;l¼1

2enψ
†
nþψnþ

1

ði∂þÞ2 2elψ
†
lþψ lþ; ðA6Þ

and for all fermion fields equally, ψ� ¼ Λ�ψ and
Λ� ¼ γ0γþ=2. The Hamiltonian can be written as

P− ¼
Z

dx−d2x⊥
�
1

2
Aμ∂⊥2Aμ þ

X3
n¼1

�
ψ̄nγ

þ −∂⊥2 þm2
n

2i∂þ ψn

þ enψ̄nAψn þ e2nψ̄nA
γþ

2i∂þ Aψn

þ enψ̄nγ
þψn

1

2ði∂þÞ2
X3
k¼1

ekψ̄kγ
þψk

��
; ðA7Þ

where the dependent components of fields, A− and ψn−, are
solutions to the constraint equations with all the electric
charges en set to zero. It is clear that the Hamiltonian
density contains terms bilinear, trilinear and quadrilinear in
the fields. Namely,

P−
2 ¼

Z
dx−d2x⊥ 1

2
Aμ∂⊥2Aμ

þ
Z

dx−d2x⊥
X3
n¼1

ψ̄nγ
þ −∂⊥2 þm2

n

2i∂þ ψn; ðA8Þ

P−
3 ¼

Z
dx−d2x⊥

X3
n¼1

enψ̄nAψn; ðA9Þ

P−
4 ¼

Z
dx−d2x⊥

X3
n¼1

�
e2nψ̄nA

γþ

2i∂þ Aψn

þ enψ̄nγ
þψn

1

2ði∂þÞ2
X3
k¼1

ekψ̄kγ
þψk

�
: ðA10Þ

1. Quantization

The quantum Hamiltonian is obtained by replacing fields
A⊥ and ψnþ by field operators Â⊥ and ψ̂nþ, regulating the
inverse powers of i∂þ in the same way that the field
operators are regulated, and normal ordering. Using the
creation and annihilation operators that are assumed to
satisfy the commutation relations

fbnps; b†n0p0s0 g ¼ fdnps; d†n0p0s0 g
¼ 2pþð2πÞ3δ3ðp − p0Þδss0δnn0 ; ðA11Þ

½aps; a†p0s0 � ¼ 2pþð2πÞ3δ3ðp − p0Þδss0 ; ðA12Þ

with other relations being zero, respectively, the field
operators are written as (for our conventions concerning
notation for fermions, see [33])

ψ̂nþðxÞ ¼
X
s

Z
p
Δ1=2ðpÞ

ffiffiffiffiffiffi
pþp

½bnps − d†npsσ1�

×

�
χs

0

�
e−icppx−ϵjxj; ðA13Þ

Â⊥ðxÞ ¼
X
s

Z
p
Δ1=2ðpÞ½apsε⊥s þ a†psε⊥�

s �e−icppx−ϵjxj;

ðA14Þ
where

Z
p
¼

Z
dpþd2p⊥
2pþð2πÞ3 θðp

þÞ; ðA15Þ

and ΔðpÞ denotes the regularization function,

ΔðpÞ ¼ Δðjpþj; jp⊥jÞ: ðA16Þ

This function is required to tend to zero when momentum
jp⊥j tends to infinity or jpþj tends to zero, because
divergences occur due to large jp⊥j and small jpþj.
Hence, the regularization requires two parameters. For
example, if one used the regulator function of the form [19]

ΔðpÞ ¼ exp

�
−
jp⊥j2 þ δ2

jpþjΔ
�
; ðA17Þ

the parameter Δ would limit jp⊥j from above and δ2=Δ
would limit jpþj from below. In the no-cutoff limit, Δ tends
to infinity and δ tends to zero. Other functions ΔðpÞ can be
considered, especially those that factorize into the trans-
verse and longitudinal regulating functions. The same
function Δ is applied in the regularization of the constraint
equations. This regularization introduces factors ΔðpÞ in
quadrilinear terms with 1=pþ and 1=pþ2.
The smooth exponential damping factors e−ϵjxj are

introduced to eliminate boundary effects in a large quan-
tization box in “space” directions of x⊥ and x−. This means
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that one only focuses on the phenomena that fit well within
the box of size L ≫ ϵ−1. The principles of building the box
are the same as in the formal scattering theory [34].
Spinors χs stand for the standard Pauli two-component

spinors, and the photon polarization vectors are defined by
writing ε⊥s ¼ ð1; isÞ= ffiffiffi

2
p

with s ¼ �1 and the operators
corresponding to s ¼ þ1 (s ¼ −1) often labeled as 1(2)
or þð−Þ.
The coefficients cp in the Fourier-transform exponentials

are introduced for handling creation and annihilation
operators in a generic operator calculus. We define cp
by the rule that cp ¼ 1 in a formula containing an
annihilation operator with quantum numbers denoted by
p, and cp ¼ −1 in a formula containing a creation operator
with these quantum numbers. The generic factor of
momentum conservation in interaction terms is denoted by

~δ ¼ 2ð2πÞ3δ3
�X

l

cpl
pl

�
; ðA18Þ

where l runs from 1 to the number of fields in a term.
The quantum canonical Hamiltonian is a sum of terms

that are bilinear, trilinear and quadrilinear in creation and
annihilation operators. Namely,

P̂− ¼ P̂−
2 þ P̂−

3 þ P̂−
4 ; ðA19Þ

where each term corresponds to its classical counterpart in
Eqs. (A8)–(A10). Explicit expressions for all terms in P̂−

are listed below in separate subsections.

2. Bilinear terms

The bilinear terms are

P̂−
2 ¼

X
s

Z
p
ΔðpÞ

�
p⊥2

pþ a†psaps

þ
X3
n¼1

p⊥2 þm2
n

pþ ðb†psbps þ d†psdpsÞ
�
þ CA þ Cψ ;

ðA20Þ

where

CA ¼ 1

2

X
s

Z
p
ΔðpÞ2pþð2πÞ3δ3ð0Þp

⊥2

pþ ; ðA21Þ

Cψ ¼ −
X
s

Z
p
ΔðpÞ2pþð2πÞ3δ3ð0Þ

X3
n¼1

p⊥2 þm2
n

pþ :

ðA22Þ

The constants CA and Cψ result from commuting operators
during normal ordering. As additive constants in the
Hamiltonian, they could be ignored in quantum mechanics.
However, one could include them in variational FF esti-
mates of the vacuum energy if one wanted to recreate the
vacuum effects known to cause problems in the IF of
quantum field theory in 3þ 1 dimensions [35]. Here, they
are removed from the calculation.

3. Trilinear terms

The trilinear terms are

P̂−
3 ¼

X3
n¼1

P̂3n; ðA23Þ

where

P̂3n ¼ −en
X
s1s2

Z
p1p2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðp1ÞΔðp2ÞΔðqÞ

p
~δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþ

1 p
þ
2

q
Ŷn;

ðA24Þ

and Ŷn involves only operators and masses for fermion
number n, according to the same pattern. Namely,

Ŷ ¼ b†p1s1bp2s2aqþ

��
p2

pþ
2

−
q
qþ

�
δs11δs21 þ

�
p1

pþ
1

−
q
qþ

�
δs2−1δs1−1 þ

�
m
pþ
2

−
m
pþ
1

�
δs11δs2−1

�

þ b†p1s1bp2s2a
†
q−

��
p2

pþ
2

−
q
qþ

�
δs11δs21 þ

�
p1

pþ
1

−
q
qþ

�
δs2−1δs1−1 þ

�
m
pþ
2

−
m
pþ
1

�
δs11δs2−1

�

þ b†p1s1bp2s2aq−

��
p�
2

pþ
2

−
q�

qþ

�
δs1−1δs2−1 þ

�
p�
1

pþ
1

−
q�

qþ

�
δs21δs11 þ

�
m
pþ
1

−
m
pþ
2

�
δs21δs1−1

�

þ b†p1s1bp2s2a
†
qþ

��
p�
2

pþ
2

−
q�

qþ

�
δs1−1δs2−1 þ

�
p�
1

pþ
1

−
q�

qþ

�
δs21δs11 þ

�
m
pþ
1

−
m
pþ
2

�
δs21δs1−1

�

þ b†p1s1d
†
p2s2aqþ

�
−
�
p2

pþ
2

−
q
qþ

�
δs11δs2−1 −

�
p1

pþ
1

−
q
qþ

�
δs21δs1−1 þ

�
m
pþ
2

þ m
pþ
1

�
δs21δs11

�
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þ b†p1s1d
†
p2s2aq−

�
−
�
p�
2

pþ
2

−
q�

qþ

�
δs1−1δs21 −

�
p�
1

pþ
1

−
q�

qþ

�
δs2−1δs11 −

�
m
pþ
2

þ m
pþ
1

�
δs2−1δs1−1

�

þ dp1s1bp2s2a
†
qþ

�
−
�
p�
2

pþ
2

−
q�

qþ

�
δs11δs2−1 −

�
p�
1

pþ
1

−
q�

qþ

�
δs21δs1−1 þ

�
m
pþ
2

þ m
pþ
1

�
δs21δs11

�

þ dp1s1bp2s2a
†
q−

�
−
�
p2

pþ
2

−
q
qþ

�
δs1−1δs21 −

�
p1

pþ
1

−
q
qþ

�
δs2−1δs11 −

�
m
pþ
2

þ m
pþ
1

�
δs2−1δs1−1

�

− d†p2s2dp1s1aqþ

��
p2

pþ
2

−
q
qþ

�
δs1−1δs2−1 þ

�
p1

pþ
1

−
q
qþ

�
δs21δs11 þ

�
m
pþ
1

−
m
pþ
2

�
δs21δs1−1

�

− d†p2s2dp1s1a
†
q−

��
p2

pþ
2

−
q
qþ

�
δs1−1δs2−1 þ

�
p1

pþ
1

−
q
qþ

�
δs21δs11 þ

�
m
pþ
1

−
m
pþ
2

�
δs21δs1−1

�

− d†p2s2dp1s1aq−

��
p�
2

pþ
2

−
q�

qþ

�
δs11δs21 þ

�
p�
1

pþ
1

−
q�

qþ

�
δs2−1δs1−1 þ

�
m
pþ
2

−
m
pþ
1

�
δs11δs2−1

�

− d†p2s2dp1s1a
†
qþ

��
p�
2

pþ
2

−
q�

qþ

�
δs11δs21 þ

�
p�
1

pþ
1

−
q�

qþ

�
δs2−1δs1−1 þ

�
m
pþ
2

−
m
pþ
1

�
δs11δs2−1

�
; (A25)

where the subscriptn is omitted.Themomentumvariablesp1,
p2 and q are complex numbers defined according to the rule

p ¼ p1 þ ip2: ðA26Þ
Thereareno termsresultingfromcommutingoperatorsduring
normal ordering because of the momentum conservation and
the presence of the regularization factor Δ in the Fourier
expansion of fields.

4. Quadrilinear terms

There are two kinds of quadrilinear terms. One involves
fermions and photons, denoted by P̂−

4ψA, and the other one,
analogous to the instantaneous Coulomb potential in the IF
of dynamics, involves only fermions and is denoted by P̂−

4ψψ.
These terms are described in two separate subsections.

a. Quadrilinear fermion-photon couplings P̂−
4ψA

The quadrilinear term P̂4ψA is a sum of terms for three
kinds of fermions,

P̂−
4ψA ¼

X3
n¼1

P̂−
4ψnA; ðA27Þ

where

P̂−
4ψnA ¼ e2n

X
s1s2r1r2

Z
p1p2q1q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðp1ÞΔðp2ÞΔðq1ÞΔðq2Þ

p
~δ

×
ffiffiffiffiffiffiffiffiffiffiffiffi
pþ
1 p

þ
2

q
2Δðcq2q2 þ cp2

p2Þ
cq2q

þ
2 þ cp2

pþ
2

Ẑn

þ
X
r

Z
q
ΔðqÞ δm

2
nγ

qþ
a†qraqr

þ
X
s

Z
p
ΔðpÞ

�
δm2

n

pþ b†npsbnps þ
δm2

n̄

pþ d†npsdnps

�

þ CψnA: ðA28Þ

Omitting n in subscripts of creation and annihilation
operators for fermions,

Ẑn ¼ ½δs1cq1 r1δs2cq1 r1b
†
p1s1bp2s2 − δs1cq1 r1δs2cq2r2b

†
p1s1d

†
p2s2

− δs1cq2 r2δs2cq1 r1dp1s1bp2s2 − δs1cq2 r2δs2cq2 r2d
†
p2s2dp1s1 �

× ½aq1r1aq2r2 þ a†q2r2aq1r1 þ a†q1r1aq2r2

þ a†q1r1a
†
q2r2 �δcq1 r1−cq2r2 : ðA29Þ

The terms with only creation or only annihilation operators
do not actually contribute because of the conservation of
pþ and the presence of the regularization factors. Normal
ordering proceeds through commuting operators and thus
produces the masslike terms

δm2
nγ ¼ 2e2n

Z
p
pþΔðpÞ

�
Δðq − pÞ
qþ − pþ −

Δðqþ pÞ
qþ þ pþ

�
; ðA30Þ

δm2
n ¼ 2e2n

Z
q
pþΔðqÞΔðp − qÞ

pþ − qþ
; ðA31Þ

δm2
n̄ ¼ 2e2n

Z
q
pþΔðqÞΔðpþ qÞ

pþ þ qþ
; ðA32Þ

and a number

CψnA ¼ −2ð2πÞ3δ3ð0Þ4e2n
Z
pq

ΔðpÞΔðqÞpþ Δðpþ qÞ
pþ þ qþ

:

ðA33Þ

All these terms are removed. They depend on the regu-
larization function ΔðpÞ and ought to be subtracted
anyway. In the case of ΔðpÞ in Eq. (A17) that correlates
⊥ and þ components of momentum, one may have to
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consider constants and operators of the type e2ΔA⊥i∂þA⊥
or e2Δψ̄γþψ that do not obey regular FF power
counting [21].
Regarding protons, one should remember that they

are not physically pointlike in the sense that leptons
are. The canonical terms in a local theory for protons
is merely a method of book-keeping that applies only for
the momentum transfers smaller than the inverse of
their size.

b. Quadrilinear fermion couplings P̂−
4ψψ

The fermion quadrilinear term P̂−
4ψψ is the FF analog of

the IF Coulomb term. It has the form

P̂−
4ψψ ¼

X3
n¼1

P̂−
4ψnψ

; ðA34Þ

where

P̂−
4ψnψ

¼ en
X3
l¼1

el
X

s1s2s3s4

Z
p1p2p3p4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðp1ÞΔðp2ÞΔðp3ÞΔðp4Þ

p
~δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ
1 p

þ
2 p

þ
3 p

þ
4

q
2Δðc3p3 þ c4p4Þ
ðc3pþ

3 þ c4p
þ
4 Þ2

X̂nl: ðA35Þ

Using momentum conservation, properties of the regulari-
zation factors, and performing normal ordering, one can
write the terms that contribute to X̂nl in the form

X̂nl ¼ X̂4nl þ X̂2nl þ X0nl: ðA36Þ

Genuine four-fermion interactions result from

X̂4nl ¼ −δs1s2δs3s4b
†
np1s1b

†
lp3s3

bnp2s2blp4s4

− δs1s2δs3−s4b
†
np1s1b

†
lp3s3

d†lp4s4
blnp2s2

− δs1s2δs3−s4b
†
np1s1bnp2s2dlp3s3blp4s4

þ δs1s2δs3s4b
†
np1s1d

†
lp4s4

bnp2s2dlp3s3

− δs1−s2δs3s4b
†
np1s1d

†
np2s2b

†
lp3s3

blp4s4

þ δs1−s2δs3−s4b
†
np1s1d

†
np2s2dlp3s3blp4s4

þ δs1−s2δs3s4b
†
np1s1d

†
np2s2d

†
lp4s4

dlp3s3

− δs1−s2δs3s4b
†
lp3s3

dnp1s1bnp2s2blp4s4

− δs1−s2δs3−s4b
†
lp3s3

d†lp4s4
bnp2s2dnp1s1

þ δs1−s2δs3s4d
†
lp4s4

dnp1s1bnp2s2dlp3s3

þ δs1s2δs3s4d
†
np2s2b

†
lp3s3

dnp1s1blp4s4

þ δs1s2δs3−s4d
†
np2s2b

†
lp3s3

d†lp4s4
dnp1s1

þ δs1s2δs3−s4d
†
np2s2dnp1s1dlp3s3blp4s4

− δs1s2δs3s4d
†
np2s2d

†
lp4s4

dnp1s1dlp3s3 : ðA37Þ

The masslike terms in P̂−
4ψψ that result from commuting

operators during normal ordering are due to X̂2nl. Namely,
for every type of fermion,

P̂−
4ψψmass ¼

X
s

Z
p
ΔðpÞ δm

2
ψψ

pþ ðb†psbps þ d†psdpsÞ; ðA38Þ

where

δm2
ψψ ¼ 2e2

Z
q
pþqþΔðqÞ

�
Δðp − qÞ
ðpþ − qþÞ2 −

Δðpþ qÞ
ðpþ þ qþÞ2

�
:

ðA39Þ
Again, these depend on the regularization function Δ and
are removed. In the case of Eq. (A17) one would have to
consider similar terms as in P̂−

4ψA but with additional
logarithms of jΔi∂þj=δ2.
The additive constant that one obtains in the canonical

Hamiltonian by integrating

X0nl ¼ δnl½δs1−s2δs3−s4δ23δ14 þ δs1s2δs3s4δ12δ34� ðA40Þ

can be ignored without any consequence in the lepton-
proton bound-state equation.

APPENDIX B: OUTLINE OF THE RGPEP

The coefficients of powers of qt in HtðqtÞ are found in
the RGPEP using Eq. (14) and calculating Htðq0Þ.
Differentiation of

Htðq0Þ ¼ U†
tH0ðq0ÞU t ðB1Þ

with respect to t yields

H0
tðq0Þ ¼ ½Gtðq0Þ;Htðq0Þ� ðB2Þ

with the generator Gt ¼ −U†
tU 0

t and

U t ¼ T exp

�
−
Z

t

0

dτGτ

�
: ðB3Þ

T denotes ordering in τ. We consider the generator [20,22]

Gt ¼ fð1 − f−1ÞHtgHf
ðB4Þ

and [13]

Gt ¼ ½Hf;HPt�: ðB5Þ

STANISŁAW D. GŁAZEK PHYSICAL REVIEW D 90, 045020 (2014)

045020-20



The operator Hf, called the free Hamiltonian, is the
part of H0ðq0Þ that does not depend on the coupling
constants,

Hf ¼
X
i

p−
i q

†
0iq0i; ðB6Þ

where i denotes particle species and p−
i is the free FF

energy of a particle with mass mi and kinematical momen-
tum components pþ

i and p⊥
i ,

p−
i ¼ p⊥2

i þm2
i

pþ
i

: ðB7Þ

The curly bracket with subscript Hf in Eq. (B4) means
that, by definition, Gt satisfies the equation ½Gt;Hf� ¼
ð1 − f−1ÞHt. The form factor f depends on the difference
between free invariant masses of the right (R) and left (L)
sets of particles that are involved in the interaction in a
Hamiltonian matrix element. Thus, R and L refer to the
effective particles that enter and emerge from the inter-
action. The form factor is

f ¼ e−tðM2
L−M

2
RÞ2 : ðB8Þ

The operator HPt is defined for any polynomial Ht,

Htðq0Þ ¼
X∞
n¼2

X
i1;i2;…;in

ctði1;…; inÞq†0i1…q0in ; ðB9Þ

by multiplication of each and every term in it by a square of
a total þ momentum involved in a term,

HPtðq0Þ¼
X∞
n¼2

X
i1;i2;…;in

ctði1;…;inÞ
�
1

2

Xn
k¼1

pþ
ik

�
2

q†0i1…q0in :

ðB10Þ
The multiplication ensures that Hamiltonians Ht possess
seven kinematical symmetries of the FF dynamics. The
factor 1=2 is needed because the sum includes both
incoming and outgoing particles that have the same total
momentum.
Solutions to the RGPEP equation can be expanded in

powers of the charge e,

Ht ¼ Hf þ eHð1Þ
t þ e2Hð2Þ

t þ � � � : ðB11Þ
Up to order e2 the bare charge and the renormalized charge
are the same, and the terms of formal order e and e2 in the
effective Hamiltonian read

Hð1Þ
t ab ¼ fabH

ð1Þ
0 ab; ðB12Þ

Hð2Þ
t ab ¼ fab

�
Hð2Þ

0 ab þ
X
x

F axbH
ð1Þ
0 axH

ð1Þ
0 xb

�
; ðB13Þ

where, according to Eq. (B8) with L ¼ a and R ¼ b,
fab ¼ exp ð−tab2Þ. For the generator given in Eq. (B4),

F axb ¼
paxaxþ pbxbx
ax2 þ xb2

½1 − e−tðax2þxb2Þ�: ðB14Þ

For the generator given in Eq. (B5),

F axb ¼
paxaxþ pbxbx
ax2 þ xb2 − ab2

½1 − e−tðax2þxb2−ab2Þ�: ðB15Þ

Both cases will lead to the same conclusion concerning the
proton radius in lepton-proton bound states. An extensive
explanation of the symbols used in the above formulas can
be found in [13]. Symbols a, x, and b denote the left,
intermediate and right configurations of the effective
particles that participate in the interaction, respectively.
Symbols such as pax denote the total pþ of particles
involved in the interaction, which is sandwiched between
states corresponding, in this case, to configurations a and x.
The invariant mass differences are denoted according to the
rule ax ¼ M2

ax −M2
xa, and Max denotes the invariant

mass of the particles in a that participate in the interaction
that transforms a into x. For example, in the left diagram
in Fig. 2, a ¼ i, x ¼ 3, b ¼ j, pax ¼ lþðx; k⊥Þ, pxb ¼
pþð1 − y;−l⊥Þ, ax¼m2

l − ½qðz;q⊥Þþ lðy;l⊥Þ�2, xb¼
½pð1−x;−k⊥Þþqðz;q⊥Þ�2−m2

p, and the minus compo-
nents of the momentum four-vectors for the lepton, l, and
proton, p, are calculated from the mass-shell condition with
masses ml phys and mp phys, respectively.
Equations (B12) and (B13) illustrate that the matrix

elements of HtðqtÞ in the effective-particle basis in the
Fock space vanish exponentially fast as functions of the
change of invariant mass due to interactions. The resulting
bandwidth of the Hamiltonian matrix as measured in terms
of the free invariant mass is denoted by λ ¼ 1=s.

APPENDIX C: DETAILS OF THE EFFECTIVE
LEPTON-PROTON INTERACTION

Evaluation of the photon exchange in Eq. (55) is shown
in Fig. 2. The operators Ŷ0ðqtÞ involve the fermion terms
that are obtained from Eq. (A25) by putting the operators qt

FIG. 2. Exchange of the effective photon between the effective
lepton and proton.
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in place of q0. Since antifermions do not contribute, the
relevant operators Ŷn0ðqtÞ with n ¼ l; p are

Ŷn0 ¼ −
X
s1s2

Z
p1p2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðp1ÞΔðp2ÞΔðqÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþ

1 p
þ
2

q
Ŷn; ðC1Þ

where Ŷn involves only operators and masses for fermions
number n, in the common pattern exhibited by the first four
terms in Eq. (A25).

The FF instantaneous interaction term whose matrix
elements appear in Eq. (55) in addition to the photon
exchange, X̂0ðqtÞ, contains the fermion-fermion terms
obtained from Eq. (A37) by putting qt in place of q0.
The relevant part of X̂0ðqtÞ for the matrix elements X0ij in
Eq. (55) is

X̂0 ¼
X2
n;l¼1

X
s1s2s3s4

Z
p1p2p3p4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðp1ÞΔðp2ÞΔðp3ÞΔðp4Þ

p
~δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ
1 p

þ
2 p

þ
3 p

þ
4

q
2Δðp4 − p3Þ
ðpþ

4 − pþ
3 Þ2

X̂4nlA; ðC2Þ

where

X̂4nlA ¼ −ð1 − δnlÞδs1s2δs3s4b†ntp1s1b
†
ltp3s3

bntp2s2bltp4s4 :

ðC3Þ

No operators other than Y and X are needed in the
evaluation of the lepton-proton interaction in the lepton-
proton bound-state eigenvalue equation up to e2 in the
formal series expansion in powers of e in the RGPEP.
The matrix elements in Eq. (55) are

Yij ¼ Yl0i3Yp03j þ Yp0i3Yl03j ¼ hijŶl0Ŷp0 þ Ŷp0Ŷl0jji;
ðC4Þ

Xij ¼ hijX̂0jji; ðC5Þ

where the states jii and jji are created from vacuum by the
effective lepton and proton creation operators. For example,

jii ¼ b†lt lsb
†
ptprj0i: ðC6Þ

Evaluation of Yij and Xij proceeds using parametrization of
momenta in Fig. 2,

lþi ¼ xPþ; l⊥i ¼ xP⊥ þ k⊥; ðC7Þ

lþj ¼ yPþ; l⊥j ¼ yP⊥ þ l⊥; ðC8Þ

pþ
i ¼ ð1 − xÞPþ; p⊥

i ¼ ð1 − xÞP⊥ − k⊥; ðC9Þ

pþ
j ¼ ð1 − yÞPþ; p⊥

j ¼ ð1 − yÞP⊥ − l⊥; ðC10Þ

qþ ¼ zPþ; q⊥ ¼ zP⊥ þ κ⊥; ðC11Þ

where Pþ and P⊥ denote the total momentum of the
fermions. The total momentum is conserved by the
interactions.

1. Evaluation of Yij

In evaluating a matrix element of a product of two Ŷs,
one for a lepton and one for a proton, one has to remember
that one of the creation operators for one kind of fermion
has to be commuted through the product of two operators of
the other kind of fermion, with no net change of sign. The
result for Yij has the form

Yij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðpiÞΔðpjÞΔðliÞΔðljÞ

q
ΔðqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pþ

i p
þ
j l

þ
i l

þ
j

q
~δ ~Yij=qþ;

ðC12Þ

where

~Yij ¼ θðlþi − lþj Þ½cðli; si; lj; sjÞ þmldðli; si; lj; sjÞ�½c�ðpi;−ri; pj;−rjÞ −mpdðpi;−ri; pj;−rjÞ�
þ θðlþi − lþj Þ½c�ðli;−si; lj;−sjÞ −mldðli;−si; lj;−sjÞ�½cðpi; ri; pj; rjÞ þmpdðpi; ri; pj; rjÞ�
þ θðlþj − lþi Þ½cðpi; ri; pj; rjÞ þmpdðpi; ri; pj; rjÞ�½c�ðli;−si; lj;−sjÞ −mldðli;−si; lj;−sjÞ�
þ θðlþj − lþi Þ½c�ðpi;−ri; pj;−rjÞ −mpdðpi;−ri; pj;−rjÞ�½cðli; si; lj; sjÞ þmldðli; si; lj; sjÞ� ðC13Þ

¼ θðlþi − lþj ÞYþ þ θðlþj − lþi ÞY−; ðC14Þ

and
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cðli; si; lj; sjÞ ¼
��

lj
lþj

−
q
qþ

�
δsi1δsj1 þ

�
li
lþi

−
q
qþ

�
δsj−1δsi−1

�
; ðC15Þ

dðli; si; lj; sjÞ ¼
�
1

lþj
−

1

lþi

�
δsi1δsj−1; ðC16Þ

cðpi; ri; pj; rjÞ ¼
��

pj

pþ
j
−

q
qþ

�
δri1δrj1 þ

�
pi

pþ
i
−

q
qþ

�
δrj−1δri−1

�
; ðC17Þ

dðpi; ri; pj; rjÞ ¼
�

1

pþ
j
−

1

pþ
i

�
δri1δrj−1: ðC18Þ

To explain how the calculation proceeds, it is enough to show details for Yþ, which are

Pþ2Yþ ¼ δsi1δsj1δri−1δrj−1

��
l
y
−
κ

z

��
−l�

1 − y
−
κ�

z

�
þ
�
k�

x
−
κ�

z

��
−k
1 − x

−
κ

z

��

þ δsi1δsj1δri1δrj1

��
l
y
−
κ

z

��
−k�

1 − x
−
κ�

z

�
þ
�
k�

x
−
κ�

z

��
−l

1 − y
−
κ

z

��

þ δsi−1δsj−1δri−1δrj−1

��
k
x
−
κ

z

��
−l�

1 − y
−
κ�

z

�
þ
�
l�

y
−
κ�

z

��
−k
1 − x

−
κ

z

��

þ δsi−1δsj−1δri1δrj1

��
k
x
−
κ

z

��
−k�

1 − x
−
κ�

z

�
þ
�
l�

y
−
κ�

z

��
−l

1 − y
−
κ

z

��

þ δsi1δsj1δri−1δrj1

�
l
y
−
κ

z

�
mpz

ð1 − yÞð1 − xÞ

þ δsj1δsi1δri1δrj−1

�
k�

x
−
κ�

z

�
−mpz

ð1 − yÞð1 − xÞ

þ δsi−1δsj−1δri−1δrj1

�
k
x
−
κ

z

�
mpz

ð1 − yÞð1 − xÞ

þ δsi−1δsj−1δri1δrj−1

�
l�

y
−
κ�

z

�
−mpz

ð1 − yÞð1 − xÞ

þ δsi1δsj−1δri−1δrj−1
mlz
xy

�
−l�

1 − y
−
κ�

z

�

þ δsj1δsi−1δrj1δri1
mlz
xy

�
−k�

1 − x
−
κ�

z

�

þ δsi−1δsj1δri1δrj1
mlz
xy

�
l

1 − y
þ κ

z

�

þ δsi−1δsj1δrj−1δri−1
mlz
xy

�
k

1 − x
þ κ

z

�

þ ðδsi1δsj−1δri−1δrj1 þ δsi−1δsj1δri1δrj−1Þ
mlmpz2

xð1 − xÞyð1 − yÞ : ðC19Þ

One can obtain this result using free spinors with physical fermion masses in the fermion currents and contracting the
Lorentz indices of the currents with the indices of the tensor that results from the sum over polarizations of the transverse
photons exchanged between fermions. Therefore, we can arrive at this result by using the canonical QFT irrespective of the
difference between the bare and effective particles.
Since the same type of analysis applies to all terms in Y, we explicitly consider only the first spin amplitude

A1 ¼ δsi1δsj1δri−1δrj−1B1; ðC20Þ
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where

B1 ¼
�
l
y
−
κ

z

��
−l�

1 − y
−
κ�

z

�
þ
�
k�

x
−
κ�

z

��
−k
1 − x

−
κ

z

�
ðC21Þ

¼ 2jκj2
z2

þ xþ y − 1

z

� jkj2
xð1 − xÞ −

jlj2
yð1 − yÞ

�
−
lk�

xy

−
l�k

ð1 − xÞð1 − yÞ : ðC22Þ

The first term in B1 behaves as 1=z2 for small z, the second
term as 1=z, and the third term is regular. Only the terms
that do not change fermion spins involve 1=z2. The terms
most singular at small z appear only in the first four spin
amplitudes in Yþ. Therefore, they provide the leading
behavior of the entire Yþ for small values of z,

Pþ2Yþ ¼ δsisjδrirj2ðk⊥ − l⊥Þ2=z2: ðC23Þ

It is these leading terms that count most in the formation of
lepton-proton bound states for small electric charge e in the
presence of the RGPEP form factors in Eqs. (52) and (53).
The reason for this is that the form factors are of order 1
when the invariant mass differences in the denominators in
Eqs. (52) and (53) are small, and the same form factors are
exponentially small when the changes of the invariant
masses of fermion states are large. The lepton momentum
fractions x and y must be close to the ratio of the lepton
mass to the sum of lepton and proton masses and cannot
change much because this would create a large change in
the invariant mass and thus also large differences in the
denominators and form factors’ arguments. On the other
hand, photons are massless and can carry small fractions z
if their q⊥s are sufficiently small so as not to cause large
invariant mass changes. This is what happens in the
atomiclike bound states.
The evaluation of Y− in Eq. (C14) yields the same

result as Eq. (C23). Therefore, Eqs. (C12) and (C14)
together yield

Yij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðpiÞΔðpjÞΔðliÞΔðljÞ

q
ΔðqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pþ

i p
þ
j l

þ
i l

þ
j

q
~δ
δsisjδrirj2ðk⊥ − l⊥Þ2

qþ3
: ðC24Þ

In the limit of removing the regularization,

Yij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pþ

i p
þ
j l

þ
i l

þ
j

q
~δ
δsisjδrirj2ðk⊥ − l⊥Þ2

qþ3
: ðC25Þ

Writing lþi ¼ xPþ and lþj ¼ yPþ, one arrives at

Yij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞyð1 − yÞ

p
Pþ2 ~δ

δsisjδrirj4ðk⊥ − l⊥Þ2
qþ3

:ðC26Þ

2. Evaluation of Xij

In evaluating the matrix elements of X̂4nlA, one has to
take into account that one creation operator for one kind of
fermion has to be commuted through one creation operator
of the other kind of fermion, with the net result of a change
of sign. The matrix element Xij includes the sum of a term
with n ¼ l and l ¼ p and a term with n ¼ p and l ¼ n. In
the case of lþi > lþj , which corresponds to evaluation of Yþ
in Appendix C 1, one has to consider only terms that result
from the absorption of a photon by the lepton,

Xij ¼ ð−1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðpiÞΔðpjÞΔðliÞΔðljÞ

q
ΔðqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ
i p

þ
j l

þ
i l

þ
j

q
~δ
−4δsisjδrirj

qþ2
: ðC27Þ

The result for Y− is the same. After removal of regulari-
zation one has

Xij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ
i p

þ
j l

þ
i l

þ
j

q
~δ
4δsisjδrirj

qþ2
: ðC28Þ

Using the same parametrization of lþi and lþj as in
Eq. (C26), one obtains

Xij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞyð1 − yÞ

p
Pþ2 ~δ

4δsisjδrirj
qþ2

: ðC29Þ

3. Evaluation of F ij int and F ij cor

Thedenominators to consider are i3 ¼ −3i and j3 ¼ −3j.
In both diagrams in Fig. 2 the calculation is carried out in the
same fashion. In the case of the left diagram,

pi3=i3 ¼ −qþ
�
κ⊥2 þm2

l z
2

xy
þ
�
l⊥2

y
−
k⊥2

x

�
z

�−1
; ðC30Þ

pj3=j3¼−qþ
�
κ⊥2þ m2

pz2

ð1−xÞð1−yÞþ
�
k⊥2

1−x
−

l⊥2

1−y

�
z

�−1
:

ðC31Þ
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In thesquarebrackets, the first two termsdominate for smallz
and transverse momenta much smaller than the fermion
masses. These conditions are secured in the case of small
mass eigenstates of the full eigenvalue problem by the
presenceofRGPEPvertex form factorsfwith large effective
particle size s. The leptonmomentum fractions x and y in the
effective lepton-proton Fock sector are approximately

β ¼ ml=ðml þmpÞ; ðC32Þ

and in the leading approximation for transverse momenta
much smaller than masses and for x and y close to β, one has

pi3=i3 ¼ pj3=j3 ¼ −qþ½ðk⊥ − l⊥Þ2 þ ðml þmpÞ2z2�−1:
ðC33Þ

This result shows that i3 and j3 for finite fermion momenta
pi3 and pj3 behave as the photon q− on mass shell plus a
correction due to the þ momentum carried by the photon.
Thus, these denominators diverge when z → 0 for
fixed jk⊥ − l⊥j.
At the same time,

ij ¼ jkj2
xð1 − xÞ −

jlj2
yð1 − yÞ þ

m2
l

x
þ m2

p

1 − x
−
m2

l

y
−

m2
p

1 − y
;

ðC34Þ
which is finite for small z and vanishes for vanishing z and
jk⊥ − l⊥j. Therefore, one can neglect ij in comparison to i3
and j3. Consequently, F ij int in Eq. (52) reduces to

F ij int ¼ −qþ½ðk⊥ − l⊥Þ2 þ ðml þmpÞ2z2�−1: ðC35Þ

This result completes the calculation of F ij int.
Evaluation of F ij cor in Eq. (53) now only requires

estimates of fi3 and f3j in

F ijcor¼ð1−fijÞfi3f3j
−qþ

ðk⊥− l⊥Þ2þðmlþmpÞ2z2
; ðC36Þ

where ðpi3=i3þ p3j=j3Þ=2 is approximated using
Eq. (C33). The same approximation yields the arguments
i3 and j3 of f in the form

i3 ¼ − β

z
½ðk⊥ − l⊥Þ2 þ ðml þmpÞ2z2�; ðC37Þ

j3 ¼ − 1 − β

z
½ðk⊥ − l⊥Þ2 þ ðml þmpÞ2z2�: ðC38Þ

Analogous reasoning applies in the case of Y−. The point is
that the form factors fi3 and f3j vanish exponentially fast
for small values of z, where the dominant interaction is
active. Therefore, F ij cor is neglected in comparison with
F ij int in Eq. (51).

APPENDIX D: INTEGRATION IN df

Integration in Eq. (114) must be carried out numerically,
but it is useful to simplify the six-dimensional integral. For
the s-wave ground state one has

df¼
2
R
d3p

R
d3p0 1

ð1þp2Þ2 ½e−4α
4ðp2−p02Þ2=a4−1� 4π

ð~p−~p0Þ2
1

ð1þp02Þ2

ð2πÞ3R d3p 1
ð1þp2Þ4

:

ðD1Þ

The z axis in integration over ~p0 can be chosen along ~p.
Integration over angles of ~p0 replaces 1=~q2 by

π

pp0 ln
ðpþ p0Þ2
ðp − p0Þ2 : ðD2Þ

There is no dependence left on angles of ~p. So, integration
over all angles yields

df ¼ 2 · 4ππ · 4π
ð2πÞ34π · π=32

Z
∞

0

pdp
Z

∞

0

p0dp0 e
−4α4ðp2−p02Þ2=a4 − 1

ð1þ p2Þ2ð1þ p0 2Þ2 ln
ðpþ p0Þ2
ðp − p0Þ2 : ðD3Þ

Introducing variables u ¼ p2 and v ¼ p0 2, one obtains

df ¼ 32

π2

Z
∞

0

du
Z

u

0

dv
e−z

2ðu−vÞ2 − 1

ð1þ uÞ2ð1þ vÞ2 ln
ffiffiffi
u

p þ ffiffiffi
v

pffiffiffi
u

p
−

ffiffiffi
v

p ;

ðD4Þ

where

z ¼ 2ðα=aÞ2: ðD5Þ

If the parameter a changes from 1=20 to 3, the parameter z
changes between 8 × 102α2 and ð2=9Þα2. Changing vari-
ables to zu and zv, one has

df S1 ¼
32

π2
z2

Z
∞

0

du
Z

u

0

dv
e−ðu−vÞ2 − 1

ðzþ uÞ2ðzþ vÞ2 ln
ffiffiffi
u

p þ ffiffiffi
v

pffiffiffi
u

p
−

ffiffiffi
v

p :

ðD6Þ
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