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I present a method of quantization using cohomology groups extended via coefficient groups of different
types. This is possible according to the universal coefficient theorem. I also show that by using this method
new features of quantum field theory not visible in the previous treatments emerge. The main argument is
that several constructions considered as absolute until now may appear as relative, depending on individual
choices of group structures needed to probe a topology. The universal coefficient theorem also gives
information about how these structures, as measured by different choices of groups, relate to one another.
This may result in the formulation of new dualities and a deeper understanding of the relation between
quantum field theories and gravity.
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I. INTRODUCTION

The quantization of gravity is a major unsolved problem
[1]. The equivalence principle [2], the black hole infor-
mation paradox [3], the holographic conjecture [4], the
emergence of spacetime [5] and the coarse graining of
observables [6] are only a few concepts that followed
from it. I present here a method that makes use of a theorem
of algebraic topology and homological algebra [the
universal coefficient theorem (UCT)] in order to prove
that some theoretical constructions used in previous
descriptions of quantum gravity may not have an absolute
meaning independent of some arbitrary choices of groups
of coefficients. These choices of coefficients may induce
different topological structures; therefore, assuming the
independence of coefficient groups implies a form of
independence of topology. The reason for considering this
invariance as important in a quantum theory of gravity is
the fact that there exist arbitrary choices that may make the
connectivity of a space change. One can cite the formation
of a black hole that makes matter in a region of spacetime
collapse onto itself. After the collapse passes the horizon
there is no method of avoiding the central region where
quantum effects like spacetime topology change may
appear. Another example is the choice of making extremely
accurate length measurements in space. This implies add-
ing energy in a given region. This may in the end generate
horizons which imply the collapse of matter towards a
region where quantum gravity and changes of topology are
assumed to be possible. One may assume therefore that a
full theory of quantum gravity may not depend on arbitrary
choices of this kind in the same way in which the formal
aspects of general relativity should not depend on a choice
of a coordinate system. The applicability of the theorem
is not restricted to spacetime itself but can be used generally
in field spaces, groups, various manifolds or discrete
spaces. Its use in these different situations will be
made implicitly. The main idea of this paper is that the

identification of relevant physical observables in the
quantum field theory context is strongly dependent on
the choice of coefficient groups associated to (co)homology
groups of the field space. The (co)homological structure of
a field theory can be described with various coefficient
groups, each inducing some indexation over the field space.
It is well known that some choices are better than others. In
general one uses a Z2 group when orientation is not
relevant or a R-coefficient structure when continuum
properties of the analyzed space appear to be relevant.
However, there are more subtle applications of the coef-
ficient groups. I show here that the choice of one coefficient
group instead of another can hide a set of physically
relevant observables in the quantization procedure. Also,
the logical assignment of observables in an equivalence
class dictated by the availability of a practical measurement
of its spectrum by an observer may allow, by using the
axiom of choice, the construction of predictors for the
spectrum of other observables in the same equivalence class
[7]. As a result, it appears to be impossible to assign an
absolute topology to a space (be it “physical” spacetime or
the space of field configurations) in the absence of an
arbitrary choice of a coefficient group. I start with a field-
theoretical context. At this level already some aspects must
be clarified. When quantizing a one-particle theory one
may use for example Feynman’s path-integral formulation.
This implies the existence of an “expectation catalog” for
positions in spacetime indexed in some way. As no
information about the intermediate steps is available one
uses the principle of quantum mechanics that states that no
actual state can be assigned to an object unless that state can
be actually empirically confirmed to be realized. In this
case the integration that gives rise to the quantum amplitude
must be a sum over all possible configurations. An
extension of this principle was necessary due to the
Lorentz group. As one was not able to discuss a predefined
or fixed number of particles in the context of special
relativity, quantum fields had to be introduced. These are
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simply extensions of the “expectation catalogs” of simple
one-particle quantum mechanics. They are not “measur-
able” in any physical sense individually, but their interfer-
ence and their topology is probed statistically by the rules
of quantum mechanics. It should be well known that the
statistics of an experiment (say, the Bohm-Aharonov
experiment) depends on the topology of the field space
(the regions where the wave function is defined). In the end,
the statistics must probe all connected components of all
possible configurations. In the case of quantum gravity
there are different approaches regarding how a quantum
field-theoretical formulation should look like. It is however
clear that such a formulation should exist. I refer here to the
works on string field theory [8]. There the “quantum field”
becomes a world sheet–string field “expectation catalog”
which is expanded even more with respect to the previous
situations. While a string field-theoretical approach exists,
it is not clear how the various configurations interrelate and
what configurations can exist in various situations. Dualities
are supposed to help in this aspect by identifying configu-
rations and simplifying the overall problem. It appears to me
that there exists a general method of constructing such
dualities based on the ideas presented in this article. It also
appears to me that the constructed dualities will have an
applicability restricted to specific arbitrary choices of group
structures in topology. This is conjectured to also be valid
for the holographic principle. It is the universal coefficient
theorem that will in the end provide a description of what
configurations can be simultaneously known and what
configurations will interfere at the level of the “catalog
of expectations.” It also appears that the change of topology
is of major importance in quantum gravity as one expects a
change in the topology of spacetime during the formation of
a black hole. However, the form of the laws of nature should
not depend on a specific topology. I partially follow Ref. [9]
in this Introduction.

First construct a functorE from the categoryof spacetimes
(Loc) to the category of local convex vector spaces (Vec).
This functor associates to each spacetime M a configu-

ration space EðMÞ of fields defined on it. The isometric
embeddings χ∶M → N are mapped into pullbacks
χ�∶EðNÞ → EðMÞ. The space of the observables called
Fwill be the space of the functionals F∶EðMÞ → R. It is at
this point that one also has to define the topological
structure of the space (or spacetime M). Physically this
remains uncertain unless a choice of a coefficient group in
(co)homology is made. This will define the topology and
will allow a specific definition of the observables.
Essentially the “experimental setup” (or a coefficient group
choice) tells spacetime how to connect. This connection
tells quantum mechanics how the correlations between
“expectation catalogs” should be constructed (what observ-
ables make physical sense). What follows is standard
quantum mechanics which (via the universal coefficient
theorem) tells the experimentalist how to connect the
results obtained with one group structure to possible results
obtained by other observers using other group structures.
This is important when one compares, for example, the
observations made when falling towards a black hole to
those of a far away observer. Finally, accurate measure-
ments and probing of spacetime at small scales implies
adding energy in a small region of space which in the end
may alter the topology of spacetime itself.
One can observe that in principle a topology induced by

a choice of a coefficient group (via a particular exper-
imental setup) results in a modified set of observables and a
modified algebra for the resulting quantum (field) theory.
Also, the geometry of the (field) space imposes restrictions
on possible topologies (for example extreme curvature may
imply restrictions over the allowed topologies). One can
summarize this as

Topology

�
probed by quantummechanics

induced by a choice of a coefficient group

�
⇆ Geometry

�
well-defined local quantumobservables

quantumoperator algebras

�

In this context the main question for quantum gravity is,
“How do different geometries correlate?” To this question
one can give an answer when one considers the topology of
the field space and the fact that this topology is not given in
an absolute sense. The acceptance of the nonuniversality of
topology (as proved clearly by the universal coefficient
theorem) leads to different “counting rules” for different
contexts.
In what follows one defines the class of functionals

called “local functionals” as

FðϕÞ ¼
Z
M
dvolMfðjxðϕÞÞ ð1Þ

where jxðϕÞ ¼ ðx;ϕðxÞ; ∂ϕðxÞ; � � �Þ is the jet of ϕ at the
point x.
Let L be a suitably defined Lagrangian. We can define an

associated action functional S½L½ϕ��. The field equation
becomes in this context S0MðϕÞ ¼ 0 where the prime
denotes the Euler-Lagrange derivative. The space of sol-
utions of this equation forms a subspace of EðMÞ called
ESðMÞ. In the context of classical field theory one is
interested in the space of local functionals over ESðMÞ
called FSðMÞ. This space can be defined as the quotient
FSðMÞ ¼ FðMÞ=F0ðMÞ where F0ðMÞ is the space of
functionals that vanish on shell [on ESðMÞ]. A (co)
homological interpretation for theFSðMÞ space is required.

ANDREI T. PATRASCU PHYSICAL REVIEW D 90, 045018 (2014)

045018-2



For this one needs a vector field structure on the configu-
ration space. The action of the vector fields X½:� on the
space of smooth functionals C∞ðEðMÞÞ is

∂XF½ϕ� ¼ hF½ϕ�; X½ϕ�i: ð2Þ

One can associate to the action functional a map from the
set of test functions over the spacetime manifold to the
space of “observable” functionals δS∶DðMÞ → FðMÞ such
that

ϕ ↦ hS0M½ϕ�; X½ϕ�i ¼ δSðXÞðϕÞ ð3Þ

where S0M is the Euler-Lagrange derivative of the action.
Suppose there is an action S such that F0ðMÞ¼δSðDðMÞÞ.
Then

FSðMÞ ¼ FðMÞ=F0ðMÞ ¼ FðMÞ=ImðδSÞ: ð4Þ

From this one can construct the chain complex

0 → DðMÞ→δS FðMÞ → 0: ð5Þ

This can be associated with the Batalin-Vilkovisky (BV)
complex used in the geometric quantization. The 0-order
homology of this complex isFSðMÞ ¼ FðMÞ=F0ðMÞ. The
set of critical points of the action functional

fϕ ∈ DðMÞjδS½ϕ� ¼ 0g ð6Þ

contains connected components that can be identified by
the first homotopy group

π0ðfϕ ∈ DðMÞjδS½ϕ� ¼ 0gÞ: ð7Þ

The functionals on the classes of this group are the gauge-
invariant observables. One can see that the correct iden-
tification of possible maps as well as homotopically
equivalent structures is extremely important for the correct
construction of the field space in the phase preceding actual
quantization. Probably the best mathematical formalization
of quantum mechanics is offered by what is known as
“geometric quantization” [10]. In this formulation one
starts with a classical theory and follows a set of steps
that assure the consistency of the resulting quantum theory.
One may start with a general classical action depending on
a set of fields S½ϕ�. This implies the existence of a
symplectic manifold. The main idea is to realize the

symplectic form of this manifold as the curvature of a
U(1) principal bundle with a connection. We obtain the
prequantum Hilbert space as the Hilbert space of square-
integrable sections of the principal line bundle. One has to
pick for each point in this space a certain subspace of the
complexified tangent space at that point. One defines the
quantum Hilbert space to be the space of all square-
integrable sections of the line bundle that give 0 when
differentiated covariantly at that point in the direction of
any vector of the tangent space. As basic quantum
mechanics teaches us there exist two sets of variables that
become noncommutative operators when quantizing. These
may be called “positions” and “momenta” although their
physical meaning may be rather different. The next step is
the choice of a polarization i.e. the choice of “positions”
and “momenta.” This choice is not unique. Once a
polarization is available one can form a Hilbert space of
states as the space of sections of the associated line bundle.
The last step would be to associate to the classical variables
actual quantum operators on the quantum Hilbert space.
This amounts to the quantization of observables while
mapping Poisson brackets to commutators. This procedure
is in general not well defined for all operators. Strictly
speaking the method of geometric quantization is not
properly defined in the context of quantum gravity. The
definition of a field space or a space of configurations is
extremely complicated and the integration over such a
structure appears to be ill defined. However, it is precisely
the method presented in this article that may add some extra
structure to this space (for example via the addition of new
dualities) such that its rigorous definition might become
possible. Several attempts of using geometric quantization
in the context of string theory are known [11,12] but the
subject remains open for future research.
Given a BV complex and some quantum observables in

the context of a choice of a coefficient structure I now state
the following Lemma.
Lemma 1 (The Universal Coefficient Theorem):
If C is a chain complex of free Abelian groups, then there

are natural short exact sequences

0 → HnðCÞ ⊗ G → HnðC;GÞ → TorðHn−1ðCÞ; GÞ → 0

ð8Þ

∀ n, G, and these sequences split. Here TorðHn−1ðCÞ; GÞ is
the torsion group associated to the homology. In this way
homology with arbitrary coefficients can be described in
terms of homologywith the “universal” coefficient groupZ.
This lemma is also valid for cohomology groups where it

is formulated as

0 → ExtðHi−1ðCÞ; GÞ → HiðC;ZÞ ⊗ G→
h
HiðC;GÞ→r HomðHiðCÞ; GÞ → 0 ð9Þ
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where now the Tor group on the right is replaced by the Ext
group on the left. Moreover, this theorem is a property of
algebraic topology independent of the existence of an
underlying manifold structure for the spaces or groups
on which it may be applied. For a proof in both the
homology and the cohomology cases see Ref. [13]. The
following example shows how the choice of the coefficient
group can affect the correct identification of the homotopy
type of a function.
Example 2 (Homotopy and coefficient group):
Take a Moore space MðZm; nÞ obtained from Sn by

attaching a cell enþ1 by a map of degree m. The quotient
map f∶X → X=Sn ¼ Snþ1 induces trivial homomorphisms
on the reduced homology with Z coefficients since the
nonzero reduced homology groups of X and Snþ1 occur in
different dimensions. But with Zm coefficients the situation
changes, as we can see considering the long exact sequence
of the pair ðX; SnÞ, which contains the segment

0 ¼ ~Hnþ1ðSn;ZmÞ → ~Hnþ1ðX;ZmÞ→
f� ~Hnþ1ðX=Sn;ZmÞ:

ð10Þ

Exactness requires that f� is injective, and hence nonzero
since ~Hnþ1ðX;ZmÞ is Zm, with the cellular boundary map

Hnþ1ðXnþ1; Xn;ZmÞ → HnðXn; Xn−1;ZmÞ ð11Þ

being exactly

Zm→
m
Zm: ð12Þ

One can see that a map f∶X → Y can have induced maps
f� that are trivial for homology with Z coefficients but not
so for homology with Zm coefficients for a suitably chosen
m. This means that homology with Zm coefficients can tell
us that f is not homotopic to a constant map, information
that would remain invisible if one used only Z coefficients.
As the final step of this Introduction I state here the main

theorems of this article as well as a conjecture.
Theorem 1 (Relativity of Observables):
There exist observables visible using some choices of

coefficient groups and invisible using other choices.
Theorem 2 (Relativity of distinguishability):
There exists no unequivocal measure of distinguish-

ability of quantum states that is independent of the choice
of the coefficient group. Distinguishability is relative.
Theorem 3 (Relativity of Symmetry):
A particular choice of a coefficient group makes a

specific symmetry structure in the field space manifest.
There exists no absolute symmetry.
Conjecture (Relativity of Holography):
There is no general unequivocal mapping of any con-

sistent geometric structure in a spacetime volume to its
surface. In the full context of quantum gravity the existence
of a holographic principle is an undecidable statement

depending on particular choices of the coefficient groups.
“Strong-weak” dualities can however be constructed and
generalized in a case-by-case way.
The proofs of the theorems as well as validity arguments

for the conjecture are provided in the following chapters.
The method of proof is as follows: I make a choice of a
coefficient group in cohomology (i.e. a choice of topology);
I try to construct standard quantum mechanics (eventually
using geometric quantization); if geometric quantization is
impossible I can always switch to a different topology
where this method is possible and see how it relates to the
topology where it was impossible via the universal coef-
ficient theorem, which may bring new insights about the
geometric quantization prescription; I construct a set of
observables and physical states using a particular choice of
the coefficient group; I obtain a set of physical states
obeying some properties (distinguishability, etc.); I make
another choice of the group structure where the above-
stated properties are not valid any more. By the Universal
Coefficient Theorem it follows that the considered proper-
ties are relative i.e. cannot be associated to a full theory of
quantum gravity.

II. PATH-INTEGRAL QUANTIZATION
AND FIELD THEORIES

One method of quantization is given by what is known as
the “Feynman path integral” [14]. This has been general-
ized (although not completely) for string field theory [8].
For an introduction I partly follow Ref. [14]. I assume that
the standard prescription of computing quantum probabil-
ities using quantum amplitudes is well known. If Pac is the
quantum probability of measuring event c when it follows
the measurement of event a then the probability must be
calculated as Pac ¼ jφacj2 where φac ¼

P
bφabφbc where

the sum is over the possible intermediate states b which, I
emphasize, following Feynman (page 3 of Ref. [14]) have
no meaningful independent value. In a one-space- and one-
time-dimensional context a succession of measurements
may represent a succession of the space coordinate x at
successive times t1; t2; � � �, where tiþ1 ¼ ti þ ϵ. Let the
observed value at ti be xi. Classically the successive values
of x1; x2;… define a path xðtÞ when ϵ → 0. If the
intermediate positions are actually measured one may talk
about such a path with a well-defined set of observed
positions x1; x2; � � � and the probability that the specified
path Pð� � � xi; xiþ1;…Þ lies in a region R is given by the
classical formula

P ¼
Z
R
Pð� � � xi; xiþ1;…Þ � � � dxidxiþ1 � � � ð13Þ

where the integral is taken over the ranges of the variables
which lie within the region R. If the intermediate positions
are not measured then one cannot assign a value to them. In
this case the probability of finding the outcome of a
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measurement in R is jφðRÞj2 and φðRÞ, i.e. the probability
amplitude, is calculated as

φðRÞ ¼ lim
ϵ→0

Z
R
Φð…xi; xiþ1;…Þ ð14Þ

where Φð� � � xi; xiþ1;…Þ defines the path. In the given limit
this object becomes a path functional. There should be no
mystery nowadays that the probability amplitude should be
calculated as

φðRÞ ¼ lim
ϵ→0

Z
R
exp

�
i
ℏ

X
i

Sðxiþ1; xiÞ
�
…

dxiþ1

A
dxi
A

…

ð15Þ
where S is the action functional for the given path segment.
In order to go a step further and define the wave function in
this context I will continue to follow Feynman’s paper [14].
The region R considered above can be divided into future
and past with respect to a choice of a time position t. One
can define the region R0 as the past and the region R00 as the

future. The probability amplitude connecting these regions
will be

φðR0; R00Þ ¼
Z

χ�ðx; tÞψðx; tÞdx ð16Þ

where

ψðxk; tÞ ¼ lim
ϵ→0

Z
R0
exp

�
i
ℏ

Xk−1
i¼−∞

Sðxiþ1; xiÞ
�
dxk−1
A

dxk−2
A

…

ð17Þ
and

χ�ðxk; tÞ ¼ lim
ϵ→0

Z
R00
exp

�
i
ℏ

X∞
i¼k

Sðxiþ1; xiÞ
�
1

A
dxkþ1

A
dxkþ2

A
…

ð18Þ
In this way one can separate the “past” and the “future” via
the functions ψ and χ. One may also construct a closer
equivalence to the matrix representation of quantum
mechanics by introducing matrix elements of the form

hχt00 jFjψ t0 iS ¼ lim
ϵ→0

Z
…

Z
χ�ðx00; t00ÞFðx0; � � � xjÞexp

�
i
ℏ

Xj−1
i¼0

Sðxiþ1; xiÞ
�
ψðx0; t0Þ dx0

A
� � � dxj−1

A
dxj: ð19Þ

In the limit ϵ → 0, F is a functional of the path xðtÞ. At
this moment one can define various equivalences between
functionals. These are to be associated to operator equa-
tions in the matrix formulation. One can of course define ∂F

∂xk
and one can calculate the associated matrix element using
an action functional S. Using the fact that the action
functional appears as expð iℏ SÞ one obtains matrix equations
as, say

h χt00 j
∂F
∂xk jψ t0 iS ¼ −

i
ℏ
h χt00 jF

∂S
∂xk jψ t0 iS ð20Þ

which can be stated as a functional relation defined for an
action S as

∂F
∂xk ↔ −

i
ℏ
F

∂S
∂xk : ð21Þ

Using the fact that S ¼ Pj−1
i¼0 Sðxiþ1; xiÞ one can rewrite

∂F
∂xk ↔ −

i
ℏ
F

�∂Sðxkþ1; xkÞ
∂xk þ ∂Sðxk; xk−1Þ

∂xk
�
: ð22Þ

In the case of a simple one-dimensional problem one can
write

∂Sðxkþ1; xkÞ
∂xk ¼ −mðxkþ1 − xkÞ=ϵ ð23Þ

and

∂Sðxk; xk−1Þ
∂xk ¼ þmðxk − xk−1Þ=ϵ − ϵV 0ðxkÞ: ð24Þ

Neglecting terms of order ϵ, one obtains

m
ðxkþ1 − xkÞ

ϵ
xk −m

ðxk − xk−1Þ
ϵ

xk↔
ℏ
i
: ð25Þ

The important aspect here is that the order of terms in a
matrix operator product corresponds to the order in “time”
of the corresponding factors in a functional. The order of
the factors in the functional is of no importance as long as
the indexation of these factors is reflected in the ordering
of the operators in the matrix representation. This means
the left-most term in the above equation must change order
so that one obtains the well-known commutation relation

px − xp ¼ ℏ
i
: ð26Þ

One may observe that the choice of a specific indexation
of the measurement outcomes, according to a time index
(i.e. Z group), leads to the well-known commutation
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relations. The ideas behind path-integral quantization are
kept intact when going to the relativistic context. However,
when we have to go to a gravitational context the sum over
configurations (geometries) becomes nontrivial. In this
sense one has to construct the (co)homology structure of
the space and one has to deal with the universal coefficient
theorem.
This theorem states that a specific framework, con-

structed through the choice of a coefficient group in (co)
homology is, up to (extension) torsion in (co)homology,
equivalent with the choice of an integer coefficient group.
However, some choices of coefficient groups may make
some observables manifest while others may hide them.
Moreover, simple order relations as the ones used in the
proof above are no longer uniquely defined. What was
identified by Feynman as a natural choice (time ordering)
may in fact be just the result of a given coefficient group.
Other ordering relations (like radial ordering in the case of
conformal field theories) are also known. It is visible in this
context that the construction of a path-integral prescription
using another coefficient group will change the quantiza-
tion prescription (as formulated via the algebra of oper-
ators). Quantization does not mean only the algebra of
operators, as has been made obvious in the definition of
geometric quantization. In an ideal situation one would
expect a physical motivation that determines the operator
algebra. This might appear in the context of the application
of universal coefficient theorems. The group structure
imposed over the configuration space can be chosen for
example as the R=Z case in which one arrives at a
continuous cyclic structure. This will present a somehow
altered operator algebra. One may ask, what is the physical
meaning of the coefficient group? In fact, it is an extra layer
of information that has to be dealt with when performing
quantization. It appears that it is not sufficient to simply
integrate over nonequivalent field configurations as is done
in nongravitational models. The coefficient structure adds
new “degrees of freedom” to the problem. These must be
considered when performing path-integral quantization in
order to obtain suitable unitary results. From this point of
view, the extra structure appears to be a step towards the
unambiguous solution of the unitarity problem (also known
as the “information paradox”). In a less formal tone, the
“information” describing the system is encoded not only in
the actual system but also in the set of rules one chooses in
order to “read” that information. I stressed in the above
digression that the intermediate states in the path-integral
formulation must be added to the amplitude while keeping
all possible outcomes, mainly because one cannot assign an
outcome before a measurement is performed. The same
considerations are valid when dealing with coefficient
groups. While one can certainly prepare an experiment
that involves a special choice of a coefficient group one will
obtain a result that is dependent on this choice. When no
practical choice is made one cannot assign any “physical”

value to the choices of coefficients but one must consider
them when calculating quantum amplitudes. From this
perspective the question of the existence of a “Planck-scale
topology” is devoid of meaning. “Microscopic geometries”
are to be associated to choices of coefficient groups and
these choices are arbitrary. However, the universal coef-
ficient theorem generates classes of topologies that can be
identified in the sense of having the same Ext and Tor
groups. This may lead to an overall simplification of the
path integral formulation as many configurations will
appear as connected by dualities. One should notice that
both string theory and loop quantum gravity (LQG) assume
special choices of topology as being absolute (Lie group
topology for string theory as the “string world sheet” and
discrete topology for LQG). I consider these choices as an
epistemological issue. In string theory one starts by
postulating a fundamental string. This implies a continuous
group structure and a well-defined topology. By the
universal coefficient theorem however, this is simply a
convention. Using that convention one arrives at an algebra
of operators (say, the Virasoro algebra). It should be clear
now that this choice is not fundamental. In loop quantum
gravity one works in the opposite direction: one fixes the
canonical quantization prescription involving the standard
algebra and obtains in the end a particular topology (a
discrete topology). Again, one arbitrary choice determines
the other. This is not fundamental as well. One cannot
assign a precise topology to any space unless one makes a
choice of a coefficient group in cohomology. In order to do
this one must consider the universal coefficient theorem
and its Tor and Ext groups. Any fixation on an absolute
topology would be equivalent with the postulation of the
“ether” in special relativity i.e. devoid of meaning.
One may notice that quantum gravity cannot be defined

using a fixed (nondynamical) spacetime manifold. In fact,
analysis in terms of the universal coefficient theoremmakes
the spacetime highly dynamical, even allowing changes of
topology. These can be seen if one considers for example
coefficient groups of finite torsion degrees. The larger (but
finite) the torsion degree of the group the more “nonlocal”
the associated “observables” will look. The “nonlocal”
behavior in extreme conditions (black holes) is essentially
the result of a specific choice of topology. This will persist
until clearer information about the group structure imposed
by a particular experiment is given. When this happens is
for the experiment to decide. The situation is similar to the
supposed “objective collapse of the wave function" which
is assumed (wrongly) to actually happen at some scale.
This mistake vanishes when one understands that the wave
function is to be interpreted as an “expectation catalog.” In
the same way, when information about the connectivity of
spacetime and of the “field space” becomes manifest one
will have to adopt the local structure at hand. Of course,
topologically disconnected macroscopic black holes may
retain (from the perspective of an observer lying outside)
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some apparent nonlocal aspects as their internal structure is
inaccessible.
One may ask if my method has as a result the identi-

fication of different representations for the same algebra of
operators. This is not the case. As can be seen from
Feynman’s example the specific ordering of the events
generates some commutation relations which define the
algebra of operators. If one generalizes this to different
choices of coefficient groups for probing the field space one
can see that the algebra of operators will not be preserved.
Indeed, one can use coefficients in a continuous group. In
this case one can recover the string-theoretical case where a
continuous line-like object appears as “fundamental” and in
fact the algebra of its operators is rather different. The
associated group is generally not easily connected to the
local algebra as the Exp map is not always easily defined.
Continuous group coefficients are useful. It is well known
that one uses continuous coefficient groups when one
wishes to avoid unnecessary complications due to the
low-scale behavior of the space to be studied. In fact, a
claimed advantage of working with string-like objects is
their so-called “UV completeness.” Of course, from the
perspective of coefficient-group-extended quantization this
property is just a tradeoff between using continuous groups
in order to have UV completeness and the complications
that appear in the Becchi-Rouet-Stora-Tyutin (BRST)-
cohomology treatment of string theory.

III. RELATIVITY OF OBSERVABLES

As shown in the Introduction, the physical observables
are to be identified with the functionals over the classes of
the homotopy group associated to the critical points of the
action functional. Example 2 already showed how this
identification is relativized by the UCT. I give here a more
detailed proof. Take a set of observables obtained after
geometric quantization

A ¼ fA1; A2;…; Ang ð27Þ
where A ⊂ FS. While in the classical case FS is to be
associated with a space of local functionals, in the case of
quantum gravity the locality condition may be relaxed (see
Ref. [15]). One can observe that the BV complex

0 → DðMÞ→ι FðMÞ→γ FSðMÞ → 0 ð28Þ
with FSðMÞ ¼ FðMÞ=F0ðMÞ and δS ¼ γ∘ι can be repre-
sented as the complex of Example 2

0 → ~Hnþ1ðX;ZmÞ→
f� ~Hnþ1ðX=Sn;ZmÞ → … ð29Þ

In the last case f� is the induced map over the homology
groups of the map f∶X ↦ X=Sn over the analyzed spaces.
In the case of the BV complex the original maps would be
the functionals F∶ES ↦ ES which are to be associated to

the physical observables of the quantum theory. In the same
way as in Example 2 one can define the map as a function
of degree m. One may remark that observables that cannot
be distinguished in Z will be visible if the choice of
coefficients is Zm.
In order to have a correct representation of the actual set

of observables one must redefine A as

~A ¼ f½A1�; ½A2�;…; ½An�g ð30Þ
where each term ½Ai� may be a set of observables on its
own, the elements of which may not be discernible given a
specific choice of coefficients. It has been noted in Ref. [15]
that for example classes of microscopical observables of
black holes may be inaccessible to independent measure-
ment due to large energies or long times required for
accurate probing. While this is certainly possible I show
here that the same can happen due to certain choices of
coefficient groups. While it is certainly always possible to
change the coefficient group with which one probes the
field space this change may involve a change in the
physical experimental setup. This would make simulta-
neous use of two coefficient groups in the same experiment
impossible. As the indiscernibility of observables (coarse
graining) may imply emergent locality (as shown in
Ref. [15]) it may look like the UCT assures some form
of locality at all levels. However, I am cautious in calling
this “locality” with its proper name. I am also cautious
when speaking about “emergent locality” or even more
drastically, the “emergence of spacetime” (see Ref. [5]) The
reasons for this caution are expressed in the following
section.

IV. RELATIVITY OF DISTINGUISHABILITY

Ongoing research in quantum information has led to
various alternative definitions of distinguishability of
quantum states. One recent paper [15] argued that physical
criteria like extreme energy requirements or long waiting
times would make some distinctions between quantum
states impractical. I show here that in fact the distinguish-
ability of quantum states is mainly related to choices of the
coefficient groups of (co)homology. There exist possible
predictors that allow “guesses” concerning the presence of
different physical states in the same equivalence classes
associated to some observers [7]. Using quantum informa-
tion tools one observes that given a set of observables A
one cannot distinguish a random pure microstate in a
microcanonical ensemble HE of dimension dE from the
maximally entangled state ΩE ¼ IE

dE
unless the number of

different outcomes of the operator NðAÞ scales as
ffiffiffiffiffiffi
dE

p
.

Whenever NðAÞ ∼ ffiffiffiffiffiffi
dE

p
one would require a long time or

very large energies to achieve the accuracy that would
allow the distinction of these states. These statements, also
presented in Ref. [15], are partially correct. While one can
follow the standard path of constructing normed or
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seminormed spaces that would predict how “far away”
quantum states are in a given configuration I show here that
these measures must be relative considering the fact that the
arbitrary choice of a coefficient group may make the
difference between distinguishability and indistinguishabil-
ity of two quantum states relative. This statement is in full
agreement with the uncertainty principle and is in the spirit
of quantum mechanics as it extends the concept of
uncertainty to the arbitrary choice of a coefficient group.
In this section I follow Ref. [15] in order to introduce the
concepts I require. Consider a finite-dimensional subspace
HE ⊂ H of dimension dE consisting of all pure states ψ ¼
jψihψ j that live in a microcanonical ensemble of energy
½E − δE;Eþ δE�. I may assume that the Hamiltonian
describing the unitary time evolution of the system has
nondegenerate energy gaps. Consider again the set of
observables A ¼ fA1; A2;…; Ang. One may ask what
are the necessary conditions for such a set to distinguish
a random pure state ψ ∈ HE from a maximally mixed state
in HE. One can follow two obvious paths and one less
obvious path to quantify the difference between quantum
states ψ ∈ HE. What one obviously could do is to measure
the expectation value of some operator A ∈ A. However,
the measurement of expectation values of an observable is
not sensitive enough to distinguish any different quantum
states. A quantum measurement in general offers a set of
eigenvalues a appearing with some probabilities pa. Most
of the information about the quantum system is encoded in
the probability spectrum fpag. Hence in order to distin-
guish two quantum states ρ and σ using a particular
observable A one can define a measure as

DAðρ; σÞ ¼
1

2

X
a

jtrðjaihajρÞ − trðjaihajσÞj ð31Þ

with jai being the eigenvectors of A. This measure is
defined so that it encodes the information of the entire
spectrum fpag. One can extremize the definition in order to
define a measure over a whole set of observables

DAðρ; σÞ ¼ max
A∈A

DAðρ; σÞ: ð32Þ

If A includes the entire set of observables in the Hilbert
space one may define the distinguishability of two quantum
states in general as

Dðρ; σÞ ¼ 1

2
trjρ − σjA ð33Þ

where jρ − σjA is the maximal difference in probability
spectra over the entire set of available observables. If I
continue to use this language it will be impossible to
identify the restrictions due to the universal coefficient
theorem. In fact one has to go a step back and remember
that quantization implies summation over inequivalent field

configurations and this implies the construction of (co)
homology groups. Physical observables are identified with
the functionals over the classes of these groups. Different
choices of coefficient groups in the (co)homology may lead
to the identification of functionals (they may appear as
homotopic to the identity) while using other groups may
make them appear in different classes (i.e. being different
observables). Considering that special features of the field
space induced by mappings of finite degree cannot be
ignored in the procedure of quantization one may have for a
complex like

0 → ~Hnþ1ðX;ZmÞ→
f� ~Hnþ1ðX=Sn;ZmÞ → � � � ð34Þ

a set of observables A ¼ fA1; A2;…; Ang while under

0 → ~Hnþ1ðX;ZÞ→
f� ~Hnþ1ðX=Sn;ZÞ → � � � ð35Þ

one may have another set ~A ¼ f½A1…Ai1 �; ½Ai2…Ai3 �…;
½Aik…Ain �g where the observables in the square brackets
represent the classes of observables that cannot be distin-
guished in the given coefficient setup. One may imagine
that the choice of a coefficient group induces a forgetful
functor between the category of observablesA and ~A. This
functor also maps the discernibility measure from

DAðρ; σÞ ¼ max
A∈A

DAðρ; σÞ ð36Þ

towards

D ~Aðρ; σÞ ¼ max
A∈ ~A

DAðρ; σÞ: ð37Þ

One may observe that although the definition is still valid,
the set of available observables changed significantly. One
may look at this as a change of topological basis although
this analysis may be beyond the scope of this article. In the
last section I suggested using caution when using terms like
locality in relation to the indiscernibility of observables and
entanglement. Indeed, the prescription of maximization
used in the definition of the measure above is not trivial.
Following the universal coefficient theorem, in order to
establish the maximum over the set of observables, one will
always have to pick one element from an equivalence class.
One may not be aware of the existence of more than one
element in the given class but the class exists and a choice
has to be made in order to be able to compare in the end
representatives from various classes. In order to be able to
do this (as the elements of one class are supposed to be
indiscernible so one cannot define a choice function) one
has to invoke the axiom of choice. However, associating
probability theory and the axiom of choice in the context of
quantum mechanics is probably the most nontrivial task in
mathematical logics. Examples of how the axiom of choice
reflects on the mathematics of coordinated inference can be
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found in Ref. [7]. A suitable analysis of these problems in
the realm of quantum information is the subject of a future
paper. What I may add here is that the indexation of
operators inA and ~Amay give an order relation in terms of,
for example, energy. In this sense one may define the order
over the operators in A as

A1 ≺ A2 ≺ � � � ≺ An: ð38Þ
This ordering implies the visibility at a given energy.
However, the deformation of some observables such that
they enter a single homotopy class after the application of a
new coefficient group may alter this order. In fact, one will
have to define an order relation between equivalence
classes where the choice of representatives is not unam-
biguously defined in the absence of the axiom of choice

½Ai1 � ≼ ½Ai2 � ≼ � � � ≼ ½Ain �: ð39Þ

Nothing stops this new ordering from inverting the previous
one in some instances such that observables invisible at some
energy and choice of coefficients become visible under
another choice of coefficients. It follows that new “strong-
weak” dualities can be constructed using the method of
coefficient groups. Their applicability goes beyond quantum
gravity to subjects like condensed matter or many-particle
systems. All one has to do is requantize the theory using a
different coefficient setup and take into account possible
torsion groups in homology. While theoretically this is
possible it remains to be seen if there are practical diffi-
culties. This will be the subject of another article to be
developed in the near future. Another aspect that might be
important in this context is the similarity of these problems
with the “hat problems” discussed in Ref. [7]. Themain idea
is that although it may look unlikely, there might exist
predictors that after a finite set of trials are always capable of
assigning the equivalence class of an operator and determin-
ing an order of occurrence. These predictors however,
depend on the availability of the axiom of choice so they
are outside the scope of this paper. However, their existence
may suggest that exact locality may be dependent on some
very particular choices. One may also ask if the renormal-
ization prescription is affected by the indiscernibility of
states induced by choices of (co)homology. The possible
emergence of new “topological”Ward identities (i.e. having
their origin in some remaining “invariance” under a change
of topology, prescribed by the UCT) may have important
roles in a possible renormalization of gravity.

V. RELATIVITY OF SYMMETRY

Symmetries are of major importance in physics in
general and in quantum field theories in particular. They
manifest themselves in the quasi-invariance of an action
under the transformations of a group. The fact that one has
quasi-invariance (i.e. invariance up to a total derivative) of

the action under a group may be irrelevant classically;
however, it is important in quantum mechanics as it allows
the construction of group-invariant quantum equations
(Schrodinger equations when the group is the nonrelativ-
istic Galilei group for example). One may notice that the
existence of a quantum formulation of the laws of physics is
related to the existence of nontrivial (phase) factors (i.e.
additive terms in the composition rule of the group
operation; see Ref. [16]) that cannot be reduced to zero
for all group elements (i.e. they form nontrivial classes in
the second cohomology of the transformation group). One
also observes that the existence of basic quantum effects is
a result of the global (topological) properties of the
groups associated to the supposed “natural” symmetries
(Galilei group, Lorentz group, conformal group, etc.).
These properties are probed via group (co)homologies.
Information about a group (or in general a space) is not only
encoded in the group (space) itself but also in the way in
which the group (space) acts (is mapped) into some
reference module (space). This is why one can study group
properties by analyzing the actions of the group on an
associated space. On that space one can construct a CW
complex and analyze it via combinatorial techniques.
Moreover, information about a group (space) may also
be encoded in the way in which one probes that group
(space). One can classify the various ways in which
information about a group fails to be encoded geometrically
(i.e. nontopologically)1 by using cohomology groups of
different orders. For example the classes of the second
cohomology groupH2ðG;Uð1ÞÞ i.e. the cohomology group
of the maps between the analyzed group G and the unitary
one-dimensional group U(1) encode the global character of
the factors in the composition rule of the group operation in
G i.e. the way in which they fail to vanish globally [16].
The nontrivial third cohomology group H3ðG;Uð1ÞÞ enc-
odes the failure of the associativity property of the
composition rule [16]. Also, the existence of (phase) factors
that do not vanish globally induces super-selection rules.
They are induced in standard quantum mechanics by the
presence of nontrivial operators that commute with all the
observables and thus belong to any complete set of
commuting observables. As a result, these operators
decompose the Hilbert space of all possible states of a
system into coherent subspaces characterized by their
eigenvalues. The superposition principle holds only inside
these super-selection subspaces and no observable may
have nonzero matrix elements between states of different
super-selection eigenvalues. As an example one may
consider the mass of particles in a space acted upon by
a Galilei group. Bargmann super-selection rules arising due
to the topology of the Galilei group forbid for example

1I contrast here geometrical and topological results although
they might be related; see for example the Gauss-Bonnet
theorem, etc.
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mass decay (i.e. physical subspaces corresponding to
different masses are incoherent). Of course, this is not true
as one has to consider the Lorentz group as a “true” group
of nature. What one must remember here is that the
existence of such super-selection rules is a result of the
existence of nontrivial second group cohomologies of
the transformation groups i.e. a result of the nontrivial
topology of the symmetry group as mapped over a space.
Further properties can be encoded by higher cohomology
groups. However, as shown before, it is important to notice
that the topology of a space (or group) cannot be probed in
an absolute sense (regarding all the properties one may
wish). In some sense this is an extension of the quantum
uncertainty that involves the topology of the space. One
may quote the existence of super-selection rules in order to
avoid solutions like Wheeler’s “bags of gold.” I will show
later on that these expectations may be misleading. In order
to extract useful properties from cohomology one must
make a choice of a coefficient structure. Various choices
may make classes inside the cohomology merge or become
separated. The actual “nature” of them being “separated” or
“merged” depends on the actual type of “topological
measurement” (i.e. the choice of a coefficient group).
Because of this, physical properties depending on classes
of (co)homology or being defined as nontrivial function(al)
s over such classes must have a relative nature. As
symmetries map various states into equivalence classes
one may conclude that symmetries are in general relative.
What I wrote above is visible also in the path-integral
formulation. It is well known that anomalies are failures of
a symmetry that is manifest at the “classical” level i.e. in the
initial action, to exist after one proceeds to a path-integral
quantization. This failure is associated to the noninvariance
of the measure of the path integral to the transformation
prescribed by the given group. There are of course physical
anomalies (like chiral anomalies) that manifest themselves
experimentally and there are gauge anomalies that must in
principle be avoided. In any sense, as seen in Ref. [17],
relevant anomalies (that cannot be set to zero via “local”
transformations) are again given by the nontrivial BRST
cohomology classes at ghost number one on the space of
local functionals. They are of course topological in nature
and dependent on the way in which the topology of the
given space (or group) is analyzed. In this sense, setting a
(global) group structure for the coefficients may prove
useful in avoiding gauge anomalies while making use of
only a limited number of extra dimensions (or none at all).
Of course the use of the term “global” here may be
somehow misleading. These effects are purely quantum
gravitational in nature and refer to the situation when the
probing of the topology of a spacetime region (or a space or
group in general) becomes uncertain and various choices of
coefficient groups in (co)homology become relevant.
Please note that this does not have to happen only at very
high energies or low distances.

One should notice that in the case when symmetries are
preserved during quantization they are mapped into Ward
identities involving Green functions. They have the role of
identifying various Feynman diagrams in the perturbative
expansion allowing in this way various proofs of renor-
malizability for theories that may naively look nonrenor-
malizable (see Yang-Mills or QCD). One may wonder if a
suitable splitting of equivalence classes due to various
choices of coefficient groups may add supplemental
(maybe topological) Ward identities that may prove the
renormalizability of gravity. While this is certainly an
interesting subject for meditation it will probably be
analyzed only in a future paper.

VI. A CONJECTURE: RELATIVITY
OF HOLOGRAPHY

Probably the most important result of this paper is the
possibility that the holographic principle is dependent on
the choice of the coefficient group. The holographic
principle states that the nonequivalent degrees of freedom
inside a volume can be mapped unambiguously on the
surface encapsulating that volume [4]. The key word here is
“nonequivalent.” I proved in Theorem 2 that discernibility
(or equivalence) are relative concepts. Following this line of
thought the number of nonequivalent degrees of freedom
may depend on arbitrary choices. In fact one may make a
choice of a coefficient group where the number of degrees
of freedom in a volume largely exceeds the accessible
number of degrees of freedom on the encapsulating surface.
One cannot argue that they are not in the “observable super-
selection” sector associated to a measurement because, as
shown before, there are situations when there exists a
topological measurement ambiguity (i.e. arbitrary choice of
coefficient groups) that makes the existence of such super-
selection sectors relative. Indeed one may expect that in a
complete theory of quantum gravity one cannot count the
independent degrees of freedom in the same way as in a
classical or nonquantum gravitational theory. I definitely
agree with this. The only difference with respect to the
usual interpretation is that there might not be an unequivo-
cal prescription of counting degrees of freedom that is
independent of an arbitrary choice of coefficients. Let me
emphasize that I do not claim that the holographic principle
is wrong (or absolutely right for that matter). It appears to
me that a choice of a coefficient group in (co)homology
imposes one form of counting of degrees of freedom (it
identifies some as being in the same equivalence class). It is
very likely that for some choices a strict holographic
principle emerges. In fact, for a black hole, any group
structure that misses the region behind the horizon will
satisfy the standard holographic principle. However, this
may not be an absolute property of quantum gravity. I can
claim this simply because a general theory of quantum
gravity should be independent of the choice of coefficients
(i.e. topologically covariant) in the same way in which
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general relativity is diffeomorphism covariant or some
quantum field theories are gauge invariant. Somehow
surprising, on the classical side there exist solutions of
the Einstein field equations that violate the entropy law
allowing for an essentially infinite number of degrees of
freedom to be present inside a compact region of spacetime.
The solutions are called Wheeler’s “bags of gold” [18,19]
and are assumed to be eliminated via some quantum
mechanism mainly in order to obtain results compatible
with the AdS/CFT conjecture. However, it appears to me
that the “bags of gold” may have some effects after all in a
full theory of quantum gravity. They become obvious when
one adopts a topological definition of entropy in the context
presented in this article. In order to clarify this I start by
recalling the standard definition of entropy as being
given by the logarithm of the number of microstates
associated to the same macrostate S ¼ kB log½Ω� or, when
considering a general quantum case the definition becomes
S ¼ −kBtr½ρ log½ρ�� where ρ is the density matrix operator.
The entropy can be defined as the failure of macroscopic
states to reveal all the microscopic details. Otherwise stated
it may be interpreted as the uncertainty that remains after a
macroscopic state is fully described. The concept of
entropy evolved from the practical inability of probing
classical microstates to the inherent inability of probing
quantum microstates. An extension would be towards the
inability of probing the topological structure of the ana-
lyzed space and this appears to be precisely the case when
dealing with quantum gravity and coefficient structures in
(co)homology. One may observe that entropy can in
general be extracted from the (co)homology of the space
of microstates. In fact the cohomology measures precisely
the failure of probing topological structures using local
considerations. Because of this, it is a perfect tool for
identifying the topological uncertainty i.e. the topological
component of the entropy. I showed before that this has a
measurable effect when a topology is chosen and contrib-
utes to the statistics when such a topology is left unspeci-
fied. Let me call C the space of microstates available to a
specific microscopic probing of a topological space. This
may be represented as a linear combination of simplexes
with various coefficients. Let δ be an operator that realizes a
form of “coarse graining” in the sense of partitioning the
microstates into classes according to the macrostates they
can encode and taking into account the topology of the
associated space (i.e. as a boundary operator). Then one can
define a chain complex for cohomology as

… →
δn−1

C�
n−1 →

δn
C�
n →
δnþ1

… ð40Þ
or for homology

…→
δnþ1

Cn →
δn
Cn−1 →

δn−1
… ð41Þ

The star in the above description is a notation that makes
the difference between homology and cohomology groups

manifest. The argument here is purely formal. I simply
prove that this concept exists. Specific calculations will be
the subject of a future article. In general the (co)homology
group is defined as the group obtained by taking the
quotient between the kernel of δn and the image of δn−1.
In the present context the kernel of δn represents the
number of microstates that are mapped into the identity
class of the space of macroscopic states and the image of
δn−1 represents the result of the application of the operator
over the initial microstates. The (co)homological structure
in this case represents the division of the kernel in partitions
defined by the image. The nontopological entropy may be
identified with the number of microstates in a class. Indeed,
the class structure is not visible macroscopically and
contains all the microstates associated to a macrostate.
However, this definition offers the advantage of taking into
account the additional topological uncertainty in a more
complete way. Different coefficient groups in cohomology
may merge or dissociate classes. In this sense entropy is
defined only up to a choice of a coefficient structure over
the (co)homology. While the properties of standard entropy
remain unchanged if the “topological uncertainty” is
irrelevant, when this is not the case (i.e. in the case of
strong quantum gravity, etc.) entropy can be defined only
up to a choice of probing the topology. Certain choices of
coefficients are known to merge the equivalence classes
increasing the total number of equivalent microstates.
However, each choice of coefficients, once made must
remain consistent with itself i.e. no violation of the second
law is allowed for any choice. While a maximum bound
may exist for each choice, it may be a relative notion,
depending on the actual choice made. One must also note
that the classification of the topologically distinct features
is now encoded in the Ext group (in the case of cohomol-
ogy) or in the Tor group (in the case of homology) via the
universal coefficient theorem. The map ExtðHi−1ðXÞ; AÞ →
HiðX;ZÞ ⊗ A is an injection. This means all elements in
Ext must have a corresponding element in HiðX;ZÞ ⊗ A
but the reverse is not true in general. This means the Ext
category offers a more accurate classification of “topologi-
cally inequivalent phases” than would be offered simply
from cohomological considerations alone. I will not insist
on this now but it may prove important in the classification
of topological phases. As a practical example, I will focus
here on the classical solution of Einstein’s field equations
known as Wheeler’s “bag of gold.” In general, the
Arnowitt-Deser-Misner [20] theory for general relativity
allows for the foliation of the spacetime manifold into a
series of space-like hypersurfaces. The next step would be
to re-express the Lagrangian in terms of a pure spatial
metric (gij), a lapse function N and a shift vector that
represents shifts along the tangent to the surface of constant
time coordinate. One can now find the conjugate momenta
associated to these terms and obtain a Hamiltonian equiv-
alent of the problem. In this context solutions to Einstein’s
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equations imply the definition of initial data which means
the specification of the three-dimensional Riemannian
metric (gij) and its conjugate momentum (πij). These have
to satisfy constraints of the form

ð3ÞR − ðI=gÞ
�
πijπij −

1

2
π2
�

¼ 0; ð42Þ

∇iπ
ij ¼ 0 ð43Þ

where ð3ÞR is the 3-scalar curvature of gij and g ¼ detðgijÞ
while π2 ¼ ðtrπijÞ2. ∇i is the covariant derivative corre-
sponding to gij. Some solutions to these equations possess a
“moment-of-time symmetry” i.e. a point where ð3ÞR ¼ 0. It
has been proved [21] that the total energy of an axisym-
metric, moment-of-time symmetry initial data is positive.
One can also write a general expression for an axisym-
metric 3-metric of the form

ds2 ¼ e2qðdρ2 þ dz2Þ þ ρ2dθ2: ð44Þ

However, a metric can be deformed by a conformal
transformation of the conformal factor ϕ leading to another
possible solution. Suppose now that one starts with a
smooth conformal factor which is positive at infinity but
becomes negative at some point. Obviously it must pass
through at least one point where it is identical to zero. At
that point in time all the points on the constant-time-
coordinate surface S are transformed into a single point and
must be identified. The space becomes the union of an
asymptotically flat manifold and a compact manifold.
These two are joined at a single point. This solution is
called Wheeler’s “bag of gold” due to the singularity
appearing at the intersection point. In fact one can prove
that the energy on one side may become þ∞ while on the
other side it may become −∞. This formal divergence may
be only a classical artifact that is not recovered in a full
quantum description. However, some relevant quantum
effects exist. In order to find them one has to integrate over
inequivalent geometric configurations defined by the action

S ¼ 1

2k

Z
R

ffiffiffiffiffiffi
−g

p
d½volM� ð45Þ

where

g ¼ detðgμνÞ; ð46Þ

where R is the Ricci scalar, gμν is the spacetime metric,
k ¼ 8πGc−4, with G being the gravitational constant, c the
speed of light in vacuum and the configuration space
EðMÞ ¼ ðT�MÞ2⊗ ¼ T0

2M is a space of rank (0,2) tensors.
It is generally argued that although the classical solutions
exist they may be suppressed once the correct measure of
integration is used in the quantization prescription.

However, this solution is particularly interesting from the
perspective of the universal coefficient theorem. Let me
consider a quantum-gravity-probing device with an internal
group structure that can detect the asymptotically flat
manifold (say, for example Z). This trivial manifold can
be mapped into a ball which has nonvanishing homology
with coefficients in Z only for the zero dimension. Now
attach to this space a sphere S tangent to it at a single point.
Depending on the group structure used to perform the
measurement the sphere may or may not be visible.
However, the quantum-gravity properties of this structure
will remain encoded in the possible Ext groups appearing in
the UCT sequence. In some sense the information will be
encoded in the topology of possible maps of the group
chosen to perform the measurement and the group of the
physical spacetime involving a “bag of gold.” This Ext
group is obviously nontrivial (i.e. the equivalence in
standard quantum-mechanical language would be “non-
commuting observables”). For the quantization prescription
this requires taking the correct Ext group into account when
performing the “sum over histories.” This allows these
types of solutions to indirectly influence the quantum
results via the topologies of the Ext and Tor groups. Of
course I do not expect infinite energy in the region covered
by the “bag of gold” as prescribed in classical general
relativity but I also do not expect to have solutions of this
type that are completely irrelevant in the context of
quantum gravity. In some sense it is known that processes
described by single Feynman diagrams may look non-
physical and are certainly unobservable; however, it is the
cross section calculated with them that makes physical
sense. The same situation appears to happen for the
“bag-of-gold” solutions. While I share the common belief
that this solution is unlikely to appear as a physical
outcome in the sense predicted by classical general rela-
tivity (infinite entropy, infinite energy), it appears to me that
it should be considered in a full theory of quantum gravity
simply due to the nontriviality of the extension group it
generates. Its overall effect may be the cancellation of some
other inconsistent object so it might as well never arise as a
physical configuration. One could ask if they may some-
how correlate to the cosmological horizons.

VII. REMARKS AND APPLICATIONS

A. Information, measurement and quantum gravity

As seen in the sections above, the common ideas that
appeared to be absolute in the classical (non-quantum-
gravitational) approach to physics i.e. observables, sym-
metries, discernibility, entropy, etc. become relative. It is
possible that a quantum theory of gravity may not be
expressible in terms of local observables and that quantum-
gravity observables must have a rather special form.
Analyzing the algebraic-topological aspects of gravity, it
appears that one has to expand the algebraic structures in
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order to obtain relevant information. For example in order
to probe topologically nontrivial spacetimes one has to use
coefficient groups in cohomology. These may play the role
of an experimental probing device (an apparatus). In this
sense an abstract representation of an apparatus in quantum
gravity may be seen as a group structure. Next, one may ask
what procedure has to be performed in order to make a
quantum-gravitational measurement. It appears that one has
to provide a coefficient group (apparatus) as an input. The
choice of the group structure is not “predefined” in the
same sense in which the choice of the z axis in the quantum
measurement of a spin-1=2 particle is not defined a priori.
Once the z axis is defined one may obtain statistics of the
outcomes. In the same sense, once a group structure is
defined one obtains a (co)homology sequence and an Ext
group (Tor group, respectively). The (co)homology
obtained in this way will encode the topological properties
that can be obtained using the given coefficient group. The
Ext (Tor) groups will encode the failure of the coefficient
groups to encode the full information about the space as
well as a means to classify various choices of coefficient
groups i.e. sequences with identical Ext or Tor groups will
form the analogue of symmetry equivalence classes. One
may also notice that this way of thinking may become
useful in the classification of topological phases of matter,
apart from the obvious applications to quantum gravity.
One may imagine the quantum-gravity-measurement
device as an extended object that encodes a group structure.
The actual measurement is the process of obtaining the (co)
homology (or homotopy) of the given space as an output of
the apparatus (i.e. with the coefficient group of the
apparatus). One can regard the UCT as a statement about
how much the outcome differs when using an apparatus
with a given group structure with respect to the case when
one simply calculates the tensor product of the outcome of
an apparatus that uses a trivial group structure with the non-
trivial group structure used previously as the group struc-
ture of the apparatus. This difference is encoded in Tor
(Ext) and may be seen as the equivalent of the failure of
observables in standard quantum mechanics to commute.

B. Quantization and topological properties
of symmetry groups

There are several important ideas that come together in
this article. I have observed that the probing of the topology
of a given space or group may be fundamentally limited by
specific incompatible choices of coefficient structures in
the (co)homology. The probing of the topology of a space
appears to be limited not only by a lack of energy or of time
as mentioned in some earlier work [15] but also by the fact
that certain “global measurements” associated to different
coefficient groups in cohomology cannot be performed
simultaneously in a perfect sense. Some information visible
using one choice will be lost when dealing with the other
choice. This fact relativizes certain objects and has various

other important effects. The choice of the coefficient
structure may determine the topological features that can
be observed. In this section I show with some simple
examples (following mainly Ref. [16]) how some topo-
logical properties are relevant in the construction of group-
invariant quantum theories and how quantum effects are
actually to be related to the specific behavior of a theory
under some symmetry groups. In order to keep the
discussion as simple as possible I will give the examples
using the Galilei group. Its elements can be parametrized by

g ¼ ðB;A; V; RÞ ð47Þ

where B refers to time, A refers to space, V refers to boosts
and R refers to rotations. The associated group law is

g00 ¼ g0 � g ¼ ðB0 þ B;A0 þ R0Aþ V 0B;V 0 þ R0V; R0RÞ:
ð48Þ

The action of the group on spacetime is obviously

x0 ¼ Rxþ Vtþ A; t0 ¼ tþ B: ð49Þ

In classical mechanics one can define a Lagrangian as

L ¼ 1

2
m_x2: ð50Þ

This is considered as quasi-invariant as its transformed
form differs from the original form only by a total
derivative

L→L0 ¼Lþ d
dt
m

�
xVþ1

2
V2t

�
¼Lþ d

dt
Δðt;x;VÞ: ð51Þ

There is no way of removing the function Δðt; x; gÞ for all
transformations g of the Galilei group by adding a total
derivative to L. The classical equation of motion (Lagrange
equation) is not affected by this change and Δðt; x; gÞ may
appear as unimportant although it is relevant when defining
conserved quantities. However, it will reappear in the
quantum case in an interesting fashion. When going to
quantum mechanics one identifies the analogue of energy
conservation with the Schrödinger equation and in order to
keep quantum mechanics Galilei invariant one must assure
that the Schrödinger’ equation has the same form in reference
frames related via Galilei transformations. One may observe
that there is no way of implementing Galilei invariance by
using a transformation directly on the wave function

ψ 0ðx0; t0Þ ¼ ψðx; tÞ: ð52Þ

However, one may observe that pure states are in fact
described by rays where the set of rays is defined as

fraysg ¼ H=R ð53Þ
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where R is the equivalence relation that identifies vectors
ψ and ψ 0 of the Hilbert space H which differ only in an
unobservable phase. Thus one may enforce Galilei invari-
ance by allowing spacetime-dependent phase factors as in

ψ 0ðx0; t0Þ ¼ exp

�
i
h
Δðt; xÞ

�
ψðx; tÞ: ð54Þ

One can determine Δ by imposing Galilei invariance as

Δðt; xÞ ¼ m

�
xV þ 1

2
V2t

�
¼ Δðt; x; gÞ; g ∈ G: ð55Þ

The exponential is the same as the one appearing in the
transformation rule of the Lagrangian. These two func-
tions are caused by related effects. They are in fact related
to the nontrivial cohomology of the Galilei group.
The transformation law given above allows us to find the

composition law of two successive transformations

ψ 0ðx0Þ ¼ ½UðgÞψ �ðgxÞ ¼ exp

�
i
ℏ
Δðx; gÞ

�
ψðxÞ ð56Þ

where x0 ¼ gx. If x00 ¼ g0x0 ¼ g0gx we may write similarly

½Uðg0gÞψ �ðx00Þ ¼ exp

�
i
ℏ
Δðx; g0gÞ

�
ψðxÞ: ð57Þ

To compare Uðg0gÞ with Uðg0ÞUðgÞ we first notice that

½Uðg0ÞUðgÞψ �ðx00Þ¼½Uðg0ÞðUðgÞψÞ�ðg0x0Þ

¼exp

�
i
ℏ
Δðx0;g0Þ

�
ðUðgÞψÞðx0Þ

¼exp

�
i
ℏ
Δðgx;g0Þ

�
exp

�
i
ℏ
Δðx;gÞ

�
ψðxÞ:

ð58Þ

Then we obtain

Uðg0ÞUðgÞ

¼Uðg0gÞexp
�
i
ℏ
ðΔðgx;g0ÞþΔðx;gÞ−Δðx;g0gÞÞ

�
ð59Þ

which can be rewritten using

ξðg0; gÞ ¼ Δðgx; g0Þ þ Δðx; gÞ − Δðx; g0gÞ ð60Þ

as

Uðg0ÞUðgÞ ¼ exp
�
i
ℏ
ξðg0; gÞ

�
Uðg0gÞ ¼ ωðg0; gÞUðg0gÞ

ð61Þ

where ωðg0; gÞ are the unimodular factors. This rule
defines a projective (or ray) representation of the group
G and ξ defines a two-cocycle on G. The fact that ξ cannot
be made zero for all group elements of the Galilei group
(i.e. the projective representation of the Galilei group used
in quantum mechanics cannot be transformed into an
ordinary one) is expressed by saying that ξ is a nontrivial
cocycle on the Galilei group. Since pure states are
represented by rays, symmetry operators may be realized
by unitary ray operators. These may form equivalence
classes bringing together all operators which differ by a
phase that can be locally eliminated. The classes of
inequivalent two-cocycles define the second cohomology
group H2ðG;Uð1ÞÞ. Another interesting example of
topological effects on groups is the group extension.
The simplest case is the Weyl-Heisenberg group which
essentially defines the quantization prescription. It is a
three-dimensional [or in general ð2nþ 1Þ-dimensional]
manifold ðq; p; ζÞ with the group law given by

q00 ¼ q0 þ q;

p00 ¼ p0 þ p;

ζ00 ¼ ζ0ζexp
�

i
2ℏ

ðq0p − p0qÞ
�
;

ðζ;q; pÞ−1 ¼ ðζ−1;−q;−pÞ: ð62Þ

The two-cocyle is here given by

ξðg0; gÞ ¼ 1

2ℏ
ðq0p − p0qÞ: ð63Þ

This two-cocycle is only one representative of its class.
One may add two-coboundaries and obtain different but
equivalent Lie algebra commutation relations. However,
preserving the topological structure of the group prevents
one from globally eliminating these cocycles. One may
ask whether the probing of the topological structure of the
transformation group (manifold) may be affected by
different choices of coefficients. Would it be possible
to merge the identity class with the class of the above
cocycle? In that case would it be possible to arrive at
’t Hooft’s conclusion (see for example Ref. [22]) about
“prequantization”? Of course, in this case one must
consider possible Ext groups for the cohomology exact
sequence of the UCT that may return all quantum effects
in another way. I will not follow here this line of thought
but one must acknowledge ’t Hooft for his work related to
this subject, even though he was probably not aware of the
algebraic-topological interpretation I present here. I must
also emphasize that the possibility mentioned above is in
essence a quantum effect that merely introduces an
ambiguity into the way in which topological properties
of groups and spaces can be probed. Standard quantum
mechanics remains valid in each equivalence class.
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The only difference is that due to further (quantum)
uncertainty some equivalence classes may merge when
strong gravitational effects are present or when special
ambiguities in the experimental topological setup are
being introduced. I also stress that the “validity” of
quantum mechanics is not altered and this remains a fact,
independent of the energy scales, distance scales, etc.
What I show is only that one may “Abelianize” the
commutation rules of quantum mechanics with the cost
of introducing Tor or Ext groups in the chain complex.
The quantum effects are simply “shifted” towards these
constructions that must be taken into account in the end of
the calculations.

C. Topology of spacetime and anomalies

One may ask if my construction is dependent on a purely
geometrical interpretation of spacetime that may indeed not
be valid in the case of quantum gravity. In fact there have
been several attempts to define quantum-gravity spacetime
using a discrete topology (causal sets [23]) or some form of
superposition of “microscopic geometries” [24] related to
Mathur’s “fuzzballs” (essentially fundamental strings that
in my representation would be the result of choosing a
continuous group of coefficients). My approach is a
description of why all these approaches are in some sense
plausible but still incomplete.
Considering this, string theory already makes an

assumption about the topology of space by introducing
the “world sheet” or the “fundamental string” in the non-
field-theoretical approach. This might be possible but one
has to take into account that by doing this one selects a
topology via a group (say R=Z but not necessarily), which
selects the length of the string or the fact that it connects
two points. As a consequence string theory can only make
predictions for “experiments” that are designed in such a
way that this configuration makes sense. Indeed it appears
that this offers a UV completion of the theory and the
prediction of the graviton. However, due to its topological
noncovariance it must contain an enormous amount of
irrelevant and/or fictitious information which my idea helps
to uncover. It is known that loop quantum gravity intro-
duces a discrete topology of spacetime due to its choice of
the operator algebra. This too, is an artificial construction
and focuses the description on “experiments” that can
probe such a discrete structure. In this case we may speak
about the Zn group and one has to pay attention to what
fictitious constructions this group generates. Again, the
universal coefficient theorem and its exact sequence (with
the first injective map) may give an idea about what
dualities one may expect and what objects are nonphysical.
There is certainly a whole range of alternatives—closed
strings, open strings, n-p-branes etc.—but the reader
may notice that all of them imply choices of topologies
and hence specific experimental situations that should

be probed. They cannot be fundamental for a theory of
quantum gravity.
In fact I argue that the topological structure of spacetime

may be subject to some form of ambiguity in its accurate
definition due to the impossibility of probing the full
information encoded in topology via (co)homology in an
unequivocal way. In this sense the question “What is the
precise topology of spacetime at extremely low scales?”
may have no precise answer unless one provides a specific
method of probing that topology. In some sense the
problem is similar to the double-slit experiment of standard
quantum mechanics. There, the question “Through what
slit did the electron go?” must change the topological setup
of the experiment forcing us to obtain a noninterference
pattern. If the precise trajectory of the electron is of no
concern to us the topological setup allows interference
patterns. Unlike this case where we can actually control the
topological setup of the experiment and have a precise
definition of it, in quantum gravity this might be funda-
mentally impossible. One can no longer keep all topologi-
cal features independent of the choice of a coefficient
structure (i.e. independent of an actual probing of the
topology, be it the topology of the spacetime itself, the
topology of the field space or the topological properties of
the symmetry groups acting on a given object). One can
notice that anomalies in the construction of a quantum
theory of fields may be common and gauge anomalies may
appear. This is indeed dangerous for a consistent quantum
field theory. However, it has been shown that the gauge
anomalies are to be associated with classes of the BRST
cohomology [17]. Of course, if the topology of the space
becomes uncertain the associated topology of the field
space will follow. It can be possible that some choices of
group coefficients in (co)homology may make the anoma-
lous cohomology classes equivalent to the identity (i.e. they
become trivial). This does not mean that any field theory
can be directly quantized but that in the extreme case of
quantum gravity a choice of coefficients might exist that
makes the anomalies cancel in a trivial way. I will continue
here by analyzing the effect on symmetries of the fact that
topological properties of groups and spaces depend on
choices of coefficient groups in (co)homology. Symmetries
can in principle be seen as equivalence classes over a space.
Different choices of coefficient groups may merge sym-
metry classes and change the structure of the sets of states
to be considered equivalent in certain situations. One can
prove that an anomaly is a loop effect in the Feynamn-
diagram description. In fact it appears because of the
noninvariance of the path-integral measure and is encoded
in the Jacobian of the symmetry transformation. This can be
shown to be a loop effect due exclusively to quantization. It
is well known that one can add in general counterterms to
the classical action as long as they are of higher order in the
coupling constant. This is because they are corrections to
unspecified loop terms invisible in the classical theory.
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This procedure leads to renormalization as long as the
added terms are local. Let us start with a classical action

Scl ¼
Z

d4x

�
−
1

4
Fα
μνFαμν þ Lmatter½A;ψ ; ψ̄ �

�
ð64Þ

where ψ , ψ̄ are the matter fields, A is the gauge field and
Fμν is the field strength tensor (also for a non-Abelian
theory). Suppose there exists a gauge anomaly and suppose
one adds a local counterterm of order 3 in the coupling
constant g called ΔΓ such that

Scl → Scl þ
1

6

Z
d4pd4qΔΓμνρ

αβγð−p − q; p; qÞAα
μð−p − qÞAβ

νðpÞAγ
ρðqÞ: ð65Þ

At order g3 such a term modifies the three-point vertex
function as

Γμνρ
αβγ → ½Γμνρ

αβγ�new ¼ Γμνρ
αβγ þ ΔΓμνρ

αβγ: ð66Þ

If one can find a local ΔΓ such that ðpμ þ qμÞ½Γμνρ
αβγ�new×

ð−p − q; p; qÞ ¼ 0 then one says the anomaly is irrelevant.
Whenever such a local counterterm does not exist the
anomaly is relevant. One may notice that the “relevance”
of anomalies is due to their failure to be canceled locally.

As stated in the main paper, relevant anomalies can be
associated to nontrivial BRST cohomology classes at
ghost number one. Let now ½Γμνρ

αβγ�new → ½c�. The arrow
maps the transformed three-point vertex function to a (co)
homology class of the group HnðXÞ where X is the
associated space. The description here is formal; only
the reasoning is of importance. Using the UCT, one can
see that the cohomology group is determined via the short
exact sequence

0 → ExtðHi−1ðXÞ; AÞ → HiðX;ZÞ ⊗ A→
h
HiðX;AÞ→r HomðHiðXÞ; AÞ → 0: ð67Þ

One can now chose A such that the map X → X=ð½c� ∼
idÞ becomes trivial. In this case one cannot distinguish the
class of the previously “relevant” anomaly from the
identity over X. This assures that there exists a coefficient
structure over the cohomology that trivializes the
anomaly. This comes at a cost. One must introduce the
extension group on the left ExtðHi−1ðXÞ; AÞ. The exten-
sion group is generally defined in association with the Ext
functor. Its definition is not particularly involved. Let R be
a ring and let ModR be the category of modules over R.
Consider B ∈ ModR, take a fixed A ∈ ModR and define
TðBÞ ¼ HomRðA;BÞ as the set of homomorphisms over R
from A to B. The Ext functor is defined as

ExtnRðA;BÞ ¼ ðRnTÞðBÞ: ð68Þ

This can easily be calculated considering the injective
resolution

0 → B → I0 → I1 → … ð69Þ
and computing

0 → HomRðA; I0Þ → HomRðA; I1Þ → … ð70Þ
where we excluded HomRðA; BÞ from the complex. Then
the extension ðRnTÞðBÞ is the homology of this complex.
So, in the particular case above, the existence of anoma-
lies is “shifted” into the way in which one can nontrivially
map a general group into an Abelian group. The relevant

information is in this case encoded not in one of the two
groups but in the topology of the maps between them.
This facilitates calculations for field theories quantized
over cohomologies with particular coefficient groups
while preserving the nontrivial information related to
quantization in the Ext part of the sequence above.
One should notice that the second arrow in the UCT
formula above is an injection i.e. while all the elements
of the Ext group must have a correspondence in
HiðX;ZÞ ⊗ A, the latter group might have different
elements with no correspondence in Ext. This may
suggest that Ext may be a better measure for the true
(physical) anomalies. Indeed, in the standard model gauge
anomalies introduced by chiral fermions cancel naturally
when all the fermions are included. However, there
appears to be a more general rule suggesting a more
accurate method of predicting “true” particles while
avoiding falling into the trap of considering fictitious
objects, “needed” in order to cancel anomalies, as
“physical particles.”

D. Beyond the holographic principle

Finally one may ask how this idea changes the inter-
pretation of the holographic principle. In order to answer
this I may turn again to the idea of performing a quantum-
gravity experiment. Assume one has a topological meas-
uring device using a particular choice of a group structure
for the coefficients. It remains to be seen how such a device
can be implemented practically. Assume also that one
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performs the measurements at a scale where quantum
gravity is irrelevant and in a region where there are no
black holes to speak of. In this case the choice of the
coefficient group is irrelevant. The extension and torsion
are always trivial and one obtains the same results known
from simple quantum mechanics. One can chose a com-
plete set of commuting observables and start making
predictions considering also the effects of possible non-
commuting observables as is the custom in standard
quantum mechanics. Now consider a different region of
spacetime where either because one excites gravitational
modes that can alter the topology of spacetime or because
one has a black hole somewhere, the topology of the
spacetime stops being trivial. In this case one has to
perform a topological measurement with an apparatus that
will provide information about what the (co)homology or
homotopy of the region looks like when seen through the
specific choice of the coefficient group. According to this
measurement one has to design restrictions on the observ-
ables allowed by classical quantum mechanics. The Ext and
Tor parts of the chain will not be trivial and will have to be
considered when designing further lower-scale experiments
using the spacetime measured via the coefficient groups.
Not all observables will exist in this situation (due to
merging of equivalence classes). A somehow metaphorical
way of looking at this is considering the group choice as a
choice of coefficients in a polynomial. Classical quantum
measurements after a choice is made are metaphorically
equivalent to finding solutions of these equations. If one
chooses for example rational coefficients, the number e (the
basis of the natural logarithm) will be transcendental (i.e.
no polynomial with rational coefficients can have e as
a root).

E. Experimental verification

The idea of adding uncertainty to the topology of
spacetime itself has, as I showed before, many implications.
Unfortunately most of these are not easily verifiable. While
this article is fundamentally theoretical I try here to
pinpoint some possible experiments where this subject
may become useful. It is known that topology is not only
associated to spacetime itself. As I showed before and in the
main article, one may also probe via (co)homology or
homotopy with coefficients (of course in an abstract sense)
field spaces, groups and other abstract spaces. A more

accessible experiment where topological features are
important is the Bohm-Aharonov experiment. There, one
may observe the effects of a nontrivial topology generated
by a magnetic field, in a region where the given magnetic
field vanishes. If one could manage to create a magnetic
field in a state of quantum superposition between a
situation with trivial topology and one with nontrivial
topology one could check if the measurement of the shift
of the observed interference pattern will fix the degrees of
freedom of the system or if new quantum restrictions may
appear due to the quantization of the topology itself. One
should notice that the topological superposition should
ideally be obtained without an entanglement with a local
object (like the spin of an electron, etc). Also, possible
verifications could be provided by the study of the
topological phases of matter. I expect the procedure given
by the UCT to be particularly important for the classi-
fications of these phases and for the possible discovery of
new ones. The fractional quantum hall effect may also have
an interpretation in terms of rational Ext groups. One may
ask what happens with the theoretical prediction of mag-
netic monopoles in the context of uncertain topology. Are
they still possible? If future experiments will succeed in
proving the fundamental limitations of topological mea-
surements one can safely extend this principle towards
spacetime itself.

VIII. CONCLUSION

As a conclusion, in this paper I have shown an aspect of
quantization that has been probably overlooked but that
may have major implications not only in the description of
quantum gravity but also in the theory of quantum
information. On the quantum information side problems
like the “hat problems”may have some interesting quantum
representations. Also possible new “strong-weak” dualities
may turn out to be important in fields like condensed matter
or many-particle physics. The discussion of other possible
applications in quantum gravity or condensed matter
physics will be the main subject of a future article.
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