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We consider the finite temperature Casimir interaction between two Dirichlet spheres in
(D + 1)-dimensional Minkowski spacetime. The Casimir interaction free energy is derived from the
zero temperature Casimir interaction energy via the Matsubara formalism. In the high temperature region,
the Casimir interaction is dominated by the term with zero Matsubara frequency, and it is known as the
classical term since this term is independent of the Planck constant /. Explicit expression of the classical
term is derived and it is computed exactly using appropriate similarity transforms of matrices. We then
compute the small separation asymptotic expansion of this classical term up to the next-to-leading order
term. For the remaining part of the finite temperature Casimir interaction with nonzero Matsubara
frequencies, we obtain its small separation asymptotic behavior by applying certain prescriptions to the
corresponding asymptotic expansion at zero temperature. This gives us a leading term that is shown to
agree precisely with the proximity force approximation at any temperature. The next-to-leading order term
at any temperature is also derived and it is expressed as an infinite sum over integrals. To obtain the
asymptotic expansion at the low and medium temperature regions, we apply the inverse Mellin transform
techniques. In the low temperature region, we obtain results that agree with our previous work on the zero

temperature Casimir interaction.
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I. INTRODUCTION

The Casimir effect plays an important role in various
areas of physics and mathematics such as quantum field
theory, gravitation and cosmology, atomic physics, con-
densed matter, nanotechnology and mathematical physics
(see e.g. [1]). From the perspective of quantum field
theory, the Casimir effect is closely related to the one-loop
effective action [2]. Since the beginning of the last century,
physicists have explored higher-dimensional spacetime
models to solve some fundamental problems such as the
unification of fundamental forces and the dark energy and
cosmological constant problem. This has motivated the
study of the Casimir effect in spacetime with arbitrary
dimensions [3-14].

Before the turn of this century, the studies of Casimir
interaction were concentrated on the parallel plate con-
figuration due to the lack of machineries to compute the
Casimir interactions between arbitrary objects. For other
configurations, such as the sphere-plate configuration
which is a popular experimental setup, proximity force
approximation was employed to compute the approxima-
tion to the Casimir interaction when the separation between
the objects is very small compared to the diameter of the
objects. However, the situation changed drastically in the
beginning of this century. Various approaches have been
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proposed to compute the Casimir interaction between
two objects in (3 4 1)-dimensional Minkowski spacetime
which can either be classified as the worldline method
[15-19], multiple scattering approach [20-34] or mode
summation approach [35-38]. Generalizing the prescrip-
tion in [38] to arbitrary dimensions, we have been able to
compute the zero temperature Casimir interaction between
a sphere and a plate [39] and between two spheres [40] in
(D + 1)-dimensional Minkowski spacetime.

Motivated by the work [41] which shows that the high
temperature limit of the Dirichlet Casimir interaction of the
sphere-plate and sphere-sphere configurations can be com-
puted exactly, we have computed the high temperature limit
of the Dirichlet sphere-plate interaction in [42]. In this
work, we generalize both the works [40] and [42] and
consider the Casimir interaction between two Dirichlet
spheres at finite temperature in (D + 1)-dimensional
Minkowski spacetime. In the high temperature limit, we
show that the Casimir interaction can also be computed
exactly. We then proceed to compute the leading order term
and next-to-leading order terms of the small separation
asymptotic expansions of the Casimir interaction at any
temperature. Explicit formulas were derived for the low
temperature, medium temperature and high temperature
regions.

We use units where A = c = kz = 1.
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II. THE FINITE TEMPERATURE CASIMIR
INTERACTION BETWEEN TWO SPHERES

In this work, we consider the finite temperature Casimir
interaction between two spheres with radii R; and R,
respectively. Without loss of generality, we assume that
R, < R, throughout this article. Let L be the center-to-
center distance of the spheres, and let d = L — R; — R, be
the distance between the two spheres.

In [40], we showed that when D > 4, the zero temper-
ature Casimir interaction energy between two Dirichlet
spheres with radii R; and R, can be written as

(2m+D —3)(m+ D —4)!
Caez_/ KZ (D —3)Im!

x Tr In (1 = M,, (x)), (1)

where the elements M, of the matrix M,, are

mll/— l E:szz” " ml”l” (2)

1=
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D —2\2
Grlnll’ — G%n 2 7( 1)l+m22m+D %F<m+T)
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“NU+m+D=3)' +m+D-3)!

I[—m

x/ df(sinh §)>m+D- 20 (cosh 6)
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x C 5 (coshﬁ) —xLcoshd (4)

For fixed m, the trace Tr over In (1 —M,,(x)) is

3.

I=m

0
1 21+l’—2m
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When D = 3, we can also represent the Casimir free
interaction energy by (1) provided that the summation

o is replaced by the summation Zm o '» where the
prlme / indicates that the term m = 0 is summed with
weight 1/2.

Using Matsubara formalism, the finite temperature
Casimir free interaction energy between the two spheres
can be obtained by replacing x by the Matsubara frequen-
cies k, = 2zpT, and replace the integration over k by the
summation over p. Namely,

B o~ (2m+ D =3)(m+ D —4)!
EC“‘S_TZ D (D =3)!m!
X Tr In (1 =M,,(x,)). (5)
Equation (5) can be rewritten as a sum of two terms:

classical rem
Ecys = E as + ECas’

where the classical Casimir energy EZ3idl is given by the
p =0 term in (5):

B (2m +D =3)(m+ D — 4)!
Ecas QZ (D —3)!m!

M (k)5 (6)

X hn(}Tr In(1-

and the sum of the remaining terms is denoted by E&:

. (2m+ D —3)(m+ D —4)!
ErCas_TZIZ (D =3)Im!
p=1 m=

X Tr In (1 —M,,(k,)). (7)
The classical term of the Casimir interaction (6) is the high
temperature (i.e., when 1 < dT) limit of the free energy.

First, we will compute explicitly the classical term. As
in [42], we find that as k — O,

1

221+D_3F(1+H)F(Z+Q) (KR,‘)ZH-D—Z’ (8)
2 2

Ti(x) ~

/ * d6(sinh 0)>" P21 (cosh 0)C 7 (cosh B) e+ o

T +P20( + 55T+ 1'+ D = 2)

D2 (] =

m)!(l' —m)!

['(m + DT_Z)Z

e ©)

Since the trace of a matrix is not changed if the matrix is replaced by a similar matrix, define
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M, = P;IM,,P,, (10)

where P, is a diagonal matrix with elements

B kL\! fl+m+D-2) 1
P =1/ (5) \/ (1 22— m)! T+ 22 H

Then

M (=1)~1+ (E) o \/ (L +223)(—m)C(l'+m+D-2) (I *:)7_2) M0 (x), (12)

M g7 == \—
i1 (K) ) (' +222)(I' =m)'C(I +m+ D —=2) (I

and one can deduce that

® l+l//+D—3>!<l/+l//+D—3)! R\ 2+D=2 /R N\ 2I"+D-2
M/(0 Z )1 — -2 . (13)

= (l+m+D=3)I(I"=m)!(I"+m+D=3)I(I'- L L
Let
R:
b, =—. 14
=7 (14)

Then the classical Casimir interaction energy between two spheres in (D + 1)-dimensional Minkowski spacetime can be
written as

classical __ . (2m +D - 3)(”” + D — 4) B
ECas 2; D= 3)im] In det(I—N,,), (15)
where
(e8] l l// D—3 | l/ l// D—3 ‘ ,
Ny = Z U+r+ N+ 1"+ ) b%l+D—2b%l +D-2. (16)

= L+ m+D=3)(" =m)!(l" + m+D=3)I(I' = m)!

III. THE PROXIMITY FORCE APPROXIMATION

The proximity force approximation approximates the Casimir interaction force between two objects by summing the
local Casimir force density between two planes over the surfaces. In (D + 1)-dimensional Minkowski spacetime, the finite
temperature Casimir force density between two parallel Dirichlet plates is given by [43]

)C2

II _ D—
Feald) = =5 3”zrmz/ de(o = Kp) T (17)

Kp

where d is the distance between the two plates.
As in [40], the proximity force approximation to the finite temperature Casimir interaction force between two Dirichlet
spheres in (D + 1)-dimensional spacetime is

FPEA — RD-1 / " 46,sinP-26, / " d6,5inP-30, ... / " 40y, sin0p_, / dOp_, FL. (d(9))
0 0 0

271 2 b4
_ ’f) RP-1 / d6,sin™26, F\.__(d(6))). (18)
reh o ‘

where
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d(®) = d(6,) = \/L2 — 2R Lcos®, + R? — R, (19)

is the distance between a point on the surface of the sphere with radius R; to the sphere with radius R,. Let
u=d(0)/d. Then

S RD-1 /“Lﬁ"d d(du + R,) (d(zR2 + du+d)(2R, +d — du)(2R, + 2R, + du + d)(u — 1))%
1

@ e R,L (2R,\L)?

X ‘Flllas (du)

N?(,;)_Df) (RdRiRIé)%j dul— V2 F ()

2

2 p=0 Kp
T RiR, >% I Sen | /°° B3 s
= - — dx(x* —i3d?)3 T e 2kx, 20
2D_3F(D_1) Ry +R, dDTlpz:; ;kDTI Kpd ( r ) (20)

From here, we find that the proximity force approximation to the classical term (i.e., p = 0 term) of the Casimir interaction
force is

T R/R, \7
Fclasqca.l PFA _ 2 / dxx Dol | _Dkx
Cas 2D 2F( ) Rl +R2 D+1 XX 2 e
(D= DTLD) [ RiR, \% 1
- - 3D-1 R R M ’ (21)
277 1 TRy d>
and the proximity force approximation to the zero temperature Casimir interaction force is
FT=0PFA _ ! RiR, DT?I / dK/ dx(x —szz)DT —£52 o —2kx
Cas 2D—2”F(%) R] + R2 D 1
CTEP)ED+1) [ RiRy 1 (22)
25 /aTR) \R +Ry)

IV. THE CLASSICAL CASIMIR INTERACTION For fixed m, let Q,, be a lower triangular matrix with

elements
In this section, we derive an alternative expression for
the classical Casimir interaction energy (15) using ( )= - bzl /l m)! 1>
similarity transforms of matrices. We then compute (Qu)rr :{ b/ TLUEDNI=m =0 (23)
the asymptotic behavior of the classical Casimir 0, 1<V
interaction.

Notice that the matrix N,, (16) for the sphere-sphere It is easy to check that its inverse matrix is given by
case is more complicated than the corresponding N,,

matrix for the sphere-plate case we obtained in [42]. It I—1' 1.-21' /by (I—m)! .

. .. . . ( ) b (b ) = (T =m)! * [ > /
can be considered as the multiplication of two different  (Q'),, = 2 (=) =m)! . (24)
matrices of the type N,, obtained in [42]. Therefore, the 0, I<r
diagonalization of the matrix (16) is also more
complicated. It follows that
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1
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(h+1L+D=3)(ly+1,+D—3)!
—m)!{(l, + m+ D —=3)!

(L+1L+D-3)(,+1+D-3)!

-3 3 (3

m)! (ly +m+D =3)!(l —=m)!(l, + m + D =3)!(I' = m)!
1
20'+D=2 7.2, +D-2
Notice that
Zl:(—l)’ , o (=m) (I, + I, + D = 3)!
i=m (l—ll)‘(ll—m)‘(ll+m+D—3)'(lz—m)‘
- _ MAD—3 —m 1
— coefficient of .Xl I xl‘+ +D-3 ln(l — x)[ . m
(l+m+D=3)! >
_ {gz—l)!(l+m+D—3)!’ 12 ; l' (26)
) 2 =
Therefore,
b = 2 (l +II+D—3)' ’ 2 D=2 1
—IN - _1 2 bZl +D—2b L+ .
@t = (51) D T L B e
_ (l+l/—|—D—3/)! D=2, (27)
(I+m+D-=3)!(I'—m)!
|
where where 0 < y < 1 is such that
1
bb =, 31
R (28) YRR 3D
b When D = 3, we find that
Notice that now the matrix Q;;'N,,Q,, has a form similar to T
the matrix N,, in [42] for the sphere-plate case, with f3 Elassical — —Z (2I+1 — y2Hh, (32)
playing the role of R/(2(R + d)) in [42], with R the radius 2=

of the sphere and d the distance from the sphere to the
plane. In fact, in the limit the radius of the second sphere
goes to infinity (i.e., the sphere-plane limit), we have

5o Riks
L*-R}-R;
R1R2 R,— R1
e d . 29
(Ri+Ry,+d)?*—RI—R5 2(R, +4d) (29)

As in [42], we then find that the classical Casimir
interaction energy between two Dirichlet spheres is

cla%lcal (21 +D - 2)(l +D — 3)'
ke ZZ —2))I

In (1 _ y21+D—2)’
=0 (

(30)

Let us compare this to the result obtained in [41] using
bispherical coordinates. In [41], it was proved that the
classical Casimir interaction energy between two Dirichlet
spheres in (3 + 1)-dimensional Minkowski spacetime is

. T
lassical __ © 201+1
Eglassical 2; (20+1 — 72+ (33)
where
1
= , (34)
A+ /A=) + /22 -1)
with
1 4 b% — b? 1+ b3 — b2
h=—— 12 h=—2 "1 (35
1 2b1 5 2 2b2 ( )
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Hence,

247 = (=8 =1) (=B =) + (i + i =1) (4 /B 1)

:2(/11/12+ (2 = 1)(23 - 1))

1—b?—b3
=1 72 36
bib,s (36)
|
Since 0 < Z < 1, Z coincides with the y defined by (31).  Then a; + a, = 1 and
This shows that the result (32) we obtain here agrees with
the result obtained in [41]. But here we only use the
similarity transform of matrices, which is much simpler 5 5 5
than using bispherical coordinates in [41]. 1 _ (1+¢€)”—aj—a; (38)
Next we consider the small separation asymptotic p aa, ’
expansion. Let
d R R
- ’ al = l ’ aZ = 2 N (37)
Ry +R, Ry +R, Ry +R, Let
|
l
=—Iny=1In -1
i (1+e)?—a—a+ \/(82 +2¢)(2a; + €)(2a, + ¢) ' (39)
2611612
Then
o 2(1+¢ 1
= U+ e) (40)
dd  \/(2a, +¢€)(2ar + €)(e* + 2e) Ry + Ry
On the other hand, we have an expansion of the form (see [42])
(21 4+ D =2)(I+ D -3)! 2 23 D—-2\/
[+—, 41
(D -2 ~(D-2)! Z"Df T (“41)

where the coefficient xp,; is nonzero only if D and j are both odd or both even.
As in [42], we find that when D is even, the classical Casimir interaction force is given by

: wmr 232 I'(j+2) I'(j+2) (—1)FH g2 & pit!
classical __ .
FCas - (D _ 2)! ;:]:'XD;J 2]+2M1+2 Z—:( 2) + (_1) 2JH2 i+2 é’( 2) + #j+2 ;:1: 6.2,;2” _ > (42)

and when D is odd,

, T R (=1)7 [yt cott
classical __ 2
FCas - (D 2 ' XD:j 2}_;,_2 2 C( ) + 212 A e+ 1 dy . (43)
Here {(s) = > %, n™* is the Riemann zeta function.

In principle, one can derive the small separation asymptotic behavior of the classical Casimir interaction force
from (42) and (43) up to any order in . In the following, we only compute the leading order term and the next-to-leading
order term.
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As £ <« 1, one can show that (_D% /ooyj+1 cot
j+2 my
| | Saay -1 ) 27 Jo ePd
= e+ ... |, i .
1 R, + R, +\/2¢a,a, da,a, (D=1 +1)

= 9j+1 /; ] (1 - 2_j)C(j + 1) + O(/") (47)

pe 2 (130l L\ (45)  When D=3, (43), (47), (44) and (45) give
aja, 12a1a2
Fcclassical — _&5(3)
For the constants x;, ® 8(R, + Ry)d*
1 d d
Xpp-2 =1, Xp.p3 =0, X{1+—6C(3) (R—1+R—2) —I—} (48)
(D-2)(D-3)(D-4)
ADp-4 = — 24 SEREE (46) When D > 4, we do not need to take into account the
term (47) in (43) nor the second term and third term in (42).
On the other hand, Equations (42), (43), (44), (45) and (46) give
|
Fclassical — _ (D — I)TK-:(D) R1R2 % 1
Cas 2 R, +R, P
D-3 d D-3 (D-3)(D-4){(D-2 d d
xX<1= + —( I )& ) —+—]+... ). (49)
4 Ry+R, 12 3(D-1) ¢(D) R, R,
Notice that the leading term is
classical,0 (D - I)Té'(D) R1R2 % 1
Fope 7 =— =] R, + R, bl (50)

and it agrees with the proximity force approximation (21). When D = 3, the next-to-leading order term of the Casimir
interaction force is

i T
Fclafmcal,l . 51
Cas 48d’ ( )
and when D > 4,
Fclassical,l — _ (D - I)TC(D) R1R2 D77] 1
o 25 \Ri+R) 4

D-3 d D-3 (D-3)(D-4)¢((D-2)](d d
e L[P=3_(D=3)0-4¢D-2)](d  d\| )

S RAR 12T 3D-1) o) J\R R,

In Figs. 1, 2, 3 and 4, we compare the exact classical Casimir interaction force to the two-term asymptotic expansions
(48) and (49) when D = 3, 4, 5 and 6. Both quantities are normalized by the proximity force approximation.

In Fig. 5, we plot the dependence of the two term asymptotic expansion (49), normalized by the proximity force
approximation, on the normalized distance ¢ and dimension D. It is observed that the correction to the proximity force
approximation becomes larger when D is larger. In fact, from (49), we find that when D is large,

) . D d d d
[Frelassical , pelassical PFA J 1 = —+— . 53
clas clas R (53)

Hence, in the high temperature region, we find that the next-to-leading order term is proportional to D, which shows a larger
deviation from the proximity force approximation when the dimension D becomes larger.
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FIG. 1 (color online). The comparison between the exact
classical Casimir interaction force with the asymptotic expansion
(48) when D = 3. Both quantities are normalized by the
proximity force approximation.
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FIG. 2 (color online). The comparison between the exact
classical Casimir interaction force with the asymptotic expansion
(49) when D =4. Both quantities are normalized by the
proximity force approximation.
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FIG. 3 (color online). The comparison between the exact
classical Casimir interaction force with the asymptotic expansion
(49) when D =5. Both quantities are normalized by the
proximity force approximation.
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FIG. 4 (color online). The comparison between the exact
classical Casimir interaction force with the asymptotic expansion
(49) when D = 6. Both quantities are normalized by the
proximity force approximation.
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FIG. 5 (color online). Dependence of the asymptotic expansion
(49) on ¢ and D for 0<e<1 and 6 <D <25. The

asymptotic expansion is normalized by the proximity force
approximation.

V. SMALL SEPARATION
ASYMPTOTIC BEHAVIOR OF
THE CASIMIR INTERACTION

The small separation asymptotic expansion of the
Casimir interaction is in general not easy to compute.
One usually expects that the leading term would coincide
with the proximity force approximation. However, the
computation of the next-to-leading order term is often
tedious, but it captures important information of the
Casimir interaction such as the response of the system to
the curvature of the surfaces, and it also gives a rough idea
of how accurate the leading term is. Using the idea first
developed in [29], such computations have been performed
for various geometric configurations [29,30,44-52].
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In this section, we will compute the small separation
asymptotic expansions of the Casimir interaction at any
temperature. Since the classical term (6) has been consid-
ered in Sec. IV, we first consider the remaining terms (7),
and then combine with the results obtained in Sec. IV to
obtain the asymptotic expansion of the full interaction.

The small separation asymptotic expansion of the term
(7) can be computed in the same way as in [40] for the zero
temperature case. In fact, since (7) is obtained from the zero

|

PHYSICAL REVIEW D 90, 045012 (2014)

temperature Casimir interaction energy (1) by replacing «
with k, and changing the integration over k to summation
over p, one can use this recipe to obtain the small ¢
asymptotic expansion of (7) from the small £ asymptotic
expansion of the zero temperature Casimir interaction
derived in [40].

In [40], we have shown that when & <« 1, the leading
term of the zero temperature Casimir interaction energy

7=0,0 :
Eq, is given by

2 = 21(s + 1)e
EL0 = / dir= / el F 54
Cas 2D DT ; : 1 — 72 at ( )
whereas the next-to-leading order term Er.' can be written as a sum of two terms:
The first term Egazso'l“ vanishes for D = 3, 4, 5, and for D > 6,
(D=3)(D-5) xa 1 U deds 2U(s + 1)
— — 2 ) (o] _ 2 + e
EL-0la — % x / dirs / i ° 56
Cas 3 2D+171_R1F<DT_1) ;(s%» I)DT,I o 2 A _Tzex arz ( )
The second term Ef " =0 is
- X2 . 1 D1 det'T 2l(s+ 1)e
E0 — D dli* ex (— )A, 57
e = TR D 2 (T 1 o Visa P\ e G7)
where
Ao (D=1)(5D =7~ (9D =15)a; + (3D =9)a7) (D —1)(D +1)(3a; -2) 3
48ayl(s + 1) 48a,l(s + 1)
(D-2)* (D-1)(D-2) , (D=3)(D-5)(s+1) (D-1)(D-5)t (D? - 25)7°
- - 1) +—7—— 1
T 41 4 12a,1 . N S Ty Y
e(D-1)(3a} —=1) e(D—-1)(3a; —2) o e(D—-2) e(D—-1) e(D-1)
- Ne—————= 1 1)2¢2
+ 6aa, 6a,a, a (s 41 3a,a, (s+1)7°+ 6aa, (s +1)%
e21(3a, - 2) el
T Tada, Ot Ditag, G+l (58)
142 142

The integration over x has been changed to the integration over z where

K =

It follows that

dlc:—i
R

W1 -1

RlT

dr

12V =22

To obtain the corresponding small separation asymptotic expansion for £

©m (7), we change 7 to
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l
12 + (RIKp)2
and make the replacement
[ /1 dr —
— | ———2aT . 59
Ry Jo 22V1 =72 ; 59)
Let
[
7= g—’ k =S + 1
ap

With the prescription described above, we find that for the Casimir force

_ aECas
od

Few = = Pl 4 pE, (60)

the leading term of FE (7) is given by

FEmo d Riky )5 1 i ! i/wd F (—2ky/22 + (k,02). (61)
V== ————————5exp | — K .
cas 20PN \R + Ry dF =k 0 Z(z2+(:<pd)2)”T"‘ P ¢ L

The next-to-leading order term F rce::1 can be written as a sum of two terms:

1 1 1b
Feo =Fca "+ Fc - (62)
The first term Frce,":;'la vanishes for D = 3, 4, 5, and for D > 6,

premla _ (D_3)(D_5) T < R\R, >Dz3 1

Co 3 7P \Ry + Ry d

X ik; i Am dz#_;)z)n%exp (—2lq/z2 + (Kpd)2>. (63)

The second term Fm!? is

T RiR)T 1 & 1 X [ 22
Frmls _ e VA / dz— S ex (—2k1/z2+ K d2>B, 64
S P 0 2 ol ) (6

where

(D=3)(D-5k\Z T &d)? (D-2)> (D-1)Ba-1) (D-1)k

B= _
12a,a,57 Z + 2a,z + 6aa, 3aa,
(D-1)[5D-11-(9D —15)a; + (3D +3)a}] (D-1)(D-T)k (D-2)k
+ —_ —_ —_
48aya,zk 12a,a5z a
_2(3a; - 2)k+ Kz } z
3aa, 3aa, 2+ (Kpd)z
N _(D—3)(D—2)_(D—3)(3a1—2)+(D—3)k2 22
4a,z 6a,a, 6ajay | 22+ (k,d)?
D—-1)(D-3)3a; -2 D+3)(D-"T)k 3
SRR T LS E S T )
48a,a,zk 48a,a5z (22 + (Kpd)z)i
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Using integration by parts, one can show that the 53 in (64) can be replaced by

g (P=DBaa-1) D-DO+DBan-1) 1 (D=3)(D-5kV &’
6aa, 48a,a,k 24 (Kpd>2 12a,a, 72
(D-1)(D =Tk 1 (D+3)(D -7k 7 & 22
1261]612 Z2 + (K'pd)z 48&]02 (Z2 + (K'pd)z)% 3611612 ZZ + (Kpd)2 :

Together with the results from Sec. IV, we find that the small separation leading term of the Casimir interaction force is

Fgasz_(D—l)TC(D)( R\R, >% |

2 R, +R,

T RR, \Z' I &1 &
e (7o k) A

When D = 3, the next-to-leading order term is

T rem.
FlCas = m+ F(?as’lb; (67)
when D = 4,
3T¢(4) [ RiR, \3 1 d 1 /(d d "
Fl __ I I el el Frem. : 68
Cas 322 \R) +R,/) & 4R1+R2+12 R1+R2 + Feas (68)

and when D > 5,

o (D-1)T¢(D) [ RiR, \5 1
Cas 25t R +R,) 4

X{_D—3 d +[D—3_(D—3)(D—4)4(D—2)](iJrd)}+FrCe£_1a+FEe£,1b_ (69)

4 R +R,

Compare the leading term (66) to the proximity force
approximation (20); it is easy to check that under the
change of variables

x =/2*+ (k,d)%,

and (61) is equal to the sum of the p # 0 terms in (20).
Together with (50) and (21), we find that the small
separation leading term of the Casimir interaction always
agrees with the proximity force approximation. This is true
at any temperature. In fact, for D = 3, we have proved this
in the work [50]. We would like to stress that this is a
remarkable result since it holds at any temperature.
Define

1
_lFCas

= (70)
e Fey

12 3(D—1)

(D) J\R, "R,

|
to be the ratio of the next-to-leading order term to the
leading order term divided by e. In Figs. 6, 7, 8 and 9, we
plot the dependence of € on the distance between the
spheres when D = 3, 4, 5 and 6. We take the radius of both
spheres to be R = 1 mm.

Let us now obtain the explicit small separation asymp-
totic expansions in different temperature regions. As in
[51], we consider the following three regions:

(1) High temperature: 1 < dT < Ry < R,T,

(2) Low temperature: d7 < RiT < R, T <« 1,

(3) Medium temperature: d7 < 1 < R\T < R,T.

In the high temperature regime, it is easy to see that the
dominating term is the classical term considered in Sec. IV
since (61), (63) and (64) go to zero exponentially fast when
dT > 1. In considering the Casimir interaction at finite
temperature, we have separated out the classical term which
corresponds to p = 0. The main reason is that the classical

045012-11
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FIG. 6 (color online). Dependence of € on the distance between
the spheres when D = 3.

0.2

_—— e — —
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FIG. 7 (color online). Dependence of € on the distance between
the spheres when D = 4.

term can in fact be computed exactly. However, we have
seen [Eq. (21)] that by putting p = 0 in the leading term
(61), we indeed obtain the leading term of the classical
Casimir interaction force (50). For D > 5, one can also

PHYSICAL REVIEW D 90, 045012 (2014)
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FIG. 8 (color online). Dependence of # on the distance between
the spheres when D = 5.
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FIG. 9 (color online). Dependence of 6 on the distance between
the spheres when D = 6.

Let us now consider the low temperature and medium
temperature regions. Using the inverse Mellin transform
formula

check that putting p = 0 in (63) and (64) will give exactly ot — 1 feie dwl(w)z™ (71)
the same next-to-leading order term of the classical Casimir 270 Je—ico
interaction force (52).
where ¢ is a positive constant, we find that
T R|R, >% 11 /c+ioo _ ( > / P2
Frem0 _ c— dwIl'(w)2™" +7
G = T3P (75%) gz [ e 2y T
_ T [ RR %
~ 2D2\R, +R,
1 [e+ico D-1\ T -2H) D+1
— awl'(w)2™ 2 a S : 72
e B (s )F(% oy 2T ((v-25) (72
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The pole of the integrand is at w = DT”, DT“ and w = 0, —1, -2, ... Evaluating the residues at these poles, we find that as

dT < 1,

Frem,ON_ T <R1R2 >%{ C(D+1) F(DTH)_(D_ )é:(D)

22 \R R 2P yardT TB) 2%

(25 @)% D43\ (D+3\ (2R 2FTH D45\ (D+5

FURCNE (D3 (0 43) T sy D), Y

4 4

When D = 3, it is understood that

D-1 _ D-1 1
o~ e 2 &

Similarly, when D =5,

B B 1
rES)  bRrES) 2 #)

Combining with the leading term of the classical term (50), we find that when d7T < 1, the leading term of the Casimir
interaction force is

FO éV(D‘*‘l)F(DTH)( RiR, )DTI RG F<D+3>€<D+3>( R\R, >DT‘

s %t r TR \R +Ry)) & TEPH22Pyx \ 4 2 J\Ri+ R,
D=3y 728 ot
b)Y 15°d _(D+5\,(D+5\[ RR
DT F( )c( )( L ) + o (76)

The first term

r—00 _ _S(D+ () ( RiR, >DZI 1 (77)

2
cos 2% r TR \R +R,) 4%

is the zero temperature leading term (22). The next two terms in (76) come from finite temperature contributions. Namely,
the leading terms of the temperature correction are

0 5 T _(D+3\,.(D+3\[ RR, \%
ArFeg~ —=pa s =1 ¢
L7227 /x 4 2 R, +R,
D=3 1%°d (D +5\,(D+5\[ RR, =
L) T r< )g( )( 122 > e (78)
They become significant when d7 ~ 1.

Using the same method, we can compute the asymptotic expansion of the next-to-leading order term Frcefs‘l when
dT < 1. When D =3, 4,5, Fg™'“ = 0. For D > 6,

Frem.]u _ (D_S) 1 R1R2 DT%F(DT—H) C(D_ 1) _ T RlRZ DT%K:(D _2) (D_ 3)(D_5)
cas 3 2% \Ri+R) T2 & 2% \R+R d= 3
+(D—5) (s < R\Ry >%F<%)C(D—3)C<D+l>
3 2%z \Ri+R,) T2 2 2
D-5) T%d [ RR, \ZT(23) /D-5\ _(D+3
_( ) < 1Ry ) <D‘i7>5< >€( >+ (79)
When D = 3,
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Frem 156 R RZC(4) 1 d 1 d T
e Ty Ay E] bk b Ty
167[(R1 + Rz)d 3 R2 R] + R2 48d

2 R\R, [1 (2 I 1\ 2 1 ] dI'RR 11 |
Al Ll B ”——1 — ) - LB L Ty . (80)
12 R +R,|3\6 R "R 6R +R  (Ri+Ry |4\R, "Ry) R +R,

For D > 4,

gty _ 1 (RR2 )%r(mwmn{(om) d _{DZ—I ¢~ ><D+3><D-2>Ki+i)}
Co TR Z\R+R,) T(D) - 8 R +R, [ 24 ((D+1) 6D R R
¢

+( _2132’2T'§ (Rfflzez)% DH{ 4 3leiszL [D1_23_3((DD_—31)) (D(D)z)} (d +1:12)}
) R (B )

+T”—“d R\R, %FDT”(: D+3 C D-1)(D+5) 1
ZTﬁ R1+R2 F% 4 R1+R2

_[(0—11(20+5) EDT_?;(D3DD3;L3K )}

T

(81)

From (67) and (80), we find that when D = 3, the next-to-leading order term of the small separation asymptotic
expansion of the Casimir interaction force is

RiR(4) [l[/d 1 d T2 R\R, [1 [ 11\ = 1
Foor ———o— 5 |3 + - + = —(=-1){+=) -
€™ " 16x(R, + Ry)d® |3 R,) R, +R,| 12R +R,[3\6 R, 'R,)] 6R,+R,

% [4 (Rl +Ri2> R iRz]' (82

The first term is the zero temperature part, whereas the remaining terms are temperature corrections. Combining with (66),
we find that when d < R; < R,, the zero temperature Casimir interaction force behaves as

. R Ry (4) I 4 1(d d
FI=0 172500 Jp_ —(=+=)+... % 83
Co ™ TRaR + R)P | 2R 4R 6\R, TRy) T (83)

ATFCasN

This is the small separation asymptotic expansion in the low temperature regime.
¢(3)T* RR, ’T*d R\R, aT?> RyR, [1

For the temperature correction, we have
? | 1 N 1 7 1
2 R +R, 45 R, +R, =~ 12 R/ +R,|3\6 R, R, 6 R, +R,
dT?R\R 1 1 1
—zg(){ < +—>— ]+ (84)
(Ri+Ry) [4\R, R, R, + R,

This, together with (83), gives the small separation asymptotic expansion in the medium temperature regime.
When D = 4, (66), (68) and (81) give

2= () #arw lsoes) (&t w) T
Few' = 51202 \R, + R, ) & ! 4R1+R2+ 4730¢(5) +R2 T (85)

045012-14



FINITE TEMPERATURE CASIMIR INTERACTION ... PHYSICAL REVIEW D 90, 045012 (2014)
T R|R, >%1 'O r: _(3\.(7 R.R, \3
w6225 o GG ()
e 576\/_(R1+R2 & ) va~\2 ¢ 2)\R, + R,
I T3 <1> <9>< R\R, >%
+4v2 —)e( 2
(- )\/Eg 2 : 2)\Ri +R,
1 F(Z)T7€(5>2< R|R, )%{15 1 [ +1§(2K1+1>}
4/2TE) a7 \2) \Ri+R,) 4R +R, [4 3(3)]\R R
1 7)1 RR, \3i(27 1 -M/71 1
+—¥ zdé(z):(é)( =2 )2{—7 { 32 (— —)} . (86)
V2T va\2)°\2)\R/ +R,) | 4 R +R, ¢3) J\R R

When D > 5, (66), (69), (79), and (81) give

o CD+1TER) / RR, T 1 D-1 d
Fed’ == 27z T(B) <R1+R2> dD_H{l_TRl-FRz
D-1 (D=1)(D-2)D-3)¢D-1)][(d d
+[ 12 3D(D+1) C(D+1)K +Rz>+”}' 87

This gives the small separation asymptotic expansion in the low temperature regime.
For the temperature correction, we have

-1 D13 D=1
=) T D D R{R p
ATFCas:_é’(D2_3) T F( +3>C( +3)< 1R, )

D-3\ mDis Dot

=) T D D R,R
+02) T r< *5)4( *5)< 1R; >2d+...
_ T <R£2)%F@%€CLH>1QY—U 1
2%\/;7;_ R1+R2 F(%) 2 4 R1+R2

[0, @-9e-niEn L, 1))

12 CEFI\R Ry
+2DDT+:/d'<RRf;Q )”z‘rD+3 : D+ 3) ( ){(D—1)4(D+5)R —:—R
2N/ 1 2 1 2
[0 0m D7D )@]( b o

(87) together with (88) give the small separation asymptotic expansion of the Casimir interaction force in the medium
temperature regime.

One can check that the zero temperature asymptotic expansions (83), (85) and (87) agree with the result we derived
in [40].

From the graphs Figs. 6, 7, 8 and 9, we find that when dT <« 1, @ approaches a limiting value given by the zero
temperature limit

_§+6a1a2’ D:3’
_ 4€) —
o0 = —i+ [i- 55 e D=4, (89)
-1 —1 _ (D=1)(D=2)(D=3) {(D-1)| 1 .
-5+ {1)1_2 T 3D+ c(D+1)] e D23
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whereas as dT > 1, 6 approaches a limiting value given by the high temperature limit

1 _
eclassical — 6C@)aa” oo 3’ (90)
= 1 —3 _ (D=3)(D-4) {(D=2
——D4’+[—D];—%C(_D>qi’ 24

VI. COMPARISON TO DERIVATIVE EXPANSION

First, let us consider the sphere-plate limit by taking R; = R, and R, — oco. From (83), (85) and (87), we find that at zero
temperature, the Casimir interaction force is given by

R 1d _
720d3{1+6E+ } D =3,
_ 15(5) k3 1_7:0)]4 _
Fgasoz _512\f2£{1+ {Z_EC(S)]E+"'}’ D=4, o1
{D+1) TR g5 D=1 _ (D=1)(D=2)(D=3) {(D-1)] 4
- B r(é) 0233 {1 + { 2~ 3D(D+1) §(D+1)} RT } D 25.

classical _$€(3){1 +%(3)%+}’ D:3’
Fa™ = (D-1)T¢(D) RS 1 D=3 _ (D=3)(D-4){(D-2)| 4 D>4 (92)
- {1+ 22 - O £} D24

In a series of papers [53—55], Fosco et al. used derivative expansion to compute the Casimir interaction energy between a
curved surface and a plane up to the next-to-leading order term. In [54], they showed that at zero temperature, the derivative
expansion of the zero temperature Casimir interaction energy is given by

] i 2
g | dD‘lxl<b0(D)7| : |D+b2(D)7” LA )
s L4

X,) wx )P
Here x; = (x5,...,Xp), x; = w(x,), x; € S defines the position of the curved surface with respect to the plane at
x; =0, and
FRLED + 1)
by(D) = ——2"

2D+lﬂ. >

b,(D) :—3X2D1+2ﬂ%{—(D_3)(D2;1>(D_2>F<D2_1>§(D— 1)+(D+1)F<D;LI>C(D+1)}.

In [54] and [55], it was shown that in the high temperature limit, the classical term of the Casimir interaction energy is

[ Vi[>
Jwr(x )P )

classica — 1
EQkd IZT/SdD x| (bO(D—l)iw(Xl)'l)_, +by(D-1)

In our case the center of the sphere is of distance L = R + d from the plane x; = 0. We can take

w(x,)=L—/R*—x3.

Then straightforward computations show that at zero temperature,

EDET=0 _ reHe(Dp + 1) RS (1 N {D +1 (D-2)(D-3)¢(D- 1)} d > (93)

— T T 3D = DN DAl ot
Cas 2% /a0®) d% 12 3D {((D+1)|R
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In the high temperature limit,

DE, classical __
E Cas -

3D=3 D—1
2

2 d=

when D > 4, and

EDE’ classical - _

Cas 8 d

for D = 3.

Taking the derivatives of (93), (94) and (95) with respect
to d, one finds that except for the zero temperature case
when D = 4, our results (91) and (92) agree with the results
obtained using derivative expansion.

VII. CONCLUSION

In this work, we have considered the finite temperature
Casimir interaction between two spheres subject to
Dirichlet boundary conditions in (D + 1)-dimensional
Minkowski spacetime. Starting with the TGTG formula
for the zero temperature Casimir interaction energy we
derived in [40], we use Matsubara formalism to obtain the
finite temperature Casimir free interaction energy. The term
corresponding to zero Matsubara frequency is singled out.
It gives the high temperature limit of the Casimir interaction
and is known as the classical term. This term can be
computed exactly by some similarity transformations of
matrices. We then use the Abel-Plana summation formula
to obtain an alternative expression that can be used to
deduce the small separation asymptotic expansions.

PHYSICAL REVIEW D 90, 045012 (2014)

_TamR%(l+{

D—-1 D-4¢{(D-2)]d
PRy ]E*"') (94)
1 d_d

For the remaining part of the Casimir interaction, we use
our results in the zero temperature case [40] together with
Matsubara formalism to derive its small separation leading
and next-to-leading order terms which are valid at any
temperature. Combining with the classical term, we find
that the leading order term agrees with the proximity force
approximation at any temperature. This is a remarkable
result. An inverse Mellin transform is then used to compute
the analytic expression of the leading and next-to-leading
order terms in the low and medium temperature regions. In
the low temperature region, the dominating term is the zero
temperature term. In the medium temperature region, we
have to take into account the contribution from the finite
temperature corrections.
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