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We construct and study a generalized one-parameter class of scheme transformations, denoted SR;m;k1
with m ≥ 2, with the property that an SR;m;k1 scheme transformation eliminates the l-loop terms in the
beta function of a gauge theory from loop order l ¼ 3 to order l ¼ mþ 1, inclusive. These scheme
transformations are applied to the higher-loop calculation of the infrared zero of the beta function of an
asymptotically free gauge theory with multiple fermions. We show that scheme transformations in this
generalized class satisfy a set of criteria for physical acceptability over a larger range of numbers of
fermions than previously studied scheme transformations. We also present an interesting modification of a
different type of scheme transformation that removes the three-loop term in the beta function.
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I. INTRODUCTION

A basic property of a gauge theory is the dependence of
the gauge coupling g ¼ gðμÞ on the Euclidean momentum
scale, μ, where it is measured. This is described by the
beta function of the theory, βg ¼ dg=dt or, equivalently,
βα ¼ dα=dt ¼ ½g=ð2πÞ�βg, where dt ¼ d ln μ and αðμÞ ¼
gðμÞ2=ð4πÞ. The terms at loop order l ≥ 3 in the beta
function are dependent on the scheme used for regulari-
zation and renormalization. Hence, one expects that, at least
for sufficiently small coupling, it is possible to carry out a
scheme transformation that eliminates these terms and
yields a beta function with only one- and two-loop terms
[1]. In [2] (with Ryttov), we constructed and studied
explicit scheme transformations that remove terms at loop
order l ≥ 3 from the beta function.
An important application of such scheme transforma-

tions is to the analysis of zero(s) of the beta function. The
beta function of an asymptotically free non-Abelian gauge
theory has an ultraviolet (UV) zero at α ¼ 0, which is an
ultraviolet fixed point of the renormalization group. If the
theory contains sufficiently many fermions, the (perturba-
tively calculated) beta function may also have an infrared
(IR) zero at a point αIR > 0. Depending on how large αIR is,
this zero is either an exact or approximate infrared fixed
point (IRFP) of the renormalization group. Since the terms
of loop order l ≥ 3 in the beta function are scheme
dependent, so is the value of the IR zero when calculated
to three-loop or higher-loop order. In order to understand
the physical implications of this IR zero, it is necessary to
assess the effect of scheme dependence on its value. A
study of this dependence was carried out in [2] using
several scheme transformations. In [2], we pointed out a set
of criteria that a scheme transformation must satisfy in
order to be physically acceptable, and showed that although
it is straightforward for a scheme transformation to satisfy
these criteria in the vicinity of a zero of the beta function at

α ¼ 0, they are a significant restriction on the choice of an
acceptable scheme transformation that can be applied at a
generic infrared zero of the beta function. Examples of
scheme transformations were given in [2] that are accept-
able for small α but produce unphysical effects when
applied at a generic IR zero of the beta function.
One type of procedure that would be natural for a

quantitative study of scheme dependence of a zero of
the beta function would be to construct and apply a scheme
transformation that would remove successively higher and
higher-loop terms in the beta function and, at each stage,
determine how this removal shifted the position of the IR
zero. Extending the results of [2], in [3] we defined a set of
scheme transformations SR;m with m ≥ 2 that remove the
terms in the beta function at loop order l ¼ 3 to
l ¼ mþ 1, inclusive, and determined the range of α over
which SR;2 and SR;3 can be applied to study the IR zero of
the beta function of an asymptotically free gauge theory
while satisfying the criteria to avoid introducing unphysical
pathologies. For both SR;2 and SR;3, it was shown that these
ranges are rather limited, which, in turn, restricts one’s
ability to use these scheme transformations to study the
scheme dependence of a zero of the beta function away
from α ¼ 0.
In this paper, we present a generalized one-parameter

class of scheme transformations, denoted SR;m;k1 with
m ≥ 2, with the property that an SR;m;k1 scheme trans-
formation eliminates the l-loop terms in the beta function
of a quantum field theory from loop order l ¼ 3 to order
l ¼ mþ 1, inclusive. We give a detailed analysis of the
application of this scheme transformation to the infrared
zero of an asymptotically free gauge theory with gauge
group G ¼ SUðNcÞ and Nf massless fermions in the
fundamental representation, and we show that it satisfies
the physical acceptability criteria specified in [2] over a
wider range of Nf and hence a wider range of values of an
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infrared zero, αIR, than those constructed and analyzed in
[2,3]. We also investigate an interesting modification of the
S1 scheme transformation presented in [2].
This paper is organized as follows. In Sec. II, we recall

some basic information and notation that will be needed
for our analysis. In Sec. III, we define the scheme trans-
formation SR;m;k1 . We display explicit expressions for the
resultant coefficients in the beta function resulting from
the application of the SR;m;k1 transformation in Sec. IV. In
Secs. V and VI, we present specific results on the
application of the respective scheme transformations
SR;2;k1 and SR;3;k1 to an IR zero in the beta function of
an SUðNcÞ gauge theory. In Sec. VII, we give further
results on the application of these scheme transformations
in the limit Nc → ∞ and Nf → ∞ with the ratio Nf=Nc
fixed. In Sec. VIII, we discuss a modification of a different
type of scheme transformation, namely, the S1 transforma-
tion of [2]. We present our conclusions in Sec. IX. Some
additional results are included in the appendixes.

II. BASICS

In this section, we recall some basic formalism and
notation that will be used in our analysis. The scheme
transformation SR;m;k1 that we construct and study can be
applied to any gauge theory, vectorial or chiral, and non-
Abelian or Abelian. Indeed, this transformation can also be
applied to a quantum field theory that does not involve
gauge fields, with an appropriate replacement of g by the
relevant interaction coupling. Here, we will focus on the
application to a vectorial non-Abelian gauge theory with
gauge group G and a set of Nf massless fermions trans-
forming according to a representation R of G. Since these
theories are vectorial, the gauge invariance would allow
nonzero fermion masses. However, in studying the evolu-
tion of the gauge coupling as a function of the scale μ, as
this scale decreases below the value of a given fermion
mass, one would construct a low-energy effective field
theory by integrating this fermion out, so this massive
fermion would not affect the evolution of the coupling for
scales below its mass. Hence, our assumption of massless
fermions does not entail a loss of generality.
It will be convenient to define the quantity

aðμÞ≡ αðμÞ
4π

¼ gðμÞ2
16π2

: ð2:1Þ

(The argument μ will often be suppressed in the notation.)
The βα function has the power-series expansion

βα ¼ −2α
X∞
l¼1

blal ¼ −2α
X∞
l¼1

b̄lαl; ð2:2Þ

where l labels the loop order, b̄l ¼ bl=ð4πÞl, and we have
extracted a minus sign so that the one-loop coefficient b1 is
positive if the theory is asymptotically free. The n-loop

(nl) β function, denoted βα;nl, is obtained from Eq. (2.2)
by replacing the upper limit on the l-loop summation by n
instead of∞. The (scheme-independent) one-loop and two-
loop coefficients b1 and b2 were calculated in [4] and [5,6],
respectively, and are listed for reference in Appendix A. As
mentioned above, the bl with l ≥ 3 are scheme dependent
[7,8]. For a non-Abelian gauge theory, b3 and b4 were
calculated in [9] and [10] in the modified minimal sub-
traction scheme [11]. The property of asymptotic freedom,
i.e., b1 > 0, requires that Nf < Nf;b1z, where Nf;b1z ¼
11CA=ð4TfÞ [12]. We assume that this condition is
satisfied.
If an asymptotically free gauge theory has sufficiently

many massless fermions, the beta function can exhibit an
IR zero at a certain value, denoted generically as αIR [5,13].
As is evident from Eq. (A2), for smallNf, b2 is positive, but
it decreases with increasing Nf and passes through zero to
negative values as Nf increases through the value

Nf;b2z ¼
34C2

A

4ð5CA þ 3CfÞTf
: ð2:3Þ

Since Nf;b2z < Nf;b1z, there is always an interval I, defined
by

I∶ Nf;b2z < Nf < Nf;b1z; ð2:4Þ

in which the two-loop beta function, βα;2l, has an IR zero.
For Nf ∈ I, this zero of βα;2l occurs at the (scheme-
independent) value

αIR;2l ¼ 4πaIR;2l ¼ −
4πb1
b2

: ð2:5Þ

Henceforth, for definiteness, we focus on the case where
the gauge group is G ¼ SUðNcÞ and the Nf fermions
transform according to the fundamental representation.
If the IR zero of the beta function occurs at a small value

of the gauge coupling, then this is an exact IRFP of the
renormalization group. With decreasing Nf, αIR increases,
eventually to a value at which the gauge interaction is
strong enough to trigger the formation of bilinear fermion
condensates with associated spontaneously chiral sym-
metry breaking (SχSB). As a consequence of this, the
fermions gain dynamical masses of order the SχSB scale,
denoted Λ. In the low-energy effective field theory appli-
cable at scales μ < Λ, these fermions are integrated out, the
beta function changes to one with Nf ¼ 0, and the resultant
low-energy theory does not have an IR zero in its
(perturbative) beta function. Thus, in this case, the initial
zero is only an approximate, rather than exact, fixed point
of the renormalization group. The value of Nf that
separates these two regimes of infrared behavior is denoted
Nf;cr. If the beta function of a theory has an IR zero that is
only slightly greater than the minimum value for fermion
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condensation, then the UV to IR evolution exhibits slowly
running, quasi-scale-invariant behavior over a substantial
interval of scales μ. This behavior, and the resultant
approximate Nambu-Goldstone boson (the dilaton) that
results from the spontaneous breaking of scale invariance
by the bilinear fermion condensate, might be relevant for
physics beyond the Standard Model [14].
SinceNf;cr corresponds to a value α ∼Oð1Þ for the exact

or approximate infrared zero of the beta function, one is
motivated to calculate this value to higher-loop order [15].
This was done in [16,17] for this zero of the beta function
and for the corresponding value of the anomalous dimen-
sion of the fermion bilinear for a general gauge group and
fermion representation. Additional higher-loop results on
structural properties of the beta function were calculated in
[18–20]. In turn, this motivated the study of the scheme
dependence of the IR zero in beta in [2,3] (some related
work is in [21–25]).
A scheme transformation can be expressed as a mapping

between α and α0, or equivalently, a and a0, which we
write as

a ¼ a0fða0Þ; ð2:6Þ

where fða0Þ is the scheme transformation function. The
properties of the theory must remain unchanged under a
scheme transformation in the limit in which the gauge
coupling vanishes and the theory becomes free, which
implies the condition that fð0Þ ¼ 1. We will use a function
fða0Þ that is analytic about a ¼ a0 ¼ 0 and hence has the
power-series expansion

fða0Þ ¼ 1þ
Xsmax

s¼1

ksða0Þs ¼ 1þ
Xsmax

s¼1

k̄sðα0Þs; ð2:7Þ

where the ks are constants, k̄s ¼ ks=ð4πÞs, and smax may be
finite or infinite. The Jacobian of this transformation is
J ¼ da=da0 ¼ dα=dα0, with the expansion

J ¼ 1þ
Xsmax

s¼1

ðsþ 1Þksða0Þs ¼ 1þ
Xsmax

s¼1

ðsþ 1Þk̄sðα0Þs:

ð2:8Þ

This Jacobian thus has the value J ¼ 1 at a ¼ a0 ¼ 0. After
the scheme transformation is applied, the beta function
in the resultant scheme is

βα0 ≡ dα0

dt
¼ dα0

dα
dα
dt

¼ J−1βα: ð2:9Þ

This has the expansion

βα0 ¼ −2α0
X∞
l¼1

b0lða0Þl ¼ −2α0
X∞
l¼1

b̄0lðα0Þl; ð2:10Þ

with a new set of coefficients b0l [where b̄0l ¼ b0l=ð4πÞl].
One then solves for the b0l as functions of the bl and ks.
This gives b01 ¼ b1 and b02 ¼ b2 and the new results for b0l
at higher-loop order l that were presented in [2]. For the
reader’s convenience, we list some of these results in
Appendix B.
The n-loop beta function in the transformed scheme,

βα0;nl, is given by Eq. (2.10) with the upper limit on the l
summation equal to n rather than ∞. It will be useful to
extract the quadratic prefactors and define

βα;nl;r ≡ −
βα;nl
2α2

¼
Xn
l¼1

b̄lαl−1 ¼
1

4π

Xn
l¼1

blal−1 ð2:11Þ

and similarly with βα0;nl;r, with the replacements α → α0,
bl → b0l, and b̄l → b̄0l. Since b01 ¼ b1 and b02 ¼ b2, it
follows that

βα0;2l ¼ βα;2l: ð2:12Þ

Consequently, if βα;2l has a (UV or IR) zero at αz;2l, then
βα0;2l also has a (UV or IR) zero, and at the same value in
the transformed variable,

α0z;2l ¼ αz;2l: ð2:13Þ

We will use this property below for asymptotically free
gauge theories, where this is an IR zero, so the equality
(2.13) reads [26]

α0IR;2l ¼ αIR;2l ¼ −
4πb1
b2

: ð2:14Þ

We recall the set of conditions that a scheme trans-
formation must satisfy in order to be physically acceptable
[2,3]. The first of these, which we label as condition C1, is
that the scheme transformation must transform a real
positive α to a real positive α0, since a function mapping
α > 0 to α0 ¼ 0 would be singular, and a function mapping
α > 0 to a negative or complex α0 would violate unitarity.
The second condition,C2, is that the scheme transformation
should transform a small or moderate value of α to a
similarly small or moderate value of α0, so a perturbative
analysis remains valid. The third condition, C3, is that the
Jacobian J must be nonzero to avoid a singular trans-
formation (2.9). Since J ¼ 1 at α ¼ α0 ¼ 0 and J is a
continuous function, condition C3 implies that J > 0. The
zero of β is a scheme-independent property, and hence, as
the fourth condition,C4, a scheme transformation should be
such that βα has a zero if and only if βα0 has a zero. The
conditions apply for both a scheme transformation and its
inverse.
These conditions can easily be satisfied by scheme

transformations applied in the vicinity of α ¼ 0, such as
those used to optimize the convergence of perturbative
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calculations in quantum chromodynamics [27], but they are
a significant constraint on a scheme transformation applied
in the vicinity of a (UVor IR) zero of the beta function for
α≲Oð1Þ. Underlying this analysis of scheme transforma-
tions is, of course, the assumption that one is studying the
theory for values of the coupling α that are sufficiently
small such that perturbative calculations are justified.
Clearly, if the value of α at the zero of the beta function
is too large, then one cannot use perturbative calculational
methods reliably. From the expression for the zero of the
beta function, αIR;2l in Eq. (2.5), it is evident that this gets
large as Nf decreases toward the lower end of the interval I
at Nf;b2z and b2 approaches zero. Hence, one cannot
reliably use perturbative methods to study the evolution
of the coupling near this lower end of the interval I. Since
scheme transformations are carried out in the context of
perturbative calculations, it follows that one could option-
ally relax the requirement that a scheme transformation
must satisfy all of the conditions C1-C4 at the lower end of
this interval I.

III. GENERAL CLASS OF SCHEME
TRANSFORMATIONS SR;m;k1 AND SR;∞;k1

In this section, we present a new scheme transformation
SR;m;k1 , withm ≥ 2 and smax ¼ m, that removes the terms in
the beta function βα0 from loop order l ¼ 3 to order
l ¼ mþ 1, inclusive. In our notation, we have specifically
included the value of k1, since a choice for k1 determines
the ks for s ≥ 2. Applying the scheme transformation
SR;m;k1 to an initial scheme, it follows that

SR;m;k1 ⇒ b0l ¼ 0 for l ¼ 3;…; mþ 1: ð3:1Þ

Thus, SR;m;k1 yields

βα0;nl ¼ −8πða0Þ2
�
b1 þ b2a0 þ

Xn
l¼mþ2

b0lða0Þl−1
�
; ð3:2Þ

and similarly for the expansion in powers of α, with b0l
replaced by b̄0l. From Eq. (3.1), it follows that a zero of the
n-loop beta function βα0;ml is at the same value as the
(scheme-independent) value αIR;2l for n up to and includ-
ing n ¼ mþ 1, i.e.,

SR;m ⇒ α0IR;nl ¼ αIR;2l for n ¼ 3;…; mþ 1: ð3:3Þ

The construction of this scheme makes use of the
property that the resultant coefficient b0l for l ≥ 3 contains
only a linear term in kl−1, so that the equation b0l ¼ 0 is a
linear equation for kl−1, which can always be solved
uniquely. The choice of k1, together with the values of
the bl, thus uniquely determines the ks for s ≥ 2. The
simplest choice is k1 ¼ 0, and this was studied in detail in
[2,3]. This special case is indicated with the notation

SR;m;k1¼0 ≡ SR;m: ð3:4Þ

Here we present, as new results, the general formulas
for the ks in the SR;m;k1 scheme with nonzero k1. The first
step is to use Eq. (B1) and solve the equation b03 ¼ 0 for k2.
This yields the result

k2 ¼
b3
b1

þ b2
b1

k1 þ k21 for SR;m;k1 with m ≥ 2: ð3:5Þ

This suffices for SR;2;k1. To obtain SR;m;k1 with m ≥ 3,
removing the l ¼ 3; 4 terms in βα0 , we need to compute k3.
For this purpose, we substitute the values of k1 and k2 into
Eq. (B2) and solve the equation b04 ¼ 0 for k3. This gives

k3 ¼
b4
2b1

þ 3b3
b1

k1 þ
5b2
2b1

k21 þ k31 for SR;m;k1 with

m ≥ 3: ð3:6Þ

Next, to obtain k4, as needed for SR;m;k1 with m ≥ 4, we
substitute the ks with s ¼ 1; 2; 3 into Eq. (B3) and solve the
equation b05 ¼ 0 for k4. This yields

k4 ¼
b5
3b1

−
b2b4
6b21

þ 5b23
3b21

þ
�
2b4
b1

þ 3b2b3
b21

�
k1

þ
�
6b3
b1

þ 3b22
2b21

�
k21 þ

�
13b2
3b1

�
k31 þ k41

for SR;m;k1 with m ≥ 4: ð3:7Þ

We continue this procedure iteratively to calculate SR;m;k1
for higher m. Thus, having computed the ks up to order
s ¼ m − 1 inclusive, we compute km by substituting these
ks with 1 ≤ s ≤ m − 1 into our expression for b0mþ1 and
solving the equation b0mþ1 ¼ 0 for km. For a given k1, this
yields a unique solution for km because, as noted above,
the equation b0mþ1 ¼ 0 with mþ 1 ≥ 3 is a linear equation
in km. Specifically, in the expression for b0mþ1 with
mþ 1 ≥ 3, the variable km occurs only in the term
−ðm − 1Þkmb1. We list the ks for s ¼ 5 and s ¼ 6 in
Appendix C. These expressions become progressively
lengthier as s increases, but our method for calculating
them as solutions to respective linear equations is system-
atic for any s. As is evident, the choice k1 ¼ 0 greatly
simplifies these expressions for the ks with s ≥ 2 and hence
also the transformation function fða0Þ. However, as was
shown in [2,3], with this choice of k1 ¼ 0, the scheme
transformation SR;m leads to violations of one or more of
the requisite conditions C1-C4 when applied to the IR zero
of the beta function in an asymptotically free non-Abelian
gauge theory with fermions for a substantial range of
Nf ∈ I. With our generalization, taking advantage of the
extra parameter k1 on which the scheme transformation
SR;m;k1 depends, we obtain a significantly enlarged range of
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applicability of this scheme transformation at an IR zero of
the beta function.
Because the scheme transformation SR;m;k1 involves

coefficients ks with s ¼ 2;…; m, the construction of this
scheme transformation requires a knowledge of the bl in
this initial scheme up to the loop order l ¼ mþ 1. Since
smax ¼ m for SR;m;k1, it follows that ks ¼ 0 for SR;m;k1 with
s > m. For a given k1, using the ks with s ¼ 2;…; m as
calculated via the procedure above, we compute the fða0Þ
function for the SR;m;k1 scheme transformation:

fða0ÞSR;m;k1
¼ 1þ

Xm
s¼1

ksða0Þs ¼ 1þ
Xm
s¼1

k̄sðα0Þs: ð3:8Þ

Applying this to an initial scheme, we obtain b0l ¼ 0 for
l ¼ 3;…; mþ 1, as in (3.1)–(3.2).
The generalized scheme transformation SR;m;k1 satisfies

the same scaling properties that we derived in [2] for the
case k1 ¼ 0, i.e., the SR;m transformation. Thus, the
coefficient ks depends on the bl with l ¼ 1;…; sþ 1
via the ratios bl=b1 for l ¼ 2;…; sþ 1, and consequently,
these ks are invariant under the rescaling bl → λbl, where
λ ∈ R. It follows that SR;m;k1 is invariant under the rescaling
bl → λbl. As was true of SR;m, since SR;m;k1 requires
knowledge of the bl up to loop order l ¼ mþ 1 and since
the bl have been calculated up to l ¼ 4 loops for a general
non-Abelian gauge theory [9,10], the highest order for
which we can calculate and apply the SR;m;k1 scheme
transformation is m ¼ 3.
The application of the transformation SR;m;k1 to an

arbitrary initial scheme yields a βα0 function with b0l ¼ 0
for l ¼ 3;…; mþ 1, as expressed in Eqs. (3.1)–(3.2), so in
the new scheme, the IR zero of the n-loop beta function
βα0;ml is at the same value as the (scheme-independent)
value αIR;2l for n up to and including n ¼ mþ 1, i.e.,
α0IR;nl ¼ αIR;2l for n ¼ 3;…; mþ 1.
We define SR;∞;k1 ¼ limm→∞SR;m;k1 . Assuming that

SR;∞;k1 meets the conditions to be physically acceptable,
it takes an arbitrary initial scheme to a scheme with b0l ¼ 0
for all l ≥ 3, so that βα0 ¼ −8πða0Þ2ðb1 þ b2a0Þ ¼
−2ðα0Þ2ðb̄1 þ b̄2α0Þ.

IV. COEFFICIENTS b0l RESULTING FROM SR;m;k1
SCHEME TRANSFORMATION

A. General properties

We note some general structural properties of the
coefficients b0l for SR;m;k1. First, in the expression for b0l,
the sum of the subscripts of the bl factors in the numerator
of each term minus the power of b1 in the denominator
(if present) plus the power of k1 which multiplies this term
is equal to l. For example, in the expression for the
coefficient b05 resulting from the application of the SR;2;k1
scheme transformation in Eq. (4.3) below, in the term
ð12b2b3=b1Þk1, this sum is 2þ 3 − 1þ 1 ¼ 5, and so forth

for the other terms in Eq. (4.3) and the other b0l. The
(nonzero) coefficient b0l resulting from the scheme trans-
formation (2.7) is, in general, a polynomial in the ks for
s ¼ 1;…;l − 1, and the term in b0l of highest degree in k1
is proportional to kl−11 . It follows, in particular, that the term
in the nonzero coefficient b0l resulting from the SR;m;k1
scheme transformation (and hence with l ≥ mþ 2) is a
polynomial in k1 with the property that its highest-degree
term has at most degree l − 1. Actually, in several cases,
the coefficient of the kl−11 term in b0l vanishes, so the
highest-degree term is proportional to kl−21 . This happens,
for example, for coefficient b06 resulting from the SR;2;k1
scheme transformation and for the coefficients b0l with
l ¼ 7; 8 resulting from the SR;3;k1 scheme transformation.

B. SR;2;k1
Here we give the coefficients b0l resulting from applying

the scheme transformation SR;2;k1 to an initial scheme. From
the expressions for the ks in the SR;2;k1 transformation, we
obtain the following results for s ¼ 3; 4; 5:

b03 ¼ 0; ð4:1Þ

b04 ¼ b4 þ 6b3k1 þ 5b2k21 þ 2b1k31; ð4:2Þ

and

b05 ¼ b5 þ
5b23
b1

þ
�
3b4 þ

12b2b3
b1

�
k1 þ

7b22
b1

k21

− b2k31 − 3b1k41: ð4:3Þ
The expressions for b0l for higher s are more lengthy and
are given in Appendix D. The expression for the n-loop
beta function βα0;nl resulting from the application of the
SR;2;k1 transformation is given by the m ¼ 2 special case
of Eq. (3.2).

C. SR;3;k1
We next present the coefficients b0l resulting from apply-

ing the scheme transformation SR;3;k1 to an initial scheme.
From the expressions for the ks in the SR;3;k1 transformation,
we obtain the following results for s ¼ 3; 4; 5:

b03 ¼ 0; b04 ¼ 0; ð4:4Þ
and

b05 ¼ b5 þ
5b23
b1

−
b2b4
2b1

þ
�
6b4 þ

9b2b3
b1

�
k1

þ
�
18b3 þ

9b22
2b1

�
k21 þ 13b2k31 þ 3b1k41: ð4:5Þ

We list the expressions for b0l with higher s in Appendix E.
The expression for the n-loop beta function βα0;nl following
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from the application of the SR;3;k1 transformation is given by
the m ¼ 3 special case of Eq. (3.2).
In a similar manner, one can calculate the coefficients for

the SR;m;k1 scheme transformations with m ≥ 4. However,
to actually apply these scheme transformations to a given
theory requires knowledge of the bl coefficients up to loop
order l ¼ mþ 1, i.e., l ≥ 5 for m ≥ 4. Since our primary
application will be to non-Abelian gauge theories, and
since the bl have only been calculated up to loop order
l ¼ 4, we thus limit ourselves to studying the application
of the scheme transformations SR;m;k1 with m ¼ 2
and m ¼ 3.

V. APPLICATION OF THE SR;2;K1
SCHEME

TRANSFORMATION

In this section and the next, we discuss the application of
the SR;m;k1 scheme transformations. These transformations
can be applied to the beta function of any gauge theory,
non-Abelian or Abelian, asymptotically free or infrared-
free. As mentioned in the Introduction, we will focus here
on the application to the study of an infrared zero in the beta
function of an asymptotically free vectorial gauge non-
Abelian gauge theory with gauge group G and Nf massless
Dirac fermions in a representation R of G. Note that the
two-loop beta function for an Abelian U(1) gauge theory
does not have a zero away from the origin (which would
be a UV zero), since b1 and b2 have the same sign (see,
e.g., [25] and references therein).
In previous work [2,3], it was shown that the special case

of the SR;2;k1 scheme transformation with k1 ¼ 0, denoted
SR;2 ≡ S2, cannot be applied to a generic IR zero of an
asymptotically free SUðNcÞ gauge theory because for a
given Nc it fails to satisfy the requisite conditions to be
physically acceptable for a substantial part of the interval I
in Eq. (2.4). Here we show that one can pick the parameter
k1 in our generalized one-parameter scheme transformation
SR;2;k1 so as to avoid the pathologies encountered with the
SR;2 ≡ SR;2;k1¼0 transformation.
The fða0Þ function for the SR;2;k1 scheme transformation

is given by

SR;2;k1∶ fða0Þ ¼ 1þ k1a0 þ
�
b3
b1

þ b2
b1

k1 þ k21

�
ða0Þ2

¼ 1þ k̄1α0 þ
�
b̄3
b̄1

þ b̄2
b̄1

k̄1 þ k̄21

�
ðα0Þ2;

ð5:1Þ
and hence the Jacobian is

SR;2;k1∶ J ¼ 1þ 2k1a0 þ 3

�
b3
b1

þ b2
b1

k1 þ k21

�
ða0Þ2

¼ 1þ 2k̄1α0 þ 3

�
b̄3
b̄1

þ b̄2
b̄1

k̄1 þ k̄21

�
ðα0Þ2: ð5:2Þ

Now, assume that Nf ∈ I, so that there is an IR zero in
the two-loop beta function, β2l, as given in Eq. (2.5). Since
the existence of an IR zero in beta is a scheme-independent
property, one may impose the condition on an acceptable
scheme that it should maintain this property at higher-
loop level. Because the three-loop expression for the zero
of βα away from the origin involves the square rootffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 − 4b1b3

p
, and because b2 → 0 at the smaller-Nf

end of the interval I, this condition generically implies
that the scheme should be such that b3 < 0 for Nf ∈ I [19].
In particular, this condition is satisfied in the MS scheme
[16]. We shall impose this condition in the following. From
our discussion above, it follows that

α0IR;3l ¼ α0IR;2l ¼ αIR;2l; ð5:3Þ

provided that the SR;2;k1 transformation is acceptable.
As in our earlier works [2,3], the scheme dependence of

the theory in the vicinity of the IR zero of the beta function
is of particular interest, so we focus on this. The require-
ment that the SR;2;k1 scheme transformation should obey
condition C1, mapping a0 > 0 to a > 0, is that fða0Þ > 0.
This inequality must be satisfied, in particular, at a0IR;2l ¼
aIR;2l ¼ −b1=b2. Evaluating fða0Þ at this value, we obtain

SR;2;k1∶ fða0IR;2lÞ ¼ 1þ b1b3
b22

þ b21
b22

k21; ð5:4Þ

and hence the inequality

1þ b1b3
b22

þ b21
b22

k21 > 0: ð5:5Þ

[Note that the terms linear in k1 in (5.4) and (5.5) happen to
vanish here and also below in Eq. (7.14).] Because the
coefficient of k21 is positive, this inequality can always be
satisfied by using a value of k21 that satisfies the inequality

k21 > ðk21Þmin; ð5:6Þ

where

ðk21Þmin ¼ −
ðb22 þ b1b3Þ

b21
¼ −b22 þ b1jb3j

b21
: ð5:7Þ

In Eq. (5.7), we have used the property that b3 < 0 for
Nf ∈ I. By a continuity argument, if fða0Þ > 0 at
a0 ¼ a0IR;2l, then this is also true in a neighborhood of
this point on the real a0 axis. Equation (5.7) is a nontrivial
condition if b3 is sufficiently negative that jb3j > b22=b1. As
was shown in [2,3], such a subinterval in I does exist if one
uses the MS scheme as the initial scheme. Indeed, this is the
reason why SR;2 ¼ SR;2;0 violates condition C1.
Condition C3 is that J > 0, in particular, at a0IR;2l ¼

aIR;2l ¼ −b1=b2. Evaluating J at this value, we obtain
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SR;2;k1∶ J ¼ 1þ 3b1b3
b22

þ b1
b2

k1 þ
3b21
b22

k21: ð5:8Þ

Then C3 is the inequality

1þ 3b1b3
b22

þ b1
b2

k1 þ
3b21
b22

k21 > 0: ð5:9Þ

If k1 were zero, then, since b3 < 0, this condition would be
violated for jb3j > b22=ð3b1Þ. For a given Nc, as Nf ∈ I
increases and b3 increases in magnitude through negative
values, J goes negative before fða0Þ does, since jb3j
exceeds b22=ð3b1Þ before it exceeds b22=b1. Taking into
account that b2 < 0 and b3 < 0 in I, the inequality (5.9) is
satisfied if

k1 >
1

6b1

�
jb2j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−11b22 þ 36b1jb3j

q �
ð5:10Þ

or

k1 <
1

6b1

�
jb2j −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−11b22 þ 36b1jb3j

q �
: ð5:11Þ

Note that since we are considering the nontrivial case
jb3j > b22=ð3b1Þ, the expression in the square root of
Eqs. (5.10) and (5.11) is positive and is greater than b1,
which also implies that the right-hand side of Eq. (5.11) is
negative. In general, the inequality (5.9) is a stronger
condition than (5.6)–(5.7); for example, with b3 < 0 and
jb3j ¼ b22=b1, it follows that ðk21Þmin ¼ 0 in Eq. (5.7), but
(5.9) yields the constraints that k1 > jb2j=b1 from (5.10) or
k1 < −2jb2j=ð3b1Þ from (5.11).
Having shown that k1 can be chosen so that SR;2;k1

satisfies conditions C1 and C3, we next check conditions
C3 and C4. For this purpose, we need to analyze the
inverse transformation, in which, for a given a, we
calculate a0 from the relation (2.6). For SR;2;k1,
Eq. (2.6) is the cubic

SR;2;k1∶ a ¼ a0
�
1þ k1a0 þ

�
b3
b1

þ b2
b1

k1 þ k21

�
ða0Þ2

�
:

ð5:12Þ
As an illustrative case, we consider Nc ¼ 3 with

Nf ¼ 12, for which the two-loop beta function has a

(scheme-independent) zero at αIR;2l ¼ α0IR;2l ¼ 0.754,
i.e., aIR;2l ¼ a0IR;2l ¼ 0.060. We study the effect of
carrying out the scheme transformation SR;2;k1 on the
beta function. From our general results above, we
calculate jk̄1jmin ¼ 0.692 to satisfy fða0Þ > 0 and k̄1 >
1.525 or k̄1 < −1.08 to satisfy J > 0. We choose
k̄1 ¼ 1.751. Substituting this into Eq. (2.6) together with
a ¼ 0.060 and solving for a0, we obtain, for the relevant
physical root, a0 ¼ 0.0399, i.e., α0 ¼ 0.502 [26]. (The
other two roots of the cubic equation are a0 ¼ −0.0575,
which is unphysical, and a0 ¼ 0.1107, which lies farther
away from the origin than a0 ¼ 0.0399 and hence is not
reached in the evolution of the theory from the UV to the
IR.) This moderate shift downward in the value of the IR
zero α0 obtained by the SR;2;k1 transformation is similar to
the value of the IR zero that one obtains by staying
within the MS scheme and calculating to three-loop
order, namely, αIR;3l ¼ 0.435. We have found similar
results for other values of Nc and Nf. Thus, condition C2

is satisfied, since the SR;2;k1 transformation with this value
of k1 maps a moderate value of a to a moderate (smaller)
value of a0. Condition C4 is also obviously satisfied.
Continuity of the scheme transformation implies that for
values of k1 close to this value, the same qualitative and
quantitative results hold.

VI. APPLICATION OF THE SR;3;K1
SCHEME

TRANSFORMATION

Next, we study the SR;3;k1 scheme transformation. The
transformation function fða0Þ for SR;3;k1 is

SR;3;k1∶ fða0Þ ¼ 1þ k1a0 þ k2ða0Þ2 þ k3ða0Þ3; ð6:1Þ

where k2 and k3 are given by Eqs. (3.5) and (3.6). From the
m ¼ 3 special case of Eq. (3.3), it follows that after the
application of the SR;3 scheme transformation, in terms of
the new variable α0,

α0IR;4l ¼ α0IR;3l ¼ α0IR;2l ¼ αIR;2l: ð6:2Þ

We again assume that Nf ∈ I, so that the two-loop beta
function has an IR zero. Evaluating fða0Þ at this (scheme-
independent) two-loop zero, a0IR;2l ¼ aIR;2l ¼ −b1=b2,
we have

SR;3;k1∶ fða0IR;2lÞ ¼ 1þ b1b3
b22

−
b21b4
2b32

− 3
b21b3
b32

k1 −
3b21
2b22

k21 −
b31
b32

k31: ð6:3Þ

An important property of Eq. (6.3) is that the coefficient of the highest-degree term, k31, is positive, namely,
−ðb1=b2Þ3 ¼ ðb1=jb2jÞ3. In [3], it was shown that for SR;3 ¼ SR;3;0, i.e., if k1 ¼ 0, fða0IR;2lÞ can be negative, violating
condition C1. In contrast, with nonzero k1, because the coefficient of the highest power of k1 in (6.3) is positive, we can
always satisfy the inequality by using a sufficiently large value of k1.
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We next consider condition C3, that J > 0. Evaluating J at a0IR;2l ¼ aIR;2l, we find

SR;3;k1∶ J ¼ 1þ 3b1b3
b22

−
2b21b4
b32

þ
�
b1
b2

−
12b21b3
b32

�
k1 −

7b21
b22

k21 −
4b31
b32

k31: ð6:4Þ

Again, the coefficient of the highest-degree (degree 3)
term in k1 is positive, namely, −4ðb1=b2Þ3 ¼ 4ðb1=jb2jÞ3.
Hence, we can choose k1 so as to guarantee that J > 0 for
Nf ∈ I.
We generalize these results for SR;2;k1 and SR;3;k1 as

follows. We find that for the SR;m;k1 transformation, the
respective highest-degree terms in the variable k1 in fða0Þ
and J evaluated at a0IR;2l have degree m and have positive
coefficients ∝ ð−1Þmðb1=b2Þm ¼ ðb1=jb2jÞm. Therefore,
by choosing k1 appropriately, one can always render
both fða0Þ and J evaluated at a0IR;2l positive. This
contrasts with the simpler scheme transformations SR;m ≡
SR;m;0 which were analyzed in [2,3] and were shown not
to satisfy conditions C1 and C3. For values of a that are
such that we trust perturbation theory, the location of the
IR zero in βnl for n ≥ 3 should not differ very much
from the value in β2l, so by a continuity argument, it
follows that it is possible to choose a k1 that again
guarantees that fða0Þ and J are positive. In this range of
values of a, all of the conditions C1 through C4 are
satisfied.
As noted before, the maximum m for which we can

explicitly analyze the application of the SR;m;k1 scheme
transformation in an asymptotically free theory is
m ¼ 3, because this requires knowledge of the bl for
1 ≤ l ≤ mþ 1, and the bl have only been computed
up to m ¼ 4 loops. Nevertheless, it is of interest to
calculate the coefficients b0l resulting from the applica-
tion of the SR;4;k1 scheme transformation, and we have
done this.

VII. SCHEME TRANSFORMATIONS IN THE
LIMIT Nc → ∞, Nf → ∞ WITH Nf=Nc FIXED

A. General

One can get further insight into the application of the
SR;2;k1 and SR;3;k1 scheme transformations at an IR zero
of the beta function by considering an SUðNcÞ gauge
theory with Nf fermions in the fundamental representa-
tion and taking the limit [28] Nc → ∞ and Nf → ∞
with the ratio

r≡ Nf

Nc
; ð7:1Þ

held fixed and finite. One also imposes the condition
that the products

xðμÞ≡ NcaðμÞ; ξðμÞ≡ NcαðμÞ ¼ 4πxðμÞ; ð7:2Þ

should be fixed, finite functions of μ in this limit. (As
before, we will often suppress the argument μ in the
notation.) We call this the LNN (large Nc and Nf)
limit.
As in [20], to have a beta function that has a finite,

nontrivial LNN limit, we multiply both sides of Eq. (2.2) by
Nc and define

βξ ≡ dξ
dt

¼ lim
LNN

βαNc: ð7:3Þ

This has the power series expansion

βξ ≡ dξ
dt

¼ −8πx
X∞
l¼1

b̂lxl ¼ −2ξ
X∞
l¼1

~blξl; ð7:4Þ

and

b̂l ¼ lim
LNN

bl
Nl

c
; ~bl ¼ lim

LNN

b̄l
Nl

c
: ð7:5Þ

We define the n-loop βξ function by Eq. (7.4) with the
upper limit on the summation over loop order l ¼ ∞
replaced by l ¼ n. The (scheme-independent) one-loop
and two-loop coefficients in βξ are

b̂1 ¼
11 − 2r

3
; b̂2 ¼

34 − 13r
3

: ð7:6Þ

To maintain asymptotic freedom, one restricts r < 11=2.
We will focus on the interval r ∈ Ir where βξ;2l has an IR
zero, namely,

Ir∶
34

13
< r <

11

2
; ð7:7Þ

i.e., 2.615 < r < 5.500. This zero occurs at

xIR;2l ¼ 11 − 2r
13r − 34

: ð7:8Þ

We have [20]

b̂3 ¼
1

54
ð2857 − 1709rþ 112r2Þ

¼ 52.9074 − 31.6481rþ 2.07407r2 ð7:9Þ

and

ROBERT SHROCK PHYSICAL REVIEW D 90, 045011 (2014)

045011-8



b̂4 ¼
150473

486
−
�
485513

1944

�
rþ

�
8654

243

�
r2 þ

�
130

243

�
r3 þ 4

9
ð11 − 5rþ 21r2Þζð3Þ

¼ 315.492 − 252.421rþ 46.832r2 þ 0.534979r3; ð7:10Þ

to the indicated numerical floating-point accuracy,
where ζðsÞ ¼ P∞

n¼1 n
−s is the Riemann ζ function, with

ζð3Þ ¼ 1.202057.
A scheme transformation in this LNN limit has the form

x ¼ x0fðx0Þ. We impose the condition that fð0Þ ¼ 1 to keep
the properties of the theory the same as the coupling goes to
zero. Using an fðx0Þ that is analytic at x0 ¼ x ¼ 0, we have
the expansion

fðx0Þ ¼ 1þ
Xsmax

s¼1

k̂sðx0Þs ¼ 1þ
Xsmax

s¼1

ˆ̄ksðξ0Þs; ð7:11Þ

where the k̂s and
ˆ̄ks are given by the expressions for the ks

and k̄s with the various bn coefficients replaced by b̂n. The
Jacobian is

J ¼ da
da0

¼ dx
dx0

¼ 1þ
Xsmax

s¼1

ðsþ 1Þk̂sðx0Þs

¼ 1þ
Xsmax

s¼1

ðsþ 1Þ ˆ̄ksðξ0Þs: ð7:12Þ

We will denote the scheme transformation on x in the LNN
limit that corresponds to SR;m;k1 with the rescalings indicated
above as SR;m;k̂1;LNN

. We construct the scheme transforma-
tion SR;m;k̂1;LNN

in the same way that we constructed SR;m;k1 ,
by solving the equations for b̂l ¼ 0 for 3 ≤ l ≤ mþ 1.

B. SR;2;k̂1;LNN scheme transformation

For the SR;2;k̂1;LNN scheme transformation, we calculate

k̂2 ¼
b̂3
b̂1

þ b̂2
b̂1

k̂1 þ k̂21

¼ 2857 − 1709rþ 112r2

18ð11 − 2rÞ −
�
13r − 34

11 − 2r

�
k̂1 þ k̂21:

ð7:13Þ
Evaluating the SR;2;k̂1;LNN expression for fðx0Þ at x ¼ xIR;2l,
we calculate

SR;2;k̂1;LNN∶ fðx0IR;2lÞ ¼ 1þ k̂1x0IR;2l þ k̂2ðx0IR;2lÞ2

¼ 1þ b̂1b̂3
b̂22

þ b̂21
b̂22

k21

¼ 52235 − 40425rþ 7692r2 − 224r3

18ð13r − 34Þ2

þ
�
11 − 2r
13r − 34

�
2

k̂21: ð7:14Þ

In [3] we showed that for the case k1 ¼ k̂1 ¼ 0, i.e.,
the SR;2 scheme transformation, and r ∈ Ir, fðx0IR;2lÞ is
negative for 34=13 < r < 4.07 and positive for 4.07 <
r < 11=2 (to the indicated floating-point numerical
accuracy). Here, by choosing nonzero k̂1, we can
enlarge the range over which fðx0IR;2lÞ > 0, satisfying

condition C1. The lower bound on k̂21 such that this
positivity holds is

ðk̂21Þmin ¼
−52235þ 40425r − 7692r2 þ 224r3

18ð11 − 2rÞ2 : ð7:15Þ

For example, for a value roughly in the middle of the
interval Ir, namely, r ¼ 4, for which xIR;2l ¼ 1=6, this
condition is that jk̂1j > 2.12.
The Jacobian for the SR;2;k̂1;LNN scheme transformation,

evaluated at x0 ¼ x0IR;2l ¼ −b̂1=b̂2, is

SR;2;k̂1;LNN∶ J ¼ 1þ 3b̂1b̂3
b̂22

þ b̂1
b̂2

k̂1 þ
3b̂21
b̂22

k̂21

¼ 38363 − 29817rþ 5664r2 − 224r3

6ð13r − 34Þ2

−
�
11 − 2r
13r − 34

�
k̂1 þ 3

�
11 − 2r
13r − 34

�
2

k̂21:

ð7:16Þ

If k̂1 ¼ 0, i.e., for the SR;2 scheme transformation, and with
r ∈ Ir, this J is negative for 34=13 < r < 4.69 and positive
for 4.69 < r < 11=2. Here, with the SR;2;k1 scheme trans-

formation, we can choose k̂1 to render J positive through-
out all of the interval Ir, as required by condition C3. We
can do this because the coefficient of the term in J of
highest degree in k̂1 (namely, degree 2) is positive. We find
that J > 0 if

k̂1 >
13r− 34þð−75570þ 58750r−11159r2þ 448r3Þ1=2

6ð11− 2rÞ
ð7:17Þ

or

k̂1 <
13r− 34− ð−75570þ 58750r− 11159r2þ 448r3Þ1=2

6ð11− 2rÞ :

ð7:18Þ
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For example, for a value roughly in the middle of the
interval Ir, r ¼ 4, these inequalities are k̂1 > 6.43 or

k̂1 < −4.43 (i.e., ˆ̄k1 > 0.512 or ˆ̄k1 < −0.353). To check
conditions C2 and C4, we first pick k̂1 ¼ 7 (i.e.,
ˆ̄k1 ¼ 0.557) and substitute this into the equation x ¼
x0fðx0Þ for this SR;2;k̂1;LNN transformation, which is a
cubic equation for x0. Setting x equal to the value
xIR;2l ¼ 1=6 for r ¼ 4, and solving for x0, we get, as the
relevant physical root, x0 ¼ 0.123. This is similar to, and
slightly smaller than, x ¼ 1=6 ¼ 0.167. (The other two
roots of the cubic equation are x0 ¼ −0.163, which is
unphysical, and x0 ¼ 0.2485, which is farther from the
origin than x0 ¼ 0.123 and hence is not reached in the
evolution of the coupling from the UV to IR.) For
comparison, we pick k̂1 − 6 and follow the same
procedure. This yields the relevant physical root
x0 ¼ 0.179, slightly larger than 1=6. For both of these
choices of k̂1, all of the acceptability conditions are
satisfied.

C. SR;3;k̂1;LNN scheme transformation

The SR;3;k̂1;LNN scheme transformation has the same k̂2 as
the SR;2;k̂1;LNN transformation, given above in Eq. (7.13).
For k̂3, we calculate

k̂3 ¼
b̂4
2b̂1

þ 3b̂3
b̂1

k̂1 þ
5b̂2
2b̂1

k̂21 þ k̂31

¼ 1

64ð11 − 2rÞ ½601892 − 485513rþ 69232r2 þ 1040r3

þ ζð3Þð9504 − 4320rþ 18144r2Þ�

þ ð2857 − 1709rþ 112r2Þk̂1
6ð11 − 2rÞ −

5ð13r − 34Þk̂21
2ð11 − 2rÞ þ k̂31:

ð7:19Þ
The SR;3;k̂1;LNN expression for fðx0Þ evaluated at x ¼

xIR;2l is given by the right-hand side of Eq. (6.1) with the bl
replaced by b̂l with 1 ≤ l ≤ 4. Substituting the above
expressions for these, we obtain

SR;3;k̂1;LNN ⇒ fðx0IR;2lÞ ¼
1

64ð13r − 34Þ3 ½−55042348þ 62622039r − 24520604r2 þ 2885644r3 þ 21504r4 þ 4160r5

þ ζð3Þð1149984 − 940896rþ 2423520r2 − 815616r3 þ 72576r4Þ�

þ ð11 − 2rÞ2ð2857 − 1709rþ 112r2Þk̂1
6ð13r − 34Þ3 −

3

2

�
11 − 2r
13r − 34

�
2

k̂21 þ
�
11 − 2r
13r − 34

�
3

k̂31: ð7:20Þ

With the same substitution x0 ¼ x0IR;2l in J, we get

SR;3;k̂1;LNN ⇒ J ¼ 1þ ð11 − 2rÞð2857 − 1709rþ 112r2Þ
6ð13r − 34Þ2

þ ð11 − 2rÞ2
324ð13r − 34Þ3 ½601892 − 485513rþ 69232r2 þ 1040r3 þ ζð3Þð9504 − 4320rþ 18144r2Þ�

þ ð11 − 2rÞð59386 − 46374rþ 8793r2 − 448r3Þk̂1
3ð13r − 34Þ3 − 7

�
11 − 2r
13r − 34

�
2

k̂21 þ 4

�
11 − 2r
13r − 34

�
3

k̂31: ð7:21Þ

If k̂1 ¼ 0, then for r ∈ Ir, fðx0IR;2lÞ is negative for
34=13 < r < 3.95 and positive for 3.95 < r < 11=2, while
J is negative for 34=13 < r < 4.58 and positive for
4.58 < r < 11=2. Since the coefficients of the k̂31 terms
in Eqs. (7.20) and (7.21) are positive, we can choose k̂1
appropriately to enlarge the region of r ∈ Ir for which
fðxIR;2lÞ and J are positive, so that conditions C1 and C3

are satisfied. For example, for the value r ¼ 4, roughly in
the middle of the interval Ir, fðx0IR;2lÞ in Eq. (7.20) is

positive for ˆ̄k1 > 1.30 or −0.597 < ˆ̄k1 < 0.0115, while J in

Eq. (7.21) is positive for ˆ̄k1 > 1.43 or −0.543 < ˆ̄k1 <

−0.0541. Recall that for r ¼ 4, xIR;2l ¼ 1=6. Setting ˆ̄k1 ¼
−0.199 in fðx0Þ for the SR;3;k̂1;LNN scheme transformation

and solving the quartic equation x ¼ x0fðx0Þ for this
SR;3;k̂1;LNN transformation, we find x0 ¼ 0.157, close to
and slightly smaller than xIR;2l. (The other three roots of the
quartic equation are all unphysical, namely x0 ¼ −0.190
and x0 ¼ 0.569� 0.142i.) As is evident, conditions C2 and
C4 are thus also satisfied. Again, one can use a continuity
argument to infer that the same conclusion holds for
neighboring values of r and k̂1. Thus, as we did for finite
Nc and Nf ∈ I, here, in the LNN limit with r ∈ Ir, we have

shown that, by the use of the parameter k̂1 in the SR;2;k̂1;LNN
and SR;3;k̂1;LNN scheme transformations, we can enlarge the
region of applicability of these transformations as com-
pared with the respective transformations with k̂1 ¼ 0
studied in [2,3].
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VIII. ON A MODIFIED S1 SCHEME
TRANSFORMATION

Here we present a modification of the scheme transition
denoted S1 in [2] which was designed to remove the three-
loop term in the beta function. This scheme transformation
has smax ¼ 1 and thus has the form a ¼ a0ð1þ k1a0Þ.
Solving this quadratic equation for a0 formally yields
two solutions, but only one is physical, namely

a0 ¼ 1

2k1
ð−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k1a

p
Þ; ð8:1Þ

since only this solution has the property that a → a0 as
a → 0. Since the purpose of this transformation is to
render b03 ¼ 0, this condition is used to determine k1. The
condition b03 ¼ 0 in this case is the equation b3 þ k1b2þ
k21b1 ¼ 0. In contrast to the SR;m;k1 scheme transformation,
for which all of the equations for the ks with s ≥ 2 are linear,
this equation is quadratic and has the two formal solutions

k1p; k1m ¼ 1

2b1

�
−b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 − 4b1b3

q �
; ð8:2Þ

where the p, m subscripts refer to the � sign in Eq. (8.2). If
one requires that this scheme transformation must obey the
conditions C1-C4 throughout all of the interval I, then the
only acceptable choice is k1 ¼ k1p, as was shown in [2].
The application of the S1 scheme transformation with this
choice was analyzed in [2]. The regime of Nf values for
which the S1 transformation with k ¼ k1m is unacceptable
is toward the lower end of the interval I, where the value of
the IR zero, αIR;2l ¼ −4πb1=b2 ¼ 4πb1=jb2j, gets large. In
view of this, one could alternatively choose not to try to
apply the scheme transformation to the lower end of the
interval I, since one could plausibly consider that the
coupling is too large there for perturbative methods to be
reliable. In this approach, one could study the application of
the scheme transformation S1 with the choice k1 ¼ k1m
instead of k1 ¼ k1p.
We explore this alternative approach here. With b3 < 0,

we reexpress k1m in terms of positive quantities as

k1m ¼ 1

2b1

h
jb2j −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ 4b1jb3j

q i
: ð8:3Þ

If we restrict the application of the S1 scheme trans-
formation to the middle and upper parts of the interval
I, then the choice k1 ¼ k1m actually has an advantage as
compared with the choice k1 ¼ k1p. This can be shown as
follows. We recall that as Nf approaches Nf;b1z, b1 gets
small and, consequently, k1p can become somewhat large.
This growth in k1p is canceled in the S1 transformation,
because k1p multiplies a0, and a and a0 both approach zero
in this limit. However, this does lead to some residual
scheme dependence in the comparison between the four-
loop IR zero in the MS scheme and the four-loop zero
computed by applying this S1 scheme transformation to

that scheme, as discussed in [2]. In contrast, with the sign
choice k1 ¼ k1m, as Nf increases toward Nf;b1z, k1m
approaches −jb3j=jb2j, and hence its magnitude does
not become large. Then, taking into account that aIR;2l
approaches zero in this limit, the inversion of the S1 scheme
transformation with k1 ¼ k1m yields values of a0 that are
closer to the corresponding values of a in this limit than was
the case with the k1p choice. Thus, the k1p and k1m choices
have complementary advantages for the analysis of the IR
zero with Nf ∈ I in these theories.

IX. CONCLUSIONS

Because terms at loop order l ≥ 3 in the β function of a
gauge theory are scheme dependent, it follows that one can
carry out a scheme transformation to remove these terms at
sufficiently small coupling. A basic question concerns the
range of applicability of such a scheme transformation. It is
particularly important to address this question when study-
ing the IR zero that is present in the β function of an
asymptotically free gauge theory with sufficiently many
fermions. In this paper, we have presented a generalized
class of one-parameter scheme transformations, denoted
SR;m;k1 withm ≥ 2, depending on a parameter k1. A scheme
transformation in this class eliminates the l-loop terms in
the beta function from loop order l ¼ 3 to order
l ¼ mþ 1, inclusive. We have analyzed the application
of this class of scheme transformations to the infrared zero
of the beta function of a non-Abelian SU(Nc) gauge theory
with Nf fermions in the fundamental representation and
have shown that an SR;m;k1 scheme transformation in this
class can satisfy the criteria to be physically acceptable over
a larger range of Nf than the SR;m transformation with
k1 ¼ 0. As part of this, we have studied the properties of
the corresponding scheme transformations in the limit
Nc → ∞ and Nf → ∞ with Nf=Nc fixed and finite. We
have also presented and discussed a modification of the S1
scheme transformation that removes the three-loop term in
the beta of this theory. Our applications of the generalized
scheme transformation provide a quantitative measure of
the scheme dependence of the infrared fixed point of an
asymptotically free non-Abelian gauge theory, adding to
the results in [2,3]. These results are useful for the study of
the UV to IR evolution of an asymptotically free gauge
theory and, in particular, the investigation of the properties
of a theory of this type with an infrared fixed point.
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APPENDIX A: BETA FUNCTION COEFFICIENTS

For reference, we list the one-loop and two-loop
coefficients [4–6] in the beta function (2.2) for a non-
Abelian vectorial gauge theory with gauge group G and Nf
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Dirac fermions transforming according to the representa-
tion R:

b1 ¼
1

3
ð11CA − 4TfNfÞ; ðA1Þ

b2 ¼
1

3
½34C2

A − 4ð5CA þ 3CfÞTfNf�: ðA2Þ

(See Eq. (2.3) [29].) Our calculations also make use of the
three-loop and four-loop coefficients b3 and b4 calculated
[9,10] in the MS scheme.

APPENDIX B: EQUATIONS FOR THE b0l
RESULTING FROM A GENERAL
SCHEME TRANSFORMATION

The expressions for the b0l in Eq. (2.10) for 3 ≤ l ≤ 6
are [2]

b03 ¼ b3 þ k1b2 þ ðk21 − k2Þb1; ðB1Þ

b40 ¼ b4 þ 2k1b3 þ k21b2 þ ð−2k31 þ 4k1k2 − 2k3Þb1;
ðB2Þ

b05 ¼ b5 þ 3k1b4 þ ð2k21 þ k2Þb3 þ ð−k31 þ 3k1k2 − k3Þb2 þ ð4k41 − 11k21k2 þ 6k1k3 þ 4k22 − 3k4Þb1; ðB3Þ

and

b06 ¼ b6 þ 4k1b5 þ ð4k21 þ 2k2Þb4 þ 4k1k2b3 þ ð2k41 − 6k21k2 þ 4k1k3 þ 3k22 − 2k4Þb2
þ ð−8k51 þ 28k31k2 − 16k21k3 − 20k1k22 þ 8k1k4 þ 12k2k3 − 4k5Þb1: ðB4Þ

The b0l with l up to l ¼ 8 were given in [2]. As was noted in the text (with mþ 1 ¼ l), a property that was used in our
procedure for constructing the scheme transformation SR;m;k1 is that in the expressions for b0l with l ≥ 3, kl−1 occurs
linearly, namely in the term −ðl − 2Þkl−1b1.

APPENDIX C: HIGHER-ORDER COEFFICIENTS FOR SR;m;k1

In this appendix, we list expressions for some higher-order coefficients ks in the SR;m;k1 scheme transformation. We
calculate that

k5 ¼
b6
4b1

−
b2b5
6b21

þ 2b3b4
b21

þ b22b4
12b31

−
b2b23
12b31

þ
�
5b5
3b1

þ 7b2b4
6b21

þ 25b23
3b21

�
k1 þ

�
5b4
b1

þ 27b2b3
2b21

�
k21

þ
�
10b3
b1

þ 35b22
6b21

�
k31 þ

�
77b2
12b1

�
k41 þ k51 for SR;m;k1 with m ≥ 5; ðC1Þ

and

k6 ¼
b7
5b1

−
3b2b6
20b21

þ 8b3b5
5b21

þ 11b24
20b21

−
4b2b3b4
5b31

þ b22b5
10b31

þ 16b33
5b31

þ b22b
2
3

20b41
−
b32b4
20b41

þ
�
3b6
2b1

þ 2b2b5
3b21

þ 12b3b4
b21

þ 47b2b23
6b31

−
b22b4
3b31

�
k1 þ

�
5b5
b1

þ 17b2b4
2b21

þ 25b23
b21

þ 15b22b3
2b31

�
k21

þ
�
10b4
b1

þ 37b2b3
b21

þ 5b32
2b31

�
k31 þ

�
15b3
b1

þ 85b22
6b21

�
k41 þ

�
87b2
10b1

�
k51 þ k61 for SR;m;k1 with m ≥ 6: ðC2Þ

APPENDIX D: b0l COEFFICIENTS RESULTING FROM THE SR;2;k1 SCHEME TRANSFORMATION

From the expressions for ks in the SR;2;k1 scheme transformation, we have calculated the resultant coefficients b0l for l up
to 8. We listed b0l for l ¼ 3,4, 5 in Eqs. (4.1)–(4.3) in the text. Here we give the more lengthy expressions for the
coefficients b0l for l ¼ 6, 7, 8. We have

b06 ¼ b6 þ
2b3b4
b1

þ 3b2b23
b21

þ
�
4b5 þ

2b2b4
b1

−
16b23
b1

þ 6b22b3
b21

�
k1 þ

�
6b4 −

36b2b3
b1

þ 3b32
b21

�
k21 −

�
8b3 þ

20b22
b1

�
k31 − 13b2k41;

ðD1Þ
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b07 ¼ b7 þ
3b3b5
b1

−
9b33
b21

þ
�
5b6 þ

3b2b5
b1

þ 7b3b4
b1

−
42b2b23
b21

�
k1 þ

�
10b5 þ

7b2b4
b1

þ 41b23
b1

−
57b22b3
b21

�
k21

þ
�
9b4 þ

69b2b3
b1

−
24b32
b21

�
k31 þ

�
44b3 þ

28b22
b1

�
k41 þ 41b2k51 þ 9b1k61; ðD2Þ

and

b08 ¼ b8 þ
4b3b6
b1

þ 4b23b4
b21

−
8b2b33
b31

þ
�
6b7 þ

4b2b6
b1

þ 12b3b5
b1

þ 8b2b3b4
b21

þ 78b33
b21

−
24b22b

2
3

b31

�
k1

þ
�
15b6 þ

12b2b5
b1

þ 12b3b4
b1

þ 4b22b4
b21

þ 258b2b23
b21

−
24b32b3
b31

�
k21 þ

�
18b5 þ

18b23
b1

þ 12b2b4
b1

þ 282b22b3
b21

−
8b42
b31

�
k31

þ
�
9b4 þ

64b2b3
b1

þ 102b32
b21

�
k41 þ

�
−48b3 þ

46b22
b1

�
k51 − 42b2k61 − 18b1k71: ðD3Þ

APPENDIX E: b0l COEFFICIENTS RESULTING FROM THE SR;3;k1 SCHEME TRANSFORMATION

From the expressions for ks in the SR;3;k1 scheme transformation, we calculate the resultant b0l coefficients. We obtain
b03 ¼ 0, b04 ¼ 0, and the result for b05 given in Eq. (4.5). For the b0l with l ¼ 6, 7, 8, we find

b06 ¼ b6 þ
8b3b4
b1

þ 3b2b23
b21

þ
�
4b5 þ

10b2b4
b1

þ 20b23
b1

þ 6b22b3
b21

�
k1 þ

�
4b4 þ

42b2b3
b1

þ 3b32
b21

�
k21

þ
�
−8b3 þ

20b22
b1

�
k31 − 7b2k41 − 4b1k51; ðE1Þ

b07 ¼ b7 þ
3b3b5
b1

þ 11b24
4b1

−
9b33
b21

þ 9b2b3b4
2b21

þ
�
5b6 þ

3b2b5
b1

þ 10b3b4
b1

−
15b2b23
b21

þ 9b22b4
2b21

�
k1

þ
�
10b5 þ

3b2b4
b1

−
40b23
b1

−
15b22b3
2b21

�
k21 þ

�
10b4 −

96b2b3
b1

−
3b32
2b21

�
k31 −

�
10b3 þ

207b22
4b1

�
k41 − 17b2k51; ðE2Þ

and

b08 ¼ b8 þ
4b3b6
b1

þ b4b5
b1

−
18b23b4
b21

þ 7b2b24
4b21

−
8b2b33
b31

þ
�
6b7 þ

4b2b6
b1

þ 18b3b5
b1

−
37b2b3b4

b21
−
54b33
b21

−
24b22b

2
3

b31
−
15b24
2b1

�
k1

þ
�
15b6 þ

17b2b5
b1

−
42b3b4
b1

−
45b22b4
2b21

−
185b2b23

b21
−
24b32b3
b31

�
k21 þ

�
20b5 −

26b2b4
b1

−
80b23
b1

−
207b22b3

b21
−
8b42
b31

�
k31

þ
�
3b4 −

116b2b3
b1

−
297b32
4b21

�
k41 −

�
12b3 þ

89b22
2b1

�
k51 − 5b2k61: ðE3Þ
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