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We construct and study a generalized one-parameter class of scheme transformations, denoted Sg ,,, x,
with m > 2, with the property that an Sg,, ;, scheme transformation eliminates the #-loop terms in the
beta function of a gauge theory from loop order £ =3 to order £ = m + 1, inclusive. These scheme
transformations are applied to the higher-loop calculation of the infrared zero of the beta function of an
asymptotically free gauge theory with multiple fermions. We show that scheme transformations in this
generalized class satisfy a set of criteria for physical acceptability over a larger range of numbers of
fermions than previously studied scheme transformations. We also present an interesting modification of a

different type of scheme transformation that removes the three-loop term in the beta function.
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I. INTRODUCTION

A basic property of a gauge theory is the dependence of
the gauge coupling g = g(u) on the Euclidean momentum
scale, u, where it is measured. This is described by the
beta function of the theory, B, = dg/dt or, equivalently,
po = da/dt = [g/(27)]p,, where dt = dIny and a(u) =
g(u)?/(4x). The terms at loop order # >3 in the beta
function are dependent on the scheme used for regulari-
zation and renormalization. Hence, one expects that, at least
for sufficiently small coupling, it is possible to carry out a
scheme transformation that eliminates these terms and
yields a beta function with only one- and two-loop terms
[1]. In [2] (with Ryttov), we constructed and studied
explicit scheme transformations that remove terms at loop
order £ > 3 from the beta function.

An important application of such scheme transforma-
tions is to the analysis of zero(s) of the beta function. The
beta function of an asymptotically free non-Abelian gauge
theory has an ultraviolet (UV) zero at @ = 0, which is an
ultraviolet fixed point of the renormalization group. If the
theory contains sufficiently many fermions, the (perturba-
tively calculated) beta function may also have an infrared
(IR) zero at a point gz > 0. Depending on how large ayy is,
this zero is either an exact or approximate infrared fixed
point (IRFP) of the renormalization group. Since the terms
of loop order £ >3 in the beta function are scheme
dependent, so is the value of the IR zero when calculated
to three-loop or higher-loop order. In order to understand
the physical implications of this IR zero, it is necessary to
assess the effect of scheme dependence on its value. A
study of this dependence was carried out in [2] using
several scheme transformations. In [2], we pointed out a set
of criteria that a scheme transformation must satisfy in
order to be physically acceptable, and showed that although
it is straightforward for a scheme transformation to satisfy
these criteria in the vicinity of a zero of the beta function at
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a = 0, they are a significant restriction on the choice of an
acceptable scheme transformation that can be applied at a
generic infrared zero of the beta function. Examples of
scheme transformations were given in [2] that are accept-
able for small @ but produce unphysical effects when
applied at a generic IR zero of the beta function.

One type of procedure that would be natural for a
quantitative study of scheme dependence of a zero of
the beta function would be to construct and apply a scheme
transformation that would remove successively higher and
higher-loop terms in the beta function and, at each stage,
determine how this removal shifted the position of the IR
zero. Extending the results of [2], in [3] we defined a set of
scheme transformations Sg,, with m > 2 that remove the
terms in the beta function at loop order Z =3 to
¢ = m + 1, inclusive, and determined the range of a over
which Sg, and Sg 5 can be applied to study the IR zero of
the beta function of an asymptotically free gauge theory
while satisfying the criteria to avoid introducing unphysical
pathologies. For both S, and Sk 3, it was shown that these
ranges are rather limited, which, in turn, restricts one’s
ability to use these scheme transformations to study the
scheme dependence of a zero of the beta function away
from a = 0.

In this paper, we present a generalized one-parameter
class of scheme transformations, denoted Sg, ; With
m > 2, with the property that an Sg, s scheme trans-
formation eliminates the ¢-loop terms in the beta function
of a quantum field theory from loop order # = 3 to order
¢ = m + 1, inclusive. We give a detailed analysis of the
application of this scheme transformation to the infrared
zero of an asymptotically free gauge theory with gauge
group G = SU(N,) and N; massless fermions in the
fundamental representation, and we show that it satisfies
the physical acceptability criteria specified in [2] over a
wider range of N, and hence a wider range of values of an
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infrared zero, agr, than those constructed and analyzed in
[2,3]. We also investigate an interesting modification of the
S scheme transformation presented in [2].

This paper is organized as follows. In Sec. II, we recall
some basic information and notation that will be needed
for our analysis. In Sec. III, we define the scheme trans-
formation Sk, ;. We display explicit expressions for the
resultant coefficients in the beta function resulting from
the application of the Sg ,, ;, transformation in Sec. IV. In
Secs. V and VI, we present specific results on the
application of the respective scheme transformations
Sgok, and Sgsy to an IR zero in the beta function of
an SU(N.) gauge theory. In Sec. VII, we give further
results on the application of these scheme transformations
in the limit N, — oo and N, — oo with the ratio N,/N.
fixed. In Sec. VIII, we discuss a modification of a different
type of scheme transformation, namely, the S; transforma-
tion of [2]. We present our conclusions in Sec. IX. Some
additional results are included in the appendixes.

I1. BASICS

In this section, we recall some basic formalism and
notation that will be used in our analysis. The scheme
transformation Sy, ,, ., that we construct and study can be
applied to any gauge theory, vectorial or chiral, and non-
Abelian or Abelian. Indeed, this transformation can also be
applied to a quantum field theory that does not involve
gauge fields, with an appropriate replacement of g by the
relevant interaction coupling. Here, we will focus on the
application to a vectorial non-Abelian gauge theory with
gauge group G and a set of N massless fermions trans-
forming according to a representation R of G. Since these
theories are vectorial, the gauge invariance would allow
nonzero fermion masses. However, in studying the evolu-
tion of the gauge coupling as a function of the scale u, as
this scale decreases below the value of a given fermion
mass, one would construct a low-energy effective field
theory by integrating this fermion out, so this massive
fermion would not affect the evolution of the coupling for
scales below its mass. Hence, our assumption of massless
fermions does not entail a loss of generality.

It will be convenient to define the quantity

alp) _ g(p)?

W= T Ter

(2.1)

(The argument y will often be suppressed in the notation.)
The f, function has the power-series expansion

Bo=—2a) bea’ ==2a) by, (2.2)
/=1 =1

where ¢ labels the loop order, b, = b,/ (4r)”, and we have
extracted a minus sign so that the one-loop coefficient b, is
positive if the theory is asymptotically free. The n-loop
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(n?) p function, denoted S, ., is obtained from Eq. (2.2)
by replacing the upper limit on the #Z-loop summation by n
instead of co. The (scheme-independent) one-loop and two-
loop coefficients b; and b, were calculated in [4] and [5,6],
respectively, and are listed for reference in Appendix A. As
mentioned above, the b, with £ > 3 are scheme dependent
[7,8]. For a non-Abelian gauge theory, b3 and b, were
calculated in [9] and [10] in the modified minimal sub-
traction scheme [11]. The property of asymptotic freedom,
ie., by >0, requires that Ny < Ny, where Ny . =
11C4/(4T) [12]. We assume that this condition is
satisfied.

If an asymptotically free gauge theory has sufficiently
many massless fermions, the beta function can exhibit an
IR zero at a certain value, denoted generically as g [5,13].
As is evident from Eq. (A2), for small N, b, is positive, but
it decreases with increasing N, and passes through zero to
negative values as N increases through the value

34C3
N =4 2.3
1T A(Cy +3C))T; >

Since Ny pr, < Ny p,, there is always an interval /, defined
by

I: Nf,b2z < Nf < Nf,blz’ (24)
in which the two-loop beta function, f3,,,, has an IR zero.

For N, €I, this zero of f,,, occurs at the (scheme-
independent) value

471'[91
AR 20 = 4”01R,2f = - by
2

(2.5)

Henceforth, for definiteness, we focus on the case where
the gauge group is G = SU(N,) and the N, fermions
transform according to the fundamental representation.

If the IR zero of the beta function occurs at a small value
of the gauge coupling, then this is an exact IRFP of the
renormalization group. With decreasing Ny, ag increases,
eventually to a value at which the gauge interaction is
strong enough to trigger the formation of bilinear fermion
condensates with associated spontaneously chiral sym-
metry breaking (SySB). As a consequence of this, the
fermions gain dynamical masses of order the SySB scale,
denoted A. In the low-energy effective field theory appli-
cable at scales u < A, these fermions are integrated out, the
beta function changes to one with Ny = 0, and the resultant
low-energy theory does not have an IR zero in its
(perturbative) beta function. Thus, in this case, the initial
zero is only an approximate, rather than exact, fixed point
of the renormalization group. The value of N, that
separates these two regimes of infrared behavior is denoted
N .. If the beta function of a theory has an IR zero that is
only slightly greater than the minimum value for fermion
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condensation, then the UV to IR evolution exhibits slowly
running, quasi-scale-invariant behavior over a substantial
interval of scales u. This behavior, and the resultant
approximate Nambu-Goldstone boson (the dilaton) that
results from the spontaneous breaking of scale invariance
by the bilinear fermion condensate, might be relevant for
physics beyond the Standard Model [14].

Since N ., corresponds to a value a ~ O(1) for the exact
or approximate infrared zero of the beta function, one is
motivated to calculate this value to higher-loop order [15].
This was done in [16,17] for this zero of the beta function
and for the corresponding value of the anomalous dimen-
sion of the fermion bilinear for a general gauge group and
fermion representation. Additional higher-loop results on
structural properties of the beta function were calculated in
[18-20]. In turn, this motivated the study of the scheme
dependence of the IR zero in beta in [2,3] (some related
work is in [21-25]).

A scheme transformation can be expressed as a mapping
between « and o/, or equivalently, a and a’, which we
write as

a=df(d)

where f(da') is the scheme transformation function. The
properties of the theory must remain unchanged under a
scheme transformation in the limit in which the gauge
coupling vanishes and the theory becomes free, which
implies the condition that f(0) = 1. We will use a function
f(a') that is analytic about a = a’ = 0 and hence has the
power-series expansion

(2.6)

Smax Smax

fld)y=1+ Z:ks(a')s =1+ Z:l_cs(a’)s, (2.7)

where the k; are constants, k, = k,/(4x)*, and s, may be
finite or infinite. The Jacobian of this transformation is
J =da/dd = da/dd’, with the expansion

Smax Smax

J=1+ Z(s + k(@) =1+ (s+ k().

s=1

(2.8)

This Jacobian thus has the value J = 1 ata = a’ = 0. After
the scheme transformation is applied, the beta function
in the resultant scheme is

dd ddd
= a_ a_a_']_lﬁu'

Pi =0 = daar

(2.9)

This has the expansion

Po==22 by(a) ==2o > b(a)’. (2.10)
=1 =1
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with a new set of coefficients b, [where b, = b,/ (47)’].
One then solves for the b/, as functions of the b, and k.
This gives b} = by and b/, = b, and the new results for b/,
at higher-loop order # that were presented in [2]. For the
reader’s convenience, we list some of these results in
Appendix B.

The n-loop beta function in the transformed scheme,
P ne» 18 given by Eq. (2.10) with the upper limit on the ¢
summation equal to n rather than oo. It will be useful to
extract the quadratic prefactors and define

ﬁa nt o /—1 1 a /—1
ﬁa,nf,r =E-—0"7 = bfa = bfa (211)
202 ; 47r;

and similarly with By . ,, with the replacements a — a,
b, — b, and b, — b),. Since b} = b, and b} = b,, it
follows that

ﬁa’,Zf = ﬁa,Zf' (212)
Consequently, if f,,, has a (UV or IR) zero at a,,, then
Po 2¢ also has a (UV or IR) zero, and at the same value in
the transformed variable,

a;% =, 9. (2.13)
We will use this property below for asymptotically free

gauge theories, where this is an IR zero, so the equality
(2.13) reads [26]

477,'171
AR o = OR2C = — .
5 b2

(2.14)

We recall the set of conditions that a scheme trans-
formation must satisfy in order to be physically acceptable
[2,3]. The first of these, which we label as condition C|, is
that the scheme transformation must transform a real
positive « to a real positive «, since a function mapping
a > 0toa = 0 would be singular, and a function mapping
a > 0 to a negative or complex ' would violate unitarity.
The second condition, C,, is that the scheme transformation
should transform a small or moderate value of a to a
similarly small or moderate value of o/, so a perturbative
analysis remains valid. The third condition, C3, is that the
Jacobian J must be nonzero to avoid a singular trans-
formation (2.9). Since J=1 at a=d =0 and J is a
continuous function, condition C; implies that J > 0. The
zero of f is a scheme-independent property, and hence, as
the fourth condition, C,, a scheme transformation should be
such that #, has a zero if and only if f, has a zero. The
conditions apply for both a scheme transformation and its
inverse.

These conditions can easily be satisfied by scheme
transformations applied in the vicinity of a = 0, such as
those used to optimize the convergence of perturbative
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calculations in quantum chromodynamics [27], but they are
a significant constraint on a scheme transformation applied
in the vicinity of a (UV or IR) zero of the beta function for
a < O(1). Underlying this analysis of scheme transforma-
tions is, of course, the assumption that one is studying the
theory for values of the coupling a that are sufficiently
small such that perturbative calculations are justified.
Clearly, if the value of a at the zero of the beta function
is too large, then one cannot use perturbative calculational
methods reliably. From the expression for the zero of the
beta function, ag o, in Eq. (2.5), it is evident that this gets
large as N, decreases toward the lower end of the interval /
at Nyo. and b, approaches zero. Hence, one cannot
reliably use perturbative methods to study the evolution
of the coupling near this lower end of the interval /. Since
scheme transformations are carried out in the context of
perturbative calculations, it follows that one could option-
ally relax the requirement that a scheme transformation
must satisfy all of the conditions C;-Cj, at the lower end of
this interval 1.

III. GENERAL CLASS OF SCHEME
TRANSFORMATIONS S« AND Sg o4,

In this section, we present a new scheme transformation
Sgmk,» Withm > 2 and s, = m, that removes the terms in
the beta function S, from loop order £ =3 to order
¢ = m + 1, inclusive. In our notation, we have specifically
included the value of k;, since a choice for k; determines
the k, for s > 2. Applying the scheme transformation
Sgmk, to an initial scheme, it follows that

Sgmp, = by =0 for£=3,..,m+1. (3.1)

Thus, Sg .k, yields

Pt e = —8n(d’)? [bl + byd' + z": b}(a’)f‘l} , (3.2)

=m+2

and similarly for the expansion in powers of a, with b/,
replaced by b,. From Eq. (3.1), it follows that a zero of the
n-loop beta function S, is at the same value as the
(scheme-independent) value a . for n up to and includ-
ingn=m+1,ie,

Srm = Arjy = Ar2s forn=3,...m+1. (3.3)

The construction of this scheme makes use of the
property that the resultant coefficient b/, for # > 3 contains
only a linear term in k,_;, so that the equation b, = 0 is a
linear equation for k,_;, which can always be solved
uniquely. The choice of k, together with the values of
the b,, thus uniquely determines the k; for s > 2. The
simplest choice is k; = 0, and this was studied in detail in
[2,3]. This special case is indicated with the notation
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SR,m,k|:0 = SR,m' (34)

Here we present, as new results, the general formulas
for the k; in the S, , scheme with nonzero k;. The first
step is to use Eq. (B1) and solve the equation b = 0 for k,.
This yields the result

by b
kz — _3_|__2k1 + k% for SR,m.k1

ith > 2.
b, b wi m >

(3.5)

This suffices for Sg, . To obtain Sk, with m >3,
removing the £ = 3, 4 terms in 3, we need to compute k5.
For this purpose, we substitute the values of k; and k, into
Eq. (B2) and solve the equation b, = 0 for k3. This gives

by 3by  Sby ., .
fy = 24 42030 09240 g3 g g
3= 0p, T, Ty, KT IO SRy

m > 3.

with
(3.6)

Next, to obtain k4, as needed for Sg,, i, With m >4, we
substitute the k; with s = 1, 2, 3 into Eq. (B3) and solve the
equation b = 0 for k,. This yields

bs byby 5b3  [2by 3bsby
4=y tost |5 |k
3b, 66 362 \b, b

6by  3b2 13b,
kZ k3 k4
+<—bl +—2b% (3, )6 A

for Sg i, Wwith m >4 (3.7)
We continue this procedure iteratively to calculate Sg,, x,
for higher m. Thus, having computed the k; up to order
s = m — 1 inclusive, we compute k,, by substituting these
ks with 1 <s <m —1 into our expression for bfn . and
solving the equation b/, | = 0 for k,,. For a given k, this
yields a unique solution for k,, because, as noted above,
the equation b}, ; = 0 with m 4 1 > 3 is a linear equation
in k,. Specifically, in the expression for b, with
m+12>3, the variable k, occurs only in the term
—(m —1)k,,b;. We list the k; for s =5 and s =6 in
Appendix C. These expressions become progressively
lengthier as s increases, but our method for calculating
them as solutions to respective linear equations is system-
atic for any s. As is evident, the choice k; = 0 greatly
simplifies these expressions for the k; with s > 2 and hence
also the transformation function f(a’). However, as was
shown in [2,3], with this choice of k; = 0, the scheme
transformation Sg ,, leads to violations of one or more of
the requisite conditions C;-C, when applied to the IR zero
of the beta function in an asymptotically free non-Abelian
gauge theory with fermions for a substantial range of
N € I. With our generalization, taking advantage of the
extra parameter k; on which the scheme transformation
Sgmk, depends, we obtain a significantly enlarged range of
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applicability of this scheme transformation at an IR zero of
the beta function.

Because the scheme transformation Sg,,;, involves
coefficients k, with s =2, ..., m, the construction of this
scheme transformation requires a knowledge of the b, in
this initial scheme up to the loop order £ = m + 1. Since
Smax = m for Sg ,, , it follows that kg = 0 for Sg ,,, x, With
s > m. For a given k;, using the k; with s =2,...,m as
calculated via the procedure above, we compute the f(a’)
function for the Sg,,;, scheme transformation:

m

:1+Z}ﬂﬁ:1+fﬁ@ﬁ.@&
s=1

s=1

f(a/)SR.m.kl

Applying this to an initial scheme, we obtain b}, = 0 for
£=3,....m+1, as in (3.1)—(3.2).

The generalized scheme transformation Sy, ,, x, satisfies
the same scaling properties that we derived in [2] for the
case k; =0, ie., the Sg, transformation. Thus, the
coefficient k; depends on the b, with Z=1,....,s +1
via the ratios b,/b; for £ =2, ..., s + 1, and consequently,
these k, are invariant under the rescaling b, — 1b,, where
A € R. It follows that S ,, , is invariant under the rescaling
by — Aby. As was true of Sg,,, since Sg, requires
knowledge of the b, up to loop order # = m + 1 and since
the b, have been calculated up to £ = 4 loops for a general
non-Abelian gauge theory [9,10], the highest order for
which we can calculate and apply the Sg,, ;, scheme
transformation is m = 3.

The application of the transformation Sg,,;, to an
arbitrary initial scheme yields a g, function with b, =0
for =3,...,m+ 1, as expressed in Egs. (3.1)—(3.2), so in
the new scheme, the IR zero of the n-loop beta function
Pou.me 15 at the same value as the (scheme-independent)
value ag,, for n up to and including n =m +1, ie.,
MR = AR fOrn=3,....m+1.

We define Sg oo x, = lim,, .Sk mi,- Assuming that
SRk, Meets the conditions to be physically acceptable,
it takes an arbitrary initial scheme to a scheme with b/, = 0
for all #>3, so that By = —8x(a')*(b, + bya') =
—2(a)*(by + byd).

IV. COEFFICIENTS b, RESULTING FROM Sg ,, 4,
SCHEME TRANSFORMATION

A. General properties

We note some general structural properties of the
coefficients b}, for Sg . First, in the expression for b,
the sum of the subscripts of the b, factors in the numerator
of each term minus the power of b; in the denominator
(if present) plus the power of k; which multiplies this term
is equal to #. For example, in the expression for the
coefficient b5 resulting from the application of the Sg,
scheme transformation in Eq. (4.3) below, in the term
(12b,b3/ by )k;, thissumis2 +3 — 1 + 1 = 5, and so forth
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for the other terms in Eq. (4.3) and the other b). The
(nonzero) coefficient b, resulting from the scheme trans-
formation (2.7) is, in general, a polynomial in the k, for
s=1,...,Z—1, and the term in b’f of highest degree in k,
is proportional to kf -1, It follows, in particular, that the term
in the nonzero coefficient b, resulting from the Sg,,,
scheme transformation (and hence with £ > m +2) is a
polynomial in k; with the property that its highest-degree
term has at most degree £ — 1. Actually, in several cases,
the coefficient of the k{~! term in b} vanishes, so the
highest-degree term is proportional to k{~2. This happens,
for example, for coefficient by resulting from the Sg,
scheme transformation and for the coefficients b, with
¢ =, 8 resulting from the Sg 3, scheme transformation.

B. SR,Z,k1

Here we give the coefficients b, resulting from applying
the scheme transformation S 5 4, to an initial scheme. From
the expressions for the k; in the Sg,;, transformation, we
obtain the following results for s = 3,4, 5:

by =0, (4.1)
bly = by + 6bsk| + 5bykT + 2b, k3, (4.2)
and
by = bs + 205 1 (36, 4 120253 702
5 — Y5 b] 4 bl 1 b] 1
— byk3 —3b, k. (4.3)

The expressions for b/, for higher s are more lengthy and
are given in Appendix D. The expression for the n-loop
beta function fy ,, resulting from the application of the
Sk, transformation is given by the m =2 special case
of Eq. (3.2).

C. SR,3,k1

We next present the coefficients b/, resulting from apply-
ing the scheme transformation Sg 3, to an initial scheme.
From the expressions for the k; in the Sg 3 4, transformation,
we obtain the following results for s = 3,4, 5:

by, =0, b, =0, (4.4)
and
562 byb 9b,b
bl =bs +-2 22744 (6p 273 \k
5 5+b1 2b1+ at b, )"
9b% 2 3 4
+ 18173+2—b1 I3+ 13byk3 +3b, kY. (4.5)

We list the expressions for 4/, with higher s in Appendix E.
The expression for the n-loop beta function 3, ,,, following
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from the application of the Sg 3 ;, transformation is given by
the m = 3 special case of Eq. (3.2).

In a similar manner, one can calculate the coefficients for
the Sg .k, scheme transformations with m > 4. However,
to actually apply these scheme transformations to a given
theory requires knowledge of the b, coefficients up to loop
order £ = m + 1, i.e.,, £ > 5 for m > 4. Since our primary
application will be to non-Abelian gauge theories, and
since the b, have only been calculated up to loop order
¢ = 4, we thus limit ourselves to studying the application
of the scheme transformations with m =2
and m = 3.

SR,m.k]

V. APPLICATION OF THE Sg,x, SCHEME
TRANSFORMATION

In this section and the next, we discuss the application of
the Sg 1, scheme transformations. These transformations
can be applied to the beta function of any gauge theory,
non-Abelian or Abelian, asymptotically free or infrared-
free. As mentioned in the Introduction, we will focus here
on the application to the study of an infrared zero in the beta
function of an asymptotically free vectorial gauge non-
Abelian gauge theory with gauge group G and N ; massless
Dirac fermions in a representation R of G. Note that the
two-loop beta function for an Abelian U(1) gauge theory
does not have a zero away from the origin (which would
be a UV zero), since b; and b, have the same sign (see,
e.g., [25] and references therein).

In previous work [2,3], it was shown that the special case
of the Sk, scheme transformation with k; = 0, denoted
Sgo =S, cannot be applied to a generic IR zero of an
asymptotically free SU(N,) gauge theory because for a
given N, it fails to satisfy the requisite conditions to be
physically acceptable for a substantial part of the interval /
in Eq. (2.4). Here we show that one can pick the parameter
ky in our generalized one-parameter scheme transformation
Srak 80 as to avoid the pathologies encountered with the
Sg2 = Sgax —o transformation.

The f(a') function for the Sg, ;, scheme transformation
is given by

by b
Srox: fld)=1+kd + <b b—2k1 +k%> (a)?
|
by b -
=1+ ki + =+ 2k + 1) (@),
b bl
(5.1)
and hence the Jacobian is
by b
Spox: J=1+2kd +3( 2+ 2k + 13 )(d)?
- bl bl
b3 BZ 7 72 N2
=142k +3(=+=—k +k} () (5.2)
b, b
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Now, assume that N € I, so that there is an IR zero in
the two-loop beta function, f,,, as given in Eq. (2.5). Since
the existence of an IR zero in beta is a scheme-independent
property, one may impose the condition on an acceptable
scheme that it should maintain this property at higher-
loop level. Because the three-loop expression for the zero
of p, away from the origin involves the square root

\/b5 —4b b3, and because b, - 0 at the smaller-N f
end of the interval /, this condition generically implies
that the scheme should be such that b3 < 0 for Ny € I [19].

In particular, this condition is satisfied in the MS scheme
[16]. We shall impose this condition in the following. From
our discussion above, it follows that
R3¢ = AR2r = AR 2/ (53)
provided that the Sg,, transformation is acceptable.

As in our earlier works [2,3], the scheme dependence of
the theory in the vicinity of the IR zero of the beta function
is of particular interest, so we focus on this. The require-
ment that the S, scheme transformation should obey
condition C;, mapping ¢’ > 0 to a > 0, is that f(a’) > 0.
This inequality must be satisfied, in particular, at ajg ,, =

arros = —by/b,. Evaluating f(a’) at this value, we obtain
biby
Sgpoxtt flagae) =1+ 1172 bé ki, (5.4)
and hence the inequality
bb b?
1+ b23 - b; k3 > 0. (5.5)

[Note that the terms linear in k; in (5.4) and (5.5) happen to
vanish here and also below in Eq. (7.14).] Because the
coefficient of k7 is positive, this inequality can always be
satisfied by using a value of k7 that satisfies the inequality

k% > (k%)min’ (56)
where
(b3 4 bybs)  —b3 + by |bs]
(k%)min =2 bzl 3 = : bzl 3 . (57)
1 1

In Eq. (5.7), we have used the property that b3 < 0O for
Ny€l. By a continuity argument, if f(a')>0 at
a' = ayg ,,, then this is also true in a neighborhood of
this point on the real ¢’ axis. Equation (5.7) is a nontrivial
condition if b5 is sufficiently negative that |b3| > b3/b,. As
was shown in [2,3], such a subinterval in / does exist if one
uses the MS scheme as the initial scheme. Indeed, this is the
reason why Sz, = Sz, violates condition Cj.
Condition Cj is that J > 0, in particular, at ajg ,, =
aRps = —by/b,. Evaluating J at this value, we obtain
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3biby by, 3b?

S J=1 —ky + k3. 5.8
R2.k1 + b2 +b2 1+ 2 (5.8)
Then Cj is the inequality
3b1by by Sb%
1 —ky +—k? > 0. 5.9
T TRtk (5.9)

If k| were zero, then, since b3 < 0, this condition would be
violated for |bs| > b3/(3b;). For a given N, as N; € I
increases and bs increases in magnitude through negative
values, J goes negative before f(a’) does, since |bs]
exceeds b3/(3b;) before it exceeds b3/b;. Taking into
account that b, < 0 and b3 < 0 in I, the inequality (5.9) is
satisfied if

1
- _ 2
k> (|b2| +\/ 11b2+36b1|b3|> (5.10)

or

1 2
ky <6—b1(|b2|—\/—11b2+36b1|b3|>. (5.11)

Note that since we are considering the nontrivial case
|bs| > b3/(3b;), the expression in the square root of
Egs. (5.10) and (5.11) is positive and is greater than by,
which also implies that the right-hand side of Eq. (5.11) is
negative. In general, the inequality (5.9) is a stronger
condition than (5.6)—(5.7); for example, with b3 < 0 and
|bs| = b3 /by, it follows that (k?),;, = O in Eq. (5.7), but
(5.9) yields the constraints that k; > |b,|/b; from (5.10) or
k; < =2|b,|/(3D,) from (5.11).

Having shown that k; can be chosen so that Sg,
satisfies conditions C; and Cs, we next check conditions
C; and C,. For this purpose, we need to analyze the
inverse transformation, in which, for a given a, we

calculate «' from the relation (2.6). For Sg,y,
Eq. (2.6) is the cubic
by b
Sga:a=d |l+kd +(2+2k +k})(d)?].
by b
(5.12)

As an illustrative case, we consider N. =3 with
Ny =12, for which the two-loop beta function has a
|

biby _bibs _bibs
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(scheme-independent) zero at a,, = a;R,Zf = 0.754,
ie., aros = ag,, = 0.060. We study the effect of
carrying out the scheme transformation Sgak, on the
beta function. From our general results above, we
calculate |y, = 0.692 to satisfy f(a’) >0 and k, >
1.525 or k; <—1.08 to satisfy J>0. We choose
k, = 1.751. Substituting this into Eq. (2.6) together with
a = 0.060 and solving for «’, we obtain, for the relevant
physical root, @’ =0.0399, ie., & =0.502 [26]. (The
other two roots of the cubic equation are a’ = —0.0575,
which is unphysical, and @’ = 0.1107, which lies farther
away from the origin than &’ = 0.0399 and hence is not
reached in the evolution of the theory from the UV to the
IR.) This moderate shift downward in the value of the IR
zero o obtained by the Sk, transformation is similar to
the value of the IR zero that one obtains by staying
within the MS scheme and calculating to three-loop
order, namely, o3, = 0.435. We have found similar
results for other values of N, and N. Thus, condition C,
is satisfied, since the Sg,;, transformation with this value
of k; maps a moderate value of a to a moderate (smaller)
value of a’. Condition C, is also obviously satisfied.
Continuity of the scheme transformation implies that for
values of k; close to this value, the same qualitative and
quantitative results hold.

VI. APPLICATION OF THE Sg 3 x, SCHEME
TRANSFORMATION

Next, we study the Sg 3, scheme transformation. The
transformation function f(a’) for Sk, is
Srax - fla)=1+kad + ky(a')* + ks(d')?,  (6.1)
where k, and k5 are given by Eqs. (3.5) and (3.6). From the
m = 3 special case of Eq. (3.3), it follows that after the

application of the Sy 3 scheme transformation, in terms of
the new variable o,

/ ) ) —
AR 4r = R3¢ = MRz = AR2¢- (6.2)

We again assume that N € I, so that the two-loop beta
function has an IR zero. Evaluating f(a’) at this (scheme-
independent) two-loop zero, a{R’M = aRor = —b1/bs,
we have

302

b3
ky — =2k} — L

K (6.3)

Sr3x: f(a;R.Zf) =1+ b2
2

263 7 B3

26371 B3

An important property of Eq. (6.3) is that the coefficient of the highest-degree term, k3, is positive, namely,
—(b1/by)* = (by/|bs|)*. In [3], it was shown that for Sg3 = Sg s, i.e., if k; =0, f(ajg,,) can be negative, violating
condition C;. In contrast, with nonzero k;, because the coefficient of the highest power of k; in (6.3) is positive, we can
always satisfy the inequality by using a sufficiently large value of k;.
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We next consider condition Cs, that J > 0. Evaluating J at ajg ,, = ar s, We find

3bby  2b%b,
S =1+ —
R.3.kl * b% b%

Again, the coefficient of the highest-degree (degree 3)
term in k; is positive, namely, —4(b,/b,)* = 4(b,/|b|)>.
Hence, we can choose k; so as to guarantee that J > 0 for
N;el

We generalize these results for Sz, and Sgs;, as
follows. We find that for the S, transformation, the
respective highest-degree terms in the variable k; in f(a’)
and J evaluated at ajg ,, have degree m and have positive
coefficients o (—1)"(b;/by)™ = (by/|b,|)". Therefore,
by choosing k; appropriately, one can always render
both f(a’) and J evaluated at ap,, positive. This
contrasts with the simpler scheme transformations Sy, =
Sk.mo Which were analyzed in [2,3] and were shown not
to satisfy conditions C; and Cj. For values of a that are
such that we trust perturbation theory, the location of the
IR zero in f,, for n >3 should not differ very much
from the value in f,,, so by a continuity argument, it
follows that it is possible to choose a k; that again
guarantees that f(a’) and J are positive. In this range of
values of a, all of the conditions C; through C, are
satisfied.

As noted before, the maximum m for which we can
explicitly analyze the application of the Sg,,;, scheme
transformation in an asymptotically free theory is
m = 3, because this requires knowledge of the b, for
1<¢<m+1, and the b, have only been computed
up to m =4 loops. Nevertheless, it is of interest to
calculate the coefficients b, resulting from the applica-
tion of the Sk, scheme transformation, and we have
done this.

VII. SCHEME TRANSFORMATIONS IN THE
LIMIT N, — o0, Ny = 0o WITH N;/N, FIXED

A. General

One can get further insight into the application of the
Sgok, and Sg3;, scheme transformations at an IR zero
of the beta function by considering an SU(N,) gauge
theory with N, fermions in the fundamental representa-
tion and taking the limit [28] N. — oo and Ny — oo
with the ratio

(7.1)

N
=,
N,
held fixed and finite. One also imposes the condition
that the products

x(u)=Nea(p).  &p)

= Nea(u) = 4nx(p), (7.2)

by 12bibs . 7b%
b, B )

4b3
b; k. (6.4)

1oy
b2 k2

[

should be fixed, finite functions of u in this limit. (As
before, we will often suppress the argument y in the
notation.) We call this the LNN (large N, and Ny)
limit.

As in [20], to have a beta function that has a finite,
nontrivial LNN limit, we multiply both sides of Eq. (2.2) by
N, and define

dé
ﬁf = d_ - B\IN:BOC ct (73)
This has the power series expansion
& A
pe=-—-=-8nx Z:l bpxt = =28 bt (7.4)
and
s by by
be=lipye  be=lmye 09

We define the n-loop f; function by Eq. (7.4) with the
upper limit on the summation over loop order £ = oo
replaced by ¢ = n. The (scheme-independent) one-loop
and two-loop coefficients in f; are

11-2r A 34 —13r
, by =——. 7.6
. =2 (16)

Z;]:

To maintain asymptotic freedom, one restricts r < 11/2.
We will focus on the interval r € I, where f: ,, has an IR
zero, namely,

I,: %<r<%, (7.7)
1.e., 2.615 < r < 5.500. This zero occurs at
XIR 2z = % (7.8)
We have [20]
by = 5i4(2857 — 17097 + 1127?)
= 52.9074 — 31.6481r + 2.07407r2 (7.9)

and
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5, 150473 (485513) (8654
4= 7486 1944 )" T\ 243

=315.492 — 252.421r + 46.832r% + 0.534979r°,

to the indicated numerical floating-point accuracy,
where {(s) = > %, n™* is the Riemann ¢ function, with
£(3) = 1.202057.

A scheme transformation in this LNN limit has the form
x = x'f(x"). We impose the condition that f(0) = 1 to keep
the properties of the theory the same as the coupling goes to
zero. Using an f(x) that is analytic at x’ = x = 0, we have
the expansion

Smax Smax

M) =1+ k() _1+Zk (&5,
s=1

where the lAcS and I_cAs are given by the expressions for the
and k, with the various b, coefficients replaced by b,,. The
Jacobian is

(7.11)

d Smax
g=da_dx
da  dx —|—Zs+

Smax

=1+ Z s+ Dk, (&)’ (7.12)

We will denote the scheme transformation on x in the LNN
limit that corresponds to Sk ,, x, With the rescalings indicated
above as Sp , + 1ny- We construct the scheme transforma-
tion Sy, i LNN in the same way that we constructed Sg , £, ,
by solvmg the equations for b, = 0 for3<# <m + 1.

B.S R2,:LNN scheme transformation

For the S, 1y scheme transformation, we calculate

2857 —1709r + 1127 (13r — 34\ . P2
B 18(11 —2r) 11-2r ‘
(7.13)

Evaluating the Sg 5 ; 1y €xpression for f(x') atx = xpg 5,
we calculate

Sgamann: f(¥ros) =1+ kixg,, + ka (Xg 2)?

bby B
=l+—"+ =k
b2 bZ

52235 — 404251 + 7692r* — 224r°
B 18(13r — 34)?

11-2r\2,,
v <13r—34> f

(7.14)

PHYSICAL REVIEW D 90, 045011 (2014)

130
r+ ( ) +9(11—5r+21r )¢(3)

243
(7.10)

|

In [3] we showed that for the case k; = lAcl =0, ie.,
the Sg, scheme transformation, and r € I,, f(x{g,,) is
negative for 34/13 < r < 4.07 and positive for 4.07 <
r<11/2 (to the indicated floating-point numerical
accuracy). Here, by choosing nonzero lAcl, we can
enlarge the range over which f(x{,,) > 0, satisfying
condition C;. The lower bound on lAc% such that this
positivity holds is

~ —52235 + 40425r — 7692r% + 22473

(kl)min = 18(1] _ 2}’)2 . (715)

For example, for a value roughly in the middle of the
interval /,, namely, r = 4, for which xjg,, = 1/6, this
condition is that |k| > 2.12.

The Jacobian for the S R2.k:LNN scheme transformation,

evaluated at x' = xfp ,, = —by /by, is
3b b3 by~ 3b}.
Sgodynn: J =1+ +[;—k1+?k%
2 2 2
38363 —29817r + 56641 — 224r°
- 6(13r — 34)2
11-2r 11-2r\2,
)l +3 (== ) B
(13r—34> L+ <13r—34> !

(7.16)

If lAcl = 0, i.e., for the Sg , scheme transformation, and with
r € 1, this J is negative for 34/13 < r < 4.69 and positive
for 4.69 < r < 11/2. Here, with the Sg,, scheme trans-
formation, we can choose lAcl to render J positive through-
out all of the interval /,, as required by condition C5. We
can do this because the coefficient of the term in J of
highest degree in lAcl (namely, degree 2) is positive. We find
that J > 0 if

¢ o 13r =34+ (755704 58750r — 11159, +448,°)' /2
! 6(11—2r)

(7.17)

or

3 13r=34- (75570 + 587507 — 11159,° + 448,°)"/2
! 6(11—2r) ‘

(7.18)

045011-9



ROBERT SHROCK

For example, for a value roughly in the middle of the
interval 1,, r =4, these inequalities are k; > 6.43 or

k, < —4.43 (.e., k; > 0.512 or k; < —0.353). To check
conditions C, and C,, we first pick IAcl =7 (.e.,

k, = 0.557) and substitute this into the equation x =
X' f(x') for this Sg,; ony transformation, which is a
cubic equation for x'. Setting x equal to the value
Xr2s = 1/6 for r = 4, and solving for x, we get, as the
relevant physical root, x’ = 0.123. This is similar to, and
slightly smaller than, x = 1/6 = 0.167. (The other two
roots of the cubic equation are x’ = —0.163, which is
unphysical, and x' = 0.2485, which is farther from the
origin than x’ = 0.123 and hence is not reached in the
evolution of the coupling from the UV to IR.) For
comparison, we pick IAcl —6 and follow the same
procedure. This yields the relevant physical root
x' = 0.179, slightly larger than 1/6. For both of these
choices of k;, all of the acceptability conditions are
satisfied.

Skakann = f(¥irar) = 6%(13r — 34)

PHYSICAL REVIEW D 90, 045011 (2014)

C. Sg3i,..nn Scheme transformation

The Sg 5 f LNN scheme transformation has the same lAcz as
the Sg, i .an transformation, given above in Eq. (7.13).
For ks, we calculate

by 3by. Sby., -
k3: f+A3k1+ Azk%+k?
2b, b, 2b,
= [601892 — 485513r + 6923212 + 10407°
e (11=2r) e

+£(3)(9504 — 4320F + 1814472)]

(2857 — 17097 + 112/2)k,  5(13r — 34)i3

73
6(11—2r) 2(11 —2r) ki

(7.19)

The Sg3,1nn €xpression for f(x') evaluated at x =
XIr 2¢ 18 given by the right-hand side of Eq. (6.1) with the b,
replaced by b, with 1 < ¢ <4. Substituting the above
expressions for these, we obtain

[—55042348 + 626220397 — 245206047% + 28856447° + 21504r* + 41607°

+ ¢(3) (1149984 — 9408967 + 242352072 — 81561673 + 725761)]

| (11 -2r)(2857 17097 + 127k, 3 ( 11 —2r>2A2 ( 11 —2r)3A3

6(13r —34)*
With the same substitution x’ = xjp ,, in J, we get
(11 —2r)(2857 — 17097 + 11212)
6(13r —34)?

(11 = 2r)?
324(13r — 34)3

SR,3.1}];LNN =J=1+

N

11— 2r)(59386 — 46374r + 8793r% — 448r° )k,

= — =) B 2
2\13r-34) ™! 13r — 34 ki (7.20)

(601892 — 485513 + 6923272 + 104073 + £(3)(9504 — 43207 + 1814472)]

3(13r - 34)°

If k, =0, then for rel,, f (Xr2¢) is negative for
34/13 < r < 3.95 and positive for 3.95 < r < 11/2, while
J is negative for 34/13 < r <4.58 and positive for
4.58 < r < 11/2. Since the coefficients of the lAc? terms
in Egs. (7.20) and (7.21) are positive, we can choose fcl
appropriately to enlarge the region of r € I, for which
f(xir2r) and J are positive, so that conditions C; and C;
are satisfied. For example, for the value r = 4, roughly in
the middle of the interval 7,, f(xz,,) in Eq. (7.20) is

positive for k; > 1.30 or —0.597 < &, < 0.0115, while J in
Eq. (7.21) is positive for k; > 1.43 or —0.543 < k; <

—0.0541. Recall that for r = 4, x| », = 1/6. Setting l_cAl =
—0.199 in f(x') for the S 3 1Ny SCheme transformation

11-2r\2. 11-2r\3,
7 k44— ) k. 7.21
(13r—34) I+ (13r—34) o (721)
[

and solving the quartic equation x = x'f(x') for this
Sgaiany transformation, we find x’ = 0.157, close to
and slightly smaller than xpg ,,. (The other three roots of the
quartic equation are all unphysical, namely x" = —0.190
and X' = 0.569 + 0.142i.) As is evident, conditions C, and
C, are thus also satisfied. Again, one can use a continuity
argument to infer that the same conclusion holds for

neighboring values of r and IAcl. Thus, as we did for finite
N, and Nf € I, here, in the LNN limit with r € I,, we have
shown that, by the use of the parameter &, in the S R2. NN
and Sp 5 i LNN scheme transformations, we can enlarge the
region of applicability of these transformations as com-

pared with the respective transformations with lAcl =0
studied in [2,3].
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VIII. ON A MODIFIED S; SCHEME
TRANSFORMATION

Here we present a modification of the scheme transition
denoted S in [2] which was designed to remove the three-
loop term in the beta function. This scheme transformation
has s, = 1 and thus has the form a = d'(1 + k;d’).
Solving this quadratic equation for a’ formally yields
two solutions, but only one is physical, namely

1
d :2_k1(_1 + /1 +4k,a).

since only this solution has the property that a — a’ as
a — 0. Since the purpose of this transformation is to
render b} = 0, this condition is used to determine k;. The
condition b4 = 0 in this case is the equation b3 + kb, +
k?b; = 0. In contrast to the S Romk, Scheme transformation,
for which all of the equations for the k, with s > 2 are linear,
this equation is quadratic and has the two formal solutions

1 /
klp’klm :ﬁ(—bzi b%—4blb3>,
1

where the p, m subscripts refer to the + sign in Eq. (8.2). If
one requires that this scheme transformation must obey the
conditions C;-C, throughout all of the interval /, then the
only acceptable choice is k; = k;,,, as was shown in [2].
The application of the S; scheme transformation with this
choice was analyzed in [2]. The regime of N, values for
which the S; transformation with k = ky,, is unacceptable
is toward the lower end of the interval I, where the value of
the IR zero, ag ,, = —4nb, /b, = 4xb,/|b,|, gets large. In
view of this, one could alternatively choose not to try to
apply the scheme transformation to the lower end of the
interval I, since one could plausibly consider that the
coupling is too large there for perturbative methods to be
reliable. In this approach, one could study the application of
the scheme transformation §; with the choice k; = ky,,
instead of k; = k.

We explore this alternative approach here. With b5 < 0,
we reexpress ky,, in terms of positive quantities as

_ 1 /12
ki =%, [|b2| bz+4bl|b3|]-

If we restrict the application of the S; scheme trans-
formation to the middle and upper parts of the interval
I, then the choice k; = k;,, actually has an advantage as
compared with the choice k; = k. This can be shown as
follows. We recall that as N, approaches Ny ;., b, gets
small and, consequently, k;,, can become somewhat large.
This growth in k;, is canceled in the S transformation,
because k,, multiplies @', and a and a’ both approach zero
in this limit. However, this does lead to some residual
scheme dependence in the comparison between the four-
loop IR zero in the MS scheme and the four-loop zero
computed by applying this S scheme transformation to

(8.1)

(8.2)

(8.3)

PHYSICAL REVIEW D 90, 045011 (2014)

that scheme, as discussed in [2]. In contrast, with the sign
choice k; = ky,,, as Ny increases toward Ny, ki,
approaches —|bs|/|b,|, and hence its magnitude does
not become large. Then, taking into account that apg,,
approaches zero in this limit, the inversion of the S; scheme
transformation with k; = k;,, yields values of a’ that are
closer to the corresponding values of a in this limit than was
the case with the k;, choice. Thus, the k;, and k,,, choices
have complementary advantages for the analysis of the IR
zero with Ny € I in these theories.

IX. CONCLUSIONS

Because terms at loop order £ > 3 in the f function of a
gauge theory are scheme dependent, it follows that one can
carry out a scheme transformation to remove these terms at
sufficiently small coupling. A basic question concerns the
range of applicability of such a scheme transformation. It is
particularly important to address this question when study-
ing the IR zero that is present in the f function of an
asymptotically free gauge theory with sufficiently many
fermions. In this paper, we have presented a generalized
class of one-parameter scheme transformations, denoted
Srmk, Withm > 2, depending on a parameter k;. A scheme
transformation in this class eliminates the £-loop terms in
the beta function from loop order Z =3 to order
¢ = m+ 1, inclusive. We have analyzed the application
of this class of scheme transformations to the infrared zero
of the beta function of a non-Abelian SU(N ) gauge theory
with N, fermions in the fundamental representation and
have shown that an Sg,, ;, scheme transformation in this
class can satisfy the criteria to be physically acceptable over
a larger range of N, than the Sg,, transformation with
ki = 0. As part of this, we have studied the properties of
the corresponding scheme transformations in the limit
N, — o0 and Ny — oo with N;/N, fixed and finite. We
have also presented and discussed a modification of the S,
scheme transformation that removes the three-loop term in
the beta of this theory. Our applications of the generalized
scheme transformation provide a quantitative measure of
the scheme dependence of the infrared fixed point of an
asymptotically free non-Abelian gauge theory, adding to
the results in [2,3]. These results are useful for the study of
the UV to IR evolution of an asymptotically free gauge
theory and, in particular, the investigation of the properties
of a theory of this type with an infrared fixed point.
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APPENDIX A: BETA FUNCTION COEFFICIENTS

For reference, we list the one-loop and two-loop
coefficients [4-6] in the beta function (2.2) for a non-
Abelian vectorial gauge theory with gauge group G and N
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Dirac fermions transforming according to the representa-
tion R:

PHYSICAL REVIEW D 90, 045011 (2014)

APPENDIX B: EQUATIONS FOR THE b/,
RESULTING FROM A GENERAL

SCHEME TRANSFORMATION

1
b, = 5(1 1C4 —4T;Ny), (A1) The expressions for the b/, in Eq. (2.10) for 3 <# <6
are [2]
1
by = 3[34C3 —4(5C4 +3CAT;Nyl.  (A2) b, = by + kyby + (k3 — ky)by, (B1)

(See Eq. (2.3) [29].) Our calculations also make use of the

’_ 2 73 —
three-loop and four-loop coefficients by and b, calculated ba' = ba  2kybs + kiby + (=2ki + 4kiky = 2k5)by,

[9,10] in the MS scheme. (B2)
|
bl = bs + 3kiby + (202 + k)bs + (=K + 3kiky — ks)by + (4k% — 11K2Kk, + 6k ks + 4K2 — 3k)by,  (B3)
and
bl = b + 4kybs + (413 + 2k )by + dkikybs + (2k4 — 6K2ky + 4k ks + 3K2 — 2k ) by
4 (—8KS 4 28K3ky — 16K2ks — 20k k2 + 8Kk ky + 12kyks — 4ks )by (B4)

The b/, with £ up to £ = 8 were given in [2]. As was noted in the text (with m + 1 = ¢), a property that was used in our
procedure for constructing the scheme transformation S, ;, is that in the expressions for b, with # >3, k,_; occurs
linearly, namely in the term —(¢ — 2)k,_ b;.

APPENDIX C: HIGHER-ORDER COEFFICIENTS FOR Sg , ,

In this appendix, we list expressions for some higher-order coefficients k; in the S, ;, scheme transformation. We
calculate that

_ Do _babs  2bsby  B3by byb3  [Sbs  Thaby  25B3), | [Shy  27babs]
T 4b, 6br T b 1203 1265 |3by  6b2  3b3 | by 2% |7
10b;  35b% 77b, :
|:b1 + 67 K+ 125, ki 4k for Sg,i with m>5, (C1)
and
by 3bybg  8bsbs 11b} 4bybshy  b3bs 163 B33 bib,
©75p, 2007 T 52 2002 5b3 1063 56 206 206
3bg , 2babs  12bshy  4Thobi _b3bi), - [Sbs  17bsby  25b3  15b3bs] ,
2b, | 3b? b2 6 3b3 | by 202 b2 263 |
10b, 37byby  5b3 15b;  85h3 87b, :
2+ 2| k3 : 1 Kk} + kS for S th m>6. C2
[bl v Tan M ey Ten KT [Top, KT TR o Sk with m 2 6. (C2)

APPENDIX D: b, COEFFICIENTS RESULTING FROM THE S ,;, SCHEME TRANSFORMATION

From the expressions for k in the Sg , ;, scheme transformation, we have calculated the resultant coefficients b, for £ up
to 8. We listed b/, for £ =3,4, 5 in Egs. (4.1)~(4.3) in the text. Here we give the more lengthy expressions for the
coefficients b}, for £ =6, 7, 8. We have

2b3b, 3b22b§+ 4b5+2b2b4_16b§ 6b3b,

b, by b, b, b3

36byby 353 2052
2 3+—2]k%— {8b3+ . 2

by =b
6= %+ by b}

]kl + [6[)4 - ]k? — 13b,k4,

(D1)
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3bybs  9b3 3bybs  Thyby  42b,b2 Tbyb,  41b%  57b%b,
b, =b -3+ |5b =L 3k 10b 3 _ 2002
7=0rt b, b’;‘+ 6t b, + b, b? 1t s+ b, + b, pr |t
69b,by  24b3 2853
+9by +— 22— 2K |4y + T2 |k 416,k + 9B, kS, (D2)
b, b3 b,
and
4bsbs  4b2by  8byb3 4bybs  12bsbs  8bybsb, 783  24b3b3
by =b - b : -~ k
3=t b3 b3 607 ¥ by by b2 b3 b |
12bybs  12b3b,  4b3b,  258b,b3  24b3bs] , 18b3 12b,b, 282b3b; 8b3] |
15b - 3 k3 + |18b : 322k
+[ S » = b P+ |18bs = 7 ik
64b,by 10263 46b>
+ [9b4+ b2 3 = 2] K+ [—48193 += 2} I — 42b,kS — 18b k7. (D3)
1 1 1

APPENDIX E: b, COEFFICIENTS RESULTING FROM THE Sg 3, SCHEME TRANSFORMATION

From the expressions for k; in the S5, scheme transformation, we calculate the resultant b/, coefficients. We obtain
by =0, b, =0, and the result for b given in Eq. (4.5). For the b, with # =6, 7, 8, we find

8bsb,  3b,b} 10b,b, 200} 6b3bs 42b,by  3b3
b, =b 4b ki + |4b 2
p 6+b1+b§+ s+ bl+b1+b§ |+ |4by + b]er%1
20b2
- {—8b3+ - 2} I — bk} — 4b, K3, (E1)
1

b/7:b7+

3bybs 1162 9b3  9b,bsb
305 4_2% 2 ; 44 {5b,
b, | 4b, D 262

3b,b 10b3b, 15b,b3  9b3b
+ 2 5+ 3¥4 ; 3 224 kl
b, b, b 2b?

3byby  40b2  15b3by 96byby  3b3 2073
10b - - 3+ 105, — —Z 2143~ |10 2| k4 = 17b,k3, (B2
“{ 5T, b, 252 Y 202 3T, | 2 (E2)
and
b — b 4 Hbsbe bybs _ 18b3b, 7b2b§_8b2bg+ 6 +4b2b6+18b3b5_37b2b3b4_54b§_24b§b§_15b§ .
8§ p b, b2 42 b T by b, b2 b2 b 2b |
17bybs  42bshy  45b3by  185b,b3  24b3bs) 26b,b,  80b3 207b3b;  8b3] .
15b - - - - k2 + |20bs — e 32k
+[ SRS b, 263 b3 b TP, b, b} b
116b,b;  297b3] 8952
3by — - k¢ — 125 + —2| k5 — 5b,kS. E3
+[ 4 b, el 3+2b, i 2K7 (E3)
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