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We study the dynamics of SUð2ÞL ×Uð1ÞY electroweak gauge fields during and after Higgs inflation.
In particular, we investigate configurations of the gauge fields during inflation and find the gauge fields
remain topologically nontrivial. We also find that the gauge fields grow due to parametric resonances
caused by oscillations of a Higgs field after inflation. We show that the Chern-Simons number also grows
significantly. Interestingly, the parametric amplification gives rise to sizable magnetic fields after the
inflation whose final amplitudes depend on the anisotropy survived during inflation.
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I. INTRODUCTION

It is well known that an inflationary scenario has
succeeded in solving various cosmological problems of
the standard big bang model and predicting scale-invariant
fluctuations observed in the large scale structure of the
Universe and the cosmic microwave background radiation
(CMB). In this scenario, a scalar field called inflaton is
supposed to be a source of quasiexponential expansion of
the Universe. Thus, it is important to identify the inflaton in
a model of particle physics. An attractive possibility is that
the inflaton is one of scalar fields in a supersymmetric
extension of the standard model of particle physics. So far,
however, there exists no signal of supersymmetry in
experiments at the LHC, which has been supposed to
discover supersymmetric particles. This is one of the
reasons people tend to prefer Higgs inflation proposed in
[1], where the Higgs field plays a role of the inflaton. It
should be emphasized that inflation can be realized in the
electroweak sector of the standard model of particle
physics. Remarkably, new data released by Planck strongly
support Higgs inflation [2] although recent BICEP2 results
raised a challenge to Higgs inflation [3].
Needless to say, gauge fields are essential ingredients of

electroweak theory. Thus, it is intriguing to explore the
cosmological dynamics of the electroweak gauge fields in
an inflationary scenario. Indeed, in view of recent findings
concerning roles of gauge fields in inflation [4], it is worth
investigating a possible role of the electroweak gauge fields
in Higgs inflation. It should be noted that the dynamics of
electroweak theory coupled with Einstein gravity has been
already studied in [5]. There, it is found that a nontrivial
local minimum appears in the effective potential of the
gauge fields. In their paper, however, the presence of a
cosmological constant is assumed to realize inflation.

In fact, it is inevitable to consider a concrete inflation
model for making predictions on observables at present.
Fortunately, as mentioned above, electroweak theory itself
prepares Higgs inflation. Thus, it is worth redoing their
analysis in the context of Higgs inflation.
The other motivation stemmed from primordial magnetic

fields [6,7]. It is well known that there exist magnetic fields
in galaxies. Moreover, there are several observational
evidences [8–11] for the presence of magnetic fields in
intergalaxies or interclusters of galaxies, which seems
difficult to explain by astrophysical processes. One attrac-
tive mechanism for producing magnetic fields with such a
long correlation length is the generation of magnetic fields
in inflation. Indeed, the generation of primordial magnetic
fields during inflation has been discussed in many papers
[12–18]. In the course of these studies, strong coupling and
backreaction problems are recognized [19]. Although a
partial answer to the backreaction problem is given in [20]
and there is a proposal for resolving the strong coupling
problem [21], it is fair to say that further works including
theoretical constraints on the magnitude of magnetic fields
from observations [22,23] are necessary. At this point, it
should be noticed that all of these works have been done in
Einstein-Maxwell theory. However, inflation occurs at the
energy scale above the electroweak phase transition.
Hence, it is natural to study generation of primordial
magnetic fields in the context of Einstein-electroweak
theory. It is legitimate to expect a simple solution to the
above difficulties in this natural setup.
In this paper, therefore, we focus on the dynamics of the

SUð2ÞL ×Uð1ÞY gauge fields during and after Higgs
inflation aiming at clarifying the evolution of gauge field
configurations and seeking a novel mechanism for gen-
erating primordial magnetic fields. We show that there
appear topologically nontrivial configurations of the gauge
fields during inflation. Moreover, the gauge fields require
an anisotropic universe as a framework. Interestingly,
it turns out that the initial anisotropy survives during
inflation. Of course, the expansion rate is isotropic in
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accordance with the cosmic no-hair conjecture. We also
observe that amplification of the gauge fields after inflation
occurs due to parametric resonances induced by oscilla-
tions of the Higgs field. We evaluate magnetic fields
generated by the processes and find that sizable magnetic
fields are generated. Remarkably, the anisotropy survived
until the end of inflation affects the final amplitude of
magnetic fields.
The paper is organized as follows. In Sec. II, we provide

the action of Einstein-electroweak theory with a non-
minimal coupling and derive basic equations for analyzing
cosmological dynamics of the gauge fields. In Sec. III, we
do the numerical calculation and find parametric resonan-
ces. We also evaluate the change of the Chern-Simons
number due to parametric resonances. In Sec. IV, we show
that sizable magnetic fields are generated by parametric
resonances. We conclude the paper with summary and
outlook in Sec. V.

II. COSMOLOGY IN EINSTEIN-ELECTROWEAK
THEORY

In this section, we present basic formulas for studying
cosmology in nonminimally coupled Einstein-electroweak
theory where a Higgs fieldΦ plays a role of an inflaton. The
action reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
Rþ ξΦ†ΦR−

1

4
Fa
μνFaμν −

1

4
Ga

μνGaμν

− ðDμΦÞ†ðDμΦÞ− λ

�
Φ†Φ−

v20
2

�
2
�
; ð1Þ

whereMpl is the reduced Planck mass, g is a determinant of
a metric gμν, and ξ, λ and v0 are parameters. Here, a gauge
covariant derivative is defined as

DμΦ ¼
�
∂μ − i

g
2
τaAa

μ − i
g0

2
Bμ

�
Φ; ð2Þ

where g and g0 are gauge coupling constants, Aa
μ and Bμ are

SUð2ÞL ×Uð1ÞY gauge fields, and τa are Pauli matrices.
Note that the coupling constant g is not related to the
metric. We also defined the SUð2ÞL field strength Fa

μν ¼
∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν with structure constants fabc

and the Uð1ÞY field strength Gμν ¼ ∂μBν − ∂νBμ. Note
that, for the parameter region 1 ≪

ffiffiffi
ξ

p
⋘1017, inflation can

be realized in the context of electroweak theory [1].
Hereafter, we assume a homogeneous universe with a

spatial topology of S3. In this case, we can use the Maurer-
Cartan invariant one-form basis σjðj ¼ 1; 2; 3Þ which
satisfy

dσi ¼ ϵijkσj ∧ σk; ð3Þ

where ϵijk is the Levi-Civita symbol. Using these
one-forms, the metric can be written as

ds2 ¼ −N2dt2 þ a21ððσ1Þ2 þ ðσ2Þ2Þ þ a23ðσ3Þ2 ð4Þ

≡ − ðe0Þ2 þ ðe1Þ2 þ ðe2Þ2 þ ðe3Þ2; ð5Þ

where N is the lapse function and eμ ðμ ¼ 0; 1; 2; 3Þ is the
orthonormal basis. Here, scale factors a1ðtÞ and a3ðtÞ are
different in general because of the presence of the Uð1ÞY
gauge field which is supposed to have a specific direction

B ¼ hðtÞσ3: ð6Þ

This anisotropic ansatz is inevitable when we consider
cosmology in electroweak theory. It is also necessary when
a nontrivial coupling between an inflaton and gauge fields
exists as in electroweak theory, because there is a pos-
sibility to have anisotropic inflation [24]. Indeed, we will
see that Higgs inflation can be regarded as a kind of
anisotropic inflation in the sense that the survived
anisotropy is relevant to the gauge field dynamics. Next,
using the gauge degrees of freedom, we transform the
Higgs field

Φ ¼ vffiffiffi
2

p
�
x2 þ ix1

x4 − ix3

�
ð7Þ

to

Φ → H−1Φ ¼ 1ffiffiffi
2

p
�
0

v

�
; ð8Þ

where H ¼ x4 þ ixiτiði ¼ 1; 2; 3Þ, with a relation
ðxiÞ2 þ ðx4Þ2 ¼ 1, is an element of SUð2ÞL group. Here,
τi are Pauli matrices. Under this transformation, the trivial
gauge field becomes

−iH−1dH ¼ σjτj: ð9Þ

Thus, we use the following ansatz of the Higgs fields

Φ ¼ 1ffiffiffi
2

p
�

0

vðtÞ
�
: ð10Þ

Finally, we can assume the gauge fields as follows

A ¼ 1

2g
½f1ðtÞðσ1τ1 þ σ2τ2Þ þ f3ðtÞσ3τ3�; ð11Þ

where we have taken into account anisotropy due to the
Uð1Þ gauge field Bμ. Substituting the ansatz (11) into the
field strength of the SUð2ÞL gauge field, F¼dA− igA∧A,
we obtain
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F ¼
_f1

ga1N
e0 ∧

�
e1

τ1

2
þ e2

τ2

2

�
þ

_f3
ga3N

e0 ∧ e3
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2

þ f1ðf3 þ 2Þ
ga1a3

�
e2 ∧ e3

τ1

2
þ e3 ∧ e1

τ2

2

�

þ f21 þ 2f3
ga21

e1 ∧ e2
τ3

2
: ð12Þ

It is easy to see a trivial configuration f1 ¼ f3 ¼ 0 has the
field strength F ¼ 0. Moreover, the configuration with
f1 ¼ f3 ¼ −2 also gives rise to F ¼ 0. Indeed, this is a
case of pure gauge

A ¼ −
1

g
σjτj ¼ i

g
H−1dH: ð13Þ

The field strength of the Uð1ÞY gauge G ¼ dB is
given by

G ¼
_h

Na3
e0 ∧ e3 þ 2h

a21
e1 ∧ e2: ð14Þ

Note that h ¼ 0 yields G ¼ 0.
Using the ansatz (10), the term proportional to the

curvature becomes

M2
pl

2

�
1þ ξv2

M2
pl

�
R: ð15Þ

In order to transform the metric into the Einstein frame, we
need the conformal transformation

ĝμν ¼ Ω2gμν; Ω≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξv2

M2
pl

s
: ð16Þ

Substituting these ansatzes into the action after the con-
formal transformation, we get the following action in the
Einstein frame

S ¼ 2π2
Z
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1
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�
2 _f1

2

a21
þ
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2
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�
þ
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2N2a23
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�
1þ 6ξ2v2

M2
plΩ2

�
_v2

Ω2

�

− 2π2
Z

dtNa21a3Vðf1; f3; h; v; a1; a3Þ; ð17Þ

where the potential function reads

Vðf1; f3; h; v; a1; a3Þ

¼ λ

4Ω4
ðv2 − v20Þ2 þ

v2

8Ω2

�
2f21
a21

þ ðf3 − g0hÞ2
a23

�

þ 1

2g2

�
2f21ðf3 þ 2Þ2

a21a
2
3

þ ðf21 þ 2f3Þ2
a41

�
þ 2h2

a41
: ð18Þ

We can envisage the dynamics of gauge fields based on
the potential (18). It consists of three parts: the first term
coming from the Higgs potential is independent of the
scale factors, the second term is proportional to the
inverse of quadratic of scale factors, and the third and
fourth terms are proportional to the inverse of the quartic
of the scale factors. In the course of expansion of the
universe, the terms depending on a1; a3 become negligible

compared to the first term. However, in the early stage of
the universe, since the second term contains the factor
ðf3 − g0hÞ, there exists a flat direction of the potential. So,
the gauge fields first roll down to the bottom of the flat
direction where the topology of the gauge fields is
nontrivial. This makes the difference as we will see in
the following sections.
Now, we can derive basic equations. It is convenient to

define new variables as

a1 ≡ eαþβ; a3 ≡ eα−2β; ð19Þ

where α and β describe the average and the anisotropic
expansion of the universe, respectively. In this paper, we
use a length unit normalized by GeV−1. Taking the variation
with respect to the lapse function N, we obtain the
Hamiltonian constraint
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3ð _α2 − _β2Þ þ e−2ðαþβÞð4 − e−6βÞ ¼ 1

M2
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�
: ð20Þ

Hereafter, we can set N ¼ 1. Other components of Einstein equations can be obtained by taking the variations of the action
with respect to α and β. The equation for α reads

6α̈þ 9ð _α2 þ _β2Þ þ ð4 − e−6βÞe−2ðαþβÞ ¼ −
1

M2
pl

�
e−2α

2g2
ð2 _f1
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2
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�
: ð21Þ

Similarly, the equation for β is given by

3β̈ þ 9_α _βþ4ð1 − e−6βÞe−2ðαþβÞ ¼ −
1

M2
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e−2α

g2
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�
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The equation for the Higgs field can be deduced as

v̈þ 3_α _v−
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plΩ2
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Moreover, we need the equations for SUð2Þ gauge fields

f̈1 þ ð _α − 2_βÞ _f1 ¼ −f1
�
e−2ðα−2βÞð2þ f3Þ2 þ e−2ðαþβÞðf21 þ 2f3Þ þ

g2

4

v2

Ω2

�
ð24Þ

and

f̈3 þ ð _αþ 4_βÞ _f3 ¼ −2e−2ðαþ4βÞðf21 þ 2f3Þ − 2e−2ðαþβÞf21ðf3 þ 2Þ − g2

4

v2

Ω2
ðf3 − g0hÞ: ð25Þ

Finally, the equation for the Uð1ÞY gauge field reads

ḧþ ð _αþ 4_βÞ _h ¼ −4e−2ðαþ4βÞhþ g0

4

v2

Ω2
ðf3 − g0hÞ: ð26Þ

Now that we have obtained basic equations, we can move on to the analysis of cosmological dynamics of gauge fields.
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III. COSMOLOGICAL DYNAMICS OF
GAUGE FIELDS

In this section, we focus on the dynamics of the gauge
fields. We will see gauge fields remain nontrivial during
inflation although the energy density of them rapidly
decays during inflation in agreement with the cosmic
no-hair conjecture. However, after inflation, the gauge
fields show the parametric resonances due to oscillations
of the Higgs field. Furthermore, we explicitly evaluate the
Chern-Simon number to characterize the topology of the
gauge fields.
In the subsequent calculations, we will use the following

numerical values1 adopted from experiments

g ¼ 0.653; g0 ¼ 0.358; v0 ¼ 246 ½GeV�;
mH ¼ 126 ½GeV�; Mpl ¼ 2 × 1018 ½GeV�: ð27Þ

We also set initial values of time derivative of the following
variables to be zero for convenience:

_f1i ¼ _f3i ¼ _hi ¼ _vi ¼ _βi ¼ 0; ð28Þ

where the index i represents the value at the initial
time t ¼ 0. According to [1], we need to take ξ ∼ffiffiffiffiffiffiffi
λ=3

p
Ne=ð0.027Þ2 for inflation to be realized, where Ne

is the total e-folding number. Taking into account the
relation λ ¼ m2

H=2v
2
0, we have chosen2 ξ ¼ 2 × 104. We

also fixed the initial value of the Higgs field as
vi ¼ 1017 ½GeV�. As to the metric variables α and β, we
left them arbitrary parameters as long as the positivity of the
Hubble squared is guaranteed in Eq. (20).
In Fig. 1, we plotted the time evolution of the gauge

fields during inflation. For this calculation, we started from
the pure gauge configuration and did not consider the initial
anisotropy:

f1i ¼ −2; f3i ¼ −2; hi ¼ 0; βi ¼ 0: ð29Þ

We chose the initial value αi ¼ −20 and determined _αi
from the constraint (20). We can see that the gauge fields
oscillate initially and converge into some values which do
not correspond to the pure gauge ones. The similar
behavior is also observed in Ref. [5].
In Fig. 2, we plotted β for several initial values βi. It turns

out the anisotropy remains during inflation although the
expansion rate is isotropic. This anisotropy has an impact
on the evolution of gauge field configurations after inflation
because Eqs. (24), (25), and (26) explicitly depend on the

anisotropy β. Because of this anisotropy as well as the
nontrivial gauge fields, Higgs inflation is anisotropic.
We plotted the time evolutions of the Higgs field in phase

space in Fig. 3. In this case, we have about a 40 e-folding
number. We can see that the Higgs field shows damping
oscillation after inflation. During this stage, the gauge field
also shows chaotic oscillation. This kind of chaotic

FIG. 1 (color online). The time evolution of f1ðtÞ (top), f3ðtÞ
(middle), and hðtÞ (down) during inflation with the initial
conditions f1i ¼ −2; f3i ¼ −2; hi ¼ 0; αi ¼ −20; βi ¼ 0. They
oscillate near the bottom of the effective potential with damping.

FIG. 2 (color online). The time evolution of βðtÞ for several βi
values with the initial conditions f1i ¼ −2; f3i ¼ −2; hi ¼ 0;
αi ¼ −20.

FIG. 3 (color online). The time evolution of the Higgs field in
phase space with the initial conditions f1i ¼ −2; f3i ¼ −2;
hi ¼ 0; αi ¼ −20; βi ¼ 0.

1For more detailed discussion of parameters, see for example
[25,26]

2This choice is based on [1], which is in between the minimal
coupling ξ ¼ 0 and that in “induced gravity” model

ffiffiffi
ξ

p
∼ 1017

[27–29].
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behavior is also found in other models [30] where a gauge
kinetic function keeps gauge fields nonzero. While, in this
case, the gauge fields remain nonzero due to the flat
direction.
In Figs. 4 and 5, we plotted the absolute value

of gauge fields with different initial conditions.
There, we can see rapid growth of the amplitude of the
gauge fields for both f1 and f3 − g0h. It is easy to check
that the energy density of gauge fields also rapidly
grows. Remarkably, the gauge fields converge to a value
due to the nonlinear effect. From Fig. 5, we see even if we
started with f3 ¼ h ¼ 0, the final value is similar to
other cases.
We can understand the behavior in Figs. 4 and 5 as

follows. In fact, after inflation, we can approximate the
equations for the gauge fields (24)–(26) as follows

f̈1 þ
g2

4
v2f1 ⋍ 0 ð30Þ

and

ðf̈3 − g0ḧÞ þ g2 þ g02

4
v2ðf3 − g0hÞ ⋍ 0: ð31Þ

In this era, the Higgs field can be also approximated as

v2≡VðtÞ2 cosωt2¼VðtÞ2
2

ð1þ cos2ωtÞ; VðtÞ≡V0e−At;

ð32Þ
where the parameters ω; V0; A > 0 are determined from
numerical calculations. We have numerically verified the
condition Aδt ≪ 1 is satisfied. From Eqs. (30) and (31), we
see a parametric resonance appears in a certain band around
the center value where the following relationship between
the frequency and amplitude holds;

2ω ¼ 2
VðtÞffiffiffi
2

p
n
: ð33Þ

Here, n is an integer and hence there are many resonance
bands. It is known that, for smaller n, the resonance band
becomes broad and the growth rate becomes large. It is
useful to rewrite the above relation as

n ¼ V0ffiffiffi
2

p
ω
e−At: ð34Þ

Since the VðtÞ is decaying, this condition will be satisfied at
a moment which is a center of a band and a resonance will
occur for some period around the center of the resonance.
As time goes by, the resonance becomes rare but the growth

FIG. 4 (color online). The time evolution of f1ðtÞ after inflation for several initial sets of gauge values with the initial conditions
αi ¼ −20; βi ¼ 0. The final amplitude seems to converge to a value.

FIG. 5 (color online). The time evolution of f3ðtÞ − g0hðtÞ after inflation for several initial sets of gauge values with the initial
conditions αi ¼ −20; βi ¼ 0.
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rate of the amplitude comes to increase when a resonance
happens. This is because the factor e−At of VðtÞ in the
condition (34) changes slowly and n gets small as t
increases. You can see these features in Figs. 4 and 5.
Now, we consider the topological configuration of the

gauge fields. As you can see from their dynamics, the
gauge field configurations are quite complicated due to
their interaction with the Higgs field. Here, let us character-
ize the gauge field configurations by the change of the
Chern-Simons number:

ΔNCS ≡ g2

16π2

Z
t

0

dt
ffiffiffiffiffiffi
−g

p
TrðFμν

~FμνÞ

¼ −
1

8

Z
t

0

d
dt

½f21f3 þ 2f21 þ f23�dt: ð35Þ

We plotted its value as a function of time in Fig. 6.
Apparently, the Chern-Simons number is increasing in
time. Interestingly, there is a plateau for some period. Since
the presence of the Chern-Simons number indicates CP
violation, this result may be relevant to the origin of the
baryon asymmetry.
The most important implication of our findings is that the

gauge fields are nontrivial even at the background level.
This would have an impact on simulations of preheating
[31–34] where trivial gauge fields are assumed as initial
conditions.

IV. GENERATION OF MAGNETIC FIELDS

In the previous section, we find the growth of gauge
fields due to parametric resonances. In this section, we
evaluate the magnitude of primordial magnetic fields
produced in this way. Since the magnetic field is rapidly
oscillating, we do not say this is directly transferred to
observed magnetic fields. However, we would like to point
out that it is possible to generate sizable magnetic fields
with helical structure in the presence of this background
because of the nontrivial Chern-Simons number.
Because of the nontrivial expectation value of the Higgs

field, the SUð2ÞL ×Uð1ÞY gauge symmetry breaks down to

the Uð1Þem gauge symmetry. Its gauge potential Aem is
given by the linear combination of A3

μ and Bμ with the
Weinberg-angle θW ¼ tan−1ðg0=gÞ,

Aem ¼ A3 sin θW þ B cos θW ð36Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p �
g0
f3
g
þ gh

�
σ3 ≡ hemσ3: ð37Þ

Then, its field strength can be calculated as

Fem ¼ dAem ¼
_hem
a3N

e0 ∧ e3 þ 2hem
a21

e1 ∧ e2: ð38Þ

So, the magnetic field points in the e3 direction:

B3 ¼
2hem
a21

: ð39Þ

We depicted its evolution in time in Fig. 7. Similar to the
results in the previous section, the strength of magnetic
fields also increase drastically after inflation. Remarkably,
the final amplitude of magnetic fields depends on the initial
anisotropy as seen in Fig. 8. This is because the anisotropy
remaining during inflation affects the dynamics of the
gauge fields. We also notice there is a plateau where
the growth due to parametric resonances balances with the
decay due to the expansion of the universe. At some point,
however, the amplitude of magnetic fields starts to grow. It
is intriguing to give an analytic understanding of this
feature.
It would be interesting to see if the order of magnitude of

magnetic fields generated by parametric resonances is
comparable with observed magnetic fields. We expect
the coherent oscillation of magnetic fields found in our
study will be relevant when we consider inhomogeneous
fluctuations of magnetic fields and lead to the observable
magnetic fields with similar amplitudes.
According to recent observations, the present magnetic

field at cluster scales is expected in the range

FIG. 6 (color online). The time evolution of ΔNCS after inflation for several initial sets of gauge values with the initial conditions
αi ¼ −20; βi ¼ 0.

DYNAMICS OF ELECTROWEAK GAUGE FIELDS DURING … PHYSICAL REVIEW D 90, 045005 (2014)

045005-7



10−15 ½G�≲ Bobs ≲ 10−9 ½G�: ð40Þ

Now, we would like to translate this range into that after
the reheating with a reheating temperature Treh. Notice the
relation Breh=Bobs ¼ ða2obs=arehÞ2 ¼ ðTreh=TobsÞ2 and the
present temperature Tobs ∼ 10−4 ½eV� ¼ 10−13 ½GeV�
determined by observations of cosmic microwave back-
ground. Then, using the relation 1 ½G�≃ 10−20 ½GeV2�, we
obtain the range

1011
�

Treh

1010 ½GeV�
�

2

½GeV2�≲Breh

≲1017
�

Treh

1010 ½GeV�
�

2

½GeV2�.
ð41Þ

In the above, we used the following relationship (see for
example [35])

NCOBE ¼ 62 − lnð1016 ½GeV�=V1=4
endÞ −

1

3
lnðV1=4

end=ρ
1=4
reh Þ;
ð42Þ

where Vend is the potential energy at the end of inflation,
ρreh is the energy density at the reheating time, and NCOBE

is the e-folding number corresponding to the COBE
observation. Taking a look at Figs. 7 and 8, we see
magnetic fields in this range can be generated depending
on initial conditions of β or the reheating temperature Treh.

V. CONCLUSION

We studied the cosmological dynamics of the gauge
fields in electroweak theory in the early universe. Since we
have considered Higgs inflation, there exists nontrivial
interaction between the inflaton and the gauge fields, which
makes the difference from the previous work [5]. In spite of
this difference, we found that there remains nontrivial
configurations of the gauge fields during inflation because
of the presence of the flat direction. The main finding in this
paper is the growth of the gauge fields due to parametric
resonances induced by oscillations of the Higgs field. To
characterize the topological configuration in the gauge
fields, we calculated the Chern-Simons number and found
the similar growth. This implies that CP violating con-
figuration of gauge fields exists, which would be relevant to
the baryogenesis. We have also estimated the magnitude of
magnetic fields and found that the order of magnitude lies
in the range of observed magnetic fields at cluster scales.
Remarkably, the resultant amplitude of magnetic fields
depends on the anisotropy survived during inflation. This is
an interesting manifestation of the anisotropy in Higgs
inflation.
In this work, we have not considered reheating process in

detail. To obtain precise results on magnetic fields, we need
to introduce matter fields and investigate reheating proc-
esses. Moreover, we have to study evolution of inhomo-
geneity during and after Higgs inflation. We leave these
issues for future work.
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FIG. 8 (color online). The time evolution of B3ðtÞ after inflation
for several βi values with the initial conditions f1i ¼ −2;
f3i ¼ −2; hi ¼ 0; αi ¼ −20. Apparently, the amplitude of mag-
netic fields depends on the anisotropy survived during inflation.

FIG. 7 (color online). The time evolution of B3ðtÞ after inflation for several initial sets of gauge values with the initial conditions
αi ¼ −20; βi ¼ 0.
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