
Thermodynamics of the BPS Skyrme model

C. Adam,1 C. Naya,1 J. Sanchez-Guillen,1 J. M. Speight,2 and A. Wereszczynski3
1Departamento de Física de Partículas, Universidad de Santiago de Compostela and

Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela, Spain
2School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

3Institute of Physics, Jagiellonian University, Reymonta 4, Kraków 30 059, Poland
(Received 19 May 2014; published 1 August 2014)

One problem in the application of the Skyrme model to nuclear physics is that it predicts too large a value
for the compression modulus of nuclear matter. Here we investigate the thermodynamics of the BPS
Skyrme model at zero temperature and calculate its equation of state. Among other results, we find that
classically (i.e. without taking into account quantum corrections) the compressibility of BPS Skyrmions is,
in fact, infinite, corresponding to a zero compression modulus. This suggests that the inclusion of the BPS
submodel into the Skyrme model Lagrangian may significantly reduce this too-large value, providing
further evidence for the claim that the BPS Skyrme model may play an important role in the description
of nuclei and nuclear matter.
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I. INTRODUCTION

The standard Skyrme model [1] has the Lagrangian

L ¼ L2 þ L4 þ L0; ð1Þ

where

L0 ¼ −λ0UðUÞ; L2 ¼ λ2Tr∂μU∂μU†;

L4 ¼ λ4Trð½Lμ; Lν�Þ2; ð2Þ

are the potential, sigma model and Skyrme terms, respec-
tively. Here, U is a SU(2)-valued field of mesons (pions),
and Lμ ¼ U†∂μU is the left-invariant current. Further, the
potential U is a non-negative function ofU with one unique
vacuum. The Skyrme model is considered as an effective
theory for low energy QCD. Using results from large Nc
expansions, it is known that the proper degrees of freedom
in this limit are mesons, while baryons in the Skyrme
model emerge as collective excitations, i.e., solitons called
Skyrmions, with an identification between baryon number
and topological charge [2]. One main problem of the
standard Skyrme model is its failure to describe adequately
the very small binding energies of physical nuclei. This is
related to the fact that, although there exists a topological
energy bound in the Skyrme model ([1,3]; for improved
bounds see [4,5]), nontrivial solutions cannot saturate this
bound. Another problem of the standard Skyrme model,
which shall concern us in the present paper, is that it fails to
describe simultaneously the hadronic rotational-vibrational
excitations (the Roper masses) and the compression modu-
lus of nuclear matter.
The qualitative reason is the following. The Roper

resonances are related to the excitations of the monopole
vibrational mode. Technically, they are calculated by

quantizing the Derrick scaling factor Λ (where the
Derrick scaling transformation is ~r → Λ~r) and by deter-
mining the eigenvalues of the resulting quantum mechani-
cal Hamiltonian. In the baryon number B ¼ 1 sector, the
typical fit to nucleon and Δ resonance masses, although
giving quite good values for many observables [6], leads
to rather unphysical Roper resonances. This situation is
improved by coupling the vibrational and rotational modes
[7–9]. Then, the Roper masses become bigger but still
lighter than the observed resonance energies. On the other
hand, assuming that the Derrick rescaling correctly
describes the reaction of nuclear matter to the action of
external pressure (uniform rescaling), one can easily
compute the compression modulus for such a hedgehog
solution, using the same model parameters. The resulting
value is much higher than the compression modulus of
nuclear matter.
For a more detailed investigation of this problem, let us

next introduce a certain generalization of the standard
Skyrme model. Indeed, recently a very special Skyrme type
field theory has been proposed [10] [our metric conventions
are ημν ¼ diagðþ;−;−;−Þ]:

L06 ¼ L6 þ L0; ð3Þ
where

L6 ¼ −ð24π2Þ2λ6BμBμ ð4Þ
and

Bμ ¼ 1

24π2
ϵμνρσTrLνLρLσ; B ¼

Z
d3xB0 ð5Þ

is the baryon (topological) current. The main motivation
and advantage of this model, called the BPS Skyrme model,
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is its BPS property (first noted in [11]). As a consequence,
there are infinitely many solitonic solutions saturating a
topological bound, which leads to a linear energy–
topological charge relation. Therefore, the classical binding
energies are precisely zero. This should be contrasted with
the usual Skyrme model, where these energies are too high
compared with the experimental values. This is, in fact, the
main problem in the application of the Skyrme model to
nuclear physics. Nonzero binding energies in the BPS
Skyrme model have been derived recently by taking into
account the semiclassical quantization of the spin-isospin
degrees of freedom and the Coulomb interaction as well
as a small isospin breaking. The obtained values are in
very good agreement with the nuclear data and the
semiempirical (Weizsäcker) formula, especially for higher
nuclei [12,13].
Hence, the natural question arises whether the BPS

Skyrme model can help to resolve the problems of the
predicted compression modulus of nuclear matter being
too high, and the predicted Roper masses being too small,
as it does with the binding energies. Indeed, it has been
shown recently that the Roper masses computed in the BPS
Skyrme model are higher than in the standard Skyrme
model; in fact, they are higher than the experimental results
[14], suggesting that a generalization of the Skyrme model,
consisting of all four terms, should give a more realistic
description.
But if one assumes that nuclear matter reacts to external

pressure via uniform rescaling, then the Derrick scale
parameter Λ is the relevant variable for both phenomena,
and the sizes both of the compression modulus and of the
Roper masses are determined by the same parameter Eð2Þ ≡
ðd2=dΛ2ÞEðΛÞj (the second variation of the energy under
rescaling). Here the vertical line j means evaluation at the
minimum [at Λ ¼ 1 if only the Derrick scaling is consid-
ered; if the scaling (i.e., monopole vibrational) excitation is
coupled to other degrees of freedom like, e.g., (iso)rota-
tional excitations, the minimum may occur at other values].
Indeed, in the Roper resonance calculations, Λ is quantized
(Λ → Λ̂) and the harmonic oscillator approximation is
used, and Eð2Þ enters directly as the factor multiplying
the “harmonic oscillator potential” Λ̂2. On the other hand,
under the assumption of uniform rescaling under external
pressure, it may be proved easily that the compression
modulus K is directly given by Eð2Þ divided by the baryon
number (see next section),

K ¼ ðEð2Þ=BÞ: ð6Þ

It is a simple exercise to determine Eð2Þ for a generalized
Skyrme model which receives contributions from all four
terms Li; i ¼ 0; 2; 4; 6. We call the corresponding static
energies Ei and assume for simplicity that B ¼ 1 (higher
baryon number Skyrmions should be approximately B
times the results below). Then the total energy is

E ¼ E6 þ E4 þ E2 þ E0 ≡ EN; ð7Þ

where EN denotes the energy (mass) of a nucleon. This is
not entirely correct, because the nucleon receives further
small corrections, e.g., from spin and isospin excitations,
but these small corrections are unlikely to be significant for
the estimates we are interested in here. For the energy of a
rescaled Skyrmion solution we get

EðΛÞ≡E½UðΛ~rÞ� ¼Λ3E6þΛE4þΛ−1E2þΛ−3E0 ð8Þ

and for the second derivative

E″ðΛÞ ¼ 6ΛE6 þ 2Λ−3E2 þ 12Λ−5E0: ð9Þ

Using, in addition, the Derrick condition for a solution

E0ð1Þ ¼ 3E6 þ E4 − E2 − 3E0 ≡ 0 ð10Þ

we get for Eð2Þ

Eð2Þ ≡ E″ð1Þ ¼ EN þ 8ðE6 þ E0Þ: ð11Þ

In other words, Eð2Þ is equal to the nucleon mass (the
nuclear mass in general) in the model with only L2 and L4

present (the original Skyrme model), but increases if L0, L6

are included. This is good for the Roper resonances, which
require a larger value of Eð2Þ. On the other hand, if we
accept Eq. (6) then this is obviously bad for the compres-
sion modulus. The mass of the nucleon is about
EN ∼ 940 MeV, whereas the compression modulus should
be about K ∼ 230 MeV [15], so contributions from E6

and E0 only make things worse.
Of course, the arguments above are only qualitative in

nature and should be backed up by more detailed compu-
tations. The calculation of the compression modulus for
higher nuclei is a very complicated numerical problem
which requires the computation of higher Skyrmions
[16,17]. For the original Skyrme model L2 þ L4, however,
recent results indicate an unacceptably big value of the
compression modulus [18], essentially confirming the
simple arguments from above. Physically, this may be
understood as a rather high stiffness of the original Skyrme
model, which is possibly related to the crystal structure of
Skyrme matter in the limit B → ∞ [19].
This crystalline behavior represents a striking qualitative

difference from the BPS Skyrme model. Indeed, the static
energy functional of the BPS Skyrme model possesses
infinitely many symmetries, among them the volume
preserving diffeomorphisms (VPDs) on physical space,
which are exactly the symmetries of an ideal liquid. As a
consequence, deformations of the classical solitons which
do not change their volume cost zero energy. This, of
course, does not tell us much about the cost in energy for a
deformation which does change the volume, like, e.g., the
squeezing of a nucleus (a Skyrmion) as a result of external
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pressure. The qualitative arguments above seem to indicate
that this cost in energy is quite high, i.e., the “ideal liquid”
provided by the BPS Skyrmions is quite incompressible.
In the explicit calculations below we shall find that this
apparent paradox is resolved by the fact that the uniform
rescaling ~r → Λ~r is a very bad approximation for the true
behavior of a classical BPS Skyrmion under external
pressure. Taking this behavior correctly into account leads,
in fact, to a zero compression modulus. This does not mean
that it costs zero energy to squeeze a BPS Skyrmion under
external pressure; it just means that the (infinitesimally
small) pressure used to squeeze the nucleon and the
resulting small change in volume are not linearly related.
The rest of the paper is organized as follows. In Sec. II

we describe in detail the zero temperature thermodynamics
of the BPS Skyrme model. We explain how to introduce
pressure in an analytical way and calculate the volume, the
equation of state and the energy of the corresponding
Skyrmions. We also determine their compressibility and
discuss some concrete examples. In Sec. III we discuss
the relevance of our results and explain how they may
contribute to resolving the problems with the compression
modulus of nuclear matter described by (generalized)
Skyrme models. Finally, in the Appendix we prove that
our analytical way of introducing the pressure may be
generalized to a large class of models, among which the
extreme (or BPS) limit of the baby Skyrme model may
be found.

II. T ¼ 0 THERMODYNAMICS OF THE BPS
SKYRME MODEL

In thermodynamics, the compressibility at fixed temper-
ature T (isothermal) and particle number B (in our case,
particle number equals baryon number B) is [20]

κT;B ¼ −
1

V

�∂V
∂P
�

T;B
ð12Þ

where V is the volume of the substance and P is the
pressure. This quantity is useful for us because it is defined
in terms of global variables (volume V and pressure P)
which do not vary with position. Another important
quantity is the compression modulus. There exist several
definitions [21], which are all equivalent, however, for
systems with a constant baryon density like, e.g., the free
Fermi gas (see below). Again, we shall use a definition
which only depends on global variables, namely

K ¼ 9V2

B

�∂2E
∂V2

�
T;B

: ð13Þ

In the sequel, we are only interested in the case of zero
temperature, T ¼ 0. The generalization of Skyrmions to
nonzero temperature is, in fact, a rather nontrivial problem;
see, e.g., [22] for early attempts. At zero temperature,

apparently we still have the three thermodynamic variables
P, V and B. For Skyrmions, however, the baryon number B
is an integer-valued constant which depends only on the
boundary conditions imposed on the Skyrme field and not
on the thermodynamic state. Specifically, it always holds
exactly that E ∝ B and V ∝ B. It is, therefore, more
appropriate to treat B as a constant and not as a thermo-
dynamic variable. Further, the volume V and the pressure P
are always related by an equation of state fðP;VÞ ¼ 0; see
below. As a consequence, all thermodynamic functions
only depend on one thermodynamic variable (in the present
paper, for convenience we choose the pressure P), and the
derivatives in the thermodynamic relations are, therefore,
ordinary derivatives. The compressibility at zero temper-
ature, e.g., is κ ¼ −ð1=VÞðdV=dPÞ, and the compression
modulus is

K ¼ 9V2

B
d2E
dV2

¼ 9V2

B

��
dV
dP

�
−2 d2E

dP2
−
�
dV
dP

�
−3 d2V

dP2

dE
dP

�
; ð14Þ

where the second expression is useful if both volume VðPÞ
and energy EðPÞ are known functions of the pressure P, as
holds true in our case; see below. For the free Fermi gas, it
may be shown easily that κ and K are related via

K ¼ 9V
Bκ

: ð15Þ

With our definition of K, a sufficient condition for the
above relation to hold is just the standard thermodynamical
relation P ¼ −ð∂F=∂VÞT (where F is the free energy),
which at zero temperature reads

P ¼ −
dE
dV

: ð16Þ

The above thermodynamic relation is satisfied in the BPS
Skyrme model, as we shall see. This last statement is
nontrivial, because we do not use a thermodynamic
definition of the volume. Our volume is, instead, literally
the total space volume occupied by certain topological
soliton solutions; see below.

A. Free Fermi gas

The precise definition of the compression modulus
depends on the assumptions made for nuclear matter
[21], but the simplest standard definition assumes that
nuclear matter is, in a first approximation, just a free Fermi
gas of nucleons. In this approximation, the nuclear matter
density (baryon density)

ρ ¼ B
V

ð17Þ
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is assumed to be spatially constant, which allows one to
rewrite the isothermal compressibility as (see, e.g., [23])

κ ¼ 1

ρ

∂ρ
∂PT¼0;B

: ð18Þ

The Fermi momentum for N fermions in a volume V, and
with degeneracy D (i.e., D fermions may occupy each
energy state) is pF ¼ ℏð6π2N=ðDVÞÞ13. In our case D ¼ 4
(2 nucleon species, and 2 spin degrees of freedom) and
N ¼ B, so

pF ¼ ℏ

�
3

2
π2ρ

�1
3

; ð19Þ

and the total kinetic energy due to the exclusion principle is

ET ¼ 3

5
BEF; EF ¼ p2

F

2mN
¼ ℏ2

2mN

�
3

2
π2ρ

�2
3

; ð20Þ

where mN is the nucleon mass. Further, the Fermi
pressure is

P ¼ 2

3

ET

V
¼ 1

5

ℏ2

mN

�
3

2
π2
�2

3

ρ
5
3; ð21Þ

leading to the equation of state

P ¼ cFgV−5
3; cFg ≡ 1

5

ℏ2

mN

�
3

2
π2
�2

3

B
5
3: ð22Þ

Then, the compression modulus of nuclear matter is
defined as

K ¼ 1

p2
F

∂
∂pF

�
p4
F

∂
∂pF

ET

B

�
¼ 9

∂
∂ρ
�
ρ2

∂
∂ρ

ET

B

�
; ð23Þ

where the second equality follows easily from the defi-
nitions above. With these definitions, it may also be shown
at once that for the free Fermi gas the compression modulus
and the isothermal compressibility are related via (15).
We may also demonstrate easily that, if we use the Skyrme
energy (7) instead of the degeneracy energy (20), then
under the same assumption of constant baryon density, the
compression modulus is precisely given by (6). Indeed,
we just assume that the density ρ is varied by a scale
transformation

~r → Λ~r ⇒ ρ ¼ Λ−3ρ0; ð24Þ

where ρ0 is the constant initial value. With

dρ ¼ −3ρ0Λ−4dΛ ð25Þ

we get

K ¼ 9

B
∂ρðρ2∂ρEÞ ¼

1

B
ðΛ2∂2

ΛE − 2Λ∂ΛEÞ ð26Þ

and at the equilibrium point ρ ¼ ρ0, i.e., Λ ¼ 1, where
∂ΛEjΛ¼1 ¼ 0,

K ¼ ð1=BÞðΛ2∂2
ΛEÞΛ¼1 ¼ ðEð2Þ=BÞ: ð27Þ

B. Pressure in the BPS Skyrme model

One first difference between the BPS Skyrme model and
the simple compressibility calculations of the previous
section is given by the fact that the baryon density B0 in the
BPS Skyrme model is, in general, not constant in space.
And we shall see that the different thermodynamical
properties may be partially attributed to this difference.
Concretely, there exists a certain limit of the BPS Skyrme
model (a limiting potential) for which the resulting baryon
density is constant, B0 ¼ ρ ¼ const. Precisely for this
limiting case, the simple calculations of the previous
section turn out to be completely correct.
A second and even more important difference is pro-

vided by the BPS nature of the static solutions of the BPS
Skyrme model. The relevant property here is the fact that
BPS solutions have their pressure identically equal to zero
(BPS equations are, for that reason, frequently called “zero
pressure conditions” [24]). This zero pressure condition
allows matter described by the BPS Skyrmion solution to
react in a nonlinear way to an infinitesimal external
pressure acting on it (the induced change in volume is
not proportional to the exerted infinitesimal pressure).
It is convenient to introduce two new non-negative

coupling constants μ and λ, so that the static energy density
of the BPS Skyrme model is

E ¼ μ2U þ λ2π4B2
0 ð28Þ

and the BPS equation is

λπ2B0 ¼ �μ
ffiffiffiffi
U

p
: ð29Þ

On the other hand, the energy-momentum tensor Tμν

(and, therefore, the pressure) may be easily computed by
introducing a general Lorentzian metric in the Lagrangian
and by varying the action with respect to the metric,

Tμν ¼ −
2ffiffiffiffiffijgjp δ

δgμν

Z
d4x

ffiffiffiffiffi
jgj

p
L06; ð30Þ

where g ¼ det gμν, and the correct expression for the
Lagrangian for a general metric is

L06 ¼ −λ2π4jgj−1gμνBμBν − μ2U: ð31Þ

For static configurations, where only B0 is nonzero, the
resulting energy-momentum tensor in Minkowski space is
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T00 ¼ λ2π4B2
0 þ μ2U ≡ E

Tij ¼ δijðλ2π4B2
0 − μ2UÞ≡ δijP ð32Þ

(where P is the pressure), and the conservation equations
∂μTμν ¼ 0 reduce to

P ¼ P ¼ const; ð33Þ

so any static solution must have constant pressure. Further,
the BPS equation (29) is just the zero pressure condition
P ¼ 0. The constant pressure condition (33) is, in fact,
completely equivalent to the static field equations. In other
words, the static field equations always have a first integral
and the pressure is the corresponding integration constant.
The only difference between BPS and non-BPS solutions
is the (zero or nonzero) value of this integration constant.
To prove this, and for later use, we now introduce some
notation. Parametrizing the SU(2) Skyrme field like

U ¼ cos ξþ i sin ξ~n · ~τ; ~n2 ¼ 1; ð34Þ

(where ~τ are the Pauli matrices), and

~n ¼ ðsin χ cosΦ; sin χ sinΦ; cos χÞ; ð35Þ

the baryon density B0 is

B0 ¼
1

2π2
sin2 ξ sin χϵijkξiχjΦk; ð36Þ

or, with the notation ξ1 ¼ ξ, ξ2 ¼ χ, ξ3 ¼ Φ,

B0 ¼
1

2π2
MðξaÞϵijkξ1i ξ2jξ3k; ð37Þ

where MðξaÞ is the volume element of the target space S3.
With the help of the algebraic identity�

∂j
∂
∂ξaj −

∂
∂ξa
�
B0 ¼ 0 ð38Þ

which may be proved easily [25] (and follows immediately
from the fact that B0 is a topological density whose
Euler-Lagrange variation is identically zero) we find for
the Euler-Lagrange variation of the energy density�
∂j

∂
∂ξaj −

∂
∂ξa
�
E ¼ 2λ2π4ð∂jB0Þ

∂
∂ξaj B0 − μ2

∂
∂ξa U ≡ 0:

ð39Þ

Multiplying the above expression by ξak, summing over a
and using the further algebraic identity

X
a

ξak
∂
∂ξaj B0 ¼ δjkB0 ð40Þ

leads to the equation

2λ2π4ð∂kB0ÞB0 − μ2∂kU ¼ 0 ð41Þ

which trivially integrates to

λ2π4B2
0 − μ2U ¼ const; ð42Þ

i.e., to the constant pressure condition (33), as announced.
In fact, the observation that fields of constant pressure

automatically satisfy the static field equation holds true
for a large class of models generalizing the BPS Skyrme
model. To formulate this precisely, let ðM; gÞ, ðN; hÞ be
oriented Riemannian n-manifolds with volume forms volM,
volN respectively and V∶N → ½0;∞Þ be a smooth poten-
tial, and define the energy of a field ϕ∶M → N to be

EðϕÞ ¼
Z
M

�
1

2
jϕ�volN j2 þ VðϕÞ

�
volM:

We obtain the BPS Skyrme model by choosing M ¼ R3,
N ¼ SUð2Þ ¼ S3 with the round metric of unit radius,
V ¼ 2μ2λ−2U, and ϕ∶x↦UðxÞ. Note that this family also
includes the extreme baby Skyrme model (n ¼ 2) and the
general nonlinear Klein-Gordon model (n ¼ 1). As usual,
we define the pressure of a field to be (minus) the
component of its stress tensor in the direction of g, which
for these models is [26]

PðϕÞ ¼ 1

2
jϕ�volMj2 − VðϕÞ:

In this level of generality, we have the following:
Proposition 1: Let ϕ∶M → N have constant pressure

P ≥ 0 in some region Ω⊆M. Then ϕ satisfies the Euler-
Lagrange equation for the energy functional E on Ω.
The proof, which uses a geometric formulation of the

variational calculus for E, is presented in an Appendix.

C. Equation of state and compressibility

The solution of the problem we want to study now
consists of solving the static field equation for nonzero
pressure and determining the volume of the corresponding
solution. First, let us define the class of potentials U we
want to consider. The potentials depend on U only via trU,
i.e., via ξ, and take their unique vacuum value at the north
pole, i.e., at ξ ¼ 0. Further, we assume that the potentials
have a powerlike behavior near the vacuum,

lim
ξ→0

UðξÞ ∼ ξα; α > 0: ð43Þ

It is one of the distinguished properties of the BPS Skyrme
model that for 0 < α < 6 the BPS Skyrmion solutions are
compactons which differ from their vacuum values only in
a bounded region of space. As a consequence, these
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compacton solutions have finite and well-defined volumes.
Both the compact BPS Skyrmion solutions themselves and
their energy and baryon densities continuously join their
vacuum values at the boundary. We now want to study how
these compactons change under the influence of external
pressure. For nonzero pressure, the energy and baryon
number densities at the boundary will no longer be
continuous, because by assumption some external forces
act on the compactons producing the nonzero pressure. In a
next step, we assume the spherically symmetric ansatz
ξ ¼ ξðrÞ, χ ¼ χðθÞ and Φ ¼ Bϕ where ðr; θ;ϕÞ are spheri-
cal polar coordinates. Inserting this ansatz into the static
field equation (constant pressure equation) and insisting on
the correct boundary conditions for Skyrmions leads to
χ ¼ θ and to the equation for ξ

jBjλ
2r2

sin2ξξr ¼ −μ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ~P

p
; ð44Þ

where ~P ¼ ðP=μ2Þ, and we choose the minus sign in front
of the root because we want to impose the boundary
conditions

ξðr ¼ 0Þ ¼ π; ξðr ¼ ∞Þ ¼ 0; ð45Þ

leading to a Skyrme field configuration with baryon
number B. We remark that for our purposes the restriction
to the spherically symmetric ansatz is not very restrictive.
The reason is that the static energy functional has the base
space VPDs as symmetries, so to any spherically sym-
metric solution there exist infinitely many more solutions
with arbitrary shapes and with exactly the same pressure
and volume [27], leading to the same thermodynamic
relations.
We introduce the new coordinate

z ¼ 2μ

3jBjλ r
3 ð46Þ

so that (44) becomes an autonomous ordinary differential
equation (ODE),

sin2 ξξz ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ~P

p
: ð47Þ

Next, we introduce a new coordinate

η ¼ 1

2

�
ξ −

1

2
sin 2ξ

�
⇒ dη ¼ sin2 ξdξ ð48Þ

and the above equation becomes

ηz ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ~P

p
ð49Þ

with boundary conditions

ηðz ¼ 0Þ ¼ π

2
; ηðz ¼ ∞Þ ¼ 0: ð50Þ

Note that η is chosen so that the volume form on S3

is volS3 ¼ dη∧volS2 .
For specific examples it may be useful to treat the

potential U as a function of the new coordinate η, because
the resulting ODE is simpler. Near the vacuum, η ∼ ξ3,
therefore UðηÞ ∼ ηβ translates into UðξÞ ∼ ξ3β. At the
moment, however, we are more interested in generic
thermodynamic properties which hold for rather general
potentials. First of all, the volume for general non-negative
pressure may be found by integrating Eq. (47), which may
be reexpressed like

sin2 ξffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ~P

p dξ ¼ −dz: ð51Þ

Integrating both variables over their respective ranges, we
get the following integrals

Z
π

0

sin2 ξdξffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ~P

p ¼
Z

Z

0

dz ð52Þ

or

~Vð ~PÞ≡ Zð ~PÞ ¼
Z

π

0

sin2 ξdξffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ~P

p ¼
Z π

2

0

dηffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ~P

p ; ð53Þ

and therefore the volume

VðPÞ ¼ Vðμ2 ~PÞ ¼ 2πjBj λ
μ
~Vð ~PÞ. ð54Þ

This is the general equation of state of our models. For
more explicit expressions, we have to choose specific
potentials. It follows easily from the above expression that
for positive pressure ~P > 0, Zð ~PÞ and, therefore, the
volume of the Skyrmion, is finite for arbitrary potentials
of the type considered. For BPS Skyrmions ( ~P ¼ 0), on the
other hand, the volume is finite (the Skyrmion is a
compacton) for 0 ≤ α < 6, but infinite for α ≥ 6. For later
convenience we also calculate

d ~V

d ~P
¼ −

1

2

Z
π

0

dξsin2ξ

ðU þ ~PÞ32 ¼ −
1

2

Z π
2

0

dη

ðU þ ~PÞ32 ð55Þ

and

d2 ~V

d ~P2
¼ 3

4

Z
π

0

dξsin2ξ

ðU þ ~PÞ52 ¼
3

4

Z π
2

0

dη

ðU þ ~PÞ52 : ð56Þ

For the energy we get with the help of the constant pressure
equation
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E ¼
Z

d3xðλ2π4B2
0 þ μ2UÞ ¼

Z
d3xð2μ2U þ PÞ

¼ 4πμ2
Z

drr2ð2U þ ~PÞ; ð57Þ

where we used the axially symmetric ansatz in the last step.
Using the above variables, we further get

EðPÞ ¼ Eðμ2 ~PÞ ¼ 2πλμjBj ~Eð ~PÞ; ð58Þ

where

~Eð ~PÞ ¼
Z

Z

0

dzð2U þ ~PÞ ¼
Z

π

0

dξsin2ξ
2U þ ~Pffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ~P

p
¼
Z π

2

0

dη
2U þ ~Pffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ~P

p : ð59Þ

Further,

d ~E

d ~P
¼

~P
2

Z
π

0

dξsin2ξ

ðU þ ~PÞ32 ¼
~P
2

Z π
2

0

dη

ðU þ ~PÞ32 ð60Þ

d2 ~E

d ~P2
¼ 1

2

Z
π

0

dξsin2ξ
U − 1

2
~P

ðU þ ~PÞ52 ¼
1

2

Z π
2

0

dη
U − 1

2
~P

ðU þ ~PÞ52 :

ð61Þ

From these results it follows immediately that the thermo-
dynamic relation P ¼ −ðdE=dVÞ holds in the BPS Skyrme
model. Indeed, obviously

d ~E

d ~V
¼

d ~E
d ~P
d ~V
d ~P

¼ − ~P ð62Þ

and, further

dE
dV

¼
dE
d ~P
dV
d ~P

¼ μ2
d ~E
d ~P
d ~V
d ~P

¼ −P: ð63Þ

It is interesting to notice that it is precisely the compacton
volume which exactly saturates the thermodynamic rela-
tion, although it is not directly defined as a thermodynam-
ical quantity. Other measures for the volume which are,
e.g., constructed from different charge radii hriγ ,

hriγ ¼
�Z

d3xr3γB0

� 1
3γ ð64Þ

via Vγ ¼ ð4π=3Þhri3γ lead to different results, in general. In
this sense, the compacton volume is singled out as the
correct definition of the volume from a thermodynamical
perspective.

For the compressibility at equilibrium ~P ¼ 0 we get

κ ∼ −
1

Z
∂Z
∂ ~P
����
~P¼0

¼ 1

2Zð0Þ
Z

π

0

U−3
2sin2ξdξ: ð65Þ

Near the vacuum, the integrand on the right-hand side
behaves like ξ2−

3α
2 . The integral is, therefore, finite for α < 2

but infinite for α ≥ 2. It follows that the compression
modulus, which is proportional to the inverse of κ, is zero
for α ≥ 2, as announced.

D. Examples

At this point we shall treat the potential U as a function
of the new coordinate η for reasons of simplicity, as
announced. Here, instead of calculating the compacton
volumes directly from Eq. (53), we shall first calculate the
solutions ηðzÞ and then determine the compacton volumes
from the boundary conditions, because the solutions will
be useful on their own. Remember that near the vacuum,
η ∼ ξ3; therefore UðηÞ ∼ ηβ translates into UðξÞ ∼ ξ3β.
For concreteness, we choose the simple potentials

U ¼ ηβ ð66Þ

for different values of β as examples. Note that such
potentials fail to be differentiable at the antivacuum,
η ¼ ðπ=2Þ. This is unlikely to be significant for our
purposes, however.

(i) β ¼ 1. This corresponds to a cubic potential near the
vacuum. The BPS equation (for zero pressure) is

ηz ¼ −η1
2 ð67Þ

with the solution (z0 is an integration constant)

η ¼ 1

4
ðz0 − zÞ2: ð68Þ

The condition ηð0Þ ¼ ðπ=2Þ leads to z0 ¼
ffiffiffiffiffiffiffiffi
π=8

p
, and

the position Z where η reaches its vacuum value,
ηðzÞ ¼ 0 for z ≥ Z is Z ¼ z0 ¼

ffiffiffiffiffiffiffiffi
π=8

p
. Finally, the

volume of the BPS compacton is

V ¼ 4π

3
R3 ¼ 2πjBjλ

μ
Z ¼ 2πjBjλ

μ

ffiffiffi
π

8

r
: ð69Þ

For nonzero pressure the equation is

ηz ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
ηþ ~P

q
ð70Þ

with the solution

η ¼ 1

4
ðz0 − zÞ2 − ~P; ð71Þ
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where ηð0Þ ¼ ðπ=2Þ leads to

z0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
π

2
þ ~P

r
; ð72Þ

whereas ηðZÞ ¼ 0 leads to

~Vð ~PÞ ¼ Z ¼ z0 − 2
ffiffiffiffi
~P

p
¼ 2

� ffiffiffiffiffiffiffiffiffiffiffiffi
π

2
þ ~P

r
−

ffiffiffiffi
~P

p �
:

ð73Þ

The resulting equation of state is

~P ¼ 1

16 ~V2
ð2π − ~V2Þ2: ð74Þ

In agreement with the general discussion of the
preceding section, the compressibility is infinite due

to the presence of the second term proportional to
ffiffiffiffi
~P

p
in Eq. (73),

κ ¼ −
1

V
dV
dP

����
P¼P0

∼ −
1

Z
dZ

d ~P

����
~P¼0

¼ ∞ ð75Þ

(here P0 generically is the equilibrium pressure, which
in our case is P0 ¼ 0).
Other possible measures for the volume like, e.g., the
cubes of average baryon radii of the type

hViγ ¼
4π

3

����
Z

d3xB0r3γ
����
1
γ ð76Þ

which, in our variables, read

hViγ ∼ hziγ ≡ j
Z

dzηzzγj
1
γ ð77Þ

lead to completely different compressibility results.
For the simplest case, γ ¼ 1, e.g., we easily calculate

hzi1 ¼
����
Z

Z

0

dzηzz

����
¼ 2

3

��
π

2
− 2 ~P

� ffiffiffiffiffiffiffiffiffiffiffiffi
π

2
þ ~P

r
þ 2 ~P

ffiffiffiffi
~P

p �
; ð78Þ

which leads to a finite compressibility. These
volume definitions, however, should not be used
because they do not obey the thermodynamic relation
P ¼ −ðdE=dVÞ.

(ii) β ¼ ð2=3Þ. This corresponds to a quadratic (pion
mass) potential near the vacuum. The BPS equation
(for zero pressure) is

ηz ¼ −η1
3 ð79Þ

with the solution (z0 is an integration constant)

η ¼
�
2

3
ðz0 − zÞ

�3
2

: ð80Þ

Further, ηð0Þ ¼ ðπ=2Þ leads to

z0 ¼
3

2

�
π

2

�2
3 ð81Þ

and the compacton reaches its vacuum value at
Z ¼ z0. The equation for nonzero pressure

ηz ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η
2
3 þ ~P

q
ð82Þ

has the implicit solution

3

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
η
2
3 þ ~P

q
η
1
3 − ~P ln

�
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
η
2
3 þ ~P

q
þ η

1
3

���
¼ z0− z:

ð83Þ

The condition ηð0Þ ¼ ðπ=2Þ leads to

z0 ¼
3

2

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
π

2

�2
3 þ ~P

s �
π

2

�1
3

− ~P ln

�
2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
π

2

�2
3 þ ~P

s
þ
�
π

2

�1
3

!!#
ð84Þ

and η reaches its vacuum value η ¼ 0 at

Z ¼ z0 þ
3

2
ðln 2Þ ~Pþ 3

4
~P ln ~P: ð85Þ

The volume is, therefore ( ~V ≡ Z),

~Vð ~PÞ¼3

2

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
π

2

�2
3þ ~P

s �
π

2

�1
3

− ~Pln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
π

2

�2
3þ ~P

s
þ
�
π

2

�1
3

!
þ1

2
~Pln ~P

#
: ð86Þ

Here, the important term is the last one, ∼ ~P ln ~P,
because it again leads to an infinite compressibility.
This infinitesimal nonlinearity is the softest possible
one; therefore we expect finite compressibilities for
β < ð2=3Þ, i.e., α < 2, in agreement with the general
findings of the previous section.

(iii) β ¼ ð1=3Þ. This corresponds to a linear (V-shaped)
potential near the vacuum. The equation for nonzero
pressure is
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ηz ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η
1
3 þ ~P

q
ð87Þ

and has the implicit solution

z0 − z ¼ 2

5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
η
1
3 þ ~P

q �
8 ~P2 − 4 ~Pη

1
3 þ 3η

2
3

�
ð88Þ

which leads to

z0 ¼
2

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
π

2

�1
3 þ ~P

s �
8 ~P2 − 4 ~P

�
π

2

�1
3 þ 3

�
π

2

�2
3

�

ð89Þ

and

Z ¼ z0 −
2

5
~P
5
2; ð90Þ

i.e.,

~Vð ~PÞ ¼ 2

5

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
π

2

�1
3 þ ~P

s �
8 ~P2 − 4 ~P

�
π

2

�1
3

þ 3

�
π

2

�2
3

�
− ~P

5
2

!
: ð91Þ

Here, the last term ∼ ~P
5
2 does not contribute to the

compressibility at ~P ¼ 0; therefore now the compress-
ibility is finite,

dZ

d ~P

����
~P¼0

¼ dz0
d ~P

����
~P¼0

¼ −
ffiffiffi
π

2

r
: ð92Þ

(iv) Limit β → 0. The potential approaches the Heavi-
side function, UðηÞ ¼ 1 for η ∈ ½ðπ=2Þ; 0Þ, and
Uðη ¼ 0Þ ¼ 0. The equation for nonzero pressure is

ηz ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~P

p
¼ const: ð93Þ

In this specific case, the baryon density is constant
inside the Skyrmion. Further, the equation for nonzero
pressure may be related to the BPS equation for
zero pressure by a simple scale transformation
~r → ~r0 ¼ Λ~r,

ηz0 ¼ Λ−3ηz ¼ −Λ−3
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~P

p
¼ −1;

Λ3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~P

p
: ð94Þ

In other words, the Skyrmion for nonzero pressure
may be inferred from the Skyrmion for zero pressure
by a simple, uniform rescaling. As a consequence, the

simple thermodynamic analysis of the introduction
applies to this case. The solution with the correct
boundary conditions is

ηðzÞ ¼ π

2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~P

p
z ð95Þ

and takes the vacuum value η ¼ 0 at

Z≡ ~Vð ~PÞ ¼ π

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~P

p ; ð96Þ

leading to the equation of state

~P ¼
�

π

2 ~V

�
2

− 1: ð97Þ

Obviously, the compressibility in this case is finite.
(v) At this point it is instructive to consider the case

without potential, U ¼ 0. Due to the Derrick theo-
rem, the only acceptable zero pressure solution is the
trivial vacuum solution η ¼ 0, but for nonzero
pressure the equation

ηz ¼ −
ffiffiffiffi
~P

p
ð98Þ

has the simple solution

η ¼ π

2
−

ffiffiffiffi
~P

p
z ð99Þ

with volume

Z≡ ~Vð ~PÞ ¼ π

2
ffiffiffiffi
~P

p ð100Þ

and equation of state

~P ¼
�

π

2 ~V

�
2

: ð101Þ

In this case, the compressibility is infinite.
(vi) β ¼ 2. In this case, the BPS Skyrmion is no longer

compact, but localized stronger than exponentially
(concretely ∼e−z). The equation for nonzero
pressure is

ηz ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ~P

q
ð102Þ

with the solution

η ¼
ffiffiffiffi
~P

p
sinhðz0 − zÞ: ð103Þ

Again we impose the topologically nontrivial boun-
dary conditions ηðz ¼ 0Þ ¼ ðπ=2Þ and ηðz ¼ ZÞ ¼ 0,
where for nonzero pressure Z turns out to be finite,
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Z ¼ z0; sinh z0 ¼
π

2
ffiffiffiffi
~P

p ð104Þ

or

Z≡ ~Vð ~PÞ ¼ sinh−1
π

2
ffiffiffiffi
~P

p
¼ ln

 
π

2
ffiffiffiffi
~P

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

π

2
ffiffiffiffi
~P

p �
2

þ 1

s !
; ð105Þ

leading to the equation of state

~P ¼
�

π

2 sinh ~V

�
2

: ð106Þ

Here, Z is finite for nonzero pressure P but tends to
infinity in the limit of zero pressure. We may compute
the compressibility as before,

−
1

Z
dZ

d ~P

����
~P¼0

¼ −
1

sinh−1 π

2

ffiffiffi
~P

p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð π

2

ffiffiffi
~P

p Þ2
q −π

4

1

~P3=2

����
~P¼0

¼ 1

2

1

sinh−1 π

2

ffiffiffi
~P

p
1

~P

����
~P¼0

¼∞: ð107Þ

As the BPS Skyrmion is no longer compact, it might
be interesting to calculate one of the cubes of the
average baryon radii (77), e.g., hVi1 ∼ hzi1, although
the resulting volumes are not the thermodynamic ones.
With (here t ¼ z0 − z)

Z
z0

0

ηzzdz¼
ffiffiffiffi
~P

p Z
0

z0

ðz0− tÞcoshtdt¼
ffiffiffiffi
~P

p
ð−z0 sinhz0

þz0 sinhz0−coshz0þ1Þ
¼

ffiffiffiffi
~P

p
ð−coshz0þ1Þ ð108Þ

and
R
dzηz ¼ −ðπ=2Þ ¼ −

ffiffiffiffi
~P

p
sinh z0 we get

hzi1 ¼
cosh z0 − 1

sinh z0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

sinh2z0

s
−

1

sinh z0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 ~P

π2

s
−
2
ffiffiffiffi
~P

p
π

ð109Þ

and

−
1

hzi1
dhzi1
d ~P

����
~P¼0

¼ ∞: ð110Þ

The functional dependence of ~V and hzi1 on ~P is,
again, completely different, hzi1 being very similar to

the thermodynamic volume (compacton volume) for
β ¼ 1 in this case.

III. DISCUSSION

It was one main purpose of the present paper to calculate
Skyrmion solutions for nonzero external pressure and to
determine the resulting thermodynamic properties, con-
cretely the equation of state, the energy and the (isothermal)
compressibility. In our specific calculations, we restricted
to the BPS Skyrme model, because due to its integrability
and BPS properties, all calculations can be done essentially
in an analytic fashion. Indeed, all static solutions of the
BPS Skyrme model have constant pressure, and the general
static field equations are equivalent to (may be once
integrated to) the constant pressure condition, where the
pressure is the integration constant. Further, the BPS
solutions correspond to stable zero pressure solutions,
whereas solutions with nonzero pressure require the action
of external pressure to be stabilized.
First of all, let us remark that the same results continue to

hold for a large class of generalizations of the BPS Skyrme
model, as proved in Sec. II B. The thermodynamics of these
models will, therefore, be similar and allow for an equiv-
alent treatment. Among these models is the extreme (or
BPS) limit of the baby Skyrme model, whose thermody-
namic properties may be of direct physical relevance,
because the baby Skyrme model has some applications
to condensed matter systems.
In our explicit examples for the BPS Skyrme model, we

used the potentials UðηÞ ¼ ηβ [where η is related to trU ¼
2 cos ξ via η ¼ ð1=2Þðξ − sin ξ cos ξÞ] for some specific
values of the parameter β, because of the resulting simple
exact solutions, even for nonzero pressure. We were able to
demonstrate, however, that both the (compact or non-
compact) nature of the solutions and the resulting com-
pressibilities are determined exclusively by the behavior of
the potentials near the vacuum.
For compact solutions (compactons) we further found

that, among all possible volume definitions for a Skyrmion,
the compacton volume is singled out as especially “physi-
cal” or “natural” because it saturates the thermodynamic
relation P ¼ −ðdE=dVÞ, although none of these three
quantities is defined to obey this relation, at least not in
an obvious way. More concretely, the energy and the
pressure are related rather closely via the energy-
momentum conservation, but there is no obvious close
relation with the compacton volume. The deeper reason
behind this fact is probably the BPS property of the BPS
Skyrme model, although this should be investigated further.
For different potentials of the above family (i.e., for

different asymptotic behavior), we find the following
compressibility results in the BPS Skyrme model.

(i) The constant pressure condition (33) leads to
B0 ∼�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ~P

p
, so for nonconstant potentials the

baryon density cannot be constant, either. There
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exists, however, a limiting case β → 0 with a
potential which is constant and jumps to zero at
the vacuum value η ¼ 0, leading to a constant
baryon density which jumps to zero at the compac-
ton boundary. In this limiting case, the Skyrmion
responds to external pressure via a simple uniform
rescaling, and the standard thermodynamic argu-
ments apply.

(ii) For 0 < β < ð2=3Þ, i.e., for an asymptotic behavior
U ∼ ξα with 0 < α < 2, the compressibility is still
finite, but bigger than in the β ¼ 0 case (i.e., the
Skyrmions are more compressible than in the
constant density limit).

(iii) For ð2=3Þ ≤ β < 2 (i.e., for asymptotic behavior
2 ≤ α < 6), the isothermal compressibility is infin-
ite, corresponding to a zero compression modulus.
On the other hand, for these parameter values the
BPS Skyrmions are still compactons with a well-
defined volume.

So we found that for potentials with an asymptotic behavior
about the vacuum which is at least quadratic, i.e., α ≥ 2,
BPS Skyrmions have infinite compressibility. Further,
potentials with α < 2 are problematic (their second varia-
tion about the vacuum is infinite); therefore α ≥ 2 are the
physically acceptable values, and the infinite compress-
ibility at the equilibrium point P ¼ 0 is a rather generic
result.
At this point, we want to add the following observation.

Firstly, we did not worry much about the precise value of
the baryon number B, because both the volumes and the
energies are exactly linear in B, whereas the pressure does
not depend on it. Secondly, we only considered the case of
non-negative pressure P ≥ 0 or, equivalently, the case
where the thermodynamic or compacton volume is less
than or equal to its equilibrium value V0 ≡ VðP ¼ 0Þ. If we
want to go beyond this case, then the difference between
B ¼ 1 and large B becomes essential. For B ¼ 1, no
physically sensible solution for negative P can be given.
It follows immediately from the constant pressure equation
for negative P that the Skyrmion can never reach its
vacuum value where UðUÞ ¼ 0, because this would lead
to an imaginary baryon density. Solutions where the baryon
density goes to zero for large radii may exist but still lead to
infinite energy,

E ¼
Z

d3xðλ2π4B2
0 þ μ2UÞ ¼

Z
d3xð2λ2π4B2

0 þ jPjÞ

≥
Z

d3xjPj ¼ ∞: ð111Þ

For large baryon number B, however, and for potentials
with α < 6, there exists a different possibility for states
with V > V0. For such potentials the equilibrium solutions
for P ¼ 0 are compactons; therefore states consisting of a
collection of nonoverlapping compactons may be formed

such that the additional available volume δV ¼ V − V0 is
occupied by the empty space (vacuum) surrounding these
nonoverlapping compactons. The pressure of these con-
figurations is obviously zero. In other words, for large B
the equilibrium volume V0 defines a phase transition.
For V > V0, the system is in the state of an ideal gas of
nonoverlapping compactons at zero temperature, with zero
pressure. For V < V0, on the other hand, the system is in a
kind of liquid phase with a rather nontrivial equation of
state even at zero temperature. In this picture, the equilib-
rium (compacton) volume V0 corresponds to the conden-
sation volume where all empty space surrounding the gas
of “molecules” (compactons) has been expelled and the
condensation to a liquid phase sets in. For illustrative
purposes we plot the corresponding equation of state for the
potential U ¼ η

2
3 (i.e., for the case of a pion-mass type

potential with α ¼ 2) in Fig. 1, showing both the liquid [for
0 ≤ V ≤ ð3=2Þðπ=2Þ23 ≃ 2.027] and the gaseous phase [for
V > ð3=2Þðπ=2Þ23]. Here, the dimensionless expression (86)
is used for the plot. We remark that qualitatively similar
equation of state diagrams, specifically with the same phase
transition, are also found in more conventional calculations
of the nuclear equation of state at zero temperature, based
on microscopic two- and three-body internuclear forces;
see, e.g., Fig. 10 of Ref. [28].
The obvious question now is what our results imply for

the problem of the too-high compression modulus for
nuclear matter described by Skyrme models. As explained
in the Introduction, one possible underlying source of the
problem is that if a simple uniform (Derrick) rescaling of
the baryon density under external pressure is assumed, then
it may be shown easily that Skyrmions are much more
incompressible than physical nuclear matter. Further, it

1.5 2.0 2.5 3.0
V

0.5

1.0

1.5

2.0

P

FIG. 1 (color online). Equation of state for the potential U ¼ η
2
3.
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may be shown with the help of standard thermodynamic
arguments that for nuclear matter with a constant baryon
density the assumption of uniform rescaling under external
pressure does apply. If we restrict to the BPS Skyrme
model, then the paradox is resolved by the observation that
the baryon density for BPS Skyrmions is not constant and,
consequently, a BPS Skyrmion does not respond with a
uniform rescaling to external pressure. Our explicit results
for the thermodynamics of classical BPS Skyrmions show
that the true compression modulus in this case is, in fact,
zero. In other words, BPS Skyrmions react rather differ-
ently to an excitation of the simplest degree of freedom (the
uniform rescaling) on the one hand, and to an adiabatic
compression to a new true equilibrium state (a static
solution) of constant pressure, on the other hand, being
quite hard (incompressible) in the former case, but much
softer in the latter.
The BPS Skyrme model, however, is only an approxi-

mation, whereas a more complete description of nuclei
within the Skyrme model framework certainly requires
the inclusion of further terms. The determination of the
volumes, energies and compressibilities for more general
Skyrme models then requires the solution of the corre-
sponding Euler-Lagrange equations for nonzero external
pressure. There are no longer infinitely many symmetries at
our disposal which would allow us to change the shapes of
solutions; therefore these solutions will have definite
shapes. For higher baryon number, like their zero pressure
counterparts (standard Skyrmions), they will, in general,
not be spherically or axially symmetric but preserve some
discrete symmetries, at most. Their determination is, there-
fore, a complicated numerical problem. One may try,
however, to achieve a more modest goal, namely the
numerical determination of the B ¼ 1 hedgehog for non-
zero external pressure and, hence, its thermodynamic
properties. The compressibility of the hedgehog will not
be exactly equal to the compressibility of nuclear matter,
which corresponds to the case of large B, but it might,
nevertheless, provide us with some approximate or quali-
tative information. For the hedgehog we have the spherical
symmetry at our disposal (i.e., the Skyrmion profile ξ only
depends on the radius r); therefore the condition of nonzero
pressure may be implemented simply as a boundary
condition. Indeed, a Skyrmion with constant pressure P
and radius r ¼ R is given by a profile ξðrÞ which obeys

ξðRÞ ¼ 0 and Pðr¼ RÞ≡ 1

3

X
i

Tiiðr¼ RÞ ¼ P¼ const:

ð112Þ

We remark that the energy-momentum tensor for general-
ized Skyrme models is more complicated. Specifically, it is
no longer true that the pressure is constant in the interior of
the Skyrmion, so the constant pressure condition has to be
implemented as a boundary condition at the Skyrmion

surface. Some first numerical results for the model L2 þ
L0 þ L6 (i.e., the BPS Skyrme model plus the standard
nonlinear sigma model term) indicate that the resulting
compressibility κ ¼ −V−1ð∂V=∂PÞP¼0 is still infinite.
One first possible generalization is to directly use the

definition (14) of the compression modulus for the same
generalized Skyrme model L2 þ L0 þ L6. In this model,
again, the volume is not defined thermodynamically, so the
resulting thermodynamics might be more complicated,
with no direct relation between the compressibility (which
apparently still is infinite) and the compression modulus
(which might then be nonzero).
Another direction for further investigation is motivated

by the following observation. The physical measurements
which give rise to the original problem, i.e., the measure-
ments of the Roper resonance and the compression modu-
lus of nuclear matter, are, in fact, measurements of quantum
excitations in both cases, namely of the proper Roper
resonance and of the excitation energies of giant monopole
resonances, respectively. They may both be related to the
same simple classical quantity [the compression modulus is
defined like K ¼ Eð2Þ=B; see the Introduction] precisely
because of the assumption of a simple uniform rescaling.
Indeed, if uniform rescaling is assumed, then the Derrick
scaling parameter Λ appears in the resulting effective action
as a variable (a collective coordinate) whose quantization
directly leads to a harmonic oscillator. The classical
compression modulus shows up in this quantum harmonic
oscillator as a parameter multiplying the harmonic oscil-
lator potential. We know, however, that at least BPS
Skyrmion matter does not respond with uniform rescaling
to an external force or pressure. In other words, the Derrick
parameter Λ is not the softest monopole mode (i.e. the
softest excitation which respects the rotational symmetry).
The proposal, therefore, is to quantize the pressure P. By
this we mean the following. We may interpret P just as a
parameter which describes a possible spherically symmet-
ric deformation of the original Skyrmion. In other words, P
is a collective coordinate (not a zero mode, but a parameter
which describes a collective degree of freedom). As the
resulting deformed Skyrmion still obeys the static field
equations, this is, in fact, the softest possible deformation
which goes from the old to the new boundary conditions
(from the old to the new compacton volume). It should,
therefore, correspond to the softest possible monopole
vibrational mode, whose excitation energies may be calcu-
lated by quantizing this collective coordinate. The true
compression modulus of (BPS) Skyrmion matter should
then be extracted from these excitation energies.
These issues are under current investigation.
To summarize, we think that our results on the thermo-

dynamics of BPS Skyrmions will be instrumental in the
resolution of the puzzle of the high compression modulus
(too-high stiffness) of the Skyrme model. More generally,
these results should provide a first step towards the goal of a
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reliable description of nuclear thermodynamics within the
framework of (generalized) Skyrme models (for a recent
study of nuclear thermodynamics we refer to [28], where
also further references can be found). As said, both the
inclusion of further terms into the Lagrangian and numeri-
cal methods will be required for a more quantitative and
more precise study of nuclear matter and its equation of
state. Another interesting further step consists in the
inclusion of the gravitational interaction into the model,
which should then allow us to study the formation of
neutron stars and their equation of state within the BPS
Skyrme model and its generalizations.
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APPENDIX: PROOF OF PROPOSITION 1

Let ðM; g; volMÞ, ðN; h; volNÞ be oriented Riemannian
n-manifolds, V∶N → ½0;∞Þ be smooth, and the energy of a
field ϕ∶M → N be

EðϕÞ ¼ 1

2
∥ϕ�volN∥2L2 þ

Z
M
V∘ϕ;

as in Sec. II B. Given a vector bundle E over N we denote
by ϕ−1E its pullback to M. Associate to any field ϕ the
section μðϕÞ ∈ Γðϕ−1T�NÞ which maps A ∈ TϕðxÞN to

μðϕÞðAÞ ¼ hδϕ�volN; ιAϕ�volNig
where δ ¼ − � d� is the L2 adjoint of the exterior differ-
ential d, and ι denotes the interior product. Let the tension
field of ϕ be

τðϕÞ ¼ −♯hμðϕÞ − ðgradVÞ∘ϕ ∈ Γðϕ−1TNÞ

where ♯h∶T�N → TN denotes the metric isomorphism
induced by h.
Lemma 1: Let ϕt be a smooth variation of

ϕ ¼ ϕ0∶M → N, with infinitesimal generator X ¼
∂tϕtjt¼0 ∈ Γðϕ−1TNÞ. Then

d
dt

����
t¼0

EðϕtÞ ¼ −hX; τðϕÞiL2 ;

that is, the Euler-Lagrange equation for E is pre-
cisely τðϕÞ ¼ 0.
Proof:—By the homotopy lemma, ∂tjt¼0ϕ

�
t volN ¼

dðιXϕ�volNÞ, so

d
dt

����
t¼0

EðϕtÞ¼hϕ�volN;dðϕ�ιXvolNiL2 þ
Z
M
dVϕðXÞ

¼hδðϕ�volNÞ;ϕ�ιXvolNiL2 þhðgradVÞ∘ϕ;XiL2

¼−hτðϕÞ;XiL2 :

□

Let Fϕ∶M → R denote the function �ϕ�volN , so
ϕ�volN ¼ FϕvolM, and P ¼ 1

2
F2
ϕ − V∘ϕ. We wish to prove

that P ≥ 0 being constant implies τðϕÞ ¼ 0. This follows
quickly from the following lemma, originally proved in the
special case n ¼ 2 in [29]:
Lemma 2: For any smooth map ϕ∶M → N and vector

field Y on M,

hðτðϕÞ; dϕðYÞÞ ¼ ðdPÞðYÞ:

Proof:—We note that δðϕ�volNÞ ¼ − � dFϕ and, for
X ¼ dϕðYÞ, ϕ�ðιXvolNÞ ¼ ιYϕ

�volN . Hence

hðτðϕÞ; dϕðYÞÞ ¼ −h− � dFϕ; ιYðFϕvolMÞig − hðgradVÞ∘ϕ; dϕðYÞih
¼ Fϕh� � dFϕ; �ιYvolMig − hðgradVÞ∘ϕ; dϕðYÞih
¼ Fϕhð−1Þnþ1dFϕ; ð−1Þnþ1♭gYig − hðgradVÞ∘ϕ; dϕðYÞih
¼ 1

2
dðF2

ϕÞðYÞ − dðV∘ϕÞðYÞ;

where ♭g∶TM → T�M is the metric isomorphism induced by g. □
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We note in passing that it follows immediately from this
lemma that static solutions have constant pressure
[τðϕÞ ¼ 0 implies dP ¼ 0].
Conversely, let ϕ have constant pressure P ≥ 0 on some

regionΩ⊆M. If P ¼ 0, then ϕ is BPS, and hence automati-
cally solves the static field equation, so assumeP > 0. Then

ϕ has no critical points in Ω [if rankðdϕxÞ < n then
FϕðxÞ ¼ 0, so P ¼ −VðϕðxÞÞ ≤ 0, a contradiction]. Since
dPx ¼ 0, τðϕÞðxÞ ∈ TϕðxÞN is orthogonal to dϕxðTxMÞ
for each x ∈ Ω. But dϕxðTxMÞ ¼ TϕðxÞN since dϕx has
maximal rank. Hence τðϕÞðxÞ ¼ 0.
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