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The local momentum space expansion for the real vector field is considered. Using Riemann normal
coordinates we obtain an expansion of the Feynman Green function up to and including terms that are
quadratic in the curvature. The results are valid for a nonminimal operator such as that arising from a
general Feynman-type gauge fixing condition. The result is used to derive the first three terms in the
asymptotic expansion for the coincidence limit of the heat kernel without taking the trace, thus obtaining
the untraced heat kernel coefficients. The spacetime dimension is kept general before specializing to four
dimensions for comparison with previously known results. As a further application we reexamine the
anomalous trace of the stress-energy-momentum tensor for the Maxwell field and comment on the gauge

dependence.
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I. INTRODUCTION

Since the introduction of the local momentum space
method into quantum field theory in curved spacetime by
Bunch and Parker [1], the technique has been used in a
variety of different applications. The original application
was to consider the renormalization of interacting quantum
fields [2-6] and to study the renormalization group behav-
ior of gauge theories in curved spacetime [7,8]. It has also
been used in part to calculate the dependence of the one-
loop effective action on the scalar curvature and demon-
strate curvature induced asymptotic freedom [9,10]. It has
been used to study the Wigner function in curved spacetime
[11], and to obtain an expansion of the effective action at
zero [12] and finite temperature [13,14]. The application
to Kaluza-Klein theory was given in [15-17]. More
recently, it has been used to investigate quantum gravita-
tional effects on gauge coupling constants [18,19], and
directly related to the present paper, it was one of the
methods used to calculate heat kernel coefficients for
nonminimal operators [20].

The purpose of the present paper is to extend the local
momentum space technique for the Green function to the
case of real vector fields with a general gauge parameter.
These results can be used to check the possible gauge
dependence in calculations and can in some cases be used
to justify the standard choice of the Feynman gauge. We
will also generalize some of the results of [20] to the case
of the untraced heat kernel coefficients for the real vector
field for a nonminimal operator. Most previous attention
has focused mainly on the case of traced heat kernel
coefficients. (See, for example, [21-26].) An exception
is [27] for electromagnetism in four spacetime dimensions,
and [28] where general, but extremely lengthy, expressions
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are given for the untraced coefficients. The results that
we quote below agree with those of [20] when the trace
is taken, and are valid for any spacetime dimension. The
four-dimensional special case reproduces the results of [27]
and [21].

As a particular application of our results we will
reexamine the anomalous trace of the stress-energy-
momentum tensor 7, for the quantized Maxwell field
and comment on the IR controversy. The regularization
and renormalization of 7, for the Maxwell field has a
long and controversial history which is briefly reviewed in
[29]. Of particular relevance to the present paper are
[27,30-33]. We will comment more on this in Secs. Vand VI.

The outline of our paper is as follows. Section II sets out
a review of the general formalism that we use to obtain
the local momentum space expansion of a general Green
function. Expressions are obtained for the first few terms,
including all those necessary to compute the first three
untraced heat kernel coefficients. In Sec. III we specialize
to the real vector field and evaluate the first three heat
kernel coefficients. A number of limiting cases of physical
interest are presented, and a comparison is made with some
previously known results as a check on the calculations. In
Sec. IV we consider the local momentum space expansion
for the Maxwell field. Section V applies our results to the
evaluation of the trace anomaly for electromagnetism, and
comments are made on the interpretation in Sec. VI where
our results are discussed briefly. The calculations are quite
lengthy, and some of the more cumbersome results are
given in the appendixes.

II. GENERAL FORMALISM

Consider a generic Bose field ¢'(x). Here i represents
any type of index. In the case we will look at, the index will
be a vector field index, but the formalism does not require

© 2014 American Physical Society
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this and we can be more general at this stage. Suppose that
we use A’ j to represent the relevant differential operator for
the field ¢'. We choose a Riemannian spacetime metric,
take the spacetime dimension to be N, and adopt the
curvature conventions of [34]. For the case of the real
vector field that is the focus of this paper, we have
AF, = =804 qVHV, + 04, (2.1)
Here ¢ is some real parameter that comes from the gauge
fixing in the quantum theory, and Q¥ is some function of x
with the indicated transformation properties under general
coordinate transformations. In the special case of Maxwell
theory, Q,, = R,,, which leads to considerable simplifi-
cations. We will keep Q,, general at this stage.
The heat kernel K';(x, x"; 7) for the differential operator
A'; is a solution to

o o .
ALK (x, x5 1) = —EK’k(x, x';7), (2.2)
with the boundary condition
Kij(x, X3t=0)= 5ij5(x, x). (2.3)

Here §(x,x’) is the biscalar Dirac delta distribution. The
importance of the heat kernel is that under fairly general
assumptions, it admits an asymptotic expansion as 7 — 0 of
the form

Kij(x,x; T) ~ (4ﬂT)_N/2§:Tk(Ek)ij(x>. (2.4)

The coefficients (Ey);(x) are the heat kernel coefficients
that are local expressions determined solely by the form
of the operator A’ j- (Note that we do not consider any
contributions from a possible boundary here.)

The method that we will use here makes use of the Green
function for the operator A’; rather than the heat kernel
directly. Because the Green function is useful in calcu-
lations that are of interest in quantum field theory, these
results for the Green function will be useful later in Secs. [V
and V. There is a simple relationship between the two.
Normally the Green function is defined as the solution to

AL Gl (x,x') = 858(x, x'). (2.5)
This Green function is the analytic continuation of the
normal Feynman Green function (or propagator) to imagi-
nary time. We will consider it further in Secs. IV and V. It
proves convenient to define an auxiliary Green function
G(x,x';s) as the solution to

(A" = 56,)G*;(x, x5 5) = 856(x, x). (2.6)
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The usual Green function G';(x,x) in (2.5) is clearly
related to the auxiliary Green function G';(x, x'; s) by
G'i(x,x') = G'j(x,x';5 = 0). (2.7)

The relation between the auxiliary Green function and the
heat kernel is

G'j(x,x's5) = A“ dre ™K' j(x, X' 7), (2.8)

which can be recognized as a one-sided Laplace transform
[35]. The inverse of this, giving the heat kernel in terms of
the auxiliary Green function, can be obtained as

. c+ico (] .
K'i(x,x';7) :/ —s.e“”G’j(x,x’;s). (2.9)

J
i 27

Here c is chosen to be a real constant that is smaller than the
lowest eigenvalue of the differential operator A’ j» and the
contour is closed in the right-hand side of the complex s
plane. It is easily verified, using (2.5), that the heat kernel
obeys (2.2). The boundary condition (2.3) follows by using
the expansion of the Green function in terms of eigen-
functions of the operator A’ -
We will be interested in the case where
(A)'; = (A%)0,05 + (BY) ;0 + (C)y.  (2.10)
for some coefficients (A*)’;, (B%)’; and (C);. For the
operator for the real vector field in (2.1), this form follows
simply by writing out the covariant derivatives in terms of

ordinary ones. The results are (remembering that i and j are
vector indices in this example)

(A, = ~g5t + 3 a(gh + g, (2.11)

(BY)', = 29T} + ¢PTh 6t + g9 Ty, (2.12)
(CY, = Q% + g7 T} — g0 T,
- ga/}rfn'./i + qgﬂﬁl—‘;jr,ﬂ' (213)

When there is no ambiguity we will omit the component
indices i and j and deal with the coefficients in (2.10)
as matrices. Without loss of generality we can assume
AP* = A% The method that we will adopt makes use of
the local momentum space approach of Bunch and
Parker [1] to calculate the auxiliary Green function in
(2.6). We introduce normal coordinates at the point x’
with x# = x# + y#. The coefficients in (2.10) can all be
expanded about x* = x#, or equivalently y* = 0. This
gives
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(Aaﬂ) A‘l/’ i it Z (A%, ) ym cytn o (2.14)
n=2
(BY), = Z (B“m~~u,,)"jy"‘ ey (2.15)
n=1
(€)= (Co)'; + Z( )iyt eyt (2.16)

These are not the most general possibilities for these
expansions, but they are sufficient to deal with the vector
field case of the present paper. The absence of a linear term
in y* in (2.14) can be understood as a consequence of the
fact that in examples of interest to quantum field theory A%
depends only on the spacetime metric whose expansion in
Riemann normal coordinates has the first nontrivial term
quadratic in y*. [See the result in (2.11) for the vector field
and the expansion for g* in (3.8).] The absence of a zeroth
order term in (2.15) arises because B“® involves the
connection whose Riemann normal coordinate expansion
begins at order y*. [See the expression for the vector field
in (2.12) and the expansion for Fﬁy in (3.9).]

The Green function that obeys (2.6) is Fourier expanded
as usual,

2

PHYSICAL REVIEW D 90, 044072 (2014)

i dp

except that the Fourier transform G';(p;s) can depend on
the origin of the normal coordinates x’, but we will not
indicate this dependence explicitly. The advantage of
introducing the Fourier transform, as in flat spacetime, is
that it turns the differential equation for the Green function
into an algebraic equation for its Fourier expansion.
Because of the similarity with the normal Fourier transform
in flat spacetime quantum field theory, this is called the
local momentum space expansion [1].

The aim now is to use (2.10), making use of the
expansions (2.14)—(2.16) in (2.6), and to use the local
momentum space expansion (2.17) for the auxiliary Green
function. The factors of y#'...y# that occur in these
expansions can be dealt with by using

ePYG'i(pis), (2.17)

, o" .
y,ul . yl‘nelp'y — (—l)n 761‘0'}" (218)
Opy, -~ Opy,
followed by partial integrations with respect to p to remove
derivatives from the exponential factor. The following

result is obtained (indices i and j are suppressed):

3

0
I ==AF pup,G(p;s) = sG(pss) + A* oy =——[p,p,G (3 5)] + iAoy 7———[p,p,G(ps s
0 PuPuG( ) /’apaapﬂ[ . ] ﬂy@paapﬂam[ g )

ot 0
_Alll/a - yG 5] = Bﬂai
frd apaapﬁapyapg [p,up (p )] 3Pa
33
B* B . .
+ tlﬂ}/ 8paapﬂap}, [pﬂG(p’ S)] + COG(p7 S)

The next step is to assume an expansion for G(p; s), that is,

G(p:s)=Go(p;s)+Ga(p:s)+Gs(p3s) +Ga(pss) + -+
(2.20)

We will define Gy(p;s) by

1)Go(p;s).

This choice, although arbitrary, has a significant advantage
over other choices that could be made, as we will discuss
later. The expansion (2.20) can be viewed as an asymptotic
expansion in inverse powers of p beginning with G
at order p~2. From (2.19) it is clear that if the expansion
G = Gy + - - - 1s used, simple power counting shows that
we have terms of order 1, p=2, p=3, p~* and so on. We can
interpret a general term G, in (2.20) as the term in the
asymptotic expansion of G(p;s) that behaves like p=>~"
for large p.

= (—Ag”pﬂpy -5 (2.21)

puG(p;s)] —iB*

0
aapaG(p7s)_C

82
aﬁm [P.G(p;s)]

52

aff 8paapﬂ G(p;S) +oee

(2.19)

The terms of order p~2 in (2.19) read

0 = (=AY p.p, — s1)Ga(pss)

2

Ay
P Opadp;

[pﬂpl/GO(p; S)]

= By 5, Golps )] + CoGo(ps ).

T (2.22)

The terms of order p~3 read

0 = (=AY p.p, — sI)G5(p: s)

3
+ A" oy ————— PP Go(Ds s
ﬁyapaapﬂapy[ u 0( )]

2

B, )
a/ja ry [pﬂGo(p;S)]ﬂLtC6 Go(p; s).
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The terms of order p~* read

PHYSICAL REVIEW D 90, 044072 (2014)

0? o
0= (=AY pupy = s)Ga(p3s) + A oy ———— [P, P, Go (P 5)] = A" upys o~ [PuP.Go(Ds 5
( 0 H ) 4( ) /} apaapﬂ [ H 2( )} /7']/5 apaapﬂapyapﬁ [ H 0( )}
0 3 2
— Bt —[p.Ga(p;$)] + B* oy, —————[pu.Go(p; s)] + CoGa(p;s) — C, Go(p; s 2.24
apa[ " 2( ] ﬁyapaapﬁapy[ uJo )] () ) ﬁapaa 0 ) ( )
|
The equations that we have found for the different orders ~ where

can be solved recursively. We first solve for G, using (2.21)
for a given Af’. This then determines G, from (2.22) and L . , ? .
G5 from (2.23). G, is found from (2.24) and the knowledge Gai(pis) = =Go(p: s)A" o Opadp; [Pup.Ga(pss)].
of Gy and G,. It is clear how higher order terms could be (2_34)

obtained, although with increasing algebraic complexity.
Because of (2.22) we can immediately write down

Gy(pss) = Gy (pss) + Goa(pss) + Gos(pss),  (2.25)

where

P
. - _ . 1772 .
Gy (pss) Go(p; s)A ap apaap/; [PyPuGo(P»S)]’

(2.26)
Ga(ps5) = Gol(p: s)Bﬂa% PGolpis)].  (227)
G23<P§S) = —GO(P§S)C0G0(P§ S)- (2'28)

Obviously, it is not strictly necessary to split the terms in G,
up as we have done, but it does prove helpful to do so in
order to demonstrate the source of various terms in the heat
kernel coefficients, as well as to isolate any sources of
calculational error.

Similarly, from (2.23) we have

Gs(p;s) = G31(pss) + Gx(pss) + Gx(pss),  (2.29)

where

3
G31(p:s) = —iGo(p; s)AM 4, m [Pup,Go(pss)],
(2.30)

) 0?
Gxn(pss) = lGo(PZS)B”aﬂm [.Go(p;s)],  (2.31)

, 0
Gs3(pss) = —lGo(P§S)Ca$Go(P;S)- (2.32)
Finally, from (2.24) we have
6
Gi(p3$) =Y Gan(pss), (2.33)
n=1

ot
G 38)=Go(p;s)A" s =—F——F—F7— ,Gol(p:s)],
42 (p ) 0(p ) ﬂyﬁapaapﬂapyapﬁ [p/tp 0(p )]

(2.35)
Gu3(pss) = Go(p: S)B"aaipa [PuGa(pss)].  (2.36)
83
Gu(pss) = =Go(p; S)Bﬂaﬂym [PuGo(p: 5)].
(2.37)
Gys(pis) = —=Go(p:s)CoGa(pss),  (2.38)
2
Gus(pss) = Go(p: $)Cp 00, Go(pss).  (2.39)

We will consider a direct link between the expansions
we have been considering and the heat kernel coefficients
defined in (2.4) in the following section.

III. HEAT KERNEL COEFFICIENTS

If we take x* — x* in (2.9) and then substitute the local
momentum expansion (2.17), we have

de c+ico (g
K(xX.x:7) = =G (p;s).
b= [ G | i

It is now possible to see that if we use the expansion (2.20),
then

de c+ioco ds
E, = (4m')N/21_k/(2ﬂ)N/ Z—ﬂie‘”sz(P;S)-

—ico

(3.1)

(3.2)

The proof of this assertion makes use of a rescaling of
s — 7715 followed by p, — v7!/?p,. The crucial feature
that makes (3.2) true is that G, as defined in (2.21) obeys
the scaling relation
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Go(7™'2pis/7) = 1Go(p3 ). (3.3)
When calculating the heat kernel coefficients it is

advantageous to adopt a local orthonormal frame by
introducing the N-bein e“,(x). This is defined so that

G (%) = Bape”yu(x)e, (x). (3:4)
The inverse N-bein e *(x) satisfies
e (x)eb,, (x) = &b, (3.3)
so that
Sab = G (¥)e (x)ep" (x)- (3.6)

Spacetime indices are raised and lowered with the space-
time metric g,, and its inverse as usual; orthonormal frame
|

1 ay,p 1 avfr A7 1,0 1 2 A
g/w(y) = 5/w - gy y R;mvﬂ'x’ _gy vy R;muﬂ;y'x’ + Yy _2_0R/muﬂ;y5 +ER;mﬂ/IRw5

1 1 1 1
FU0) = 3 A Y VR G lo + VYRGS gyl YV (— R o + _RﬂaﬁyRuyéi)

1 1
Fﬁv (y) = gya(Ri/wa + Rﬂwa) |x’ - Eyayﬂ(leﬂya;/} + ZR}LW(:;[)’ + R/l(w/f';u + Rlaﬂﬂ;u

1, 1

1
y 2 y y 1 :
+ Yy <_ %R wriaf ~ %R vuysaf ER Boripa ER Puywa ER Puriap — ER puysav T ERﬂﬂUY a

IR s A lR/l R .C lRll R .©
+E whvY a +E apo NPy +E aveufy
1

45 45

1 1 1
eaﬂ (y) = eay(x/) {6;: - ERD(m/)’yayﬁ - 7Ry(lﬂ/)’;yyayﬂyy + <_40Ry(m/};y§ +

12

6 12

— —R*,4R "—i—ER’I R “+3Rl R0’
ovfp N uay 45 upo N vay vpopay
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indices, which we use the indices a, b, c, ... for, are raised
and lowered with the Kronecker delta. Any tensor can
be referred back to the orthonormal frame by converting
its spacetime indices to orthonormal frame indices with
suitable N-beins. The advantage of using the N-bein
formalism is that it avoids the use of the bivector of
geodetic parallel displacement that plays a role in DeWitt’s
[36] calculation of the heat kernel coefficients. We will
comment more on this point later.

A. Riemann normal coordinate expansions

In order to obtain the expansion of the Green function in
Riemann normal coordinates, we will need the expansions
for the metric tensor, Christoffel symbol, and N-bein. These
are, using x* = x’¥ 4+ y* with x’* viewed as the origin of the
Riemann normal coordinate system,

tees o (3)
cee 3.8
20 15 Lt (38)
- R;ml//} ;ﬂ) |x’
1 1 1 (I
4 1

_RlaﬂaRbm - ERlaﬁame - ERlGMﬁRIJ(X}/
e (3.9)

1 v c A7 1,0
120R (lﬂHRM75 DA L0 U0 e (310)

7

40 360

1 1 1
eaﬂ (y) = eay(xl) {5’; + _Ryaﬂ/}yayﬂ + _Rua”/i;yyayﬂyy + <_ Ryaﬂﬁ;y& + —Ry(zﬁaRﬂy(sg) yayﬂyyyé + - } (31 1)

The N-bein e,#(x) is defined in terms of e,#(x’) by parallel
transport along the geodesic that connects the origin x* to
x*. This is how the expansions in (3.10) and (3.11) were
calculated [using (3.9)]. It also explains the relationship
between the N-bein formalism and the bivector of geodesic
parallel displacement. The orthonormal frame components
of a vector field A#(x) are given by
A? = e, (x)A*(x). (3.12)
This must be the same as we find at the point x’ if the
N-bein, or equivalently the tangent space basis vectors,

are defined through parallel transport. This gives the
relation

A? = e, (X )AM(X). (3.13)
Combining (3.12) and (3.13) shows that
AF(x) = e (x)AY = e F'(x)e?, (x")AY (X'). (3.14)

The expression e *(x)e?,(x') can be interpreted as the
bivector of geodesic parallel displacement. There is an
obvious inverse relation to (3.14). There is no need to use
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the bivector of geodesic parallel displacement explicitly
if the N-bein formalism is adopted. We will return to this
in Sec. IV.
We can write the Green function as
G, (x,x') = e9,(x)e’,(x')Gp(x, x'). (3.15)
The indices i and j in the general expression for the
operator in Sec. I can now be interpreted as orthonormal
frame indices a and b. Because the orthonormal frame
indices are raised and lowered with the Kronecker delta,
there is no real need to distinguish between upper and
lower indices. By transforming the operator in (2.1) or the
defining equation for the Green function (2.6), the expres-
sions for the coefficients A, B, C in the general expression
(2.10) become (with all expressions evaluated at the general
point x)

(A)ay = =900 + 3 (e +ebey). (3.16)
(B*)ap = 9Thpbap — 2¢," ¥ e — qes"ey’' T, (3.17)
+qedey’y + qedlent (3.18)
(Clap = Oup — €a* 9P epyap + g€ es” - (3.19)

Here we have used
Gavap = Gavap — 150G ab.os (3.20)

and defined

Our = €'e," Q.- (3.21)

Note that we have been careful to symmetrize the second
term of (3.16) in u and v. Also, if we assume that Q,, =
Q,, 1s symmetric, then Q,;, = O, Will also be symmetric.
The semicolon on the N-bein denotes the spacetime
covariant derivative rather than the full covariant derivative
which must vanish. So, for example,
ey, =€, —Thel,. (3.22)
The full covariant derivative of e, involves the spin
connection (w,),,. The full covariant derivative of e, is
given by
J
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Ve, =0=¢", —Te" + (w,)e’,. (3.23)
Making use of (3.21) gives
ey = —(w,)",e u (3.24)

This last result can be used to eliminate the spacetime
covariant derivatives in (3.18) and (3.19) in terms of the
spin connection and its derivatives, which allows some
simplifications in obtaining the Riemann normal coordinate
expansions of B and C, although the results in (3.18) and
(3.19) can be used equally well. The expansion of (w,),,, in
Riemann normal coordinates can be shown to be

1 1
(wﬂ)ab(y) = eai(x/)ebﬁ(x/){_ERﬂaﬂﬁya - gR,u(Mﬂ;ﬁyayﬂ
1 L. afoy
-3 Rciopy —gR aupRepio | YOVIV 4+ b

(3.25)

All curvature terms appearing on the right-hand side of
(3.25) are evaluated at the origin x” of the Riemann normal
coordinate system.

This gives sufficient results to evaluate the expansion of
A, B, C in Riemann normal coordinates and to read off the
coefficients needed in the expansion of the Green function
as described in Sec. II. The necessary results are summa-
rized in Appendix A.

B. Auxiliary Green function expansions

From (2.21), if we use (A1) it can be seen that (with e #
evaluated at x’)

(Go)ap = arS + qed’es" pup, ST, (3.26)

where we have defined
S=(p*-s)7", (3.27)
T=[(1-q)p>—s]". (3.28)

We now use this result in (2.25)—(2.28) along with the
relevant expressions for A, B, C taken from (A1), (AS) and
(A8). The result turns out to be given by

e, (x)eb 5(x)(Ga) sy = —QupS* — 40 S*Tpspy — 40 5P T Papy — 4* Q" S* T pupppups

1 2 q 2 2
+§R{S Oap + gST[S + (1 - q)T]pap/;} + gRaﬂST + gR/ S Tpppy + qRpS"Tpyp,

1
+ gRﬂ”{—st(saﬂ —q[28 + (2 -5¢)ST +2(1 — q)*T*|Tp.ps}Sp,up.

q v
_§Raﬂﬂ [S + (1 - q)T}STp/Apy

(3.29)
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As usual, all terms on the right-hand side are evaluated at
the origin of RNC, x'. Tt is advantageous to do the tedious
calculations here and in what follows with Cadabra [37,38].
The much lengthier expressions for G; and G, are given in
Appendix B.

C. Laplace transforms and momentum space results

The aim now is to use the results for the terms in the
expansion of the Green function found in (3.26), (3.29) and
(B2) to find the first three heat kernel coefficients. The
result for G5 is not needed here, although it will be needed
in Secs. IV and V. From our results it is clear that we first
need to evaluate the inverse Laplace transform of powers of
S in (3.27) and T in (3.28). We will define

L"m::.ltz:”éége_”S"Tm’ (3.30)
- [ eespsE, 6o
where we will take
S(p?) = [p* =sI™! (3.32)
and define
e=-ap (3.33)

It is now possible to set up a recursion relation that allows
us to calculate L,,, in terms of L;:

oo === ) (o8)
(3.34)

For L;; we find

(3.35)

This is sufficient for determining the necessary inverse
Laplace transforms when n,m # 0. If m = 0 we have

n

T 2
Loy=1,=——-—€. 3.36
n0 n (I’l — 1)' e ( )
In a similar way, when n = 0 we have
Tm 2 Tm 2
Loy=———e® =T -gw’ (337
om = —1n¢ m—1n¢ (3:37)

We have therefore reduced the evaluation of L,,, into a
simple recursive procedure.

From the results found for L,, it should be clear
that when the momentum integration is considered, we
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encounter more complicated expressions than found in the
nonminimal case when ¢ =0, and a single exponential
factor is obtained. We now encounter expressions like

de Pur " Py o
o lomse) = [ (Pt o

(Terms with an odd number of momenta will integrate to
zero.) It is now necessary to consider convergence of this
expression. The exponential factor ensures convergence as
p = 0. As p — 0 the integrand behaves like p?*~* and
there is a factor of p"~! from the volume element. The
integral in (3.38) is only convergent at the lower limit if
2k < 2n+ N. In cases where 2k > 2n + N the integral in
(3.38) will diverge. However, the overall expression for the
heat kernel coefficient cannot diverge. This means that
there will be integrals that separately diverge but that when
combined are convergent. The situation is completely
analogous to

(3.38)

Fla,b) = A T by (3.39)

T
where a and b are both assumed to be positive (or to have
positive real parts if they are complex). The integral on the
right-hand side exists since the integrand vanishes expo-
nentially fast as 7 — oo and is integrable around 7z =0
because of the difference of the two exponentials. If we
split up the integral in (3.39) into two separate integrals,
then each integral will diverge at the lower limit; yet the
combined expression in (3.39) is convergent and is easily
seen to be given by

F(a,b) =Inb—1Ina.

We will discuss this in more detail below.
By symmetry we must have

J

HiHon

= J(k,n;7)5, (3.40)

1""Han?

for some coefficients J(k, n; 7). Here §,,,..,,, is expressed as

the sum of products of n Kronecker deltas with all possible
pairings of indices. For example,

0

HiHaf3Hy

=90

Hik2

0

H3Hg + 5141/43

0

HaHg

+6,,,0

Hi1Ha " P23 "

We also have the recursive result that

)

o
2n

:§ :5M1llk5ﬂ2"'ﬁk"'l42n’
k=2

where the fi;, means that the index corresponding to k is
omitted from the sum. There are (2n — 1) terms in the sum.
For later use we record that

6#1#26I43"'ﬂ2n +5ﬂ1ﬂ36ﬂ2ﬂ4“'ﬂzn +-- +6ﬂ|ﬂ2n

0

HoHop—-1?
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s, o =(N+2n-2)8

H3 Mo ®

(3.41)

By contracting both sides of (3.40) with §*/#2 and making
use of (3.41) it can be seen that

Jk=1,n=1;7) = (N+2n-=2)J(k,n;7). (3.42)
This gives us a reduction formula that we can use to reduce
J(k,n;7) to J(0,n’;7) for some n’ < n provided that the
original expression is convergent. Noting that

1

1O

(3.43)

completes the recursive definition for J(k, n; 7).

If the original expression (3.40) is not convergent then
we can only reduce J(k,n;7) to J(k',0;7) for some
1 <k <k, which is a divergent integral. However, as
already mentioned, there must be another expression of a
similar structure such that the combined expression is
convergent, analogous to the simple result in (3.39). The
calculation of E, involves J(1,0;7) — J(1,0; (1 — ¢)7). It
is possible to show that, assuming N # 2,

J(1,0;7) = J(1,0; (1 — g)7)

_ de L[ —p? _ e—(l—CI)TPZ]
)V (p?) ’
2t -N/2 1-N/2
=g 4= (-9 (34d)

In the special case of N = 2 it is possible to evaluate the
integral in the first equality directly and to show that the
result agrees with what is obtained by taking the limit of
|

d¥p [ctio ds
Eyup(¥') = (4”T)N/2/ N/ .

—ico 27i

(27)

de
— (4mo)V2 / G Bk + e ()ert (),

The definition of L,,, in (3.30) has been used here. Next we
use (3.34) and (3.35) to find

d¥p -
EOab(xl) = (4”T)N/2/(2ﬂ)N {5abe P
+ e (e () LR o0 - e .
p

(3.48)

The momentum integration is performed using (3.38) and
(3.40) to find
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(3.44) as N — 2. The fact that J(1,0;7) and J(1,0; (1 —
g)r) only occur in the combination J(1,0;7)—
J(1,0; (1 — g)7), which is given by the finite expression
(3.44), is a useful check on any calculation.

The calculation of E, also involves J(2,0;7) and
J(2,0;(1 —g)r). This time, the finite result does not
simply involve the difference. Instead, we find that

J(2,0;7) = J(2,0; (1 = g)7) +7qJ(1,0;7) = Fy(z, q),
(3.45)

ot grgli-0-am) 6o

assuming N # 2, 4. In the special cases of N = 2,4, a direct
evaluation of the integrals occurring on the left-hand side of
(3.45) agrees with taking the limit of (3.46). (Both limits
are of course finite as expected.)

D. E,, expression

Because the expression for G, in (3.26) does not involve
the curvature explicitly, we expect that the result for the first
heat kernel coefficient £, should agree with that found in
flat spacetime. The relevant expression is the k = 0 case
of (3.2).

From (3.2) with k = 0, and using the expression (3.26)
for Gy, we have

€[0S + qe ! (x') ey (X') pup,ST]

(3.47)

Egp(X') = (4”T)N/25ah [7(0,0;7)

+J(L,1;(1=¢q)r) = J(1,1;7)].  (3.49)

The Kronecker delta that arises in the integration has been
used to reduce the N-bein terms to d,,. Now we use the
recursion relation in (3.42) with (3.43) to find

Bon) =ou{ 1+ [0 =92 =11} (350

This is in complete agreement with a simple flat spacetime
calculation as expected.
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E. E,,, expression
With £ =1 in (3.2) we have

de c+ioo ds .
=2 oG, .
)" /C_,-oo i’ R

Evap(¥) = 7 (dmz) "2
(3.51)

where G,,;, is given by (3.29). This is still sufficiently
simple to do by hand. The steps are identical to those that
we have just described for E( above. We will leave out the
intermediate steps and simply give the end result after
changing from the local orthonormal basis back to the
coordinate basis, which is

Ef, =T, Q" +TpRv+T 308, +T 4R, (3.52)

where we have defined
0= 0%, (3.53)
analogously to the definition of R = R*,. The coefficients

in this expression are given for a general spacetime of
dimension N by

[4N — q(N —2)(N* -2)]

Ty =

N(N* - 4)q
+%1—qfwzexﬁ;;7$;w’ (3.54)
- :[—12N—q(5N2—8N—12)]
2 3N(N*—4)q
_npIN(N+2)g* = (N +2)(N +6)q+ 12N]
+(1_Q> /2 3N(N2—4)q >
(3.55)
_ [+q(N-2)] npA—a(N +2)]
M= N a0 e ey
(3.56)
;o 244V - N - 12)]
e 6N(N? —4)g
_n 244+ (N +2)(Ng =N —6)q]
— (=g 6N(N? —4)q
(3.57)

The results for N = 2 must be found by taking the limit
of these expressions as N — 2. The results in this special
case are

PHYSICAL REVIEW D 90, 044072 (2014)

Ty =— 4((21__‘2) + log(;q_ 9, (3.58)
T :f(f:f]; + (q_3)16°§(1 —9 (359

5 = 8(51__2;) - log(iq_ 1) (3.60)
Ty = 21(21_—73 G- Q)llgi(l —9) . (361

For the physically interesting case of N = 4 we find

—71’—;—%—1, (3.63)
et (3.64)
= rlr+4), (3.65)
Ty;= 24(161i 7 (3.66)
_—g, (3.67)
Ty = (3;12 (_1 6_qu)r24) : (3.68)
— g +=+ é (3.69)

In the second equality for each term we have written the
result in terms of the variable

r=q/(1-q),

which was used in [21].
Finally, we give the first terms in the expansion about
q=0:

(3.70)

T11:—1—g+-~~, (3.71)
o :§+ , (3.72)
qZ
Ty=—2 4, (3.73)
VDU (3.74)
12
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In the ¢ = 0 limit we recover the result for the nonminimal vector field. The result for the untraced E; coefficient agrees

with that given by [28] as noted in [20].

F. E,,, expression
With k£ =2 in (3.2) we have

de ctico (s
EZab(x/) = 7_2(47”-)]\,/2 (27[)1\/ /c—ioo 2—7”.6_”(;4411;7 (375)

where Gy, is given by (B2). This is clearly a rather lengthy expression to deal with by hand. However, the basic method is
exactly the same as that which we have described for the lower heat kernel coefficients. Cadabra [37,38] can be used
efficiently to deal with the necessary algebraic complexity. The result turns out to be

Eju =Ty RR,, 4 TR, R 4 To3R 10 sRY + TosR,05, R, " + TsR?g,, + TosRsR™ g,
+ To7Ru3,5R7° gy + T2sV, VR 4 TogIR,, + T2100Rg,, + T21100s0% g + T2120,,0%,
+ 721300 + T2140OR,, + T2150RG + T216R Q% + T2170u0sR? g + Ta1s(R,,1 0%, + R,10%,) + T219RO,,
+ T00Q0,, + Tzzl(vﬂsziy + vyvﬂQly) + Ty (0Qg,, +2V,V,0 + ZQﬂDVaVﬁQaﬂ) + T30, (3.76)
|

Q is as defined in (3.53). The coefficients appearing in (180 — 5264 + 452¢°> — 914°)
(3.76) are somewhat lengthy and are given for general Ty = 2880(1 — ¢)%q
spacetime dimensions in Appendix C.

2
The N =4 results are also a special case, and they + (29 —60q+452) log(1 —q)’ (3.82)
coincide with taking the N — 4 limit of (C2)—(C24), 7204
11
. (12 = 34q + 364 — 134°) Ty = 1g5 ™ 360 081 = 9): (3.83)
21 —
96(1 - 9)*q
_ 2 _ 3
N (24> = 12 +9) log(1 — q) 671 Tu= (12 4+ 30¢g — 20g° — 19¢°)
724 ’ ' 144(1 - q)¢°
5+ 15¢ —24%) log(1 —
L 54159 q%) og( q), (3.84)
. _ (15¢* = 38¢ 1 50¢ — 48 + 24) 60g
2 = — 2.2
144(1 - q)*q S (36=78q+364> + 13¢°)
_ (44’ — 304> + 15q — 30) log(1 — ) G18) 144(1 = q)¢*
1804° ’ '
q +(q3+5q2—25q+ 15)log(1 — q) (3.89)
604> ' '
7. _ Ba+2)(¢’ +69-6)
BT (-9 T = — (59¢° — 64¢% — 90g + 60)
2
L (@ +15¢° —15¢—15) log(1 - g) (379) 720(1 - q)q
904° ’ ' _ (¢ =54 = 5q+5)log(1 — q) (3.86)
604> ' '
1 1 3 2
Ty = ——+—log(l — q), (380) 5 _ (3¢’ +4g"—18¢+12) log(l—gq) 187
12 790 211 192(1= ¢4 AT (3.87)
r _ (374> - 116¢° + 1184 — 36) - _ 11g° —404% +42¢ — 12 log(l — g (3.88)
» 1152(1 — ¢)%q 212 48(1 — q)%q 4> '
(2¢° = 12 +9) log(1 - )
— 7884 \ (3.81) — (¢° +44° =18 +12) log(1 —q) (3.89)
2 384(1-q)%q 32¢% '
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(¢ —16¢* + 269 — 12)  (2q —3)log(1 — q)

T214 =

96(1 - q)*q 244 ’
(3.90)
7. _(2-49)(3¢’~10g+6) (3 -2q)log(l —q)
2 192(1 - q)%q 4847
(3.91)
7. _(3¢+2)(6-69-¢*)  (1+g-¢q°)log(l-q)
20 72(1 - q)¢ 64> ’
(3.92)
7. (6-13¢+6¢%) (3-5q+4q”)log(l -q)
2 244(1 - q) 1242 ’
(3.93)
— (12¢* + 7¢° — 52¢* + 42q — 12)
e 144(1 - ¢)°¢?
(1-g)*log(1 - g)
- 2 , (3.94)
. __(12-10g -8¢> +74%)  (2q—3)log(1 —q)
w 96(1 - q)*q 244 ’
(3.95)
(12-18q + 44> +3¢%) log(1 —gq)
Ty = , 3.96
= 96(1 - q)*q 84° (3.96)
7 (643¢-7¢*=3¢°) (2+2q-q*)log(l - q)
2 36(1-9)q’ 12¢° ’
(3.97)
T, = 4= 204" +64-6)  (1-g-q)log(l - )

288(1 - q)q* 2443

(3.98)

try = Tog + T+ NTyg

PHYSICAL REVIEW D 90, 044072 (2014)
(36 — 78q + 60g*> — 114¢%)

144(1 - q)q2
(3-5q+ ¢*)log(1 - q)

- 27 . (3.99)

T223 ==

For evaluating the divergent part of the one-loop effec-
tive action, only the trace of the heat kernel coefficient is
involved. It is straightforward to see from (3.76) that there
are 10 independent terms that can be given as

tI'(Ez) = t21R2 + tzzR/wR’Lw + t23RMMo.RMMG + t24|:|R

+ 15RO + 1R, 0" + 1707 + 1530, 0"

+ t29|:|Q + IZIOQ”D;;W' (3100)
The coefficients t,;,...,1;o are given in terms of the
coefficients T, ..., Ty3; defined in (3.76) and given
explicitly in (C2)—(C24). They are
thy =T + NTos

(N* = N3 — 16N? + 16N — 72)q + 144
72N (N? — 4)q
(1-gq)™2

72N(N? —4)q
—2N(N +2)(N +4)¢*
+ (N +2)(N? + 10N + 36)q — 144],

+ [N(N =2)(N +2)g¢*

(3.101)

tyy =Ty + Trs + NTy
_ (=N*+ N* - 116N? + 296N + 360)q — 360N
180N (N? — 4)g

U=a)™ N+ 2)g°
18ON(N2 — 4)q 1
+2N(N +2)(N + 28)q?
— (N +2)(N>+ 58N + 180)g + 360N],  (3.102)
tr3 =Ty + NTy
1
[(1-¢)> N2+ N-16], (3.103)

T 180

_ 120(N? =3N + 6)q + (N° — 5N* + 15N3 — T0N? + 104N —240)q> + 240(N - 2)

30(N — 4)N(N? — 4) ¢

(1-g)'™2
30(N —4)N(N? —4)q

5[-N(N +1)(N* = 4)g> + N(N + 1)(N +2)(N + 8)g* — 120(N + 2)q — 240(N —2)],

(3.104)
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trs = Tr14 + Tr19 + NTyys

PHYSICAL REVIEW D 90, 044072 (2014)

(-N3q+N?q+12g—-24)  (1—q)™V2 2 2
= N<g=— N 2Ng* —8Nqg — 12q + 24|, 3.105
SNV —4)g 6N<N2_4)q[ q q+2Nq q —12q + 24| (3.105)
tae = Ty16 + 2T213 + NTayp7
[(5N>—8N —12)g+ 12N]  (1—¢q)™/?
= —N(N +2)¢*> + (N +2)(N + 6)q — 12N], 3.106
ty7 = Tao + NT>3
(5N>q —8Ng + 12N — 12q) (1 —¢q)™N/? .
= -N N?q —2Ng* +8Ng — 12N + 12¢4], 3.107
trg = Ty + NTyyy
_ [-2Ng+4N - 4q](1- )%  (N3q—2N2q—2Ng—4N + 4q) (3.108)
2N(N? -4)q 2N(N? —4)q ' '
tro = Ty3 + (N +2)Tm
_ [(N*=5N? +2N? + 32N —96)4* + 192q — 96]
B 6(N —4)N(N? — 4)q?
(1-g)™v" [N(N? + 6N + 8)g* — 48(N + 2)q + 96) (3.109)
6(N—4)N(N2—4)q2 q q P .
ta1o = 211 + 2NTyy,
[SN3q> —24N*(q —1)q + 4N(q* — 18q + 12) +48(q — 1)q]
B 3(N —4)N(N? —4)¢?
- (=g [N3g2 — 4N(g* — 6q + 12) + 48]. (3.110)
3(N —4)N(N? — 4)g¢?
These results were given in [20] with slightly different l—i—i- .. (3.115)
notation. =767 12 ) .
As a check on our results we can take the ¢ — 0 limit of
these coefficients, which should give the result for the trace PR + (= N T PN (3.116)
of the minimal vector field. (See, for example, [39].) It can 2 3 24 4 ’ '
be shown that ,
q 3
ty=—+—(N+4 3.117
=N Lnisygs-- (3.111) SRR S
277 144 e ‘ X
by =c+214..-, (3.118)
t—£+££+ (3.112) 2
2= 7780 " \180 36077 ‘ q ‘o
by =———— , )
29 6 12 + ( )
N-—15 1
ty=—-——+=—(N=-4)g+---, 3.113 2
3= "730 360 44 (3.113) =24+ .. (3.120)
6 12
where we keep the first two terms in the expansion of
N 1 P p
thy :%—i—@(N—l— g+ -, (3.114)  (3.101)=(3.110) about ¢ = 0. The g = 0 results agree with

that for the minimal operator, as they should.
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In the physically interesting case of N = 4 we find, using
the definition (3.70) for comparison with [21],

1 2
- 12 121
tor = 4 B + 127 +8), (3.121)
t 15y + 30y — 8 3.122
0 = 360( y> +30y —8) ( )
11
by = ——— 3.123
23 180 ( )
[  95y2 4288y +60  (6y2 +9y +2)log (y + 1)
2% = 360y 12y ’
(3.124)
s =~ (=2 — 2y — 4) (3.125)
25—24 14 14 s .
1
2
v
o= 3.127
l 2
thy = — (> + 6y + 12), (3.128)
24
-7 =9 +6  (Y*—1log(y+1)

- , 3.129
29 367 + 672 ( )
5+ 42y +24 (57749 +4)log(y + 1)

bhip=— + :

36y 61>
(3.130)

The results for the coefficients that do not involve total
derivatives agree with [21]. The terms with total derivatives
were not needed by [21], and the result here agrees with the
evaluation of [20]. Only those terms that involve total
derivatives involve the logarithm; thus, the logarithm does
not enter into the divergent part of the effective action.

|

9w T3

2
G4/w - DR |:5 5ﬂl/

6 1
—f—?},Spﬂpy]SG -l-Rz[ 1) +ySpMpD}S

2 8
+ R R 5 [—5

457" 15 5"

8 4y
+ gR{l/}RyDS4p(1pﬁ +—= 3 R(lﬂRy(zS4pﬁp;4 15

* PR 5S° +

2 2y
+—ySp,,py]S3—RaﬂRal[ 5, +22F

2 4 16y
”{lRyaS?’ + Ra/l/}ﬁR |: 5 +—=

21772 + 69y + 57)
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IV. FEYNMAN GREEN FUNCTION EXPANSIONS

In quantum field theory the Feynman Green function,
rather than the auxiliary Green function of Sec. III B, is the
relevant Green’s function for developing perturbation
theory. This is obtained as in (2.7) by taking s =0 in
the auxiliary Green function. This relates T to S with a
factor of 1/(1 — ¢) according to our definitions in (3.27)
and (3.28). The expressions for the components of the
Green function expansions given in Sec. III B simplify
considerably. In addition, we need to be careful if we want
to evaluate G,, from G, because of the presence of the
N-bein factors in (3.15). It is necessary to use the expansion
(3.10) of the N-bein factor of e“,(x) about the origin of the
RNC system at x" to obtain the correct terms in the Green
function expansion. In addition, we will specialize to the
case of Maxwell electromagnetism by taking

O =Ry,. (4.1)
This too leads to a simplification of terms from the more
general results that we have been considering.

We will define y as in (3.70) and in [21]. The result
for G, is

1.2 ,
GZ;w: 3 /w+ J/SP#P,, S

2
- Raﬁ |:35/w + ZYSPMPI,:| S3papﬂ
4

4
- —R,S*+-

R, /S papp.
For G; we have
G = —iR[8,, + 37Sp,p.)S° pa
+ %71?;”53 P+ iRPH[28,, + 8ySpup St Papspi
+ 4iRW;“S3pa — Zi}/R"ﬂ;yS“p”papﬂ

4i . )
- —R”“;ySSpa —4iR," P*S*p,psp,.

5 (4.3)

The expression for Gy is still lengthy,
i 12 8y 8
RR 4 |:3 5;41/ + ?Spﬂpl/:| S4pap/)’ - §RRﬂDS3
of pic 4 20y
Sp,,py S*ppps+ R7R 30w+ 3~ Sp,,py S’PaPpPiPs

5 1172 3 Spypy:|s PiPs

4 28
+:,)RRmu v S papﬂ_ER

45(7+1)

22
RﬂayiRa[}Sz‘pﬁpi - ? R;tﬂa/lRuaSA‘.pﬂpi
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18y
- ? RM/I(MR(I/}SS p/ipﬂpupo' -

2(8y2 — 54y — 57 16
( 15 (}, — 1) ) Rﬂly(lR(l/}S4p/}pi _ ? RMADUR(I/}SSPaP/}PzPU
2r(2y + 3 . 4y . 2 “ 267 1, sao
+ ﬁ&mil’? PS4 psps + ?Ru PR S PPy — gR,mRyﬂ S ppp; + FR/ RS pspipups
cRR | s L sp | s — RaoR o Ss 32 S s
apic 15 ﬂIJ+§ p,upu - aﬁll 15 /u/+ pypu PsPr
oplop 16 16y 5 afic 4 2 3
+R Ra A 155;4y+ 3 Spﬂpl/ S p/}pépapr_g(y+6)R R;wwﬂS pﬂpa_gRu Rva/MS\
4(8y> +31y +18)
45(y + 1)
(57% 425y + 18)
9(1+y)

48 M2 48y
- 7R;4/1y6,aﬂ55pap/}p/1po' - R’aﬂ |: 9 +—=

(149> — 74y — 108)
45(1+7y)

RﬂaﬂﬂRvaﬂGS“pﬂpo— - RuaﬂiRv/)’aGS“p/lpa

(6-7)
5

16
R, 'R, 5,8 pups + 5 R,“*R,% 5" pup;Pops + OR,* PS*paps

1
3 5 Hv 3 Spﬂpl/:|S pap/}+5R;wS +3yRa S4pap;4

4 16y 8 124
- DRaﬂ |:5 v ?Sp/lpl/:| S4papﬁ’ - gDR/w*SG + Rid’aﬁ |:? 5;4» —+ 24J/Sp;tpz/ Sspapﬂp/lpa

(y +50) 9y . 2 31y
+TRyv’aﬂS4 alp + = 3 (Rﬂi “ Rﬂl’aﬂ)sspapﬁp/lpv_gRuﬂ;uaS4papﬂ_?Rﬂl;basspapﬁpipp

22 v, 3y v 2y
=S RS Papp = SRS S Papp + 5 R S papy = SRS Papp = < RV 4 S* Papy

9y ..
=S RS papppipy (4.4)

As a check on either of the expressions for G, we can calculate the £, coefficient for N = 6 from the pole that arises in
dimensional regularization [40]. This comes from taking the normal coordinate momentum space expansions, letting y — 0
and replacing

1
6
PaPﬂPyP,;PuPﬂS - @%ﬂyﬂm
1
5
PalpDyP2S° = 4—850@4,

1
pap/}S4 - 86(1/}’
$3 > 1.

Here 64p,,,, and J,p,, are totally symmetrized sums of ordinary Kronecker deltas taken over all distinct index pairs as
defined above. The result for E,,, is one-half of the result of this calculation. It takes the form

v 1, 1 1 1
Ey, = (1 8 | o= R — — R, 4R Ry, R + —[R
2u < +2> ””[72 180 " T gg MmN 35
1 7 1y 4
RR, “— |R,*R,y — =~ R0 R
(6 36) v (2+45) A TR

1+ R,“P*R + 1+ OR,,
12 790 vap + 35 R 6 ' 60

The coefficients here can be shown to agree with those found in Sec. IIl F when we let N = 6. In the case ¢ — 0, which
implies that y — 0, we recover the result for the minimal vector field in agreement with the general results given by [39], for
example.
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V. TRACE ANOMALY FOR
MAXWELL FIELD

As an application of the results found above we
will discuss the trace anomaly for the Maxwell field at
one-loop order. The classical action for the electromagnetic
field is

1
Sy = -7 / dVxg'*F , F", (5.1)

with F,, the usual field strength. To this we must add the
gauge fixing condition, which we take to be

1
Sor = —z—f/degl/z(VﬂA”)z, (5.2)
and the associated ghost action
Sou =& [ dxg i (53)

With these choices the one-loop effective action, if
computed using the normal assumptions [4], reads

rt = %m det A#, —Indet(=£-1200), (5.4

where A*, takes the form of (2.1) with
qg=1-1/¢, (5.5)
o', =R, (5.6)

The special form for Q¥, given here allows great simpli-
fication, the root cause being that the Green functions
for the electromagnetic and ghost fields are related by a
Ward identity [21,31,41]. The divergent part of I'") proves
to be important in the evaluation of the renormalized
stress-energy-momentum tensor. Using the heat kernel
expansion and dimensional regularization, with the space-
time dimension N = 4 + ¢, it follows that the pole part of
'V is given by

5 11
PPI)) = —— d4xg1/2{——R2+—R R

~ 872 72 45
13 1 |
—— R, R+ | —Iné——|OR . (5.7
360 Ao +[24 né 20] } (5.7)

Here we have used (3.100) with (3.101)—(3.110) for the
vector operator and the well-known heat kernel coefficient
for scalars given by DeWitt [36] (or the more general
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expressions given by Gilkey [39]). The vector coefficients
have been simplified using (5.5) and (5.6). [Note that
Yy =¢q/(1 —q) = &—1 here.] This result agrees with that
given by [27] and [21]. Only the coefficient of (1R depends
on the gauge fixing condition, and it can be ignored
because it only contributes a total derivative to the
integrand in (5.7); there is no contribution from the [IR
term in (5.7) to the trace anomaly, as will be discussed
below. (This must be the case if the anomaly is universal
because we could choose to work with a Riemannian
manifold without a boundary for which we can safely
ignore integrals of total derivatives. Contributions from the
LIR term to boundary contributions in the trace anomaly are
a separate issue that we do not consider here.)

In order to remove the pole terms in the one-loop
effective action (5.7) it is necessary to include quadratic
curvature counterterms in the usual Einstein-Hilbert gravi-
tational action. We will take

Sg=— / d"xg'*[A+ kR + a; RV R,

+ (XzRMDRW/ + (X3R2]. (58)

Here all of the coupling constants are regarded as bare
quantities that can be expanded in terms of renormalized
ones plus counterterms. We will concentrate on dimen-
sional regularization here, so all counterterms are expanded
as a series of poles as N — 4. If we wish to discuss
spacetimes of dimension higher than 4, then higher order
curvature invariants must be added to (5.8). For the
Maxwell theory there will be no renormalization of A
and k. We adopt the viewpoint that the expectation value of
the stress-energy-momentum tensor should be defined by
the semiclassical Einstein equations. These read

G, + Agy, = 82G(T,,), (5.9)
where
_ L (5.10)
K= 162G’ '
A
A== 5.11
87G ( )

Because of the necessity for the quadratic terms in Sg
defined in (5.8), there is a contribution to T, not only from
the matter field part of the action, but also from the
quadratic curvature terms in (5.8). It follows that

a8, quad

__ /7Max -1/2
<T/w> - <T ‘ ;w> +2g 5™ s

(5.12)
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where
oS
_ —1/2 M.
TMax;w 2 1/ :X ,

with Sy« the Maxwell part of the action made up of the
sum of (5.1)—(5.3), and the second term in (5.12) is the
contribution from the quadratic curvature terms in (5.8).
Because of the Ward identity [21,31,41] it can be shown
[31] that the parts of the expectation value of the stress
tensor coming from the gauge fixing condition (5.2) and
the ghost fields (5.3) cancel exactly. This leaves only the
contribution from the Maxwell field (5.1), which
gives the standard result familiar from classical general
relativity of

(5.13)

1
™™  =F/ F, — 1 GuF 1 F*. (5.14)

If we concentrate on just the trace, it is clear that formally,
without any consideration of regularization, in four
dimensions the trace of (5.14) vanishes. However, this is
a bit too glib because it is not clear that after regularization
we have (TM## ) = 0. The reason is that with N =4 + ¢
we have

(M) = _§<FWFW>_ (5.15)

In order to end up with zero for this result, it is necessary,
but not obvious, that (F,,, F**) not have a pole as ¢ — 0. We
will use the local momentum space expansion in the next
subsection to show that (F,, F*) is finite and hence that
(TM&xk ) =0 as e — 0.

A. Proof that (TM®# ) =0 as e — 0

Writing (F,, F*) in terms of the gauge field results in

(FuF*™) =2(¢"¢" = ¢ ¢ T i (5.16)
where we have defined
T/dl/ﬁo‘ - <V”AUV/IAO.>. (517)

In order to evaluate this expression we define the right-hand
side using the coincidence limit of a point separated
expression, familiar from point splitting regularization.
Specifically, we define
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Tyis(X) = %[(VA (X)VA, (X)) + (V,4,(x)V,A,(x))]
(5.18)
_ % V,V,Goo(x.X') + V, VG (5 X)), (5.19)

The symmetrization here ensures that the relation
T,;6 = T)js evident from (5.17) holds after regulariza-
tion. The square brackets in this subsection are used to
denote that the coincidence limit x — x’ is taken, in
conformity with standard point splitting regularization
notation [42,43]. We choose to relate all expressions to
the origin of normal coordinates x’ to facilitate calculations.
Because the Christoffel connection vanishes at x” we have
V,ViG,,(x.x')] = [0,0,G,,(x,x)]. (5.20)
Because of the presence of the factor of ¢ in (5.15) we
only need to evaluate the pole part of 7, ,, and we can do
this by using the local momentum space expansion of the
Green function found in Sec. IV. It is easy to see from
(5.20) that the pole part required for N — 4 is given by

dN
PP[VFVQGDG(X,)C/)} = /( )N {pﬂpiGétua =+ lppv G31/0}
(5.21)

Here G5 is given by (4.3) and G4 is given by (4.4). It is
worth remarking that this result can also be obtained by an
application of Synge’s theorem [42—45]. The calculation of
(5.21), although straightforward enough, is somewhat
lengthy. The pole part makes use of the standard results
from dimensional regularization,

S? - —L
87’e
pupS® = T 3o2e o
1
pypupﬁpo's4 - _mépyla
1
PﬂPyPAPUPaPﬁSS - _méﬂylaaﬂ
6 1
pupvp/lpﬂpapﬁpypﬁs - _méywlﬂaﬁyé'

The result for the pole part of 7,,,, turns out to be

uvic
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1 [(¢+1) &-1 (£+5) _(e+1)
PP(T/wa[)’) = _871'26'{ 788 Rzﬁa/}ém/ + 788 R2 (5aﬂ5[)’y +5rw6/};4) 72 RR(1/15 72 RR 5
(1-9 (£+5) (26 +43)
7 R(R(l/téﬂl/ + Rapé/};l + R/iy(sm/ + Rﬂuéaﬂ) + TRaﬂR/w W (lﬂR/}lé
(6—1) (€+1) -1
36 (RaﬂRﬂu + RavRﬁy) + 9—OR/MR1//15aﬁ + 9—0 (RallR/Aiaﬁv + Ra/lRul5ﬁ/4 + R[MR,uléav + R/MRuléay)
(E+1) . (1-¢ .
- 720 RM'RA 611/35/41/ +s 720 RAGRA (5(1;45[1‘1/ +5au5ﬁu)
19(6-1)
+ W (RodﬂﬂRz/1 + RaﬂﬂyRﬂA + Rawﬂ/lRt//1 =+ RauﬁlRu/1>
=) Rio(R 08, + Ry, + Ropsaby + Ropbus + Rypond L R(R R
+W ( alpou + aluc’ [)’b+ atve®pu + Pruc au+ PAve (lﬂ) +% ( 11/4[)’1/+ (lvﬂﬂ)
(E+1) . (7E+113)
- 180 R/ML/GR}L 50(/1 + W (Rot/u/}»Rﬁ}L + RocL/;MRﬁ}L + R[J’/M/ARO/L + R/iz//MRall)
(1-¢ oy (E=1)(E+10) - o
+—n 180 (RapoRumwo + RazpoeR,C ) _54—0§<Ra/1,mR,3 4 RouoRy ,,1)
(2252—1—335— 10) - - (2£413) -
5405 (Raﬁ/wRﬂl,, +Ra/1vaRﬂlM )_WRMU@R,B/I 65[41/
(E-1)(5¢+2) - -
_W (R(wirfR/h//1 + R(lu//{o'Rﬁ;tl1 )
1 - 5 Ol Ol O O 5—’_ 1 O
+ %(RMMRM’I 985, 4 RazooR. "85, + RpsooR, "8 + RpiooR, 0 8,,) + ( 720 )R/109¢R/1 3y
(5—1 ) (E+1) - &+1)
720 ) RMG JRA 04 (5(1;46/}u + 5(11/5[)’;4) 180 RMO’F)RVﬂ 050‘[’) + ( 120 DR6(1/35MV
Lé=1 1) (é -1) (1 )
120 DR(aaﬂéﬂu + 5ay5ﬁ;4) 60 (R;aﬂ5 +R, al/5ﬁ/4 +R, P m/) +— (R aﬂé/}u +R [ﬁ/éay)
E+1) (1-9 (1-¢)
+ 60 ﬂvéaﬂ t—50 120 (R;w;ﬂa + R;w;aﬂ) t—en 480 (Rﬂv wa + Rﬂﬂ wa T Ray, wp T Raﬂ vﬂ>
=9 (R 6, + TR, 85, + ORy,6 IR 4,80 + OR, 6 C*9) R, 6, + R R
120 ( aupv + av®pu + puCav + prlau + v (x[f) 120 ( apu v+ afwu + aﬂ;/w)
(21€+19) (19&£421) (1-9¢)
W (R/}y;(m + Ray;/}y) - W (R(w;ﬂy + Rﬁy;av) T 120 (DR(w/ﬁ/ + DR(wﬂy) (522)
Using this result we can now evaluate the pole part of h 12 D5Squad
(F,,F™) using (5.16) to be () = 2079 <5 (5.24)
PP((F,,F*)) = 2(¢"¢"" — ¢°¢"*)PP(T 1) Suppose that we write
=0 (5:23) Squad = a1l + aolr + a3, (5.25)
This last equality follows after a bit of calculation. This .
means that (F,, F*) is finite as € — 0, and hence from
(5.15) (TM*# ) = 0 as claimed. It is worth remarking that N
_ /2 puvic
had the term G5 in (5.21) been neglected, a nonzero pole I = / A" xg "R Ry (5.26)
term involving [JR would have resulted.
I, = / d"xg'?RMR,,, (5.27)
B. Trace anomaly
Having just established that (TM*# ) =0, it follows Iy = /degl/sz. (5.28)

from (5.12) that
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Here a;, ay, a3 are coupling constants that contain a finite
part and the pole term necessary for renormalization as
discussed at the start of Sec. V. Under an infinitesimal
conformal transformation described by the factor sw(x), we
have

850 (x) = 250(x) g (x). (5.29)
The infinitesimal change in the inverse metric is
g™ (x) = =26w(x) g™ (x). (5.30)
The conformal transformation of ¢ is
5g(x) = 2Néw(x)g(x). (5.31)
It is easy to establish the identity
() PO 5:32)

S¢v(x)  dw(x)’

This means we can concentrate on the conformal behavior
of Iy, I,, I3 in (5.26)—(5.28). The following result is
obtained:

oS, quad

-1/2
g Sw(x)

= (N —4)[a;R**R,,;, + ®;R*R,, + a3R?]

— [4((11 - (X3) + N((lz + 4(13)]|:|R (533)
If we look first at the classical theory, so that a;, a, and
as are finite expressions that describe the coupling to the
quadratic curvature terms, then Sg,,q is only conformally
invariant for N =4 if the coefficient of the IR term
vanishes. This requires the coupling constants to satisfy the
constraint (choosing N = 4)
ap + (¢%) + 3(13 = 0 (534)
In the quantum theory a natural requirement is to demand
that the renormalized coupling constants also satisfy this
constraint, although ultimately this is only something that
could be determined by observation. The associated coun-
terterms for a A¢* theory satisfy this to at least two-loop
order (see [40], for example), so this is a reasonable,
although not compulsory, requirement. It also means, from
the renormalization group, that the constraint will hold at
all energy scales.

There are now several things to notice with the result
(5.33). First of all, if we look at the terms in the first line
that involve the curvature squared terms, as we let N — 4,
only the pole parts of a;, a, and a3 will contribute. This
part of the expression is directly related to the counterterms
in the effective action that were necessary to renormalize it.
If no counterterms are required (which is not the case in
general) these terms would make no contribution in the
N — 4 limit. For the coefficient of the IR term, if we
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assume that (5.34) holds for the renormalized parameters,
then the coefficient of the 1R term for N = 4 is determined
solely by the a, and a3 counterterms. An important point is
that even if we include a [1R counterterm in the renorm-
alization of the effective action, it does not contribute to the
trace anomaly since its conformal change vanishes at
N = 4. To put it another way, the LR term in the heat
kernel coefficient that determines the [JR counterterm in
the effective action at one-loop order does not necessarily
correspond to the [IR term in the trace anomaly.

The counterterms for a;, a,, a3 are easily found from
(5.7). A short calculation using these counterterms and
(5.33) shows that

(r*,) (120R—25R?+88R,, R™ — 13R, ,;,,R").

288072
(5.35)

This is in complete agreement with Brown and Cassidy
[30], who established it in the Feynman gauge using
dimensional regularization and a heat kernel method,
and with Duff [46]. Our result has been established in a
way that shows independence of the gauge parameter and
agrees with the result established by Endo [27] and made
implicit in [21].

VI. DISCUSSION

In Sec. V we showed that the conformal anomaly for the
Maxwell field could be found using our expansions and
gave agreement with previously known results. Our dem-
onstration kept the gauge parameter general, and it was
shown that the result was independent of this parameter. We
also showed that the result was not given by the traced heat
kernel coefficient for the vector field as, in agreement with
[27], the term that involved [JR did depend on the gauge
parameter. The origin of the trace anomaly were the
quadratic terms necessary to renormalize the effective
action, and these turned out to be gauge parameter
independent in four spacetime dimensions; our results
for the necessary counterterms agree with previously
known results [21,27]. Brown and Cassidy [30] give a
formal proof that the one-loop effective action is indepen-
dent of &; however, it is clear from Sec. V that this assumes
that total derivatives are discarded. The result that is found
for the trace anomaly does agree with the trace of the heat
kernel coefficients for the Feynman gauge (¢ = 1). Thus, it
appears as if the formal identification of the trace anomaly
with the heat kernel coefficient relies on the use of minimal
operators. This requires further investigation, and we hope
to report on it elsewhere. It is also worth mentioning the
analysis of Nielsen and van Nieuwenhuizen [33] who use
heat kernel methods and a regularization of the proper time
representation to show that the &-dependent contribution
from the [JR part of the vector field heat kernel coefficient
is canceled by the ghost fields in their method. The net
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result of their calculation agrees with the standard result
found using the Feynman gauge.

Part of the apparent disagreement between different
researchers resides in exactly how the expectation value
of the stress-energy-momentum tensor is identified from
formal expressions such as the effective action or other
unregularized expressions. The point of view adopted
above is that it should be identified as the source term
in the effective Einstein field equations, and this leads to a
clear-cut definition. The physical content of any other
approach should agree with our analysis, but the definition
of what one calls the expectation value of the stress-energy
tensor and how one identifies the geometric side of the
effective field equations may differ.
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APPENDIX A: EXPANSIONS FOR (4*),,, (B"),,
AND (C),,

By taking x = x’ in (3.16) it can be seen that
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the spacetime argument x’ except when it is necessary to
distinguish it from x.

We now need to evaluate the next terms in the Riemann
normal coordinates expansions of (3.16). We use (3.8) and
(3.11) to find

1 q
(A/waﬂ)ab == _Rﬂabﬂéab - _Rl/otﬂ/{(eaﬂel/L + eaﬂebﬂ)

3 12
q v v
- ERﬂaﬁﬁ(ea ey’ +egley”). (A2)

Again, e, * appearing in (A1) is understood to be evaluated
at the origin of Riemann normal coordinates. We can
simplify the notation by replacing the repeated spacetime
indices with those for the orthonormal frame. Strictly
speaking, the result in (A2) should really be symmetrized
in a and f; however, as the result will always be contracted
with a symmetric expression, we will not explicitly write
out the symmetrized expression.

For the next two terms in the expansion of (A#),, we
find

1 q
(Aﬂyaﬁr)ab == gRMaUﬂ;y‘s Rﬂaﬂtf;r(eabeb” + ea”eby)

ab ",
q 24
(A )ap = =0"Bap + 5 (e ey” + e ept). (A1) q
‘ 2 - ﬁRbaﬂo—;y(ea”eba + €a6€b”), (A3)
Here e,* appearing in (A1) is understood to be evaluated at
the origin of the Riemann normal coordinate. We will omit  and
|
v 1 v 1 v A q v A A
(A oprs)ap = _Z_ORF“ BysOab — ER”{I/HR vs Oab — %R aprys(eden’ + e elt)
q
- %RM(I/)’)»;}/&(eapeb/1 + ealeby) - mRya[)'ﬂRyi(so—(ea”ebo— + euﬁeh”)
7q q
- mRMa/MR}/l&,(eaDebg + ea”eby) + ﬁRﬂaﬁlRyyéa(ealebﬂ + eageb/l>’ (A4)

with a similar note about symmetrization in the indices a, S, 7, .

The first three terms in the Riemann normal coordinate expansion for (B*),, are (with a similar warning about

symmetrization)

2 q q
(B*2)ap = §R”a5ab + R: pe e’ + gR”zaﬂ(ea/}ebﬂ —2e,'e,f) - ERazeu”eb’lv

1 1

2
(Bﬂaﬂ)ab = ERﬂﬂ;aéab - ERaﬂ;ﬂéab + gR

q

- ER”@;/u;u(eal'ez/1 +eqte”)

(A5)
q
ﬂﬁvi;aeayebl + gRﬂyﬂﬁ;a(ealeby - eavebﬁ)
q . q
- ERau/u”‘ea'Jel/I - §Rﬂu;aeaﬂebb’ (A6)
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1 3 . 2 4 1 1
(Bﬂflﬁy)ab = g Rﬂa;ﬂyéab - mRa/}’Myéab - @RaﬂRﬂ/}Méab + E Rﬂﬂ(mR/}/ly”(sab + ER/}y;aﬂéah + Z R”Mo‘;(l/}eaieh”

o, c_4 o 34 - q . .

e.’ep —2—OR”,1yn;aﬂ€a’1€b +ERﬂﬂya;aﬂea % —ERﬂﬂya;m(ea'leb q+eLept)
q - ¢

— R ﬂyaaﬂ(ea ey’ +e,%¢p )+ﬂRaﬁﬁaRMareaﬂeb _E(Rﬂ/lya;ya +Rﬂ,1ya;aﬂ)€a’1€b

1
+ 4R” apiR*
q

7 ot

40
q q
- ER a/luRﬂ/lyr(eao.ebT +e,fep?) + @RﬂaﬁARyalT(ea”ebf + 16e,7¢,7) — %RﬂlaaRﬂlyf(eaaebT + e, ep)
q q
36OR AaaRﬁayf(lle eb - 48 €p ) - gR}'/l;otﬁea”ebl1 + ﬁRaARHﬁyo‘eaaebi' (A7)

For (C),, we need to expand Q,;, as well as the geometric terms in (3.19). The results are

( ) Qab aﬂea ebﬂ7 (AS)
1 q
(Ca)ab = anab + gRaﬁ;ﬂ(ea/lebﬂ - eaﬂebi) - g (Raﬁ;i + R/lﬂmr)ealebﬂ’ (A9)
1 1 v v 1 v, A 1 v A, o
(Caﬂ)ab = EvavﬂQab + ZRﬁu;ua<eaﬂeb — €y ebﬂ) + gRa”Rﬂ/wﬂea ey” + ZRa” ARﬂ/u/o-ea €p
q q q q
- g (Rﬂv;a/t + Rﬂl/;/m + Rﬂl/;aﬁ)ea”eby - gRalwﬂRﬁwwealeba + ﬁRaﬂleﬂyyo‘ealeba - ﬁRa#ﬂDRw{uaealeba
12R Ra’uﬂ,{e Aeb - %Rau Rﬁaﬂe eb . (AIO)

The last term should really be symmetrized in a and f as discussed above for the other coefficients.

APPENDIX B: EXPRESSION FOR THE AUXILIARY GREEN FUNCTION

For G5 we use (2.29)—(2.32), with the relevant expressions for the expansion coefficients given in (A3), (A6)and (A9),
to find

eaa(x/)ebﬁ(x/)(G3)ab = 2iQaﬁ;”S3p/4 - tiau;ﬂsszﬁ - iQQa”;ﬂSZpr - ingﬂy;usszpapﬁpu
+2igQ[S + (1 = Q) T1S*Tpypup, + 2ig0" 5 S Tpapup, — iq* Q" 5S*T*Pup b,

. i i
+2ig* Q" [S + (1 = q)T)S*T? pupypupurs + EqR;aSQTP/)’ + qu;ﬂ [S+ (1—q)T|STp,
— iR;"{S35a,;p,, + % 282 + (2= 3¢)ST +2(1 — q)2T2]STpapﬂp,,}

i i
+ 6Rﬁﬂ;a[4s2 +qST + q(1 — q)T*Sp, + 6Raﬂ;ﬂ[—4S2 +7¢ST + q(1 — q)T?]Sp,

; .
_qulw;/)’pSz + (2 - Sq)ST+ 2(] - ) TZ]STpapypu g (1[)’ [S + ( )T]Spr

- 2iqRay;# [S + (1 - Q)T]Sszﬁpypu - 2iqR/iD;MS3Tpap;4pv + 2ile;/1{S45aﬂpypypi
+q[8° + (1-29)8°T + (1 - q)(1 = 2¢)ST* + (1 = ¢)° T*|ST pupyp,poPi}

2iq v
+ 5 Ry 48?4 (1= q)ST + (1 — q)*T*|STp,p,p;. (B1)

The results for S and 7" are given in (3.27) and (3.28), respectively.
Lastly, we turn to the much lengthier expression for G,. We use (2.33)—(2.39) along with the result for G, in (3.26) and
the relevant expressions for A, B, C given in Appendix A. The net result is
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ey (X)€", (x)(Ga) up

1
= §R2{535,w +q[S* + (1 = q)ST + (1 — q)*T?|STp,p,}

2
- §RRaﬂ{S45;wpapﬂ +q[$* + (1 -2¢)S°T + (1 — q)(1 = 29)ST* + (1 — q)*T*|ST p,pppup.}

q q

—|—§RR”0‘[2S + (1 =q)T)S*Tpup, +gRRU“[2S +(1— q)T]SZTpap,, + 18RRW[S + (1 —-¢q)T)|ST

1
+ ERaﬁR‘lﬁ{m%W +q[28* + (2 —179)ST +2(1 — q)*T*|STp,p,}

— S RIRASS S, ppp, + 1857+ (8 = 230)S°T +2(1 = (4 = 99)ST?
+8(1=q)*T°|STpppipup.} + %R“ﬂRi"{ﬁlSs%papﬂmpa +q[48* +2(2-5¢)8°T
+(2-39)(2=5¢)S*T* +2(1 = )*(2 = 5¢)ST® + 4(1 = ¢)*T*|ST papyppiPsP Py }
+ gR,/fRﬂawsz + (7= 49)ST —2(1 — q)*T2)STpyp,

- %R"‘ﬁR/ (652 + (4= 7¢)ST +2(1 = q)*T*|S*Tppupsp,

~ SRyR6S + (4 =Tq)ST +2(1 = P T2IS T ppapypy

- %Raﬂze,w[zs2 +(2=5q)ST +2(1 - q)*T2STp,p,

n gRa/’Rm[ISSz +2(2=5¢)ST +4(1 - q)*T*|STpyp,
- %&"Rmms +11(1 = g)TIST + qR, "R,/ S Tpapy

2
+ BR'W”RM{6545,,“9“9zr +q[68° + (6 — 11¢)S*T + (1 —q)(6 — 11¢)ST?

95
+6(1=a)T°ISTp;pupups} = 5 Ry Rep[25 = (7= 44)ST +2(1 = ¢)*T*|STp, p,

4
10

- %Rﬂfgmaﬂ[zoﬁ + (84 4 15¢)S2T +2(2 = 17¢)ST? +38(1 — q)*T3|Spsp;

29 0 o “
—?RRﬂ U/’[S2 + (1 — q)ST+ (1 — q)ZTZ}STpapﬂ + RWD,;R ﬂ[6S + (1 - q)T]ST

- %R#/”‘”RD(,{WSZ +22(1 = q)ST +7(1 = g)*T*}STpyp,

2
+%R/“"Raﬁ{53 + (1= 11g)S2T + (1= q)(1 = 11g)ST? + 10(1 = q)*T>}STp, psp:ps

+ 9%R/WR“ﬁ{10S3 — (34— 15¢)S?T — 34(1 — q)ST? = 16(1 — q)*T*}Spsp;

2q
+ gR/;’R“ﬂ{S** + (1 -2q)S°T + (1 - q)(1 =2¢9)ST* + (1 = q)*T*} ST puppp: 1o

4
18

2
n gkmﬁﬂR"ﬂ{st +(2=5)ST +2(1 - q)T?}STp, p,

+ <R RP{4S? +3¢qS°T + 6¢ST* —4(1 — q)*T°}Spyp,

+ %RD/’“‘RW{SSZ —22(1 = q)ST=7(1 = q)*T*}STpyp,

n %Rﬁ”zeaﬂ[zos3 + (24 5q)SPT + (1= q)(2+ 5¢)ST? +2(1 = 3¢* + ¢*)T*ISTpsp:pup,

1
+ ER(,/M{;R“’”"{S%W +q[S* + (1 —q)ST + (1 — q)*T?|STp,p,}

044072-21



DAVID J. TOMS PHYSICAL REVIEW D 90, 044072 (2014)

8
_BRa/}/laRaﬂﬂT{S45ﬂvpapf + q[S3 + (1 - CI)SZT + (1 - q)ZSTz + (1 - q)3T3]STpﬂpl/pﬂpT}

16

+ERaﬁ)ﬁRarlf){Ssé,uyp/)’pppo'pr + q[S4 + (1 - Q)S3T+ (1 - Q)ZSZTZ + (1 - Q)3ST3 + (] - q)4T4]STpﬂpypﬂpppo—pT}

+gRo,ﬁﬁﬁRﬂM[S2 + (1—-q)ST+2(1 - q)*T*|STpsp, +f—;RaﬁlﬁRmﬂﬁ[s +(1-q)T|ST?p,p,
L RPR 115+ (1= Q)TIST p,py = <o Ry, P {608 ~Tg[S + (1~ )TIST)

+ 3 R RO +9)5" +g(4-+ 50)5°T + g1~ )4+ 5)ST2 = T4(1 = 4P TIS P,
— = Ry RS [30S° 4+5(4+ )S°T +5(1 = ) (4 + 9)ST> +18(1 - ¢ *T°ISp;p,

- %Rﬂaﬂmuﬁm(z7 +5¢)8% + (1= q)(27 +5¢)ST + 16(1 — ¢)*T?STp s

50 Rua R 1(3 +109)S + (1= ) (3 + 109)ST = 16(1 — g PT*IST p,p,
—W?ORM“WRD"M[6OS3 + (84 +5¢)S2T + (1 — q) (84 + 5¢)ST? + 56(1 — q)*T3]Sp.p.

14q
+5 RRSSIS + (1= 9)S*T + (1= q)?ST + (1= q) (1 + ¢*) TIST papppipo

6
- %DR,,ﬁ/BSZ +3(1 —q)ST+2(1 —q)*T*|STpyp, + ?qle,ﬁy'wﬂ[s3 +(1=q)S’T+ (1 —¢q)*ST*> + (1 —q)°T?]

2
X STPapPpPiPo + §DR{S35W +q[S*+(1-¢q)ST+ (1 - q)*T*|STp,p,}

1
—gR;“ﬂ{lZS“éWpapﬂ +q[1283 + (12=17¢)S*’T + (1 = q)(12 = 17¢)ST? + 12(1 — q)3T3]STpapﬂpﬂpy}

1 11q

+qR,*[S+ (1 -q)T)S*Tp,p, + qR.,* 52+2(2—3q)ST+(1—q)2T2 STp,po— 50 R,,S°T

1

— s DRP4SY 5, pyps+ al4S* + (4= 99)S°T + (1= q) (4 = 9q)ST* +4(1 = @) T*|STpypsp,p.}
4

+ gRﬂf’;“ﬂ{6S56,w +q[6S* +(6—11¢)S*°T + (1 —q)(6 —11¢)S*T* + (1 — ¢)*(6 — 11¢)ST?

3q
+ 6(1 - Q)4T4]STpﬂpv}papﬂpﬁpo' + qDRﬂﬁ[s + (1 - q)T}STpﬂpu +EDR/41/[S + (1 - Q>T]ST+ qDRvﬁSBTpﬁpy

—4qR,P[S? + (1 - q)S*T + (1 — q)*ST*|ST poppp; Py — %Rﬂﬂ” 952 +9(1 - q)ST 4+ 10(1 — q)*T?|ST p,py
. 3q
—4qR,*PS* T p,psp,pu + gR’“;M”[S3 + (1= q)S°T + (1 - q)>ST*|STp,psrip.

2
+5R/,158° +4S°T +q(1 = )ST? + 4(1 = )" T)S papy = %Rﬂﬂwa[zos3 + (14 =25¢)S?T + (1 - q)(14 = 254)ST?

1
+2(1=¢)*(7=69)T°|ST popsp; Py —l—gR//j;y"‘[—IOS3 +7¢S*T +7q(1 = q)ST* +2q(1 — q)*T*|Sp,pp
39 pira (524 (1= q)ST + (1 — g)*T2|S2T q
- R —@)ST+(1=q)" T 1S Tpapppire =4
39 1 9 ppia
+ER ﬂ;;w[S + (] - Q)T]Sszapﬁ _ER/M’ 1/[(6 - 15‘1)52 + (] - q)(6 - ISQ)ST+ 2(1 - q)2(3 - 4q)T2]ST2pap[)’pﬂp;4

R[S+ (1—q)T|S*Tp.pg

9q a; q 101 2q2 Q,
+ 1R P S+ (1=q)T|S*Tpaps— 3R PwlS+ (1 =q)T|S*Tp,py -5 ko PIS+ (1= q)TIS*T*papppup,

2
q
+ ?RaﬁQaﬂ S*T?p,p, — ¢*R07P[3S + (1 = ) T1S*T* poppp,py
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24* 7
+ TR””Q“” 382+ (4 —7q)ST +3(1 = q)*T*|S*T? pouppp,PuPuPo — 5 R OS> T?psp, — ¢*R, QP ST popspip,

2 2 2
q q q -
- gR,wQ"ﬂ S?T?p.pgs + ngQ”’ S?T?psp, — 4*R,* Q7P S* T popspip, — gR*“” 0lS+ (1= q)TIS* T pupup,ps

q o q o A L i e
+§R;4aﬂiQ P38 —qT|S*Tp,p, +8Rﬂa/Q Pl(6+q)S —24T|S*T psp; +TR FL0PS+ (1 =) TIS* T pppipype

——R 4

Q 2q2 G N q2 Q
6 Ru WO7PSTpsp, +TR/,, O[S+ (1= q)T|S*T*papppiPo _ER/UJGAQ IS +2T)S* T pyp,

2 2
q Q 2q o N 9 a
+€Rz/aﬂ/1Q ﬂSZsz/lpy - 3 vaa Q ﬂ[S + (1 - q)T]Sszpﬁp/lpﬂpa _§RQ/4 [2S + <1 - ('I)T]SZTpapy

-R/0 “S’Tpﬂpyq R,.0,*ST — qRQ,*S*Tp,ps+ 5 R’“Q “[38% +(4=79)ST +2(1 = q)*T*|S*T pappp.iPs
- —R P08 = (1= q)TIS* T pyps — gRQ,wS3 +2R"Q,,8* papy — é—qRQu”[ZS +(1=q)TS*Tpapy
- 2qRa/’ 0,"S*Tppp, + %R“QV“BS2 + (4 =7q)ST +2(1 = q)*T*|S*T paPppiPy — %RﬂaQ;’SZT —qR,0,"S* T papy
3 Ripar Q.28 + (1 = ) TIS* T pyp; + ¢° Qo OS> T? pppspupy + 4 QP O S* T papppipup e
+ 4070, Tpyp, + > 06apQ, S’ T p,pupppy + QuaQ.*S* + 40, Q.S S Tpops + 407 00S>Tppp,
+ G070/ S T pipappry — 4° Q" 4IS + (1 = Q)TIS* T papipupy — 4> QP4 [S + (1 = Q) TIS* T pappp vy
+4q°Q[S? + (1= q)ST + (1 = q)*T*|S*T* poPyppsPuPuPo + q; 07y S* T? pup,,
OV S+ (1 =TS T papppiry +490° " S* Tpapppipy — 4Qua™ (S + (1 = @) T|S* Tpyp,
+490, S? + (1= q)ST + (1 = q)*T*|S*Tpapypip, — 40, [S + (1 = Q) TIS* T papy + % Q. S*T
—q0,° IS+ (1= q)T|S*Tpopy +40,, S papp — ¢*00us[S + (1 = @) 1S T popypyupy — 400, S Tpap,
—q00,°[S+ (1= q)T|S* T pap, =00, S° = Q7 4 [S + (1 = ¢)TIS*T* pap;pup, + %2 0% 5, ST pop,

K] 95 a
=40, [S+ (1 =) TIS*Tpppy +5 04", S°T- (B2)

APPENDIX C: RESULTS FOR THE COEFFICIENTS APPEARING IN (3.76)

The coefficients appearing in (3.76) are given for general spacetime dimensions by

Ty = [432N + (=12N? + 72N? = 528N — 576)q (C1)

+ (=5N* + 10N + 20N2 + 104N + 288)¢%]/[18N(N2 — 16)(N? — 4)¢?]
— (1= q)™/2[432N — (12N + 144N? + 528N + 576)q + (N* + 28N? + 176N? + 392N + 288)¢?
+ (=2N* = 20N3 — 64N? — 64N)@® + (N* + 4N3 — AN — 16N)q*]/[18N(N? — 16)(N? — 4)¢?], (€2)

T», = [2880N + 360N (N — 8)q — 60(N + 4)(N* — 14N + 16)¢>
+ (=19N* + 194N3 + 16N? — 2576N + 960)4%]/[90N (N? — 16)(N? — 4)4]
+2(1 = gq)™?[=720N +90N(3N + 8)g — 30(N — 1)(N + 4)(N + 8)g>
+ (N +2)(N +4)(N>+43N -30)¢g> = N(N +2)(N +4)(2N + 11)g*
+ (N =2)N(N +2)(N + 4)g° /[45N(N? — 16)(N? — 4)¢*], (C3)
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Ty = [~1440N — 720(N — 2)Ng — 60(3N> — 10N? — 24N — 32)4>
— (N 4 2)(29N? — 152N? — 112N +960)4°]/[45N(N? — 16)(N? — 4)¢°]
+ (1 = q)'"N/2[1440N — 240(N +2)(N +4)g> — (N = 32)N(N +2)(N + 4)¢°
+ (N? —4)N(4 + N)q*|/[45N(N? = 16)(N? — 4)¢*], (C4)

(15N —64) (1 —q)>N/?
C180(N —4)  45(N —4)

T = (Cs)
Trs = [—1728 + 48(N? — 3N +44)g + (N> — N* — 12N3 — 8N? + 104N — 672)¢*]/[T2N(N? — 16)(N? — 4)¢?]

+ (1 —q)™2[1728 — 48(N + 4)(N + 11)g + (N + 2)(N +4)(N? + 10N + 84)g> —2N(N +2)(N + 4)*¢*

+ (N =2)N(N +2)(N + 4)¢*]/[T2N(N? — 16)(N? — 4)¢*], (Co)

Ts = [2160N + 240(2N? — 15N = 20)g — (N +2)
+ (1 = q)™N/2[~2160N + 600(N + 2)(N + 4

N* — 3N3 — 48N?2 + 580N — 1680)42]/[180N(N? — 16)(N? — 4)¢?]

(
)g — (N 4+ 2)(N +4)(N? + 58N + 420)4>

+2N(N +2)(N +4)(N +28)g> — (N = 2)N(N + 2)(N + 4)q*]/[180N(N? — 16)(N? — 4)¢?], (C7)
_ (N=5)  (1-g)

1= otn =) " 1s0(N = 4)° (C8)
Ty = [160(N —2) + 80(N? — 3N + 8)q + 20(N — 4)(N> + N + 6)¢°

+ (N =2)(3N* = 2N? — 36N —80)q’]/[SN(N? — 16)(N? — 4)¢%]

+ (1 — q)™/?[—480(N —2) + 240(N — 8)q + 60(N + 4)(N + 6)g>

+ (N +2)(N+4)(N*=2N - 60)g> + N(N* —4)(N +4)(¢° — 2¢*)]/[I5N(N? — 16)(N? — 4)4°], (C9)
T = [960(N + 2) + 240(N? — 8N —24)q — 480(N?> — 2N — 12)4?

— (9N* + 26N? — 336N? — 224N + 1920)4°]/[30N(N? — 16)(N? — 4)g°]

+ (1 = q)'""N/2[=960(N + 2) + 240(N + 4)>q — 240(N +2)(N + 4)¢*

— (N =12)N(N +2)(N + 4)g> + N(N* —4)(N + 4)g*]/[30N(N? —= 16)(N? — 4)¢*], (C10)

Ta10 = [~1920 — 480(N — 8)g + 960(N — 2)g*> + N(N* — N3 — 14N? + 64N — 320)4*]/[30N(N? — 16)(N? — 4)¢]
+ (1 —q)™N/?[1920 — 480(N + 8)q + 480(N +4)g> + N(N +2)(N +4)(N + 8
—2N(N +2)(N +3)(N +4)g* + N(N*> —4)(N + 4)¢°]/[30N(N? — 16)(N? — 4

q3

)
)4l (C11)

Ty1 = [24N +8(N —4)(N + 1)g + (N — 4)(N? — 4)¢%]/[2N(N? — 16)(N? — 4)4?|
— (1 =q)™2[12N = 2(N + 2)(N +4)g + (N + 2)(N + 4)g*]/[N(N? — 16)(N? — 4)4?], (C12)

Ts1p = [-24N? = 12(N —4)(N + 2)Ng + (N — 4)(N = 2)(N3 + 3N? —4N — 8)¢°]/[2N(N? — 16)(N? — 4)4?]
+4(1 = q)™ 23N> = 3(N + 4)Ng + (N +2)(N +4)¢*]/[N(N? — 16)(N? — 4)¢?], (C13)

T3 = —[48 + 12(N — 4)q + (N* — 6N + 8)¢*]/[2N(N? — 16)(N? — 4)4?]
+ (1 —q)™?[48 = 12(N +4)g + (N + 2)(N + 4)¢*]/[2N(N? — 16)(N? — 4)¢?]. (C14)
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T4 = =2[36N + 2(5N? — 24N = 32)g + (N = 5)(N — 4)(N + 2)¢%]/[BN(N? = 16)(N? — 4)¢?]

+ (1 =¢q)™?2[712N = 16(N +2)(N +4)q + (N + 2)(N + 4)(N + 10)¢>

— N(N +2)(N +4)¢°]/[BN(N? — 16)(N? — 4)¢], (C15)

T»s = [288 —4(N? — 12N + 80)g + (4 — N)(N? +20)¢*]/[6N(N? — 16)(N? — 4)g¢?]
— (1 —q)7™N/?[288 —4(N +4)(N +20)g + (N +2)(N + 4)(N + 10)¢>
— N(N +2)(N +4)g*]/[6N(N? = 16)(N? — 4)¢?], (C16)

Ts16 = 2[48N + 24(N = 2)Ng + (6N* — 20N* — 48N — 64)¢>
(N = )N +2)(N = N = 8)¢)/ BNV = 16)(N* — 4)¢")
—2(1 = q)'N2[48N — 8(N + 2)(N +4)¢* + N(N + 2)(N +4)¢*]/BN(N* = 16)(N* - 4)’], (17)

Th17 = =2[36N + 2(5N? — 24N —32)g + (N = 5)(N = 4)(N +2)¢*]/[3BN(N? — 16)(N? — 4)¢?]
+ (1 —¢q)™2[12N = 16(N +2)(N 4+ 4)g + (N +2)(N + 4)(N + 10)¢>
— N(N +2)(N +4)¢%|/[BN(N? — 16)(N? — 4)¢?). (C18)

Tig = [~96N + 24N(N + 4)q + 4(5N> — 14N? — 56N + 32)¢>
+ (N —4)(5N? +4N? — 44N — 16)¢°] /[6N(N? — 16)(N? — 4)g°]
+ (1 —q)™ 248N — 12N(3N +4)g + 2(N + 4)(N? + 16N — 8)g*(N + 2)(N +4)(3N + 4)4*
+N(N +2)(N +4)¢°)/ BN (N? = 16) (N - 4)¢°], (C19)

Tr19 = —[144N — 4(N? — 8N? + 32N + 32)g + (N — 4)(N + 2)(N? — 8N — 4)¢*]/[6N(N? — 16)(N? — 4)4?]
+ (1 =q)™?2[72N —2(N +2)(N +4)>qg + (N + 2)(N +4)(3N +2)q*
— N(N +2)(N +4)¢’]/BN(N? = 16)(N? — 4)¢?], (C20)

Ty = [24N +8(N —4)(N + 1)g + (N —4)(N = 2)(N + 2)¢*]/[IN(N* = 16)(N? — 4)g*]
—2(1=q)™ 212N = 2(N +2)(N + 4)g + (N + 2)(N + 4)¢*]/[N(N* = 16)(N? — 4)¢*], (C21)

Ty = —[96N + 48(N — 2)Ng + 12(N* —3N? — 6N — 8)q>
+ (N —=4)(N+2)(2N?* =N = 12)¢°]/BN(N? = 16)(N? — 4)¢°]
+ (1 =g)'""N2[96N — 12(N +2)(N +4)g> + N(N +2)(N + 4)¢%]/[3N(N? = 16)(N? — 4)4], (C22)

Tay = [192 + 48(N — 8)g — 96(N — 2)g* — N(N? + 6N — 40)g3]/[EN(N? — 16)(N? — 4)¢°]
— (1= q)""N2[192 = 48(N + 4)g + N(N + 2)(N + 4)¢°]/[6N(N* — 16)(N* — 4)¢°], (C23)

Ty = [—192(N +2) — 48(N? — 8N — 24)q + 96(N? — 2N — 12)q?
— (N —4)(N* +2N? — 18N? — 4N + 96)¢%]/[6N(N? — 16)(N? — 4)¢]
— (1= g)'""N/2[-96(N +2) + 24(N + 4)>q — 24(N + 2)(N + 4)¢?
+ N(N +2)(N +4)¢%]/BN(N? — 16)(N? — 4)g]. (C24)
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As before, the case N =2 must be evaluated separately, and it coincides with the limit as N — 2 of the above
expressions.

(2¢° —204* +39q — 18) N (1-g)(2qg —3)log(1—q)

T, = 2
2 72¢(1 = q) 1242 ’ (C25)
S (84" — 93¢> + 85¢%> — 150g + 120) N (2¢* = 2¢*> +3q —4)log(1 — q) (C26)
2 360(1 — q)q° 124° ’
(¢> +50q> — 15 —30) (¢’ —4¢” +2)log(l - q)
Ty = — 904 + 60 ; (C27)
1
Ty = —5—9—%, (C28)
7. — (362564 +25¢* =2¢°) | (q=2)(2q = 3)log(1 ~g) (C29)
» 288(1 —q)q 484> ’
5 _ (24° = 1484 + 2519 - 90) L B-a)2g=1)log(1 —¢) (©30)
2 720(1 — q)q 244> ’
+2
Ty = (q360 ), (C31)
(24 +15¢ - 30) (1 -—gq)log(l —q)
Ths = 60q - 27 : (C32)
120 —210g + 85¢*> +3¢%)  (q¢° —12¢*> +18q —8)log(1 — ¢
T29 — ( 5 ) + ( 3 ) ( ) , (C33)
180¢q 12¢q
(3¢° = 19¢*> — 60g + 60)  (g* —6g + 4)log(1 — q)
Ty = 1804 + 124 . (C34)
6-9g+2¢%) (1-gq)log(l-
Tm:_( q+2¢°) (1-gq) %( q), (©35)
48(1 —q)q 8¢
(6-3g-¢%) , (1-2q)log(1-gq)
Tpy = , C36
T i -gg T A <0
(¢* =12 +12)  (2—q)log(l - gq)
Top3 = , C37
T A T <7
6g*> —13g +6 2 —5q+3)log(1 -
24¢(1 —q) 12¢q
5¢% — 16g + 12 —3)(g—2)log(1 —
Tys — _(5¢ q+12) (¢-3)(q )2 og(l—q) (C39)
48(1 —q)q 244
6+ 3¢ — 10g> 3442 +2)log(1 -
Th6 = —( + lng2 ) - g q —qu ogll = 4) , (C40)
6+3¢—10g2) (2-4¢%>+ ¢3)log(1 —
Tm:_( +3q-10g) (2—44" + q”) log( Q)’ (c41)

184> 64>
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(12 = 24q + 31¢* + 1225¢°)

(2 —3q +44*> +2¢°) log(1 — q)

PHYSICAL REVIEW D 90, 044072 (2014)

Thyg = Cc42
218 72(1 = ¢)¢> 1243 ’ (C42)
6—13g+6¢>) (3-3¢+q*)log(l—gq
219:( ), ( )2 g( )’ (c43)
244(1 - q) 12q
6 —9g + 24> 1—-¢q)log(l -
Tm:_( q+2¢°) (1-¢q) %( 61)’ (Cad)
24(1-q)q 4q
6+3g—"7¢> 3—6g% +4)log(1 —
18¢q 12¢q
(5> + 12 —12) (4 —6q+ ¢°)log(1 — q)
Torr — _ , C46
222 72q2 24q3 ( )
24 —42g +11¢%) (8 —18¢g + 12¢% — ¢3) log(1 —
oy = & q+11¢%) ( q+12¢" — g°)log(1 ~ ) (c47)

364>

1243
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