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To investigate the possibility that intrinsic gravitational decoherence can be theoretically demonstrated
within canonical quantum gravity, we develop a model of a self-gravitating interferometer. We search for
evidence in the resulting interference pattern that would indicate coherence is fundamentally limited due to
general relativistic effects. To eliminate the occurrence of gravitational waves, we work in spherical
symmetry, and construct the “beam” of the interferometer out of WKB states for an infinitesimally thin
shell of matter. For internal consistency, we encode information about the beam optics within the dynamics
of the shell itself, by arranging an ideal fluid on the surface of the shell with an equation of state that
enforces beam splitting and reflections. We then determine sufficient conditions for (interferometric)
coherence to be fully present even after general relativistic corrections are introduced, test whether or not
they can be satisfied, and remark on the implications of the results.
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I. INTRODUCTION

Despite not having a complete theory of quantum
gravity, it is becoming more and more important to
understand systems for which both quantum and general
relativistic effects are important (see [1–3], for instance,
and references therein). Indeed, it is the study of such
systems that helps clarify the clash between quantum
theory (QT) and general relativity (GR), in the hope that
we may find guidance towards a resolution of the many
technical and conceptual problems one faces when attempt-
ing to unify these two pillars of physics.
The purpose of this work is to explore an ambiguity that

results from taking both QT and GR seriously: quantum
superpositions of different matter states are associated with
different spacetime geometries, and hence different defi-
nitions of time evolution; how, then, can we use a single
time-evolution operator to evolve superpositions of distinct
spacetimes? Since the 1980s, Roger Penrose has been
arguing that this ambiguity results in an instability, and that
in turn this instability leads to a type of “decay” that
reduces the system to a state with a single well-defined
geometry [4,5]. It is not clear from Penrose’s work,
however, whether some sort of “collapse” occurs, or
whether there is simply a form of “intrinsic” decoherence
that removes phase correlations between states associated
with sufficiently different geometries. In this paper, we
consider the latter, and discuss whether or not a direct
application of both QT and GR is enough to demonstrate
the existence of this new type of intrinsic decoherence.
By intrinsic decoherence, we mean a decoherence effect

that arises solely out of the internal behavior of an isolated

system, and not due to its interaction with the external world.
For example, if we use a buckyball in a double-slit experi-
ment, and prepare one of the slits to excite internal degrees
of freedom of the buckyball, then the internal degrees of
freedom carry “which-way” information and decohere the
center-of-mass degree of freedom [6]. More generally, if a
system carries an internal clock and is in a superposition of
states corresponding to two paths that have different proper
times associated with them, then again the internal clock
read at the interference screen could provide which-way
information, and decohere the center-of-mass [7–9].
Whereas the decoherence produced by entangling inter-

nal degrees of freedom to a center-of-mass coordinate could
be considered “third-party” decoherence [10], what we are
concerned with here is whether or not there is something
about gravity itself that could lead to such intrinsic
decoherence. Penrose’s intuition says yes: the path a mass
takes alters the associated spacetime and especially the flow
of time. Since the quantum phase is determined by the flow
of time, the phase evolution is also altered by which path
the mass takes. When one tries to interfere the two paths,
these “random” phases (because it is impossible to uniquely
map one spacetime onto another) cause decoherence.
It is this gravitational intrinsic decoherence that we explore
here.
There are several proposals in the literature for a

mechanism to describe gravitational intrinsic decoherence
[11–13], and other proposals for intrinsic decoherence
mechanisms that are merely inspired by tension between
QTand GR [14–16]. Many of these approaches incorporate
alterations to known physics, such as adding stochastic [16]
or nonlinear [17–19] terms to the Schrödinger equation, in
order to achieve the desired decoherence effect. Such
alterations are often ad hoc, and have historically faced
difficulties maintaining consistency with experimental
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constraints; nonlinear additions to the Schrödinger equa-
tion, for instance, have been shown under a wide range of
conditions to lead to either superluminal signal propagation
or to communication between different branches of the
wave function [20]. While it may be possible to obtain a
sensible theory that allows communication between differ-
ent wave function branches [21], it remains to be seen
whether a consistent interpretation results from this alter-
ation. Instead, we take Penrose’s initial arguments at face
value, and entertain the possibility that a consistent combi-
nation of QT and GR can explain (gravitational) intrinsic
decoherence without any assumptions about new physics.
Now, it is well known that gravitational waves can carry

away information from a system in a manner analogous to
standard decoherence [22,23]. Penrose’s suggestion is
independent of such standard gravitational-wave-induced
decoherence, so to distinguish between the two we will
work in spherical symmetry. The restriction to spherical
symmetry is not only a technical simplification, but avoids
the occurrence of gravitational waves altogether.
Because this exploration requires both QT and GR, we

will naturally be faced with some serious difficulties, which
we will have to either overcome, sidestep, or ignore [24].
For instance, we will avoid issues with the factor-ordering
ambiguity by working in the WKB regime (as in [25]), and
we will avoid issues with perturbative nonrenormalizability
by working in minisuperspace (i.e. enforcing spherical
symmetry) and employing a reduced phase space approxi-
mation (as in [26]). It is still unclear what the exact
connection is between the reduced phase space approxi-
mation, obtained by solving the GR constraints classically
and then quantizing the reduced theory, and the standard
Dirac quantization, obtained by quantizing the theory in the
full kinematical Hilbert space and then enforcing the
constraints at the quantum level. Following Hawking’s
path integral approach to quantum gravity [27], Halliwell
has made some progress elucidating the connection
between reduced phase space minisuperspace quantization
and the standard Dirac approach in special cases [28], but in
general the connection is not well understood. Nonetheless,
the limit we will work in has a rich structure, and in this
paper we will explore whether or not it has a rich enough
structure to contain evidence of intrinsic decoherence
caused by gravity.
Since we aim to test whether or not gravity places a

fundamental limit on the coherence of quantum systems,
we develop a model of a self-gravitating interferometer.
Interferometers are ideal for studying coherence, because
interference is a key feature of coherent systems. We
describe how the same interferometer would behave in
the absence of gravity, and then we investigate the
consequences of general relativistic corrections to this
behavior. In an interferometric setting, the intrinsic
decoherence we seek to understand manifests itself as a
phase scrambling along different interferometer arms (for a

general discussion see [29]), which in this case is attributed
to gravity. According to Penrose, we should expect that the
(interferometric) coherence should decay as the arm length
increases indefinitely, since this would correspond to a
superposition of arbitrarily different spacetimes. We focus
on the possibility that no collapse occurs, so we will simply
analyze the interference pattern and search for departures
from nongravitational behavior that indicate coherence
loss. Conceptually, we are testing the idea that when one
forms superpositions of geometries in the interferometer,
the nature of time in GR leads at the quantum level to an
imprint of which-way information, which is accompanied
by a loss of fringe visibility [30].
Still, an objection may be raised that if one describes the

interferometer as a closed quantum system without tracing
out over any physical degrees of freedom, then QT implies
that coherence must prevail, regardless of whether the
system is general relativistic. This objection was raised by
Banks, Susskind, and Peskin [31] in the context of black hole
evaporation, but it was later pointed out not only that the
arguments in [31] were inconclusive, but that we have reason
to support the possibility that pure states can effectively
evolve into mixed states in black hole systems [32].
The more radical idea entertained here is that one might

find pure states evolving to mixed states in gravitational
systems without horizons. In general, this “dissipationless”
type of decoherence has been explored to some degree
[33–36], but even the fact that it is possible has not been
widely appreciated. Nonetheless, one can observe that the
thermal character of acceleration radiation is approximately
present even without the involvement of Rindler horizons
(for recent analyses see [37,38]), and by the equivalence
principle one might expect to find a gravitational analog
of this thermal behavior. This means, then, that one might
expect that gravity generates an intrinsic form of entropy,
even in systems without the horizon structure that
one usually associates with entropy in black hole
thermodynamics.
With this in mind, we will construct our interferometer,

theoretically, out of a self-gravitating, spherically symmet-
ric, infinitesimally thin shell of matter. The interferometer
“optics” are encoded internally, by adding tangential
pressure to the fluid that lives on the surface of the shell.
The resulting model is reminiscent of an idea Einstein first
proposed in 1939 [39], but in our case, the tangential
pressure satisfies an equation of state that produces a beam
splitter and perfect reflectors. The fluid is ideal, in the sense
that one obtains a perfect-fluid stress-energy tensor, if one
projects the full four-dimensional spacetime stress-energy
tensor onto the three-dimensional history of the shell. This
approach ensures that the interferometric setup is mani-
festly invariant under coordinate transformations.
The configuration we construct resembles that of a

Michelson interferometer in optics. Thus, we will send
initial states at a beam splitter, at which point the
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transmitted and reflected components travel in opposite
directions until they encounter “mirrors.” The components
will then reflect, travel back towards each other, and
encounter the splitter once more. There will be two possible
outputs, corresponding to final transmission and final
reflection, which are comprised of different combinations
of the initially split wave components.
What we mean by (interferometric) coherence, in this

system, is the sustained phase relationships between differ-
ent wave components that can allow us, for instance, to
completely cancel either of the final outputs. In other
words, if we are unable to obtain complete constructive or
destructive interference in our interferometer (as predicted
by Penrose), we can conclude that coherence is being
limited in the system. The goal of our current investigation
is to determine whether or not general relativistic effects
could demonstrably produce such a limitation.

II. THEORY OF SELF-GRAVITATING
SPHERICAL SHELLS

A. Action principle

The perfect-fluid shell model we develop is a generali-
zation of the dust-shell model used by Kraus and Wilczek
in their attempt to calculate self-interaction corrections to
standard Hawking radiation [40–42]. Generalizing the
Kraus and Wilczek approach to include the required
pressure effects is not without complications, even in the
classical theory. In contrast to the approach to thin shells
pioneered by Israel that involves stitching two spacetimes
together along the shell’s history [43], the starting point for
our theoretical considerations is an action that is composed
of a gravitational part given by the Einstein-Hilbert action,
plus some action for the shell that we can initially leave
unspecified, written (in natural units) as

I ¼ 1

16π

Z
d4x

ffiffiffiffiffiffiffiffiffiffi
−gð4Þ

q
Rð4Þ þ Ishell: ð1Þ

The superscripts on the metric determinant g and the Ricci
scalar R indicate that these quantities are constructed
from components of the full spacetime metric gμν, with
μ; ν ∈ f0; 1; 2; 3g.
We will express the metric in Arnowitt-Deser-Misner

(ADM) form [44], which in spherical symmetry is given by

gμνdxμdxν ¼ −N2dt2 þ L2ðdrþ NrdtÞ2 þ R2dΩ2; ð2Þ

whereN is the lapse function,Nr is the radial component of
the shift vector, and L2 and R2 are the only nontrivial
components of the spatial metric.
The angular variables are taken to be the polar angle θ

and the azimuthal angle ϕ, such that the angular metric
takes the form dΩ2 ¼ dθ2 þ sin2 θdϕ2.
The shell action studied by Kraus and Wilczek takes

the form

Idust ¼ −m
Z

dλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν

dxμ

dλ
dxν

dλ

r
; ð3Þ

with m being the rest mass of the shell and all metric
quantities evaluated on the shell history. The arbitrary
parameter λ can be chosen to coincide with the coordinate
time t, which simplifies the integrand for the shell action.
To describe a more general fluid than dust, we need a

more general action. There are well-established variational
principles for regular perfect fluids in GR [45], but the
authors are unaware of any satisfactory variational princi-
ples for the perfect fluid shells we wish to describe. The
stress-energy tensor for a perfect fluid with density σ and
pressure p is given by

Sab ¼ σuaub þ pðγab þ uaubÞ; ð4Þ

where ua are the components of the fluid proper
velocity in coordinates that cover the fluid history.
For our purposes, the geometry along the fluid history
of our shell is described by an induced metric
γabdyadyb ¼ −dτ2 þ R̂2dΩ2, with τ being the shell proper
time. This induced metric obeys the relation

γab ¼ eμaeνbgμν; ð5Þ

with the introduction of projectors onto the shell history
given by

eμa ¼ ∂xμ
∂ya ¼ uμδτa þ δμΩδ

Ω
a : ð6Þ

Here and elsewhere, the repeated Ω denotes a sum over
angular coordinates. These projectors allow us to express
the full spacetime stress-energy tensor of our perfect fluid
shell as

Tμν ¼ SabeμaeνbδðχÞ; ð7Þ

where we have introduced a Gaussian normal coordinate χ
in the direction of the outward-pointing spacelike unit
normal ξ, with the shell location defined by χ ¼ 0.
We want to obtain an action, expressed in terms of the

full spacetime quantities, that yields the tensor (4) in the
intrinsic coordinates of the shell history. To convert
derivative expressions from the intrinsic coordinates to
the ADM coordinates given in equation (2), we can write
infinitesimal changes in r and t as

dt ¼ utdτ þ ξtdχ; dr ¼ urdτ þ ξrdχ: ð8Þ

Taking advantage of the fact that ξ satisfies uμξμ ¼ 0 and
ξμξμ ¼ 1, and suppressing the (vanishing) angular compo-
nents for brevity, the outward normal can be written as
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ξα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tr − gttgrr

q
ð−ur; utÞ ¼ N2L2ð−ur; utÞ: ð9Þ

For radial integration within an ADM slice, one has
dt ¼ 0, and in this case we can solve for dr

dχ in Eq. (8) to
obtain [46]

dr
dχ

¼ ξr −
ur

ut
ξt: ð10Þ

Also, since uμ ¼ ð∂t=∂τÞð1; _X; 0; 0Þ, the 4-velocity nor-
malization uμuμ ¼ −1 (evaluated on the shell) implies

�∂t
∂τ
�

2

¼ ðutÞ2 ¼ ðN2 − L2ðNr þ _XÞ2Þ−1: ð11Þ

This allows conversion of the delta function appearing in
our expression (7) for the full spacetime stress-energy
tensor:

δðχÞ ¼ dr
dχ

δðr − XÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − L2ðNr þ _XÞ2

q
NL

δðr − XÞ:

ð12Þ

Using Eq. (7), we find that our stress-energy tensor takes
the form

Tμν ¼ ðσuμuν þ pgΩΩδμΩδ
ν
ΩÞδðχÞ; ð13Þ

where the repeated Ω indices denote a single sum over
angular coordinates. In expression (13), the “tangential”
nature of the pressure is manifest, since the projection of
this tensor onto the spacelike normal ξ clearly vanishes.
The action we seek, then, yields (13) upon taking

variations with respect to the metric, in accordance with
the definition

δI ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffiffi
−4g

q
Tμνδgμν: ð14Þ

We are especially interested in the contribution from the
tangential pressure, which takes the form

δIp ¼ 8π

Z
dtdrNLδðχÞpRδR: ð15Þ

By inspection, we find that the action

Ishell ¼ −
Z

dλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν

dxμ

dλ
dxν

dλ

r
MðRÞ; ð16Þ

with all quantities evaluated on the shell history, yields the
appropriate stress-energy tensor: the relevant variational
derivative of (16) with respect to the metric is

δIshell;p ¼ −
Z

dtdrNLδðχÞM0ðRÞδR; ð17Þ

from which it follows that one has the pressure identifi-
cation p ¼ −M0ðRÞ=8πR, along with the usual density
identification σ ¼ MðRÞ=4πR2. We will use the freedom in
choosing the function MðRÞ to parametrize an equation of
state that relates the density and pressure of our fluid. It
should be noted that R is not a coordinate, but a metric
component that serves as a measure of the shell’s internal
energy.
The action (16) is reparametrization invariant, as well as

invariant under general (spherically symmetric) coordinate
transformations, even with the inclusion of an R-dependent
“mass.” As mentioned above, this is because R, when
evaluated on the shell, is nothing more than the reduced
area of the shell, and this area is independent of coordinate
choices.

B. Hamiltonianization

Following the canonical formalism [44], one can per-
form a Legendre transformationH ¼ P _X − L, for the shell
variables. Here L is the Lagrangian defined by (16), subject
to the condition that the shell history is parametrized by t.
One then finds

L ¼ −
Z

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − L2ðNr þ _XÞ2

q
MðRÞδðr − XÞ; ð18Þ

and it follows that the momentum conjugate to the shell
position X for the unreduced problem is given by

P ¼ ∂L
∂ _X

¼
Z

dr
L2ðNr þ _XÞMðRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − L2ðNr þ _XÞ2

q δðr − XÞ: ð19Þ

Explicitly, we can determine the Hamiltonian H to be

H ¼ P _X − L ¼
Z

drðNHs
0 þ NrHs

rÞ; ð20Þ

with the definitions

Hs
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L−2P2 þMðRÞ2

q
δðr − XÞ;

Hs
r ¼ −Pδðr − XÞ: ð21Þ

Similarly, we can Hamiltonianize the gravitational
action, and express the total action as

I ¼
Z

dtP _X þ
Z

dtdrðπR _Rþ πL _L − NH0 − NrHrÞ;
ð22Þ

for H0 ¼ Hs
0 þHG

0 and Hr ¼ Hs
r þHG

r , such that
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HG
0 ¼ Lπ2L

2R2
−
πLπR
R

þ
�
RR0

L

�0
−
ðR0Þ2
2L

−
L
2
;

HG
r ¼ R0πR − LπL0: ð23Þ

C. Equations of motion

Once in Hamiltonian form, the equations of motion for
the system are obtained by varying the action with respect
to the variables N, Nr, πL, πR, L, and R. Explicitly, these
variations (respectively) lead to

H0 ¼ 0;

Hr ¼ 0;

_L ¼ N
R

�
LπL
R

− πR

�
þ ðNrLÞ0;

_R ¼ −
NπL
R

þ NrR0;

_πL ¼ N
2

�
1 −

π2L
R2

−
ðR0Þ2
L2

�
−
N0RR0

L2

þ NrπL
0 þ NP2δðr − XÞ

L2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ L2M2

p ;

_πR ¼ NπL
R2

�
LπL
R

− πR

�
− N

�
R0

L

�0
−
�
N0R
L

�0
þ ðNrπRÞ0

−
NM dM

dR δðr − XÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L−2P2 þM2

p : ð24Þ

The first two equations are the Hamiltonian and momentum
constraints, whereas the next four are the dynamical
equations of motion for the gravitational variables.
For the shell variables, the equation of motion for X can

be easily obtained by varying the action with respect to P,
or simply by solving Eq. (19) for _X. The result is

_X ¼
Z

dr

�
NP

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ L2M2

p − Nr

�
δðr − XÞ

¼ N̂P

L̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ L̂2M̂2

p − N̂r; ð25Þ

with hats indicating that one evaluates the quantities
at r ¼ X.
The equation of motion for P is more subtle, since a

standard variation of the action with respect to X is formally
ambiguous, as noted in [47]. The ambiguity arises because
one must evaluate quantities on the shell (L0, ðNrÞ0, N0 and
R0) that are (possibly) discontinuous at r ¼ X:

_P ¼ ðNrP − N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L−2P2 þM2

p
Þ0shell: ð26Þ

However, it has been demonstrated in [48] that this
ambiguity can be removed by requiring consistency with
the constraints and the gravitational equations of motion

(24), at least for the case of a dust shell. The argument
described in [48] shows that one must average the discon-
tinuous quantities when interpreting the equation of motion
for the shell momentum, and similar reasoning leads to the
same conclusion for the arbitrary perfect fluid shell
described here. One then has the equation of motion

_P ¼ ¯ðNrÞ0P −
N̄0

L̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ L̂2M̂2

p
þ N̂ðP2L̄0 − L̂3M̂ M̄0Þ

L̂2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ L̂2M̂2

p ;

ð27Þ

with the average taken over ðNrÞ0 in the first term of the
right-hand side, and the last term containing the factor M̄0
defined as M̄0 ¼ ˆdM

dR R̄0.
Let us briefly sketch the argument that leads to this

result. To start, we take the time derivative of the (integrated
and rearranged) momentum constraint:

_P ¼ −ΔπL
d
dt

ðL̂Þ − L̂
d
dt

ðΔπLÞ: ð28Þ

Then, by continuity of _L, we have

d
dt

LðXÞ ¼ L0ðX � ϵÞ _X þ _LðX � ϵÞ ¼ L̄0 _Xþ _̄L: ð29Þ

Averaging the equation of motion for L, noting that
d
dt ðΔπLÞ ¼ ΔðπL0Þ _X þ Δð _πLÞ, and calculating Δð _πLÞ from
the equation of motion for πL, we obtain

_P ¼ _P þ Φ; ð30Þ

with _P representing the right side of Eq. (27), and Φ
defined such that

Φ ¼ −P
N̂

R̂ L̂
π̄R þ N̂ΔR0R̄0

L̂
þ ΔN0 R̄

0 R̂
L̂

− L̂ΔπL0ðN̂r þ _XÞ þ N̂ M̂ ˆdM
dR R̄0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L̂−2P2 þ M̂2
p : ð31Þ

To then demonstrate that Φ vanishes, one needs to take the
jump of the momentum constraint across the shell to obtain
L̂ΔπL0 ¼ R̄0ΔπR þ π̄RΔR0, then integrate the equation of
motion for πR across the shell, and use the result, combined
with the fact that the delta contribution to _πR is given by
− _XðΔπRÞδðr − XÞ [47].

D. Phase space reduction

We now seek a description of the system in terms of only
the shell coordinate X and a conjugate momentum Pc. Note
that it is not necessarily true that Pc will coincide with the
conjugate momentum P for the unreduced problem, as will
become clear in what follows.
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To proceed with the Hamiltonian reduction, we will
make use of the Liouville form F and the symplectic form
Ω, which on the full phase space (denoted by Γ) can be
written as

F ¼ PcδX þ
Z

drðπLδLþ πRδRÞ ð32Þ

and

Ω ¼ δPc∧δX þ
Z

drðδπL∧δLþ δπR∧δRÞ; ð33Þ

respectively, with δ denoting an exterior derivative in the
associated functional space (see [47] for more details). The
reduced phase space Γ̄ is defined as the set of equivalence
classes in Γ under changes of coordinates, and each
(permissible) choice of coordinates defines a hypersurface
H̄⊆Γ that is transversal to the orbits generated by
coordinate transformations; this ensures that there
exists an isomorphism between Γ̄ and the representative
hypersurface H̄.
At this point we can determine the symplectic form Ω̄

induced on H̄ as follows: first, consider the pullback of F
to H̄; this yields a quantity which we denote by F H̄. Then,
the symplectic form ΩH̄ on the representative hypersurface
H̄ (corresponding to Ω̄) takes the form

ΩH̄ ¼ δF H̄: ð34Þ

This quantity defines the canonical structure of the reduced
phase space.
To explicitly determine the (nonlocal) contribution

of the gravitational variables to the dynamics on the
reduced phase space, we can solve the GR constraints
for the gravitational momenta, insert the solutions into the
Liouville form on the full phase space, and perform the
integration to express the gravitational contribution solely
in terms of the (local) shell variables. Away from the shell,
take the following linear combination of the constraints:

−
R0

L
H0 −

πL
RL

Hr ¼ M0; ð35Þ

for

MðrÞ ¼ π2L
2R

þ R
2
−
RðR0Þ2
2L2

: ð36Þ

The quantityMðrÞ corresponds to the ADM mass H when
evaluated outside of the shell, and vanishes inside the shell.
This enables us to solve for the gravitational momenta πL,
πR away from the shell. The result is

πL ¼ �R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R0

L

�
2

− 1þ 2M
R

s
; πR ¼ L

R0 πL
0: ð37Þ

One then makes a coordinate choice, to pick out a
representative hypersurface H̄. The coordinates we will
use resemble the flat-slice coordinates fL ¼ 1; R ¼ rg
described in [41] (also known as Painlevé-Gullstrand
coordinates), though we will have a deformation region
X − ϵ < r < X explicitly included, in order to both satisfy
the constraints and yield a continuous spatial metric. The
deformation region is related to a jump in R0 across the
shell. This can be seen by first integrating the Hamiltonian
and momentum constraints across the shell. Doing so
yields, respectively,

ΔR0 ¼ −
V̂

R̂
; ΔπL ¼ −

P

L̂
; ð38Þ

where V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2L2

p
and Δ indicates the jump of a

quantity across the shell. We therefore take

L ¼ 1; Rðr; tÞ ¼ r −
ϵ

X
V̂f

�
X − r
ϵ

�
; ð39Þ

for a function f having support in the interval (0,1) with the
property f0ðxÞ → 1 as x↘0. Outside of the deformation
region, these coincide with flat-slice coordinates. For
concreteness, let us suppose fðxÞ takes the form

fðxÞ ¼ xe−x
2=ð1−x2Þ ð40Þ

for all x ∈ ð0; 1Þ.
In what follows, it will be useful to note that

M̂ ¼ MðR̂Þ ¼ MðXÞ, and that now P is considered to be
a function of X andH, as a consequence of the gravitational
constraints. We can implicitly determine this function by
inserting the gravitational momentum solutions away from
the shell given by Eq. (37) into the jump equations (38) and
squaring. We are then left with

H ¼ V̂ þ M̂2

2X
− P

ffiffiffiffiffiffiffi
2H
X

r
: ð41Þ

With this coordinate choice, the only gravitational
contribution to the Liouville form comes from the πR term,
and only from within the deformation region. Keeping in
mind that we only care about terms that remain nonzero in
the ϵ → 0 limit, we have, in the deformation region,

πR ¼ XR00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR0Þ2 − 1

p þOð1Þ; ð42Þ

since R ¼ X þOðϵÞ and R″ ¼ Oðϵ−1Þ. One can also note
that δR ¼ ð1 − R0ÞδX þOðϵÞ, and express the gravita-
tional contribution to the Liouville form as
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Z
X

X−ϵ
drπRδR ¼ XδX

Z
X

X−ϵ
dr

R00ð1 − R0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR0Þ2 − 1

p þOðϵÞ: ð43Þ

To evaluate this integral, one can change the integration
variable from r to v ¼ R0:
Z

X

X−ϵ
drπRδR ¼ XδX

Z
R−

0

1

dv
ð1 − vÞffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − 1

p þOðϵÞ; ð44Þ

with R−
0 being R0 evaluated just inside the shell. The

integration is then straightforward, and after applying (41)
and making some rearrangements one arrives at

XδX

�
−
P
X
−

ffiffiffiffiffiffiffi
2H
X

r
þ ln

�
1þ

ffiffiffiffiffiffiffi
2H
X

r
þ V̂ þ P

X

��
; ð45Þ

plus terms that vanish as ϵ → 0. This completes the
calculation of F H̄, the pullback of the full Liouville form
F to H̄:

F H̄ ¼ PcδX; ð46Þ

with the reduced canonical momentum evidently given by

Pc ¼ −
ffiffiffiffiffiffiffiffiffiffi
2HX

p
þ X ln

�
1þ

ffiffiffiffiffiffiffi
2H
X

r
þ V̂ þ P

X

�
: ð47Þ

This result agrees with [47] in the limit of a dust
shell (M̂0 ¼ 0).
To connect this with the expression derived by Kraus and

Wilczek, we need only apply the expression (41) to the
argument of the logarithm, which leads to

Pc ¼ −
ffiffiffiffiffiffiffiffiffiffi
2HX

p
− X ln

�
X þ V̂ − P −

ffiffiffiffiffiffiffiffiffiffi
2HX

p

X

�
: ð48Þ

This form of the reduced momentum coincides with [40] in
the dust-shell limit.

E. Boundary terms

To obtain a well-defined variational principle for the
reduced problem, we must be careful with boundary terms,
as first noted in [49] and [50]. In [40], it is observed that for
asymptotically flat spacetimes, we simply need to subtract
the ADM mass (denoted suggestively by H) from our
reduced Lagrangian. Specifically, as mentioned in [47], a
nonzero boundary variation results from integrating by
parts the term

R
dtdrNrLðδπLÞ0, which is part of the

momentum constraint. The only contribution comes from
infinity, and in this case we have Nr → N

ffiffiffiffiffiffiffiffiffiffiffi
2H=r

p
, N → 1,

and

δðπLÞ → δð
ffiffiffiffiffiffiffiffiffi
2Hr

p
Þ ¼

ffiffiffiffiffiffiffi
r
2H

r
δH; ð49Þ

so the variation of the boundary term is cancelled if we add
to the action the term

Ibdry ¼ −
Z

dtH: ð50Þ

Including the boundary term to the action defined byF H̄,
one obtains the reduced action

Ireduced ¼
Z

dtðPc
_X −HÞ; ð51Þ

with the reduced momentum given by (48). From the form
of the reduced action (51), we can see that the ADMmass is
the reduced Hamiltonian, defined implicitly by (48)
and (41).
Since (41) has more than one solution P ¼ PðX;HÞ, our

conjugate momentum Pc in turn becomes a multivalued
function of X and H, as one expects from a theory that
allows the degree of freedom to either increase or decrease.
Explicitly, P is given by

P ¼ 1

1 − 2H
X

� ffiffiffiffiffiffiffi
2H
X

r �
H −

M̂2

2X

��

� 1

1 − 2H
X

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
H −

M̂2

2X

�
2

− M̂2

�
1 −

2H
X

�s �
; ð52Þ

while the combination V̂ − P that appears in the reduced
momentum (48) is

V̂ − P ¼
H − M̂2

2X ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
H − M̂2

2X

�
2

− M̂2ð1 − 2H
X

�s

1þ
ffiffiffiffiffi
2H
X

q : ð53Þ

F. Constructing classical spacetime

Suppose one can find a solution XðtÞ to the classical
equations of motion for the reduced system (51). Then, the
gravitational constraints and equations of motion (24) can
be solved to determine all the metric components gμν.
Therefore, from the reduced system solution XðtÞ one can
construct the classical spacetime structure, as we will now
demonstrate.
By inserting the gravitational momenta solutions (37)

into the gravitational equations of motion (24), one can
obtain the lapse function N and the radial shift component
Nr that correspond to our coordinate choice (39).
Outside of the shell, one finds the familiar Schwarzschild

structure, in flat-slice coordinates. The lapse function is
constant, and unity if we want a time coordinate
that increases towards the future, while the radial shift is
given by
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Nrðr ≥ XÞ ¼ �
ffiffiffiffiffiffiffi
2H
r

r
: ð54Þ

The � here indicates two possible time slicings, though we
will often take the upper sign (this means that the
gravitational momenta solution (37) should take the upper
sign as well, to ensure N → 1 as r → ∞).
Along with the expression (41) for P in terms of X and

H, we now have enough information to determine the
classical path XðtÞ, since H is constant along such paths.
Specifically, the equation of motion for X becomes

_X ¼ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ M̂2

p −
ffiffiffiffiffiffiffi
2H
X

r
; ð55Þ

which leads to the expression

dt
dX

¼
ffiffiffiffiffiffiffiffiffiffi
2HX

p

X − 2H
� H − M̂2

2X

ð1 − 2H
X Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH − M̂2

2XÞ2 − M̂2ð1 − 2H
X Þ

q :

ð56Þ
Therefore, finding the classical path XðtÞ has been reduced
to quadrature and inversion.
With the classical path known, one can also calculate the

classical action, as done for the case of dust in [40]:

Sðt; XðtÞÞ ¼ Sð0; Xð0ÞÞ þ
Z

t

0

d~t½Pcð~tÞ _Xð~tÞ −H�; ð57Þ

with

Pcð0Þ ¼
∂S
∂X ð0; Xð0ÞÞ: ð58Þ

Unlike the (massless) dust case, however, our classical path
XðtÞ is not a null geodesic of the flat-slice metric

ds2 ¼ −dt2 þ
�
drþ

ffiffiffiffiffiffiffi
2H
r

r
dt

�2

; ð59Þ

and so we cannot so easily determine explicit expressions
for our shell trajectories.

III. INTERFEROMETRY

A. Equation of state determination

Up until this point, the function MðXÞ has been left
unspecified, though we have established the identifications
σ ¼ MðXÞ=4πX2 for the density and p ¼ −M0ðXÞ=8πX
for the pressure. We would like to exploit this freedom
for the purposes of interferometry. To maintain internal
consistency, there should be a relationship p ¼ pðσÞ,
which represents an equation of state for our fluid shell.
The function MðXÞ parametrizes this relationship, though
not every choice of MðXÞ yields a consistent (let alone
physical) equation of state.

The interferometric setup resembles that of Michelson,
except we only have one spatial dimension to work with,
since our system is spherically symmetric. Still, we would
like the equation of state to produce two “reflectors”—one
to reflect the shell outward if it gets too small, and one to
reflect the shell inward if it gets too large. Also, we would
like the equivalent of a “half-silvered mirror” to be in
between the two reflectors, to act as a beam splitter. This is
depicted schematically in Fig. 1, with X� being the shell
radii that correspond to the reflectors, and Xδ the radius
corresponding to the splitter. Accordingly, our equation of
state p ¼ pðσÞ must have a large positive peak for some
large density, a large negative peak for some small density,
and an intermediate peak for some intermediate density.
It would be convenient to use delta functions for these

purposes, but due to the conversion between δðσ − σ0Þ and
δðX − X0Þ and the resulting appearance of products of delta
functions, this possibility seems problematic. Therefore, we
have been considering the simplest alternative one could
think of: rectangular barriers. These can be described with
the use of step functions, which we will define such that
Θðx < 0Þ ¼ 0 and Θðx > 0Þ ¼ 1.
The equation of state, then, takes the form

p ¼ p1ðΘðσ − σ1Þ − Θðσ − σ2ÞÞ
þ p2ðΘðσ − σ3Þ − Θðσ − σ4ÞÞ
þ p3ðΘðσ − σ5Þ − Θðσ − σ6ÞÞ; ð60Þ

FIG. 1. Schematic representation of the splitting, reflecting, and
recombining that occur in our shell interferometer. R and T are
effective reflection and transmission coefficients for the beam
splitter.
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with σiþ1 > σi, p1 < 0, and p2; p3 > 0. We may as well
take p1 ¼ −p3, since both of these peaks serve the same
purpose of reflecting, but we will not yet impose this
condition.
Figure 2 illustrates the desired step function peaks, to

enable our system to operate as an interferometer.
One would now like to find the function MðXÞ that

parametrizes the equation of state (60). If we could
express (60) as p ¼Pi ~piΘðX − XiÞ, then the identifica-
tion p ¼ −M0ðXÞ=8πX would imply

MðXÞ ¼ M0 þ 4π
X
i

~piðX2
i − X2ÞΘðX − XiÞ; ð61Þ

which would yield a density given by

σ ¼ M0

4πX2
þ
X
i

~pi

�
X2
i

X2
− 1

�
ΘðX − XiÞ: ð62Þ

The problem with this possibility is that, in general, it isn’t
necessarily true that ΘðX − XiÞ produces the same
(reversed) ordering as Θðσ − σiÞ, given that σi ¼
MðXiÞ=4πX2

i . This problem can be avoided by making
sure that the density σ is a monotonically decreasing
function of X. This leads to the condition

M0

4π
≥ −

X
i

~piX2
iΘðX − XiÞ: ð63Þ

To understand what this means in terms of the pressure
peaks in our equation of state (60), we first note that if σ
monotonically decreases in X, then step functions can be
converted by Θðσ − σiÞ ¼ 1 − ΘðX − XiÞ. This allows us
to conclude that ~p2 ¼ − ~p1 ¼ p1, ~p4 ¼ − ~p3 ¼ p2, and
~p6 ¼ − ~p5 ¼ p3. Then, one finds that monotonicity is
maintained as long as

M0

4π
> maxfp3X2

5;6; p3X2
5;6 þ p2X2

3;4;

p3X2
5;6 þ p2X2

3;4 − p1X2
2g; ð64Þ

where the notation X2
i;j ¼ X2

i − X2
j was introduced, for

brevity.

Since an equation of state (60) is described by the
pressure as a function of density, one should translate the
conditions for monotonicity in terms of the step locations
fσig and the step amplitudes fpig. To convert between the
fXig and the fσig, one can use the relations

X2
6 ¼

M0

4πσ6
;

X2
5 ¼

M0

4πσ6

ðσ6 þ p3Þ
ðσ5 þ p3Þ

;

X2
4 ¼

M0

4πσ6

ðσ6 þ p3Þ
ðσ5 þ p3Þ

σ5
σ4

;

X2
3 ¼

M0

4πσ6

ðσ6 þ p3Þ
ðσ5 þ p3Þ

σ5
σ4

ðσ4 þ p2Þ
ðσ3 þ p2Þ

;

X2
2 ¼

M0

4πσ6

ðσ6 þ p3Þ
ðσ5 þ p3Þ

σ5
σ4

ðσ4 þ p2Þ
ðσ3 þ p2Þ

σ3
σ2

;

X2
1 ¼

M0

4πσ6

ðσ6 þ p3Þ
ðσ5 þ p3Þ

σ5
σ4

ðσ4 þ p2Þ
ðσ3 þ p2Þ

σ3
σ2

ðσ2 þ p1Þ
ðσ1 þ p1Þ

: ð65Þ

With these expressions, one can write the monotonicity
conditions in the much simpler form

fσ5 > 0; σ3 > 0; σ1 þ p1 > 0g: ð66Þ
Thus, as long as we keep the density σ positive, it will be
monotonic in X provided σ1 þ p1 > 0.

B. Flat spacetime limit

To determine whether or not gravity produces some form
of decoherence in our interferometer, let us first clarify the
manner in which coherence manifests itself in the absence
of gravity. In this case spacetime is flat, and along the arms
of the interferometer defined by (61) the shell behaves as a
free particle.
As evident from Fig. 3, the mass of the “free” shell is

different on each interferometer arm. Let us call the inner
massM−, and the outer massMþ, such thatM− > Mþ. For
simplicity, suppose the reflectors are perfect, which for this
system means that the quadratic walls of the mass function

FIG. 2 (color online). A sample equation of state represented
by (60).

FIG. 3 (color online). A sample mass function M̂ is plotted with
respect to the shell radius X. The approximate step function near
X ¼ 2 serves as a beam splitter, and the steep quadratic sides
correspond to the inner and outer reflectors of the interferometer.
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are large and steep. Similarly, let the quadratic beam-
splitter interval be approximated by a step function, to
ensure that only constant mass function basis states need to
be used in the quantum analysis.
Further, let us treat each element of the interferometer

separately, in a similar manner to that which is done in
optical systems. The initial state will first encounter the
splitter, at which point each incoming mode will transform
into a reflected mode with a factor R← and a transmitted
mode with a factor T← (subscripts are used here because
the reflection/transmission coefficients depend on the
direction the incoming state encounters the splitter from).
The split initial state components will then perfectly

reflect off of the outer/inner reflectors, and travel back
towards one another to the beam splitter. Upon recombi-
nation there will be further splitting of the components
coming from each direction of the splitter, which produces
two outputs (one going in each direction from the splitter)
that are themselves composed of two parts; it is the
interference between these two parts of each output that
we are interested in.
Let us now describe the process in detail. For the

purposes of this paper, we will restrict our attention to a
single-mode input, since the multimode analysis is more
involved and will be presented elsewhere [51]. We will
approximate the single-mode input by an ingoing WKB
state:

Ψ0 ¼
ei
R

dXP−þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij∂E=∂P−þ
p j≡ ψ−þ; ð67Þ

where the first set of plus/minuses of the reduced momen-
tum P indicating outgoing/ingoing, and the second set
indicating evaluations of P as X approaches Xδ from above/
below (we have dropped the subscript c on the reduced
momentum here and for the rest of the paper, for brevity).
We will define the integration such that the lower bound in
X is Xδ.
Treating the first splitting on its own, let us consider the

wave function

Ψ ¼
�
ψ−þ þ R←ψþþ ∶X > Xδ

T←ψ−− ∶X < Xδ
:

The (classical) flat spacetime Hamiltonian satisfies

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ M̂2

p
, which in the nonrelativistic limit yields

H ≈ M̂ þ P2=2M̂. Applying wave function continuity at
Xδ, and integrating the nonrelativistic Schrödinger equation

i
∂ψ
∂t ¼ M̂ψ −

1

2

∂
∂X
�
1

M̂

∂ψ
∂X
�

ð68Þ

across Xδ, one can obtain the reflection and transmission
amplitudes R← and T←. The equations take a simpler form

after transforming to the variables R̄← and T̄←, which are
defined by

R̄← ≡
ffiffiffiffiffiffiffiffiffiffiffiffi����

∂E
∂P−þ
∂E

∂Pþþ

����
vuut R←; T̄← ≡

ffiffiffiffiffiffiffiffiffiffiffiffi����
∂E

∂P−þ
∂E

∂P−−

����
vuut T←: ð69Þ

One can then easily solve for the new variables:

R̄← ¼ M−P−þ −MþP−−

MþP−− −M−Pþþ
;

T̄← ¼ M−ðPþþ − P−þÞ
M−Pþþ −MþP−−

:

ð70Þ

For convenience, we can also derive the reflection and
transmission amplitudes from the left, which are found to be

R̄→ ¼ M−Pþþ −MþPþ−

MþP−− −M−Pþþ
;

T̄→ ¼ MþðPþ− − P−−Þ
M−Pþþ −MþP−−

;

ð71Þ

using the similar definitions

R̄→ ≡
ffiffiffiffiffiffiffiffiffiffiffiffi�����

∂E
∂Pþ−

∂E
∂P−−

�����
vuut R→; T̄→ ≡

ffiffiffiffiffiffiffiffiffiffiffiffi�����
∂E

∂Pþ−

∂E
∂Pþþ

�����
vuut T→: ð72Þ

Let us call the outgoing state after the split ΨðiÞ
þ and the

ingoing state ΨðiÞ
− . We then can consider the first splitting a

transformation of the wavefunction such that

Ψ0 ¼ ψ−þ →

�
ΨðiÞ

þ
ΨðiÞ

−

�
¼
�
R←ψþþ
T←ψ−−

�
: ð73Þ

This splitting should preserve the probability current, for
consistency. In the nonrelativistic, flat spacetime limit, the
probability current J satisfies the continuity equation

∂
∂t ðjψ j

2Þ þ ∂
∂X J ¼ 0 ð74Þ

and is given by the usual quantum mechanics expression

1

2im
ðψ�ψ 0 − ψψ�0Þ: ð75Þ

Therefore, in this limit we have an input probability current of

J0 ¼ jΨ0j2
P−þ
Mþ

: ð76Þ

After first encountering the beam splitter, the probability
current (76) splits into reflected and transmitted components

CISCO GOODING AND WILLIAM G. UNRUH PHYSICAL REVIEW D 90, 044071 (2014)

044071-10



jJðiÞþ j ¼ 1

2iMþ
ðΨðiÞ�

þ ðΨðiÞ
þ Þ0 −ΨðiÞ

þ ðΨðiÞ
þ Þ�0Þ

¼ jJ0jR̄2
← ð77Þ

and

jJðiÞ− j ¼ 1

2iM−
ðΨðiÞ�

− ðΨðiÞ
− Þ0 −ΨðiÞ

− ðΨ−ðiÞÞ�0Þ

¼ jJ0j
�
MþP−−

M−P−þ

�
T̄2
←: ð78Þ

The splitting preserves probability current, as can be con-

firmed by observing that j J
ðiÞ
þ
J0
j þ j JðiÞ−J0 j is unity. The terms

j J
ðiÞ
þ
J0
j and j JðiÞ−J0 j are usually called the reflection and trans-

mission coefficients, respectively.
The second transformation propagates the modes along

the interferometer arms, such that

�
ΨðiÞ

þ
ΨðiÞ

−

�
→

�
ΨðiiÞ

þ
ΨðiiÞ

−

�
¼
� ðE;þþ Þ−1=2R←eiΦþþ

ðE;−− Þ−1=2T←eiΦ−−

�
: ð79Þ

For brevity, the notation E;�� was used to denote
∂E=∂P��, and it is understood that we are evaluating
these quantities at the outer walls of the interferometer. We
have also introduced the quantities Φ�� ¼ ϕ�� − Et��,
for ϕ�� ¼ R X�

Xδ
dXP��, where tþþ and t−− denote the

travel times from the splitter to Xþ and X−, respectively.
The modes then reflect off of the outer walls, as

�
ΨðiiÞ

þ
ΨðiiÞ

−

�
→

�
ΨðiiiÞ

þ
ΨðiiiÞ

−

�
¼
� ðE;−þ Þ−1=2R←eiΦþþR→

ðE;þ− Þ−1=2T←eiΦ−−R←

�
:

ð80Þ

The outer wall reflection amplitudes ðR→; R←Þ only
depend on continuity of the wave function. To obtain
the reflection amplitude from the left, for instance, consider
the wave function

Ψ ¼ ψþþ →

�
0 ∶X > Xþ
ðψþþ þ R→ψ−−Þ ∶X < Xþ

:

By applying wave function continuity at Xþ, one immedi-
ately obtains R→. R← can be similarly determined, and the
results are

R̄→ ¼ −eiðϕþþþϕ−þÞ; R̄← ¼ −eiðϕþ−þϕ−−Þ; ð81Þ

with help of the simplifying definitions

R̄→ ≡
ffiffiffiffiffiffiffiffiffiffiffiffi�����

∂E
∂Pþþ
∂E

∂P−þ

�����
vuut R→; R̄← ≡

ffiffiffiffiffiffiffiffiffiffiffiffi�����
∂E

∂P−−
∂E

∂Pþ−

�����
vuut R←: ð82Þ

The phases are defined such that ϕ�∓ ¼ R Xδ
X∓ dXP�∓ (signs

chosen together). We will refer to the modes after reflection

from the outer walls as ΨðiiiÞ
� .

Propagation along the arms back to the splitter then
proceeds as

�
ΨðiiiÞ

þ
ΨðiiiÞ

−

�
→

�
ΨðivÞ

þ
ΨðivÞ

−

�
; ð83Þ

for

�
ΨðivÞ

þ
ΨðivÞ

−

�
¼
� ðE;−þ Þ−1=2R←eiΦþþR→eiΦ−þ

ðE;þ− Þ−1=2T←eiΦ−−R←eiΦþ−

�
: ð84Þ

In this expression, the quantities E;−þ and E;þ− are
evaluated at the splitter, and we have used the definitions
Φ�∓ ¼ ϕ�∓ − Et�∓ (signs again chosen together). Here
t−þ and tþ− denote the travel times from Xþ to the splitter
and from X− to the splitter, respectively.
The second encounter with the splitter occurs as it did

before, as

�
ΨðivÞ

þ
ΨðivÞ

−

�
→

�
ΨðvÞ

þ
ΨðvÞ

−

�
¼
�
R̄← T̄→

T̄← R̄→

��
ΨðivÞ

þ
ΨðivÞ

−

�
: ð85Þ

At the order we are working at in ℏ, the derivatives of our
final outputs satisfy

d
dX

ΨðvÞ
� ¼ iP��Ψ

ðvÞ
� ; ð86Þ

and so the currents for our final outputs are given by

JðvÞ� ¼ 1

2iM�
ðΨðvÞ�

� ðΨðvÞ
� Þ0 −ΨðvÞ

� ðΨðvÞ
� Þ�0Þ

¼ P��
M�

jΨðvÞ
� j2: ð87Þ

We then have enough information to calculate the final
reflected and transmitted probability currents, which can be
written

jJðvÞþ j ¼ jJ0j½1 − 4R̄2
←ð1 − R̄2

←Þ sin2 φ� ð88Þ

and

jJðvÞ− j ¼ jJ0j4R̄2
←ð1 − R̄2

←Þ sin2 φ; ð89Þ
where we have defined φ ¼ ϕþþ þ ϕ−þ − ϕþ− − ϕ−− and
made use of the identity R̄2

← þ MþP−−
M−P−þ

T̄2
← ¼ 1. The flat
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spacetime interferometer thus manifestly conserves prob-
ability current in all regions of the parameter space.
One can now search for a nice region in the parameter

space that cancels one of the outputs. First, we would like to
avoid regions of the parameter space that don’t describe
splitting, i.e. complete initial reflection or transmission by
the beam splitter. We can accomplish this in a simple way
by enforcing an equal splitting condition, R̄2

← ¼ 1=2. This
leads to compact expressions for the final reflection and
transmission coefficients, given by

Rf ≡ jJðvÞþ j
jJ0j

¼ cos2 φ ð90Þ

and

Tf ≡ jJðvÞ− j
jJ0j

¼ sin2 φ; ð91Þ

respectively.
We should also make sure that our shell velocity doesn’t

approach the speed of light, since we are working in the
nonrelativistic limit. For small shell speeds, given an outer
massMþ and an initial speed vþ, the initial splitting will be
equal provided the inner mass satisfies

M− ≈Mþ½1þ ð6
ffiffiffi
2

p
− 8Þv2þ − ð99

ffiffiffi
2

p
− 140Þv4þ�: ð92Þ

In the quantum context, the “speed” vþ is defined such that
E ¼ Mþ þ 1

2
Mþv2þ, for a WKB state with energy E.

If we denote the interferometer arm lengths by
L� ≡�ðX� − XδÞ, we can see from the form of the
reflection and transmission coefficients that one of the
outputs will be completely canceled if

φ ¼ 2Lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MþðE −MþÞ

p
− 2L−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M−ðE −M−Þ

p
¼ 2LþMþvþ − 2L−M−v−

¼ nπ
2
; ð93Þ

for n ∈ Z. Thus, as the outer arm length is increased or
decreased, the outputs are alternately canceled out for each
value of n (odd values cancel the transmitted output, and
even values cancel the reflected output), with partial
interference for intermediate arm lengths that don’t corre-
spond to solutions of (93). This behavior is a direct
reflection of coherence in the flat spacetime interferometer.

C. General relativistic picture

The current framework was designed to facilitate the
inclusion of general relativistic corrections. Several expres-
sions become messier once one includes gravity, and some
expressions fundamentally change in structure. For in-
stance, the probability current given by (75) is no longer

conserved in systems with more general Hamiltonians. In
fact, a probability current for an arbitrary Hamiltonian
system has never been constructed; only special cases
are known.
For our purposes, since we are working in the WKB

regime, we may sometimes wish to approximate a general
Hamiltonian HðX;PÞ by the first three terms in a Taylor
expansion in P, given by

Hw ¼ HðX; 0Þ þ
�∂H
∂P
�
Pþ 1

2

�∂2H
∂P2

�
P2; ð94Þ

with the P derivatives evaluated at P ¼ 0. In the quantum
theory, we can symmetrize the term linear in P to enforce
Hermiticity, i.e.

�∂H
∂P
�
P →

1

2

� ˆ�∂H
∂P
�
P̂þP̂

ˆ�∂H
∂P
��

; ð95Þ

as well as ordering the quadratic term as

�∂2H
∂P2

�
P2 → P̂

ˆ�∂2H
∂P2

�
P̂ : ð96Þ

If we take this operator ordering of the approximate form
(94) as an exact Hamiltonian, then we can find a probability
current J that satisfies the continuity equation (74), which
we can express as

J ¼
�∂H
∂P
�
jΨj2 þ 1

2i

�∂2H
∂P2

�
ðΨ�Ψ0 −ΨΨ�0Þ: ð97Þ

The P derivatives in this expression are again evaluated
at P ¼ 0, and for the special case of fð∂H∂PÞ ¼ 0;
ð∂2H∂P2Þ ¼ 1=mg, we are left with the nonrelativistic, flat
spacetime limit described by (75).
In the limit of large X, the WKB Hamiltonian for our

shell system is given by

Hw ∼
�
M̂ −

M̂2

18X

�
−
2

3

ffiffiffiffiffiffiffi
2M̂
X

s
Pþ

�
1

2M̂
þ 1

3X

�
P2; ð98Þ

so the generalized probability current is given by

J ∼ −
2

3

ffiffiffiffiffiffiffi
2M̂
X

s
jΨj2 þ

�
1þ 2M̂

3X

�
Js; ð99Þ

with Js being the standard (nonrelativistic) expression (75)
for the probability current. Note that although the func-
tional form of Js with respect to Ψ is the same as the
nonrelativistic current (75), in the above expression we are
inserting the general relativistic WKB wave function Ψ.
Since our Schrödinger equation now takes the asymp-

totic form
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HwΨ ¼ i
∂
∂tΨ; ð100Þ

taking the operator ordering mentioned above, we no
longer have the simple reflection and transmission ampli-
tudes obtained in the previous section. For instance,
integrating (100) across Xδ yields

��
3

2M̂
þ 1

X

�
Ψ0
�
δ

¼ i

ffiffiffiffiffiffi
2

Xδ

s
½
ffiffiffiffiffi
M̂

p
�δΨðXδÞ: ð101Þ

Here, ½·�δ represents the jump of a quantity across Xδ.
To the order we are working at in ℏ, the new reflection

and transmission amplitudes for scattering from the right
are given by

R̄← ¼
ffiffiffiffi
2
Xδ

q
½
ffiffiffiffiffi
M̂

p
�δ þ ð 3

2M−
þ 1

Xδ
ÞP−− − ð 3

2Mþ
þ 1

Xδ
ÞP−þ

−
ffiffiffiffi
2
Xδ

q
½
ffiffiffiffiffi
M̂

p
�δ − ð 3

2M−
þ 1

Xδ
ÞP−− þ ð 3

2Mþ
þ 1

Xδ
ÞPþþ

ð102Þ

and

T̄← ¼
ð 3
2Mþ

− 1
Xδ
ÞðPþþ − P−þÞ

−
ffiffiffiffi
2
Xδ

q
½
ffiffiffiffiffi
M̂

p
�δ − ð 3

2M−
þ 1

Xδ
ÞP−− þ ð 3

2Mþ
þ 1

Xδ
ÞPþþ

:

ð103Þ

Similarly, for scattering from the left we have

R̄→ ¼
ffiffiffiffi
2
Xδ

q
½
ffiffiffiffiffi
M̂

p
�δ þ ð 3

2M−
þ 1

Xδ
ÞPþ− − ð 3

2Mþ
þ 1

Xδ
ÞPþþ

−
ffiffiffiffi
2
Xδ

q
½
ffiffiffiffiffi
M̂

p
�δ − ð 3

2M−
þ 1

Xδ
ÞP−− þ ð 3

2Mþ
þ 1

Xδ
ÞPþþ

ð104Þ

and

T̄→ ¼
ð 3
2M−

− 1
Xδ
ÞðPþ− − P−−Þ

−
ffiffiffiffi
2
Xδ

q
½
ffiffiffiffiffi
M̂

p
�δ − ð 3

2M−
þ 1

Xδ
ÞP−− þ ð 3

2Mþ
þ 1

Xδ
ÞPþþ

:

ð105Þ

Given the definition of probability current in this (more
general) setting, we have

JðvÞ� ¼
��

1þ 2M�
3Xδ

�
P��
M�

−
2

3

ffiffiffiffiffiffiffiffiffiffi
2M�
Xδ

s �
jΨðvÞ

� j2: ð106Þ

Just as in the flat spacetime limit, the final output states are
given by (85), except that now the reflection/transmission
amplitudes and the WKB phases are more complicated.

The initial current can be expressed as

Ji ¼
 
1 −

2Mþ
3P−þ

ffiffiffiffiffiffiffiffiffiffi
2Mþ
Xδ

s
þ 2Mþ

3Xδ

!
J0; ð107Þ

with J0 being the nonrelativistic initial current (76), and so

the final reflection and transmission coefficients Rf ≡ jJðvÞþ j
jJij

and Tf ≡ jJðvÞ− j
jJij (respectively) are fully determined.

Another similarity to the flat spacetime limit is that the
oscillatory part of the final reflection and transmission
coefficients is defined by φ ¼ ϕþþ þ ϕ−þ − ϕþ− − ϕ−−,
with the various ϕ terms involving integrals of the general
relativistic momentum (48). In the weak-field limit, the
initial ingoing momentum is given by

P−þ ∼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 −M2þ

q
þ 2

3

ffiffiffiffiffiffiffi
2H
X

r
H

−
ðH2 −M2þ=2ÞHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 −M2þ
p

X
; ð108Þ

to second order in 1=
ffiffiffiffi
X

p
. Care should be taken with these

approximations, however, because our probability current
(97) is exactly conserved only in the quadratic momentum
limit, which for the shell system is defined by (98). Also,
the WKB solutions only approximately satisfy the
Schrödinger equation. Because of this, in order to control
the errors involved in the approximations we find it useful
to consider the “WKB momentum,” which we define by
solving (98) for P, and expanding to second order in 1=

ffiffiffiffi
X

p
.

For the initial ingoing momentum, the WKB momentum
takes the form

Pw−þ ∼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MþðH −MþÞ

p
þ 2

3

ffiffiffiffiffiffiffiffiffiffi
2Mþ
X

r
Mþ

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mþ

ðH −MþÞ

s
ð7Mþ − 4HÞ

12X
: ð109Þ

To understand the interference pattern described by Rf
and Tf, let us consider what φ looks like in the weak-field
limit, for slow speeds (v� → 0):

φ ∼ 2LþMþvþ − 2L−M−v−

þM2þ
vþ

ln

�
Xþ
Xδ

�
−
M2

−

v−
ln

�
Xδ

X−

�
: ð110Þ

Let us further imagine that we vary the outer arm length Lþ,
while keeping all other parameters constant. If the phase
condition (93) from flat spacetime still approximately
holds, then the corresponding expression (110) in the
weak-field limit tells us that successive values of n (say,
n to nþ 1) are associated with outer arm length values
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Lþn and Lþðnþ1Þ. Subtracting φn ¼ nπ=2 from φnþ1 ¼
ðnþ 1Þπ=2 yields

π

2
¼ 2MþvþΔLn þ

M2þ
vþ

ln

�
Xþn þ ΔLn

Xþn

�
; ð111Þ

with the definitions Xþn ¼ Xδ þ Lþn and ΔLn ¼
Lþðnþ1Þ − Lþn. The distance between nodes of the inter-
ference pattern, denoted by ΔLn, is somewhat less than the
outer mirror radius Xþ, for the cases we are interested in;
thus, we can expand the logarithm and solve for ΔLn,
which gives us

ΔLn ≈
π

4Mþ

�
vþ þ Mþ

2vþXþn

� : ð112Þ

This result shows that gravity causes the node spacing in
the interference pattern to increase with increasing outer

arm length. In the flat space limit (i.e. as X� → ∞), we
obtain the equal node spacing ΔLn ¼ π=4Mþvþ, for
all n ∈ Z.
One can see from Figs. 4 and 5 that as we go from the

essentially flat limit (X� → ∞) to less than 10
Schwarzschild radii, we can still alternately cancel the
reflection and transmission coefficients, even though the
approximations lead to a probability current that is not fully
conserved (note that the sum of the final probability
currents is about 15% less than the initial current). We
take this as a direct indication that coherence is fully
present in the single-mode system even with general
relativistic corrections taken into account.
It is not clear from Figs. 4 and 5, but the node spacing

is indeed changing as (112) suggests. The reason it is not
visible from these plots is that the node spacing
changes noticeably only over a range of many wavelengths.
Under more extreme circumstances, as depicted in Fig. 6,

FIG. 4 (color online). Sample interference pattern, for Mþ ¼ 15, vþ ¼ 0.003, X− ¼ 5000, L− ¼ 20, and M− chosen to satisfy (92),
plotted against the outer mirror position, Xþ.

FIG. 5 (color online). Sample interference pattern, for Mþ ¼ 15, vþ ¼ 0.01, X− ¼ 200, L− ¼ 20, and M− chosen to satisfy (92),
plotted against the outer mirror position, Xþ.
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there are visible changes in node spacing, though this
represents a situation that is of less physical interest, since
the de Broglie wavelength of the shell is larger than the
interferometer arms.

IV. DISCUSSION

There are two problems with taking this result of no loss
of coherence as the definitive answer to whether or not
gravity, by itself, could decohere a system. The first is that
these single-mode states correspond in some sense to
energy eigenstates; one might expect it is only a super-
position of energies that leads to decoherence, since from
the above analysis one can see that the time dependence
cancels out of the final expressions for output probabilities
in the interferometer. As mentioned above, a study of how
wave packets behave in this model will be presented in a
forthcoming paper [51].
The second problem is that Penrose’s intuition ties the

loss of coherence to the inability to map one spacetime in
any unique way onto a different spacetime. By our
coordinate choice we have, in effect, chosen a unique
way: two spacetime points are the same if they have the
same coordinates. However, this is of course arbitrary and
depends on the coordinate choice made. While the
Painlevé-Gullstrand coordinates have many advantages,
they are not the only possible choice. A one-parameter
family of generalized Painlevé-Gullstrand coordinates [52]
can also be used to perform analogous calculations to those
above. Do all coordinate fixings produce the same maxima
and minima in the interference pattern? The canonical
momentum in the reduced system certainly depends on the
coordinate choice, but one can show that a broad set of
choices leads to the same classical action [48]. Still, it is
unclear whether this is enough to ensure coordinate

independence in the quantum setting. These issues will
be examined in future work [53].
While we do not report a result that demonstrates

intrinsic decoherence due to gravity here, we have provided
a model system for further analysis that could potentially
lead to such a demonstration. This work can therefore be
considered a first step towards a concrete derivation of
Penrose’s predictions within canonical quantum gravity.
The main point argued here is that Penrose’s initial
arguments rely solely on the principles of QT and GR,
and so we should thoroughly explore the possibility that his
predicted decoherence could be shown to result solely from
QT and GR before adding any assumptions about new
physics.
It could also be argued that the reduced phase space

approximation leads to an artificial form of time evolution
that is not entirely consistent with the “timeless” structure of
canonical quantum gravity. For instance, the lack of a
satisfactory interpretation of reducedphase spaceminisuper-
space quantum cosmologywas discussed in [54]. Onemight
then be drawn to the conclusion that in the limited setting of
our approximations, the evolutionwill necessarily be unitary
(by construction), and we will escape Hawking’s original
arguments about pure states evolving into mixed states [55]
by virtue of our approximation scheme.
Certainly, our simple model does not have the features

often associated with nonunitary modifications to standard
Hamiltonian evolution (such as the inclusion of micro-
scopic wormhole interactions [56]), but there is still reason
to believe the evolution defined by (48) could in principle
exhibit decoherence. For one thing, we have in some places
used an approximate Hamiltonian (98) that is quadratic
in momenta and strictly Hermitian, but it may not be
possible to define a Hermitian Hamiltonian operator that
exactly corresponds to the solution of (48) (which is

FIG. 6 (color online). Sample interference pattern, forMþ ¼ 0.05, vþ ¼ 0.0001, X− ≈ 1, L− ≈ 0.997, andM− chosen to satisfy (92),
plotted against the outer mirror position, Xþ.
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transcendental). For another, even if one could solve (48),
the resulting Hamiltonian would be nonpolynomial in both
the momenta and the coordinate X. This means that the
time evolution of the wave function at X is not described by
a finite number of derivatives at X, and is thus nonlocal, in
the sense that the evolution equation is equivalent to an
integro-differential equation with finitely many derivatives
[57–60]. While some systems can be nonlocal in this way
and yet maintain coherence (such as in the case of
relativistic particles in flat spacetime [57,58]), in other
such systems there can be unexpected behavior such as
“nonlocally induced randomness” [59,60], which would in
our case be attributable to gravity. These studies are still in
their infancy, so it remains an open question whether or not
this type of nonlocal behavior can be connected with
gravitational intrinsic decoherence.

Regardless of what the true theoretical mechanism is, the
arguments for the existence of the decoherence effect
studied here are compelling, and experimental investiga-
tions are already under way to test for signatures in micro-
optomechanical systems [61,62]. There are many technical
obstacles to overcome to minimize the effects of standard
environmental decoherence (which obscures the desired
behavior), but there is hope that these types of experiments
will bear fruit within the next decade [63].
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