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Shape dynamics is a reformulation of general relativity, locally equivalent to Einstein’s theory, in which
the refoliation invariance of the older theory is traded for local scale invariance. Shape dynamics is here
derived in a formulation related to the Ashtekar variables by beginning with a modification of the Plebanski
action. The constraints of shape dynamics and their algebra are reproduced in terms of these new variables.
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I. INTRODUCTION

Many of the challenges of quantum gravity can be tied
to the invariance of general relativity under space-time
diffeomorphisms. The aspect of this gauge symmetry
which causes difficulties is the consequent freedom to
choose an arbitrary time coordinate which slices the space-
time manifold into a one parameter family of spatial slices.
Called many fingered time, or refoliation invariance, this
gauge symmetry has a different relation to dynamics than
other better understood gauge symmetries in that it is
generated by a constraint—the Hamiltonian constraint, H,
which is quadratic in canonical momenta of the gravita-
tional field. This means it does not correspond to a vector
field on the configuration space, as is the case with
Yang-Mills gauge transformations, as well as the con-
straints which generate diffeomorphisms of the spatial
slices. Indeed, the freedom to refoliate is locally indistin-
guishable from the dynamical evolution of local fields,
so this gauge symmetry is intertwined with dynamics. In a
word, kinematics is not distinguishable from dynamics,
except when a gauge has been fixed. This leads to the
bundle of technical and conceptual challenges known as
the problem of time in quantum gravity.
One aspect of this mystery is the holographic nature of

general relativity according to which the Hamiltonian of
general relativity is a boundary term when acting on
solutions to the constraints [1]. This makes key properties
such as the positivity of energy and the stability of the
ground state highly nontrivial to demonstrate, classically
[2,3] as well as quantum mechanically [4,5].
At the classical level, while posing challenges to our

understanding, this intertwining of dynamics and kinemat-
ics is clearly correct, and has been largely understood. But
it can be questioned whether fundamentally quantum
theory can be made sense of in the absence of a preferred
time variable. After all, there are physical predictions of
linearized quantum general relativity, in which we quantize
the linearized modes of the theory on a fixed background
such as Minkowski or de Sitter space-time, that depend on a

preferred class of time coordinates. These include effects of
operator ordering, which depend on a splitting of modes
into positive and negative frequency—positive and neg-
ative with respect to a preferred class of clocks. As shown
by [6] these include the possibility of parity breaking in the
production of tensor modes in inflation. How are these
physical effects to emerge from the low energy limit of a
fully nonperturbative background independent quantum
theory of gravity if the latter does not also depend on a
preferred class of time variables?
One attractive option is then to posit that the refoliation

invariance of general relativity is only an approximate or
effective gauge invariance, applicable only in the low
energy or classical limit of a quantum theory that is defined
with respect to a preferred slicing—or class of slicings—of
space-time. The possible advantages of this have been
shown from several points of view including Horava-
Lifshitz theory [7] and causal dynamical triangulations
[8]. One advantage is that it allows parity to be broken in
the production of tensor modes in early Universe cosmol-
ogy [6]. For many reasons, a theory with a preferred time
coordinate and a bulk Hamiltonian fits better into the
structure of quantum theory.1

However, it does not seem correct to merely drop the
Hamiltonian constraint, as that introduces a new, scalar
degree of freedom, whose influence must be suppressed to
reproduce the predictions of general relativity. For it is the
Hamiltonian constraint that is responsible for gravitational
waves being pure spin two. Moreover the Newtonian limit
of the Hamiltonian constraint contains the Poisson equation
for the gravitational potential, ϕ,

∇2ϕ ¼ 4πGρ; ð1Þ
and, without that, a theory may be relativistic, but it is not a
theory of gravity!
Consequently, an even more attractive option is to trade

the refoliation invariance for another local gauge invariance
in such a way that the resulting theory has the same
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1For the case for time playing a preferred role in fundamental
physics, see [9–11].
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physical degrees of freedom as general relativity and, in
spite of loosing the invariance under many fingered time, is
locally equivalent to general relativity. This idea is realized
in a theory called shape dynamics [12,13].
Shape dynamics has been constructed and understood

starting with the canonical formulation of general relativity
by following three steps [14].
We begin with the phase space of the Arnowitt-Deser-

Misner (ADM) formulation of Hamiltonian general rela-
tivity [1] on a compact surface, Σ, whose degrees of
freedom are given by the three metric qab and canonical
momenta, ~πab, in terms of the Hamiltonian and diffeo-
morphism constraints, H and Da.
(1) Enlarge the phase space of the theory by adding a

scalar degree of freedom, ψ , and its canonical
momenta, ~πψ .

(2) Add a new scalar constraint, S, that forms a first
class algebra with Da, but gauge fixes, H.
The theory with enlarged phase space,

Γext ¼ fqab;ψ ; ~πab; ~πψg, and system of constraints,
C ¼ ðH;S;DaÞ, is called the linking theory [14].
The total system of constraints is second class,
because fH;Sg is not proportional to constraints,
but it contains two first class subalgebras, ðH;DaÞ
and ðS;DaÞ.

(3) One shows that the theory defined by the system
ðΓext; CÞ can be gauge fixed two ways. One can
gauge fix S by imposing ψ ¼ 0 which reduces the
theory to general relativity. Or one can gauge fix H
by imposing ~πψ ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp

, where c is a possibly
slice dependent constant, which breaks refoliation
invariance and leads to an equivalent formulation of
the theory with a new gauge invariance generated
by S.

There is then a central theorem which holds that there is
only a single way to construct a linking theory based on the
extended ADM phase space, invariant under spatial diffeo-
morphism [15]. That unique theory is given by choosing
the pair ðH;SÞ, where H is the ADM Hamiltonian
constraint and

S ¼ ~πψ − qab ~πab ð2Þ
is the generator of local scale transformations. Moreover,
when the gauge fixing ~πψ ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp

is chosen,

S
~πψ¼c

ffiffiffiffiffiffiffiffiffi
detðqÞ

p ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
− qab ~πab ¼ 0 ð3Þ

which is the constant-mean-curvature gauge condition
(CMC slicing).
Shape dynamics has already illuminated longstanding

issues in gravitational physics such as the origin of
irreversibility in the Universe [16] and the reasons for
the AdS/CFT correspondence [17]. And, prompted by
some promising observations [18], the quantum theory is
now the focus of current work.

In this contribution we develop shape dynamics by
addressing two questions which may open the way for
progress on its quantization.

(i) We derive shape dynamics for the more modern
formulations of general relativity where the con-
figuration space is a space of connections rather than
metrics.2 This allows general relativity to be studied
and quantized with methods derived from quantum
gauge theories such as loop quantum gravity (LQG)
and spin foam models. We study here the maximally
chiral Ashtekar variables [20], although the results
may work for arbitrary connection based theories.

(ii) We derive shape dynamics beginning with an action
principle and extending the configuration space and
Lagrangian, as opposed to starting with an extension
of the Hamiltonian theory. In particular we make use
of Plebanski’s action principle [21,22], which being
cubic in local fields, is the simplest possible form in
which the dynamics of general relativity may be
expressed.

Both these results should open paths to the quantization
of shape dynamics, by making contact with modern
techniques in quantum gravity that depend on both con-
nection variables and action principles. Some very tentative
observations about this are in the conclusions. Before that,
in the next section we construct the linking theory for shape
dynamics expressed in the Ashtekar variables by starting
with an extension of the Plebanski action and deriving the
extended phase space and constraint algebra. In Sec. III we
see how this formulation of shape dynamics arises by gauge
fixing the linking theory.

II. THE LINKING THEORY

We begin with the chiral Plebanski action [21,22],

S ¼
Z
M

Bi∧Fi −
1

2
ϕijBi∧Bj; ð4Þ

where Bi is an SUð2Þ valued two form, Fi ¼ dAi þ
1
2
ϵijkAj∧Ak is the curvature of an SUð2Þ connection, Ai,

and the symmetric matrix of scalar fields ϕij is restricted
by the condition

ϕii ¼ −3Λ: ð5Þ

We will here consider the case that all fields are real, which
means that we are describing general relativity with
Euclidean signature. The case of Lorentzian gravity involves
some subtleties which will be discussed elsewhere.
To construct the linking theory we add a scalar field ψ

and rescale

2Other approaches to expressing shape dynamics in a con-
nection formulation are in [19].
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Bi → eψBi; Ai → e−ψAi; ϕij → ϕij: ð6Þ

The action is now,

S ¼
Z
M

Bi∧fi − e2ψ

2
ϕijBi∧Bj ð7Þ

where the rescaled curvature is

fi ¼ dAi þ e−ψ

2
ϵijkAj∧Ak − Ai∧dψ : ð8Þ

A. Equations of motion

We vary the fields in (7) to find the equations of motion
of the inking theory:

δS
δBi ∶ fi ¼ e2ψϕijBj ð9Þ

δS
δAi ∶ D∧Bi ¼ dBi − e−ψϵijkAj∧Bk − Bi∧dψ ¼ 0 ð10Þ

δS
δϕij ∶ Bi∧Bj −

1

3
δijBk∧Bk ¼ 0 ð11Þ

δS
δψ

∶ e2ψ ¼ −
dðBi∧AiÞ − 1

2
e−ψϵijkBi∧Aj∧Ak

ϕijBi∧Bj : ð12Þ

B. The canonical theory

We proceed to construct the canonical theory. The first
step is to define the canonical momenta. As in the usual
theory we have

πai ¼ ϵabcBi
bc; πϕ ¼ 0: ð13Þ

There is a new canonical momentum for ψ :

πψ ¼ −πai Ai
a: ð14Þ

This gives rise to a new constraint

S ¼ πψ þ πai A
i
a ¼ 0: ð15Þ

Note that SðρÞ ¼ R
Σ Sρ generates the action of Weyl

transformations, under

δρΦ ¼ fΦ;SðρÞg ð16Þ

we have

δρAi
a ¼ ρAi

a; δρπ
a
i ¼ −ρπai ;

δρψ ¼ ρ; δρπψ ¼ 0: ð17Þ

We then rewrite the action in the totally constrained
Hamiltonian form

S ¼
Z

dt
Z
Σ
ðπai _Ai

a þ πψ _ψ − Ai
0G

i − Bi
0aJ

a
i − ρSÞ ð18Þ

where the Gauss’s law constraint is,

Gi ¼ −∂aπ
a
i þ e−ψϵijkAajπ

a
k − πai∂aψ ¼ 0 ð19Þ

and there are several second class constraints

J a
i ¼ ϵabcðfibc − e2ψϕijBbcjÞ ¼ 0: ð20Þ

These imply four first class constraints, which follow
from the symmetry and trace fixed properties of the ϕij.
These are easily seen to be the obvious modifications of
the Hamiltonian

H ¼ ϵijkðπai πbj fabk − 3Λϵabcπai π
b
jπ

c
kÞ ¼ 0 ð21Þ

and vector constraints

Va ¼ πbi f
i
ab: ð22Þ

We can combine Va with the Gauss law constraints to make
the spatial diffeomorphism constraints

Da ¼ Va − Ai
aGi: ð23Þ

This generates spatial diffeomorphisms as

DðvÞ ¼
Z
Σ
vaDa ¼

Z
Σ
ðπaiLvAi

a þ πψLvψÞ: ð24Þ

C. The shifted Gauss’s law and shifted Wilson loops

Let us take a moment to understand the Gauss’s law
constraint. It generates the modified gauge transformation,

δλAi
a ¼ fAa

i ;GðρÞg ¼ −∂aλ
i þ e−ψϵijkAajλk þ λi∂aψ :

ð25Þ

To understand this let us undo the transformation (6) and
write

Ai
a ¼ e−ψAi

a: ð26Þ

Let us considerAi
a a composite field which is a function of

Ai
a and ψ . Ai

a transforms like a gauge field under

δe−ψ λAi
a ¼ −∂aðe−ψλiÞ þ ϵijkAajðe−ψλkÞ: ð27Þ

It makes sense to then define the rescaled Gauss’s law
constraint
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~Gi ¼ e−ψGi ¼ e−ψð−∂aπ
a
i þ e−ψϵijkAajπ

a
k þ πai∂aψÞ ¼ 0:

ð28Þ

In other words we consider the shifted gauge
transformations,

~δλAi
a ¼ fAa

i ; ~GðρÞg ¼ fAa
i ;Gðe−ψρÞg: ð29Þ

We can then define a gauge invariant Wilson loop
observable labeled by a loop γ in Σ

T½γ;A;ψ � ¼ Tr½Pe
R
γ
e−ψA� ¼ Tr½Pe

R
dsAi

aτi _γ
aðsÞds�: ð30Þ

D. The algebra of constraints

We check the algebra of constraints. The first nontrivial
check to make is that the Poisson bracket of the Weyl
constraint S with the Gauss’s law constraint is first class:

fGðλiÞ;SðρÞg ¼ GðρλiÞ: ð31Þ

This is nontrivial because S has a naked Ai
a that one might

presume breaks gauge invariance.
We can also check that the modified Gauss’s law con-

straint still is first class, but the SUð2Þ structure constants,
ϵijk have become structure functions e−ψϵijk, so that

fGðλiÞ;GðμiÞg ¼ Gðe−ψϵijkλjμkÞ: ð32Þ

One can also verify that S with DðvÞ is first class:

fSðρÞ;DðvÞg ¼ SðLvρÞ ð33Þ

and that S Poisson commutes with itself

fSðρÞ;SðσÞg ¼ 0: ð34Þ
Thus, the seven constraints, Gi;Da and S form a first

class system.
One can also verify that the usual seven constraints of

general relativity Gi;Da and H form a first class system
with the usual algebra, even in their modified forms.
However, S and H do not weakly commute. Instead

we have

fHðNÞ;SðρÞg ¼ HðNρÞ þ
Z
Σ
ð3ΛNρ detðπÞ

− ðN∂aρÞϵijkπai πbjAbkÞ: ð35Þ
To summarize, we have defined the linking theory

defined by the extend phase space,

Γext ¼ ðAi
a;ψ ; ~πai ; ~πψÞ; ð36Þ

on which there is defined the system of eight constraints per
point of Σ

C ¼ ðH;S;Da;GiÞ: ð37Þ
We have shown that C is second class but contains two
seven dimensional (per point) first class subalgebras
ðH;Da;GiÞ and ðS;Da;GiÞ.

III. BACK TO GENERAL RELATIVITY OR SD BY
GAUGE FIXING THE LINKING THEORY

To get to a purely first class system that can be quantized
one needs to gauge fix either S or H. One can gauge fix S
by the condition ψ ¼ 0, this returns the theory to general
relativity. S is then trivially solved to set πψ equal to
−πai Ai

a.
The other alternative is to gauge fix H by imposing the

condition

πψ ¼ 0: ð38Þ

In this case S becomes

S ¼ ~π ¼ πai A
i
a ¼ 0: ð39Þ

This is analogous to maximal slicing.
Alternatively we can choose the analogy to CMC slicing

by choosing to gauge fix the Hamiltonian constraint by
imposing,

ξ ¼ πψ − hπψi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð ~πai Þ

q
¼ 0; ð40Þ

where

hπψi ¼
R hπψi
V

: ð41Þ

In the presence of (40) the constraint S implies

~π ¼ πai A
i
a ¼ −hπψ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð ~πai Þ

q
; ð42Þ

which implies the mean curvature, p ¼ ~πffiffiffiffiffiffiffiffiffiffi
detð ~πai Þ

p is a con-

stant. In this case H must be solved to express ψ as a
function of Ai

a and πai . This yields a first order partial
differential equation to integrate to find ψ :

wa∂aeψ ¼ e−ψðπai Aj
aπbjA

i
b − ~π2Þ þ ϵijkπai π

b
j∂aAbk

þ Λe2ψ detð ~πai Þ ð43Þ

where the vector field wa is

wa ¼ ϵijkπai π
b
jAbk: ð44Þ

To complete the gauge fixing the lapse N is fixed by the
condition that the gauge fixing condition (40) is preserved
by the Hamiltonian
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H ¼
Z
Σ
NH: ð45Þ

0 ¼ fξ; Hg results in an equation for N

0 ¼ Ne−ψ ½ ~π2 − πai A
i
aπ

b
jA

j
b� þ ∂bðNAi

a
~Eaj ~EbkϵijkÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð ~πai Þ

q
hNe−ψ ½ ~π2 − ðπai Aj

aπbjA
i
b�i

−
3

2
hπψ ieiaDbðN ~Eaj ~EbkϵijkÞ ð46Þ

where eia is the dual frame field.

IV. CONCLUDING COMMENTS

I close with brief comments on further work.
(i) The results here are so far confined to Euclidean

signature space-times. The Plebanski action for
Lorentzian signature can be approached two ways:
by complexifying the self-dual connection and then
imposing reality conditions or by going to the full
Lorentzian connection with a real Immirzi param-
eter. There appears no barrier in principle to con-
structing the linking theory by going to the extended
phase space in either case, but the details remain to
be worked out.

(ii) Loop representation for shape dynamics.
A starting point for loop quantization of shape

dynamics is the algebra of the generalized holonomy
variables discussed in Sec. II C. There is however a
tension between the local scale invariance of shape
dynamics and the minimal areas and volumes in
loop quantum gravity. There are observables in
LQG invariant under local scale transformations,
these include the angles between edges at nodes with
valence of five or higher [23].
Tim Koslowski [18] has suggested representing

loop quantum shape dynamics by using unlabeled
graphs. So the space of states is the same as LQG
without spin or intertwined labels.
Neither areas nor volumes are Weyl invariant

observables. Angles are Weyl invariant. If we restrict
attention to four talent graphs there are no diffeo-
morphism invariant angles at single nodes. But there
are angle observables for large complex subgraphs
using Penrose’s original spin geometry theorem.
So if ρ is a large subgraph of a graph Γ, connected
to the rest by Nρ edges we can use Penrose’s
spin-geometry theorem to assign an angle between

any pairs of the outgoing edges. These will be the
primary observables.

Once the states are understood, spin foam histor-
ies may be constructed from dual Pachner moves
as in [24]. As there are no labels there are only
amplitudes labeled by the kind of move, i.e.

A1→4; A4→1; A2→3; A3→2: ð47Þ

If we want time reversal invariance then there are
two independent amplitudes

A1→4 ¼ A4→1; A2→3 ¼ A3→2 ð48Þ

corresponding to the two independent constants, G
and Λ, i.e. the 1 → 4 moves generates expansion
without shear and so is labeled by Λ whereas the
2 → 3 and 3 → 2 moves are a mixture of expansion
and shear and so are related to a combination of
G and Λ.
One goal is then to calculate correlation functions

for perturbations of coarse grained angles to
propagate.

(iii) A key open issue is whether Eqs. (43) and (46) have
any solutions and, if so, whether they are unique. It
will also be important to understand the relationship
between these equations [(43) and (46)] and their
counterparts in the ADM formulation of shape
dynamics. The two sets of equations differ in that
the latter have one more derivative than those here.
It may be that the reason is that one needs to convert
from first order form to second order form to convert
connection dynamics into metric dynamics.
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