
Light rings as observational evidence for event horizons: Long-lived modes,
ergoregions and nonlinear instabilities of ultracompact objects

Vitor Cardoso
CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,

Avenida Rovisco Pais 1, 1049 Lisboa, Portugal;
Perimeter Institute for Theoretical Physics Waterloo, Ontario N2J 2W9, Canada;

and Department of Physics and Astronomy, The University of Mississippi,
University, Mississippi 38677, USA

Luís C. B. Crispino and Caio F. B. Macedo
Faculdade de Física, Universidade Federal do Pará, 66075-110 Belém, Pará, Brazil

Hirotada Okawa
CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,

Avenida Rovisco Pais 1, 1049 Lisboa, Portugal

Paolo Pani
CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,

Avenida Rovisco Pais 1, 1049 Lisboa, Portugal
and Dipartimento di Fisica, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy

(Received 24 June 2014; published 29 August 2014)

Ultracompact objects are self-gravitating systems with a light ring. It was recently suggested that
fluctuations in the background of these objects are extremely long lived and might turn unstable at the
nonlinear level, if the object is not endowed with a horizon. If correct, this result has important
consequences: objects with a light ring are black holes. In other words, the nonlinear instability of
ultracompact stars would provide a strong argument in favor of the “black hole hypothesis,” once
electromagnetic or gravitational-wave observations confirm the existence of light rings. Here we explore in
some depth the mode structure of ultracompact stars, in particular constant-density stars and gravastars. We
show that the existence of very long-lived modes—localized near a second, stable null geodesic—is a
generic feature of gravitational perturbations of such configurations. Already at the linear level, such modes
become unstable if the object rotates sufficiently fast to develop an ergoregion. Finally, we conjecture that
the long-lived modes become unstable under fragmentation via a Dyson–Chandrasekhar–Fermi mecha-
nism at the nonlinear level. Depending on the structure of the star, it is also possible that nonlinearities lead
to the formation of small black holes close to the stable light ring. Our results suggest that the mere
observation of a light ring is a strong evidence for the existence of black holes.
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I. INTRODUCTION

Our current understanding of stars and stellar evolution
strongly suggests that sufficiently compact, massive objects
are unstable against gravitational collapse. Neutron stars,
with compactness 2GM=c2R ∼ 1=3 cannot sustain masses
larger than ∼3M⊙, whereas giant stars with masses
M ≳ 10M⊙ have compactnesses orders of magnitude
smaller. In other words, ordinary matter cannot support
the enormous self-gravity of a massive and ultracompact
object, so the latter is naturally expected to be a black
hole (BH).
The above picture has been challenged by the construc-

tion of exotic objects relying on different support mech-
anisms. For example, boson stars made up of fundamental
massive scalar fields can be as compact as a neutron star

and as massive as the BH candidate at the center of our
Galaxy [1,2]. Several other—albeit more artificial—objects
such as gravastars [3], superspinars, etc., share similar
properties [4,5] and have been proposed as prototypical
alternatives to stellar and massive BHs.
The observation—or lack thereof—of a surface would be

bullet-proof indication that compact dark objects have
starlike properties or are instead endowed with an event
horizon. Such tests are extremely challenging to perform in
the optical window, but will become available with the
advent of gravitational-wave astronomy: the oscillation
modes of BHs have a very precise and well-known
structure, which can be tested against observations [6–8],
while the presence of a surface should be imprinted also on
the gravitational waves generated during the merger of two
objects [2,9,10] (but see the discussion in Sec. IV C 1).
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Fortunately, general relativity also comes to the rescue in
helping to discriminate the nature of compact objects. Very
compact and highly spinning objects with an ergoregion
but without a horizon are unstable [11]. Thus, rapidly
spinning compact objects must, in principle, be black holes
[4,5]. However, observations of these objects are marred
with uncertainties, and not all of them are highly spinning.
Furthermore, depending on the compactness and the spin,
the instability time scale might be longer than the age of
massive objects [12], making it an ineffectual mechanism.
Very recently, a new mechanism was put forward that

could exclude any ultracompact star configuration on the
grounds that such an object would be nonlinearly unstable
[13]. If correct, this mechanism would close the “BH
paradigm” project: within general relativity, the observation
of an ultracompact object would be an observation of a
BH.1 The relevance of such a corollary calls for a detailed
analysis of the decay of linear perturbations in the space-
time of ultracompact configurations, and of the nonlinear
evolution of such objects. Here, we wish to take a first step
in this direction by studying linear perturbations.
We show that linear perturbations of any ultracompact

star do become arbitrarily long lived in the eikonal regime,
and correspond to fluctuations trapped between the outer,
unstable light ring and the origin. Such modes are peaked at
the location of a stable light ring, the existence of which is a
peculiar property of these ultracompact objects. Already at
the linear level, these long-lived modes turn unstable
against the ergoregion instability [11] when a small amount
of rotation is added to the star. Furthermore, at the nonlinear
level, we provide evidence that the outer layers of the star
may fragment and subsequently fall back on the star’s core,
making it dynamically resemble a “boiling object.”
Consequent emission of gravitational radiation will cause
mass loss and a decrease in compactness, leading to stable
stars without light rings. Depending on the star structure,
fragmentation could even be due to BH formation, in which
case the end state is a BH.

II. ULTRACOMPACT OBJECTS

We define an ultracompact object as one possessing a
light ring (in addition, we will be working mostly with
horizonless objects). We focus here on static, spherically
symmetric spacetimes described by (henceforth we use
geometrical units G ¼ c ¼ 1)

ds2 ¼ −fðrÞdt2 þ BðrÞdr2 þ r2dΩ2
2: ð1Þ

If we use coordinates where the spacetime is manifestly
asymptotically flat, then fðrÞ; BðrÞ → 1 at large distances.
Moreover, the requirement that the spacetime be locally flat

and regular implies that fðrÞ and BðrÞ be finite at the origin
r ¼ 0 for any object.
The radial equation for null geodesics in this geometry

reads [14]

BðrÞfðrÞ_r2 ¼ E2 − Vgeo ≡ E2 − L2
fðrÞ
r2

; ð2Þ

where Vgeo is the geodesic potential2 and E and L are the
conserved specific energy and angular momentum of the
geodesic. The existence of one (unstable) light ring for
ultracompact objects—at roughly rLR ∼ 3M for spherically
symmetric configurations—means that Vgeo has a local
maximum at that point. Because Vgeo diverges and is
positive at the origin for ultracompact stars, this also
implies the existence of a local minimum and therefore
of a second—stable—light ring, typically within the star.
The existence of a stable light ring is thus an unavoidable

feature of any ultracompact star and has dramatic conse-
quences for the dynamics of the latter. Indeed, a stable light
ring suggests that some modes can become very long lived
[14–17]. When this happens, nonlinear effects can become
important and destabilize the system. In a nutshell, this was
the argument recently put forward to suggest that ultra-
compact configurationsmight be nonlinearly unstable [13].3

In the following we will test some of these consequences
by computing the modes of ultracompact configurations
and the time evolution of wave packets in the vicinities of
such objects. We consider two different ultracompact
objects—constant density stars and “gravastars"—briefly
described below. Our results apply also to ultracompact
boson stars, which were recently built in Ref. [2], or to any
other ultracompact object, as will become apparent from
the technical details we present.

A. Constant-density stars

Constant-density stars are excellent idealized models to
explore the properties of ultracompact objects. Because of
the simplicity of the model, the metric is known analyti-
cally in the entire space. Outside the star, the spacetime is
described by the Schwarzschild metric. Inside the star, the
metric coefficients are given by [19]

fðrÞ ¼ 1

4R3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3 − 2Mr2

p
− 3R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − 2M

p �
2
; ð3Þ

BðrÞ ¼
�
1 −

2Mr2

R3

�−1
; ð4Þ

1We are assuming that the instability time scale is short enough
to dominate the dynamical evolution of the compact object; see
below for a discussion.

2To simplify the comparison with the effective potential for
wave propagation, here we defined the geodesic potential
Vgeo ¼ E2 − BðrÞfðrÞVr, where Vr is the effective potential
adopted in Eq. (29) of Ref. [14].

3Similar arguments have also been recently used to suggest that
the super-radiant instability could lead to turbulent states [18].
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where R is the radius of the star. The pressure is given by

pðrÞ ¼ ρc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 8πR2ρc

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 8πr2ρc

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 8πr2ρc

p
− 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 8πR2ρc

p ; ð5Þ

where ρc ¼ 3M=ð4πR3Þ is the density of the uniform star.

B. Thin-shell gravastars

“Gravitational condensate stars,” or gravastars, have
been devised to mimic BHs [3]. In these models, the
spacetime is assumed to undergo a quantum phase tran-
sition in the vicinity of the would-be BH horizon. The latter
is effectively replaced by a transition layer and the BH
interior by a segment of de Sitter space [20]. The effective
negative pressure of the de Sitter interior contributes to
sustain the self-gravity of the object for any compactness.
In the static case these models have been shown to be
thermodynamically [3] and dynamically [10,21,22] stable
for reasonable equations of state.
Here we focus on the simplest static thin-shell gravastar

model, for which the exterior metric for r > R is identical
to Schwarzschild, whereas the interior, r < R, is described
by a de Sitter metric,

fðrÞ ¼ BðrÞ−1 ¼ 1 −
2M
R

r2

R2
; ð6Þ

where M is the gravastar mass measured by a static
observer at infinity and the effective cosmological constant
of the de Sitter region is Λ≡ 6M=R3. The junction
conditions at r ¼ R surface have already been partially
chosen by requiring the induced metric to be continuous
across the shell (cf. Ref. [10] for details). Israel’s junction
conditions [23] then relate the discontinuities in the metric
coefficients to the surface energy Σ and surface tensionΘ of
the shell as [21]

½½B−1=2�� ¼−4πRΣ;
��

f0B−1=2

f

��
¼ 8πðΣ−2ΘÞ; ð7Þ

where the symbol “[[…]]” denotes the “jump” in a given
quantity across the spherical shell. In the simplest model
considered here, the coefficient B is continuous across the
shell, and therefore Σ ¼ 0, whereas the surface tension is
nonzero.

III. PERTURBATIONS OF
ULTRACOMPACT OBJECTS

Various classes of perturbations of the metric (1) are
described by a master equation,

� ∂2

∂t2 −
∂2

∂r2� þ VslðrÞ
�
Ψðr; tÞ ¼ 0; ð8Þ

where ∂2

∂r2� ¼
f
B

∂2
∂r2 þ f

2B ðf
0
f −

B0
BÞ ∂

∂r and

VslðrÞ ¼ f

�
lðlþ 1Þ

r2
þ 1− s2

2rB

�
f0

f
−
B0

B

�
þ 8πðprad −ρÞδs2

�
;

ð9Þ

where the prime denotes a derivative with respect to the
coordinate r, which is related to the tortoise coordinate r�
through dr=dr� ¼

ffiffiffiffiffiffiffiffiffi
f=B

p
. In the potential (9) l ≥ s,

s ¼ 0; 1 for test Klein–Gordon and Maxwell fields, respec-
tively, whereas s ¼ 2 for axial perturbations of a (generi-
cally anisotropic) fluid in general relativity (where
prad ¼ Tr

r and ρ ¼ −Tt
t are the radial pressure and the

energy density of the fluid, respectively). In the latter case,
using the field equations, the potential above reduces to

V2lðrÞ ¼ f

�
lðlþ 1Þ

r2
−
6mðrÞ
r3

− 4πðprad − ρÞ
�
; ð10Þ

where mðrÞ is defined through BðrÞ ¼ ð1 − 2mðrÞ=rÞ−1.
Clearly, assuming a time dependence Ψðr; tÞ ¼ ψðrÞe−iωt,
the radial function ψ satisfies a Schrödinger-like equation,
d2ψ=dr2� þ ½ω2 − VslðrÞ�ψ ¼ 0.
For a thin-shell gravastar, the gravitational perturbations

in the interior of the star are described by the potential (10),
with −prad ¼ ρ ¼ Λ=ð8πÞ and mðrÞ ¼ Mðr=RÞ3. In this
case the Schrödinger-like problem in the interior simplifies
considerably and can be solved analytically in terms of
hypergeometric functions F½a; b; c; z� [10]

ψðrÞ ¼ rlþ1ð1 − Cðr=2MÞ2ÞiMωffiffi
C

p

× F

�lþ 2þ i 2Mωffiffiffi
C

p

2
;
lþ 1þ i 2Mωffiffiffi

C
p

2
; lþ 3

2
;
Cr2

4M2

�
;

ð11Þ

where C ¼ ð2M=RÞ3. The master function above describes
both gravitational axial and polar perturbations of the
gravastar interior and has to be matched with the
Regge–Wheeler or Zerilli function in the Schwarzschild
exterior using suitable junction conditions [10].

IV. LONG-LIVED MODES OF
ULTRACOMPACT OBJECTS

A. A WKB analysis

As previously discussed, ultracompact stars have two
light rings. From a point of view of massless fields, which
propagate as null particles in the eikonal regime, the light
rings effectively confine the field and give rise to long-lived
modes. Before analyzing in some detail each of the
specific geometries, let us perform a WKB analysis of
these trapped modes.
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The effective potential for wave propagation, VslðrÞ,
shares many similarities with the geodesic potential VgeoðrÞ
to which it reduces in the eikonal limit [14]: it has a local
maximum, diverges at the origin and is constant at
infinity. Examples of the effective potential VslðrÞ are
shown in Fig. 1, corresponding to l ¼ 10 gravitational axial
perturbations of a uniform star with compactness
M=R ∼ 0.435 (black solid curve) and of a thin-shell
gravastar with compactness M=R ∼ 0.476 (dashed red
curve), respectively.
Because the potential necessarily develops a local mini-

mum, it is possible to show that in the eikonal limit (l ≫ 1)
the spectrum contains long-lived modes for which the
damping time grows exponentially with l. To do so, we
follow closely the analysis by Festuccia and Liu [24,25].4

In the eikonal limit the potential can be approximated as
VslðrÞ ∼ l2f=r2. Let us define ra, rb and rc to be the three
real turning points of ω2

R − VslðrÞ ¼ 0 as shown in Fig. 1
for the black solid curve. When such turning points exist,
the real part of the frequency of a class of long-lived modes
in four spacetime dimensions is given by the WKB
condition (see also Ref. [26])

Z
rb

ra

drffiffiffiffiffiffiffiffiffi
f=B

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
R − VslðrÞ

q
¼ πðnþ 1=2Þ; ð12Þ

where n is a positive integer and we have used the fact that
dr� ¼ dr=

ffiffiffiffiffiffiffiffiffi
f=B

p
. The imaginary part of the frequency ωI

of these modes is given by

ωI ¼ −
1

8ωRγ
e−Γ; ð13Þ

where

Γ ¼ 2

Z
rc

rb

drffiffiffiffiffiffiffiffiffi
f=B

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VslðrÞ − ω2

R

q
; ð14Þ

γ ¼
Z

rb

ra

drffiffiffiffiffiffiffiffiffi
f=B

p cos2χðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
R − VslðrÞ

p ; ð15Þ

χðrÞ ¼ −
π

4
þ
Z

r

ra

drffiffiffiffiffiffiffiffiffi
f=B

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
R − VslðrÞ

q
: ð16Þ

By expanding Eqs. (12) and (13), one can show that, to
leading order in the eikonal limit, the mode frequency reads

ω ∼ al − ibe−cl l ≫ 1; ð17Þ

where a, b and c are positive constants. By expanding
Eq. (12) near the minimum of the potential displayed in
Fig. 1, it is possible to show that

a ∼ΩLR2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrLR2Þ

p
rLR2

; ð18Þ

where ΩLR2 is the angular velocity of the stable null
geodesic at the light-ring location r ¼ rLR2. For con-
stant-density stars this orbital frequency reads

ΩLR2 ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðR − 9M=4Þp

R2
ð19Þ

and is vanishing in the Buchdahl limit R → 9M=4.
For gravastars

ΩLR2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − 2M

p

R3=2 ð20Þ

and is vanishing at the Schwarzschild limit R → 2M.

B. Numerical results: The spectrum of
linear perturbations

A numerical computation of the quasinormal mode
(QNM) frequencies [7] shows that long-lived modes are
indeed part of the spectrum, as indicated by the WKB
analysis. In Fig. 2 we present some of these modes for
constant-density ultracompact stars with R=M ¼ 2.3;
2.4; 2.5 (left panels) and for a thin-shell gravastar with
R ¼ 2.2M (right panels). The exact numerical values

0 2 4 6 8 10
r/M

0

2

4

6
V

2l
(r

) 
M

2

star, R=2.3M, l=10
gravastar, R=2.1M, l=10

rcrbra ω2

FIG. 1 (color online). Examples of the potential governing
linear perturbations of a static ultracompact star. The black solid
line and the red dashed line correspond to l ¼ 10 gravitational
axial perturbations of a uniform star with R ¼ 2.3M and of a
gravastar with R ¼ 2.1M, respectively.

4These authors study the Schwarzschild–anti-de Sitter geom-
etry, for which VslðrÞ shares many of the properties above: it
diverges at the boundaries, vanishes near the horizon and always
displays a maximum at the unstable light ring.
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obtained via direct integration and continued fractions
(cf. e.g. Ref. [7] for details) are denoted by markers and
are compared against the WKB prediction (lines). These
independent computations are in very good agreement,
validating each other.
For uniform stars (left panels of Fig. 2) we present the

gravitational axial modes which are governed by the
effective potential in Eq. (10). The existence of trapped
modes in ultracompact stars was discovered in Ref. [27]
(see also Refs. [28], [29], and [30] for a review). Our
analysis perfectly agrees with previous results and extends
the latter in the case of large values of l.
For gravastars (right panels of Fig. 2) we present both

gravitational axial and gravitational polar perturbations.
The latter depends on the equation of state of the thin shell
through the parameter v2s ≡ ∂Σ=∂Θ, which is related to the
speed of sound on the shell. To compute the gravastar
modes we matched the exact solution (11) to the Regge–
Wheeler or the Zerilli function in the Schwarzschild
exterior for axial or polar modes, respectively, as discussed
in detail in Ref. [10].
We note that the critical value of l for which the behavior

(17) sets in depends strongly on the compactness: the larger
the star radius (constrained to R=M ≲ 3), the larger the
critical value of l. Nonetheless, the qualitative behavior is
largely independent of the compactness, the nature of the

modes and even the nature of the ultracompact object, as
long as the latter is compact enough to support long-lived
modes. In particular, our results show that trapped modes
also exist in the polar sector of gravitational perturbations,
which are coupled to the fluid perturbations [30] and that
dominate the linear response of the object to external
sources.
In the top panel of Fig. 3 we show a representative

example of the eigenfunctions corresponding to the long-
lived modes of an ultracompact object. This plot refers to a
uniform star with R ¼ 2.3M, but different choices of the
compactness and different models give similar results. The
eigenfunctions are confined within the unstable light ring
and within the star. Furthermore, they peak close to the
location of the stable light ring, and high-l eigenfunctions
are more and more localized around r ∼ rLR2. It will be
important in the following (cf. Sec. VI) to observe that the
eigenfunctions spread over a distance R=l in the angular
direction and ∼l−1=2 in the radial direction.

C. Numerical results: Time evolution of wave packets

In the middle and bottom panels of Fig. 3 we summarize
the evolution of a Gaussian scalar wave packet in the
background of an ultracompact constant-density star.
Initially the wave packet is localized outside the star and
has the form

0

1

2

3

4
ω

R
 M

R=2.3 M
R=2.4 M
R=2.5 M

2 4 6 8 10 12 14 16 18
l

2 4 6 8 10 12 14 16 18
l

10
-20

10
-15

10
-10

10
-5

-ω
I M

axial, exact
WKB
polar, exact

gravastar, R = 2.2 M constant density star

FIG. 2 (color online). Real and imaginary parts of the long-
lived modes of a uniform star for different compactness (left
panels) and for a gravastar with R ¼ 2.2M (right panels). The
lines are the WKB results, whereas markers show the numerical
points (when available) obtained using direct integration or
continued fractions. For uniform stars we show gravitational
axial modes, whereas for a gravastar we show both axial modes
(red circles) and gravitational polar modes with vs ¼ 0.1 (green
squares), where vs is related to the speed of sound on the shell
[10]. Note that the modes of a static gravastar become isospectral
in the high-compactness regime [10].

0 1 2 3 4
r/M

0.00

0.05

0.10

0.15

|ψ
(r

)|

l=2, ω M ~ 0.235-10
-5

 i
l=10, ω M ~ 0.926

10-8

10-6

10-4

|ψ
(r

=
0,

t)
| l=2

l=10

10
2

10
3

10
4

t/M

10-4

10-2

|ψ
(r

=
40

M
,t)

|

R=2.3 M

stable light ring unstable light ring

FIG. 3 (color online). Top panel: gravitational axial eigenfunc-
tions of an ultracompact star for l ¼ 2 and l ¼ 10. The radius of
the star, R ¼ 2.3M, is marked by a vertical line. High-l modes
correspond to eigenfunctions which are localized near the stable
light ring. Middle and bottom panels: time evolution of a scalar
Gaussian wave packet with width σ ¼ 4M centered at r0 ¼ 6M
in the background of a constant-density star of radius R ¼ 2.3M
for l ¼ 2 and l ¼ 10. The waveform extracted at r ¼ 0 (middle
panel) and r ¼ 40M (bottom panel). Note that the Schwarzschild
ringdown phase lasts until t ∼ 60M.

LIGHT RINGS AS OBSERVATIONAL EVIDENCE FOR … PHYSICAL REVIEW D 90, 044069 (2014)

044069-5



_Ψð0; rÞ ¼ exp

�
−
ðrþ 2 log ðr − RÞ − r0Þ2

σ2

�
; ð21Þ

where r0 and σ denote the initial position and the width of
the packet. The overdot denotes the time derivative.

1. Imprints of the Schwarzschild BH geometry on
ultracompact stars

As shown in Fig. 3, the signal initially consists of a
damped sinusoid, for which the frequency and damping
time match closely the quasinormal frequencies of the
Schwarzschild BH spacetime [6,7]. Thus, although the
QNMs of Schwarzschild BHs are not part of the spectrum
of this ultracompact star, they are still excited at early times
and are an important part of the response of this system.
Such an interesting “mode camouflage” phenomenon was
observed earlier in the context of BHs surrounded by matter
[16,17]. In the present context, it also has a natural
interpretation: the modes of BHs “live” on the external
null circular geodesic [14], which is also present for
ultracompact stars. Accordingly, we expect the BH ring-
down stage to dominate until other scales become impor-
tant, in our case, after fluctuations cross the star.
This feature has two important consequences for gravita-

tional-wave astronomy and for attempts at proving or ruling
out the existence of BHs.Any spacetimewhich—close to the
unstable null circular geodesic—resembles the Kerr geom-
etry is expected to ringdown like a Kerr BH at early times. In
otherwords, both dirtyBHs and ultracompact starswill show
a dominant ringdown stage which is indistinguishable from
that of vacuumKerr BHs. This was observed for dirty BHs in
Ref. [16,17], and our results show that it holds even for
ultracompact objects, which can be looked at as a deformed
BH with no horizon. Thus, current gravitational-wave ring-
down searches which assume the source is described by the
Kerr geometry [31,32] are most likely to perform well under
any circumstances.
These results also have an impact on proposed methods

to discriminate between BHs and other objects. These

proposals typically hinge on the no-hair theorem and the
characteristic oscillation modes of these objects [8]. The
argument is that different objects have different oscillation
modes, and the modes of BHs are known very accurately;
thus, the measurement of these modes can be used to infer
which object is oscillating. While the reasoning is correct, in
practice the ringdown mode of any object which is compact
enough will be dominated at early times by a universal
ringdown: it is a superposition of theQNMsof a vacuumBH.
Furthermore, it is commonly believed that different

boundary conditions (for example due to the presence of
an event horizon instead of that of a surface) would
drastically change the spectrum of ringdown modes.
While it is true that the full QNM spectrum (as obtained
in the frequency domain) is strongly affected by the
boundary conditions, nonetheless the early-time behavior
of the waveforms is mostly dominated by the macroscopic
“local” properties of the object (i.e. by the geometry near
the unstable light ring), irrespectively of the existence of a
horizon [16,17]. It is still possible—though probably more
challenging—to dig out the signal in the late-time stage,
which will contain the object’s true modes, but this would
require large signal-to-noise detections [16,17].

2. Long-lived perturbations

The mode camouflage phase we just described lasts
roughly 60M, which corresponds to the (round-trip) light-
crossing time for the star under consideration. The light
crossing time seems to be decisive in the low-frequency
modulation of the signal. At very late times, the modes of
the system set in, and the field decays very slowly. The
decay rate depends on the initial conditions and on the
model, but it is always slower than 1=t. For example, for
the case shown in the bottom panels of Fig. 3 we estimate
the decay to be at most ∼t−0.4 inside the star for the l ¼ 10
mode assuming it is a power-law decay. The results are
equally well described, at late times, by a 1= log t behavior.
The reason why the signal decays so slowly at late-times is
apparent from the top panel of Fig. 3 and also in Fig. 4: the

FIG. 4. Scalar eigenfunctions of an ultracompact star with R ¼ 2.3M for m ¼ 0 and l ¼ 6; 10; 20 (from left to the right). We find that
the eigenfunctions have a typical width that scales as l−1 in the angular direction and a width in the radial direction that depends on the
model used for the star, but typically ranges between l−0.4 − l−0.8. Therefore, the “aspect ratio” of the perturbation ∼l0.6 − l0.2 grows in
the large-l limit, and the perturbation becomes more and more elongated along the radial direction.
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corresponding eigenfunctions in the frequency domain
are trapped inside the star and localized near the stable
light ring.

V. SPINNING ULTRACOMPACT OBJECTS AND
THE ERGOREGION INSTABILITY

The long-lived modes that generically exist for any static
ultracompact star can turn unstable when the star is
spinning. This instability is related to the ergoregion
instability which affects any spacetime possessing an
ergoregion but not a horizon [11]. The ergoregion is
defined as the spacetime region in which observers must
be dragged along with rotation and cannot remain at rest.
This corresponds to the timelike Killing vector ξt becoming
spacelike, i.e.

ξt · ξt ¼ gttðr; θÞ > 0: ð22Þ

In fact, the existence of long-lived modes in the static limit
is the underlying reason of the ergoregion instability. This
was first discussed by Comins and Schutz, who studied a
scalar field propagating in a slowly rotating background in
the eikonal limit [15]. They considered the line element

ds2 ¼ −FðrÞdt2 þ BðrÞdr2 þ r2dθ2

þ r2sin2θðdϕ −ϖðrÞdtÞ2; ð23Þ

which, although not being a solution of Einstein’s equa-
tions coupled to a fluid, should approximate the exact
metric describing a spinning star in the case of slow rotation
and high compactness [15]. In such a metric, the ergoregion
is defined by

ϖðrÞ sin θ >

ffiffiffiffiffiffiffiffiffiffi
FðrÞp
r

; ð24Þ

and its boundary, the ergosphere, is topologically a torus.
In the eikonal limit, the Klein–Gordon equation in the
background (23) can be written in the form [15]

Ψ00 þm2
B
F
ðω̄þ VþÞðω̄þ V−ÞΨ ¼ 0; ð25Þ

where ω̄ ¼ ω=m is a rescaled frequency,m is the azimuthal
number associated to the axisymmetry of the background,
and

V� ¼ −ϖ �
ffiffiffiffi
F

p

r
ð26Þ

are the effective potentials that describe the motion of
(counterrotating for the plus sign and corotating for the
minus sign) null geodesics in the equatorial plane of the
geometry (23).

Now, the boundary of the ergoregion (if it exists)
corresponds to two real roots of Vþ ¼ 0 and Vþ < 0
inside the ergoregion. Because Vþ → þ∞ at the center
and attains a positive finite value in the exterior, it is clear
that the ergoregion must contain a point in which Vþ
displays a (negative) local minimum. This simple argument
shows the important result that the presence of an ergo-
region in a horizonless object implies the existence of stable
counterrotating photon orbits.
Furthermore, Eq. (25) supports unstable modes for

which the instability time scale in the eikonal limit grows
exponentially, τ≡ 1=ωI ∼ 4αe2βm, where α and β are two
positive constants [15]. This instability can be understood
from the fact that the corresponding modes are localized
near the stable photon orbit, which is situated within the
ergosphere, and are confined within the star. This confine-
ment provides the arena for the instability to grow through
the negative-energy states that are allowed within the
ergoregion [11]. Likewise, this argument also explains
why spinning BHs—that also possess a light ring and an
ergoregion—are linearly stable, because the presence of the
horizon forbids the existence of trapped modes.
Although the analysis of Ref. [15] is approximate, such a

result has been subsequently extended to low values of
ðl; mÞ [33] and to gravitational axial perturbations [34]. In
both cases, the instability time scale has been found to be
much shorter, ranging from seconds to minutes for low-m
gravitational perturbations of uniform constant stars [34].
The conclusion of these studies is that, if long-lived modes
exist in the static case, they become unstable for sufficiently
high rotation rates. The onset of the instability precisely
corresponds to the appearance of an ergoregion in the
interior of an ultracompact star [34]. The same picture
applies to other ultracompact objects such as gravastars and
boson stars, which become linearly unstable when they
possess an ergoregion [4] with an instability time scale that
depends strongly on the compactness [12]. The same
instability affects also Kerr-like BH geometries spinning
above the Kerr bound (so-called superspinars [5]) when the
dissipation at the horizon is not enough to quench the
negative-energy states trapped within the ergoregion [35].
Finally, the ergoregion instability of acoustic geometries
was recently reported [36,37].

VI. NONLINEAR REGIME

The argument for nonlinear instability given earlier is
anchored on the large lifetimes of linear fluctuations. This
argument carries over equally to other more familiar
contexts, e.g. to conservative systems with normal modes.
Generically, however, normal-mode systems are an ideali-
zation and neglect any form of dissipation. The outstanding
feature of ultracompact stars is that gravitational-wave
dissipation is already included and is negligible.
We can foresee at least two possible outcomes for the

nonlinear development of ultracompact stars; which one is
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actually chosen depends on the details of the object’s
composition:

(I) Other dissipation mechanisms are relevant, in which
case the star is stable. Loss of energy through
gravitational-wave emission is suppressed for ultra-
compact stars, but this is not the only dissipation
mechanism. For example, viscosity in neutron stars
plays an important role on relatively short time
scales, and may quench possible nonlinear instabil-
ities for very compact stars. Simple expressions for
the dissipative time scales as functions of the angular
number l and the parameters of a neutron star were
derived in Ref. [38],

τη ¼
10

ðl − 1Þð2lþ 1Þ ρ
−5=4
14 T2

5

�
R

4.5 km

�
2

s; ð27Þ

τκ ¼ 1014τη
ðl − 1Þ2

l3
ρ19=1214 T−2

5

�
R

4.5 km

�
2

; ð28Þ

τζ > 61τη
η

ζ
; ð29Þ

where ρ14 ¼ ρ=ð1014 g=cm3Þ; T5 ¼ T=ð105KÞ; T is
the neutron-star temperature; and τη, τκ and τζ are
the time scales for shear viscosity, thermal conduc-
tivity and bulk viscosity, respectively, whereas η, ζ
and κ are dissipation coefficients.
These are order-of-magnitude estimates, valid in

principle only for neutron stars. Any hypothetical
ultracompact star will, however, also be affected by
dissipation of this nature, for which the time scale
becomes shorter at shorter scales, i.e., larger l. Note,
however, that some modes are only weakly coupled
with the fluid perturbations (e.g. gravitational axial
modes and w-modes in general [30]) so that only a
small fraction of the energy contained in such modes
can be dissipated through viscosity. Furthermore,
the interior of exotic ultracompact stars could be
made of a superfluid as in self-gravitating Bose–
Einstein condensates [1], and also in this case
viscosity is expected to be negligible.

(II) Nonlinear effects become relevant. Let us now
assume that there is no dissipation mechanism
strong enough to damp linear perturbations on
realistic time scales. Recent studies of gravitational
collapse of small scalar-field wave packets in anti-de
Sitter geometries (which are another example of
conservative systems with normal modes at the
linear level) suggest that broad classes of initial
data always collapse to form BHs, through a
“weakly turbulent” mechanism [39]. The process,
still not well understood, involves blueshift of initial
perturbations which eventually collapse to a small
BH. Although originally discovered in anti-de Sitter,

the mechanism works also in flat spacetime [40] if
the boundary conditions prevent leakage of energy
to infinity. Generalically, one expects nonlinear
effects to play a role whenever the linear fluctuations
are longer lived than any nonlinear time scale. It is
unknown whether certain extra conditions on the
resonant frequencies of the system have to be met
[41,42], but it is likely that the mechanism is
always active at finite amplitude perturbations.
Ultracompact stars trap a high multipole wave very
effectively, and we therefore argue that these modes
are potentially subject to the weakly turbulent
instability.
If active for ultracompact stars, it most likely

involves a growth of curvature close to the stable
null geodesic and consequent collapse to small BHs.
The number of such small BHs would be tied to the
angular number of the mode in question and would
scale as l. For large enough initial fluctuation, the
BHs that would form can be large enough to
swallow the star in less than a Hubble time.
Do nonlinear effects always conspire to produce

catastrophic results? The answer is no. Recent
studies show that there exist initial data which are
nonlinearly stable against such a weakly turbulent
mechanism [41–43]. How generic such initial con-
ditions are is unclear at the present time. Nevertheless,
a plethora of other nonlinear effects might play a role,
and one in particular is likely to be dominant:
fragmentation via a “Dyson–Chandrasekhar–Fermi”
(DCF) mechanism, which is akin to the Ray-
leigh–Plateau fragmentation of fluid cylinders
[44–47]. To show this point we observe that, at
linear level, the eigenfunctions have a width ∼l−1
in the angular direction θ and a width ∼l−χ in the
radial direction, where χ < 1 depends on the star
model (cf. Figs. 3 and 4 for a representative
example of a constant-density star). Therefore,
the perturbations are asymmetric, elongated along
the radial direction, and their elongation grows
with l.
Let us now assume for simplicity that we are

dealing with axisymmetric modes. Axisymmetric
distributions of matter such as these elongated,
long-lived modes are unstable against the same
DCF mechanism that affects thin cylinders or
rings of matter [44–47]. The minimum growth time
scale of this instability scales as τDCF ∼ δρ−1=2,
where δρ is the density fluctuation. The requirement
that nonlinearities take over is that τDCF is much
smaller than the lifetime of linear fluctuations.
Because the latter grows exponentially with l for
an ultracompact object, it is easy to show that
fragmentation becomes important already at mod-
erately small values of l even for δρ=ρ ∼ 10−16 or
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smaller. In other words, we are arguing that even
though weak turbulence may be negligible, frag-
mentation instabilities are not.
The fragmentation of the linear eigenfunction

leads to a configuration which can look like that
depicted in Fig. 5 (see also nonlinear results for
fragmentation of black strings [48]): it consists of a
spherically symmetric core surrounded by droplets
of the star fluid, for which the sizes are much
smaller than that of the original star. It is easy to see
that these smaller droplets, although of the same
material as the original star, are much less compact
because they are much smaller and are therefore
expected to be themselves stable. Likewise, the core
of the star is also less compact and stable. On
longer time scales, these droplets rearrange and fall
into the core, and the process continues. The
dynamical picture looks like that of a “boiling”
fluid, and radiates a non-negligible amount of
radiation. If this scenario is correct, a sizable
fraction of the object’s initial mass can be dispersed
to infinity, possibly reducing the compactness of the
final object to values which no longer allow for the
existence of light rings.

VII. CONCLUSIONS

Strong and growing evidence suggests that supermassive
compact objects in our Universe are BHs. Nevertheless,

incontrovertible proofs are hard to come by andwould likely
require detection of Hawking radiation from the event
horizon, the latter being negligible for astrophysical objects.
As such, fundamental mechanisms that forbid the existence
of ultracompact stars are mostly welcome and would
automatically imply that (the much more easily achievable)
observations of a light ring are detections of BHs in fact.
There are at least two known mechanisms that might do just
that. One such mechanism is the possible nonlinear insta-
bility of any ultracompact star, which has one unstable light
ring in its exterior (and another stable light ring in its interior).
We have provided additional evidence that such objects have
long-lived fluctuations which may fragment the star and
make it less compact on long time scales. Alternatively, weak
turbulence might lead to collapse of the star into a BH.
Whether or not the instability is actually relevant depends on
possible additional dissipation mechanisms.
When rotation is added, long-lived fluctuations become

unstable already at the linear level. This is also known as
ergoregion instability, and has been used to exclude highly
spinning, compact objects [4,5,35]. Taken together, these
results suggest that the observation of the light ring alone—
a challenging task which is nevertheless within the reach of
next facilities such as, for instance, the Event Horizon
Telescope [49]—is evidence enough for the existence of
BHs, a truly remarkable consequence.
Clearly, future work should consider the difficult but

fundamental problem of following long-lived fluctuations
through the nonlinear regime, to understand the role of
dissipation, the time scale associated with possible non-
linear instabilities, and the issue of the final state.
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FIG. 5. Pictorial description of the nonlinear evolution of a
perturbed ultracompact object. The figure represents the equatorial
density profile of the object. The solid circumference represents the
unperturbed surface, whereas the dashed line represents the stable
light ring at its interior. Solid circles represent condensation of
nonlinear-growth structures which are the biproduct of the DCF
instability. The core is left unperturbed and is now a less compact—
and therefore stable—configuration. Likewise, the solid circles are
also stable, and subsequent time evolution presumably leads to a
fallback on the core. Gravitational radiation, generated during this
and subsequent repetitions of this process, will lead to loss of mass
and possibly a reduction of the star’s compactness.
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