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Lovelock theory is a natural extension of the Einstein theory of general relativity to higher dimensions in
which the first and second orders correspond, respectively, to general relativity and Einstein–Gauss–Bonnet
gravity. We present exact black hole solutions of D ≥ 4-dimensional spacetime for first-, second-, and
third-order Lovelock gravities in a string cloud background. Further, we compute the mass, temperature,
and entropy of black hole solutions for the higher-dimensional general relativity and Einstein–Gauss–
Bonnet theories and also perform thermodynamic stability of black holes. It turns out that the presence of
the Gauss–Bonnet term and/or background string cloud completely changes the black hole thermody-
namics. Interestingly, the entropy of a black hole is unaffected due to a background string cloud. We
rediscover several known spherically symmetric black hole solutions in the appropriate limits.
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I. INTRODUCTION

Lovelock gravity is one of the natural generalization of
Einstein’s general relativity, introduced by David Lovelock
[1], the action of which contains higher-order curvature
terms. The Lovelock action in Dð≥ 4Þ-dimensional space-
time reads

I ¼ 1

2κ2D

Z
dDx

ffiffiffiffiffiffi
−g

p X½D=2�

p¼0

αðpÞLðpÞ þ Imatter; ð1Þ

LðpÞ ≔
1

2p
δ
μ1���μpν1���νp
ρ1���ρpσ1���σpRμ1ν1

ρ1σ1 � � �Rμpνp
ρpσp ; ð2Þ

where κD is a constant related to GD via κD ≔
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGD

p
with κ2D > 0, the coupling constant αðpÞ has dimension
of ðlengthÞ2ðp−1Þ, and LðpÞ is the Euler density of a
2p-dimensional manifold. The symbol δ describes a totally
antisymmetric product of Kronecker deltas, normalized to
take values 0 and �1 [1,2], defined by

δ
μ1���μp
ρ1���ρp ≔ p!δμ1½ρ1 � � � δ

μp
ρp�; ð3Þ

where αð0Þ is related to the cosmological constant Λ by
αð0Þ ¼ −2Λ. The Lovelock action I reduces to the Einstein–
Hilbert action in four dimensions, and its second term is the
Gauss–Bonnet invariant. Lovelock theories are distinct,
among the larger class of general higher-curvature theories,
in having field equations involving not more than second
derivatives of the metric. Consequently, Lovelock gravity
theories are free from many of the pathologies that affect
general higher derivative gravity theories.

As higher-dimensional members of Einstein’s general
relativity family, Lovelock gravities allow us to explore
several conceptual issues of gravity in depth in a broader
setup. Most interestingly, one can include features of black
holes such as their existence and uniqueness theorems, their
thermodynamics, the definitions of their mass and entropy,
their horizon properties, etc. Also, such a theorymay be used
in the context of theAdS/CFT correspondence to investigate
the effects of including higher-curvature terms [3]. It has,
therefore, been explored to a large extent, also possibly for its
appearance in strings theories at low energies [4]. In this
paper, we will be concerned with the black hole solutions
of this Lovelock theory, and we will discuss how higher-
curvature corrections to black hole physics substantially
change the qualitative featureswe know fromour experience
with black holes in general relativity. Since their inception,
steady attention has been devoted to black hole solutions,
including their formation, stability, and thermodynamics.
The spherically symmetric static black hole solution for
second-order Lovelock gravity (the theory that is usually
referred as the Einstein–Gauss–Bonnet theory) was first
obtainedbyBoulware andDeser [5], and thiskindof solution
for third-order Lovelock gravity was introduced in Ref. [6].
Exact black hole solutions of the former can be found in
Ref. [7] and the latter inRefs. [8–10].Theblackhole solution
in Einstein–Gauss–Bonnet theory in a string cloud model
was considered in Refs. [10,11].
The recent theoretical developments signal toward a

scenario in which the fundamental building blocks of the
Universe are extended objects instead of point objects and
have been considered quite seriously [12]. The most natural
and popular candidate is one-dimensional strings object.
This resulted in the intense level of activity towards the
study of the gravitational effects of matter in the form of
clouds of both cosmic and fundamental strings [11,13–15].
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In addition, the intense level of activity in string theory has
led to the idea that many of the classic vacuum schemes,
such as the static Schwarzschild black hole (point mass),
may have atmospheres composed of a fluid or field of
strings. Further, this two-fluid atmosphere can model an
array of physical situations at diverse distance scales, which
can depict the atmosphere around a black hole with a
distance scale of multiples of Schwarzschild radii. It could
also describe a globular cluster with components of a dark
matter at a scale tuned to the order of parsecs. The event
horizon for the classical Schwarzschild metric in the
background of a cloud of strings has a modified radius
rH ¼ 2M=ð1 − aÞ with a as a string cloud parameter [13],
thereby enlarging the Schwarzschild radius of the black
hole by the factor ð1 − aÞ−1, which may have several
astrophysical consequences, e.g., on a wormhole [16].
Further, Glass and Krisch [17] have demonstrated that
allowing the Schwarzschild mass to be a function of radial
position builds an atmosphere with a string fluid stress
energy around a static, spherically symmetric, object. Thus,
the study of Einstein’s equations coupled with a string
cloud, in both general relativity and modified theories, may
be very important because relativistic strings at a classical
level can be used to construct applicable models [12].
Intense activity of studying black hole solutions in

modified theories of gravity including Lovelock theories
of gravity is due to the fact that, besides theoretical results,
cosmological evidence, e.g., dark matter and dark energy,
the possibility of modification of the Einstein gravity is
suggested. Many other authors have found exact black hole
solutions with a string cloud background, for instance, in
general relativity [13], in Einstein–Gauss–Bonnet gravity
[10,11], and also in Lovelock gravity [14,15].
It is the purpose of this paper to obtain an exact black

hole solution in second- and third-order Lovelock theories
with a cloud of strings in the background. We shall present
a class of black hole solutions endowed with a cloud of
strings. In particular, we explicitly bring out how the effect
of the background string cloud can alter black hole
solutions and their properties as we know from our
knowledge of black holes in general relativity. Our atten-
tion will be given to the second-order Einstein–Gauss–
Bonnet case, which exhibits most of the relevant qualitative
features. We obtain D-dimensional static spherically sym-
metric black hole solutions in a string cloud background
with the three terms of Lovelock gravity that are Einstein or
general relativity, Gauss–Bonnet, and third-order Lovelock

terms. We analyze their thermodynamic properties and
also perform a stability analysis the for Einstein–Gauss–
Bonnet case.

II. EINSTEIN LOVELOCK ACTION

Lovelock gravity is the most general second-order
gravity theory in higher-dimensional spacetimes, which
is free of ghosts [1]. The Lovelock tensor is nonlinear in the
Riemann tensor and nontrivially differs from the Einstein
tensor only if D ≥ 4. The third-order Lovelock action with
matter in D ≥ 4 dimensions reads [1]

IG ¼ 1

2

Z
M

dxD
ffiffiffiffiffiffi
−g

p ½L1 þ α2LGB þ α3Lð3Þ� þ IS; ð4Þ

with κD ¼ 1. The Einstein term L1 ¼ R, the second-order
Lovelock (Gauss–Bonnet) term LGB is

LGB ¼ RμνγδRμνγδ − 4RμνRμν þ R2; ð5Þ

and

Lð3Þ ¼ 2RμνσκRσκρτRρτ
μν þ 8Rμν

σρRσκ
ντRρτ

μκ

þ 24RμνσκRσκνρRρ
μ þ 3RRμνσκRσκμν

þ 24RμνσκRσμRκν þ 16RμνRνσRσ
μ

− 12RRμνRμν þ R3; ð6Þ

is the third-order Lovelock Lagrangian. Here, Rμν, Rμνγδ,
and R are the Ricci tensors, Riemann tensors, and Ricci
scalar, respectively. The variation of the action with respect
to the metric gμν gives the Einstein–Gauss–Bonnet–
Lovelock equations,

GE
μν þ α2GGB

μν þ α3G
ð3Þ
μν ¼ TS

μν; ð7Þ

where GE
μν is the Einstein tensor, while GGB

μν and Gð3Þ
μν are

given explicitly, respectively, by [2]

GGB
μν ¼ 2ð−RμσκτRκτσ

ν − 2RμρνσRρσ − 2RμσRσ
ν þRRμνÞ

−
1

2
LGBgμν ð8Þ

and

Gð3Þ
μν ¼ −3ð4RτρσκRσκλρRλ

ντμ − 8Rτρ
λσRσκ

τμRλ
νρκ þ 2Rν

τσκRσκλρRλρ
τμ − RτρσκRσκτρRνμ þ 8Rτ

νσρRσκ
τμRρ

κ

þ 8Rσ
ντκRτρ

σμRκ
ρ þ 4Rν

τσκRσκμρRρ
τ − 4Rν

τσκRσκτρRρ
μ þ 4RτρσκRσκτμRνρ þ 2RRν

κτρRτρκμ þ 8Rτ
νμρRρ

σRρ
τ

− 8Rσ
ντρRτ

σRρ
μ − 8Rτρ

σμRσ
τRνρ − 4RRτ

νμρRρ
τ þ 4RτρRρτRνμ − 8Rτ

νRτρRρ
μ þ 4RRνρRρ

μ−R2RνμÞ −
1

2
Lð3Þgμν;
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and Tμν is the energy-momentum tensor of matter that we
consider as a cloud of strings. Note that for third-order
Lovelock gravity, the nontrivial third term requires that the
dimension of spacetime should satisfy D ≥ 7.

III. STRING-CLOUD MODEL

Let us consider a cloud of strings as matter. For
completeness, we give a brief review of the theory of a
cloud of strings (see Ref. [13] for further details). The
Nambu–Goto action of a string evolving in spacetime is
given by

IS ¼
Z
Σ
Ldλ0dλ1; L ¼ mðγÞ−1=2; ð9Þ

where m is a positive constant, λ0 and λ1 being timelike
and spacelike parameters [12]. The string world sheet Σ
is given by

γab ¼ gμν
∂xμ
∂λa

∂xν
∂λb ; ð10Þ

and γ ¼ det γab. Associated with the strings world sheet,
we have the bivector of the form

Σμν ¼ ϵab
∂xμ
∂λa

∂xν
∂λb ; ð11Þ

where ϵab denotes the two-dimensional Levi-Civitá tensor
given by ϵ01 ¼ −ϵ10 ¼ 1. Within this setup, the Lagrangian
density becomes

L ¼ m

�
−
1

2
ΣμνΣμν

�
1=2

:

Further, since Tμν ¼ 2∂L=∂gμν, we obtain the energy-
momentum tensor for one string as

Tμν ¼ mΣμρΣρ
ν=ð−γÞ1=2: ð12Þ

Hence, the energy-momentum tensor for a cloud of
strings is

Tμν ¼ ρΣμσΣσ
ν=ð−γÞ1=2; ð13Þ

where ρ is the proper density of a string cloud and quantity
ρðγÞ−1=2 is the gauge-invariant density. The strings is
characterized by a surface-forming bivector Σμν and con-
ditions to be a surface-forming are

Σμ½αΣβγ� ¼ 0;

∇μΣμ½αΣβγ� ¼ 0; ð14Þ

where the square bracket in Eq. (14) indicate anti-
symmetrization of the indices enclosed in the bracket.

The above equation, in conjunction with Eq. (11), leads to
the useful identity

ΣμσΣστΣτν ¼ γΣνμ; ð15Þ

which will be used in subsequent calculations. Further, the
conservation of energy-momentum tensor Tμν

;ν ¼ 0 implies
that

∇μðρΣμσÞΣσ
ν=ð−γÞ1=2 þ ρΣμσ∇μðΣσ

ν=ð−γÞ1=2Þ ¼ 0;

ð16Þ
which upon multiplication by Σνα=ð−γÞ1=2 leads to
∇μðρΣμσÞΣσ

νΣνα=γ ¼ 0. Contracting the previous identity
with Σαν and using Eq. (15), we obtain ∇μðρΣμσÞΣσ

ν ¼ 0,
and finally adapting to parametrization, we get

∂μð
ffiffiffiffiffiffiffi
−g

p
ρΣμσÞ ¼ 0: ð17Þ

IV. FIELD EQUATIONS

Here, we want to obtainD-dimensional static spherically
symmetric solutions of Eq. (7) with a cloud of strings as
source and investigate its properties. We assume that the
metric has the form

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2 ~γijdxidxj; ð18Þ

where ~γij is the metric of a ðD − 2Þ-dimensional constant
curvature space k ¼ 1; 0, or −1. In this paper, we shall stick
to k ¼ 1. To find the metric function fðrÞ, we consider the
components of Eq. (7). Using this metric ansatz, the
Einstein–Gauss–Bonnet–Lovelock rr equation of motion
(7) reduces to

½r5 − 2~α2r3ðfðrÞ − 1Þ þ 3~α3rðfðrÞ − 1Þ2�f0ðrÞ
þ ðn − 1Þr4ðfðrÞ − 1Þ − ðn − 3Þ ~α2r2ðfðrÞ − 1Þ2

þ ðn − 5Þ ~α3ðfðrÞ − 1Þ3 ¼ 2r6

n
Tr
r; ð19Þ

in which a prime denotes a derivative with respect to r,
n ¼ D − 2, ~α2 ¼ ðn − 1Þðn − 2Þα2, and ~α3 ¼ ðn − 1Þ
ðn − 2Þðn − 3Þðn − 4Þα3. In general, Eq. (19) has one real
and two complex solutions. It may have three real solutions
as well under some conditions. Here, we consider only the
real solution.
Here, the density ρ and the bivector Σμν are the functions

of r only as we seek static spherically symmetric solutions.
The only surviving component of the bivector Σ is
Σtr ¼ −Σrt. Thus, Tt

t ¼ Tr
r ¼ −ρΣtr, and from Eq. (17),

we obtain ∂rð
ffiffiffiffiffiffiffiffiffi
rnTt

t

p Þ ¼ 0, which implies

Tt
t ¼ Tr

r ¼
a
rn

ð20Þ
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for some real constant a. In the rest frame associated with
the observer, the energy density of the matter will be given
by ρ ¼ a=rn. The energy-momentum of the source can be
written as

Tμ
ν ¼ a

rn
diag½1; 1; 0;…; 0�: ð21Þ

The weak energy condition demands that for every timelike
vector field the matter density observed by the correspond-
ing observer is always non-negative:

ρ ≥ 0; ρþ Pr ≥ 0: ð22Þ
The strong energy condition requires

ρþ Pr ≥ 0; ρþ nPi ≥ 0. ð23Þ
Clearly, all energy conditions hold.
In three and four dimensions, Lovelock theory coincides

with Einstein theory [18], e.g., for D ¼ 4 (i.e., n ¼ 2), we
get

r3f0ðrÞ þ fðrÞ − 1 ¼ a; ð24Þ
which clearly is independent of α2 and α3, and therefore it
will be the Einstein equation in four dimensions admitting
the solution

fðrÞ ¼ 1 −
2m
r

þ a: ð25Þ

This solution was first obtained by Letelier [13], and the
metric represents the black hole spacetime associated with
a spherical mass m centered at the origin of the system of
coordinates, surrounded by a spherical cloud of strings. The
event horizon of the metric is placed at rEH ¼ 2m=ð1 − aÞ.
In the limit a → 0, we recover the Schwarzschild radius,
and close to unity. the event horizon radius tends to infinity.
On the other hand, a cloud of strings alone (m ¼ 0) does
not have a horizon; it represents only a naked singularity at
r ¼ 0. Besides, the metric (18) with (25) can be understood
as the metric associated with a global monopole.
But in higher dimensions, the Lovelock theories are

actually different. In fact, forD > 4, Einstein gravity can be
thought of as a particular case of Lovelock gravity since the
Einstein–Hilbert term is one of several terms that constitute
the Lovelock action. Hence, for D > 4 and α2 ¼ α3 ¼ 0,
we obtain

fðrÞ ¼ r5f0ðrÞ þ ðn − 3Þr4ðfðrÞ − 1Þ ¼ 2a
nrn−6

; ð26Þ

which admits the solution

fðrÞ ¼ 1 −
2m

ðn − 1Þrn−1 −
2a

nrn−2
: ð27Þ

We also observe that the four-dimensional solution (25)
is recovered in the limit n → 2. The integration constant
m in Eq. (27) is related to the Arnowitt-Deser-Misner mass
M via

m ¼ 16πM
nVn

; Vn ¼
2πðnþ1Þ=2

Γðnþ 1Þ=2 ; ð28Þ

where Vn is the volume of the ðD − 2Þ-dimensional unit
sphere.
To study the general structure of the solution given by

(26), we look for the essential singularity. It is seen that the
Kretschmann scalar (K ¼ RabcdRabcd) for the metric (18)
reduces to

K ¼ RabcdRabcd ¼ f″2ðrÞ þ 2n
f0ðrÞ
r2

þ 2nðn − 1Þ fðrÞ
2

r4
;

which on inserting (26) becomes

K ¼ 4n2ðn2 − 2Þm2

r2nþ2
þ 8nðn − 1Þ2am

r2nþ1
þ 4a2

n2r2n
ð7n2

þ n4 − 4n3 − 6nþ 4Þ: ð29Þ

The Kretschmann scalar (29) diverges as r → 0, indicating
the scalar polynomial or essential singularity at r ¼ 0. It is
interesting to see that the metric (18) is well behaved even if
m ¼ 0, as (29) indicates.
In the higher-dimensional case, a fact that deserves to

be emphasized is that a cloud of strings alone, unlike in
four dimensions, can have an event horizon located at
rSEH ¼ ð2a=nÞ1=ðn−2Þ. Thus, we have extended the Letelier
[13] solutions to higher-dimensional spacetime. Now, we
look for the existence of event horizons, and therefore for
possible black hole solutions. The horizons, if they exist, are
given by zeros of fðrÞ ¼ grr ¼ 0. The black hole horizon of
the solution (26) is located at, e.g., in the five-dimensional
case, rEH ¼ a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 18m

p
=3 and at r ¼ rEH ¼ η1=3=

6þ a=η1=3 with η ≔ 216mþ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1296m2 − 6a3

p
for six-

dimensional case.
We note that the gravitational mass of a black hole is

determined by fðrþÞ ¼ 0, which, from Eq. (27), reads

M ¼ nðn − 1ÞVn

32π
rn−1þ

�
1 −

2a
nrn−2þ

�
: ð30Þ

Equation (30), takes the form of the D-dimensional
Schwarzschild black hole when a → 0. The Hawking
temperature associated with the black hole is defined by
T ¼ κ=2π, where κ is the surface gravity defined by

κ2 ¼ −
1

4
gttgijgtt;igtt;j; ð31Þ

which on inserting the metric function becomes
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κ ¼
���� 12 f0ðrþÞ

����: ð32Þ

Accordingly, the Hawking temperature of the black hole on
the outer horizon reads

T ¼ κ

2π
¼ ðn − 1Þ

4πrþ

�
1 −

2a
nðn − 1Þrn−2þ

�
: ð33Þ

Then, we can easily see that the temperature is positive for
the case 2a < nðn − 1Þrn−2þ and negative otherwise. The
temperature goes over to zero when 2a ¼ nðn − 1Þrn−2þ .
Taking the limit a → 0, we recover the temperature for
higher-dimensional general relativity:

T ¼ ðn − 1Þ
4πrþ

: ð34Þ

Another useful and important thermodynamic quantity
associated with the black hole horizon is its entropy.
The black hole behaves as a thermodynamic system;
quantities associated with it must obey the first law of
thermodynamics dM ¼ TdS. Hence, the entropy is given
by

S ¼
Z

T−1dM ¼
Z

T−1 ∂M
∂rþ drþ; ð35Þ

and substituting (30) and (33) into (35), we arrive at

S ¼ ðn − 1ÞVn

8
rnþ: ð36Þ

We note that Vnrnþ ¼ VD−2rD−2þ is just the horizon area of a
black hole. We therefore conclude that the higher-
dimensional black hole also obeys an area law. In the
limit D → 4, it becomes the standard area law. It is
interesting to note that the formula (36) is independent
of a string cloud background.
Next, we turn our attention to the stability of the black

holes by computing the specific heat and to study the effect
of a string cloud background on the stability of the black
hole. It is well known that the thermodynamic stability of
the system is related to the sign of the heat capacity. If the
heat capacity is positive, then the black hole is stable; when
it is negative, the black hole is said to be unstable. The heat
capacity of the black hole is defined as

C ¼ ∂M
∂T ¼

�∂M
∂rþ

��∂rþ
∂T
�
: ð37Þ

Using Eqs. (30) and (33) in (37), we get

C ¼ −
nVn

8
rnþ

�
nðn − 1Þrn−2þ − 2a

nrn−2þ − 2a

�
: ð38Þ

It is clear that the heat capacity C of the black hole depends
on a string cloud parameter a. In the limit a → 0, we
obtained specific heat of a Schwarzschild–Tangherlini
black hole,

C ¼ −
nðn − 1ÞVn

8
rnþ; ð39Þ

which indicates the thermodynamic instability of the black
holes. The extension of the above analysis of Lovelock
gravity is an interesting subject to explore.

V. EINSTEIN–GAUSS–BONNET SOLUTIONS

Next, let us consider the theory with α3 ¼ 0, which is
usually referred to as the Einstein–Gauss–Bonnet gravity.
The static spherically symmetric black hole solution of
Einstein–Gauss–Bonnet theory was first obtained by
Boulware and Deser [5]. The simplest Lovelock
Lagrangian contains the well-known Gauss–Bonnet term
that embodies nontrivial dynamics for the gravitational
field in five- (and higher-)dimensional theories.
Equation (19) with α3 ¼ 0 takes the form

n½ðr3 − 2~α2rðfðrÞ − 1ÞÞf0ðrÞ þ ðn − 1Þr2ðfðrÞ − 1Þ

− ðn − 3Þ ~α2ðfðrÞ − 1Þ2� ¼ 2a
rn−4

;

which may be called the Einstein–Gauss–Bonnet master
equation. This equation admits a general solution in
arbitrary dimensions as follows:

f�ðrÞ ¼ 1þ r2

2~α2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8~α2m

ðn − 1Þrnþ1
þ 8~α2a

nrn

s !
;

n > 3: ð40Þ

The sign� refers to the two different branches of solutions.
But only negative (-ve) branch is connected to standard
Einstein–Hilbert gravity, as it reduces to the general
relativity solution (27) when α2 → 0. The above solution
is analyzed for the five-dimensional case in Refs. [11,14].
To study the general structure of solution (40), we take the
limit r → ∞ or m ¼ a ¼ 0 in solution (40) to obtain

lim
r→∞

fþðrÞ ¼ 1þ r2

α2
; lim

r→∞
f−ðrÞ ¼ 1; ð41Þ

this means the plus (þ) branch of the solution (40) is
asymptotically de Sitter (anti-de Sitter) depending on the
sign of α2 ð�Þ, whereas the minus branch of the solution
(40) is asymptotically flat. In the large r limit, Eq. (40)
reduces to solution (27), and the metric becomes
D-dimensional Schwarzschild in a string cloud background.
In Fig. 1, we plot the fðrÞ as a function of r in the various
dimensions. It is interesting to note that these solutions admit
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only one horizon and the radius of the horizon is increasing
with the increase in the value of a string cloud parameter a.
Henceforth, we shall restrict ourselves to the negative branch
of the solution (40). It may be noted that in Eq. (40) m is
related to Arnowitt-Deser-Misner mass M via (28).

VI. THERMODYNAMICS OF EINSTEIN–GAUSS–
BONNET BLACK HOLES

In this section, we explore the thermodynamics of the
Einstein–Gauss–Bonnet black hole solutions (40). The
Einstein–Gauss–Bonnet black holes in a string cloud
background are characterized by their mass ðMÞ and a
string cloud parameter ðaÞ. The mass of the black hole is
determined by using fðrþÞ ¼ 0:

MEGBS ¼
nðn − 1ÞVn

32π
rn−1þ

�
1þ α2

r2þ
−

2a
nrn−2þ

�
: ð42Þ

In the absence of a string cloud background ða → 0Þ, we
recover the mass obtained for the Gauss–Bonnet black
hole:

MEGB ¼ nðn − 1ÞVn

32π
rn−1þ

�
1þ α2

r2þ

�
: ð43Þ

To calculate the thermodynamic quantities for the metric
(18) with function (40), we use the same approach that was
applied in the previous section for the general relativity
case. The temperature for the Einstein–Gauss–Bonnet
black hole in a string cloud background can be put in
the form

TEGBS ¼
ðn − 1Þ
4πrþ

�r2þ þ ðn−3Þ
ðn−1Þ α2 −

2a
nðn−1Þrn−4þ

ðr2þ þ 2α2Þ
�
: ð44Þ

Note that the last factor in Eq. (44) modifies the Gauss–
Bonnet black hole temperature [19], and taking the limit
a → 0, we recover it. The Gauss–Bonnet black hole
temperature in the absence of a string cloud reads

TEGB ¼ n − 1

4πrþ

�r2þ þ ðn−3Þ
ðn−1Þ α2

r2þ þ 2α2

�
; ð45Þ

and when α2 → 0, it becomes the temperature given by
Eq. (34). In Fig. 2, we have plotted temperature as a
function of rþ in various dimensions. It is interesting to
note that for a particular radius of horizon Hawking
temperature vanishes. As seen from Fig. 2, the Hawking
temperature exhibits a peak that decreases and moves to the
right when a string cloud parameter a grows.
The entropy of a black hole typically satisfies the area

law that states that the entropy of a black hole is a quarter
of the event horizon area [20]. Now, the entropy of the

Einstein–Gauss–Bonnet gravity black holes in a string
cloud background, determined using Eq. (35), reads

SEGBS ¼
ðn − 1ÞVn

8
rnþ

�
1þ n

n − 2

2α2
r2þ

�
:

The entropy for our model differs from the expression for
entropy in general relativity, in which it is proportional to
the area of the event horizon. However, it is interesting to
note that the entropy of the black hole has no effect of a
background string cloud.
Finally, we analyze how a string cloud background

influences the thermodynamic stability of the Einstein–
Gauss–Bonnet black holes. The thermodynamic stability of
a black hole is performed by analyzing the behavior of
its heat capacity. The heat capacity of Einstein–Gauss–
Bonnet black hole in a string cloud model, using Eqs. (37),
(42), and (44), reads

C ¼ nðn − 1ÞVn

δ2
rn−2þ ½2ar4þα2ðr2þ þ 2α2Þ2

− nrnþððn − 1Þr2þ þ ðn − 3Þα2Þðr2þ þ 2α2Þ2α2�; ð46Þ

with

δ2 ¼ 8½2ar4þα2ðr2þ þ 6α2Þþn2rnþα2ðr4þ þ r2þα2þ 2α22Þ
−nðrnþ4

þ α2þ 7rnþ2
þ α22þ 6rnþα32þ 4ar4þα22þ 2ar6þα2Þ�:

ð47Þ
It is clear that the heat capacity depends on the Gauss–
Bonnet coefficient α2, a string cloud parameter a, and the
dimensions D. When α2 → 0, it returns to the general
relativity case. If in addition a ¼ 0, it becomes Eq. (39). In
what follows, we analyze the stability of the Einstein–
Gauss–Bonnet black hole and bring out the effect of a
string cloud background. It is difficult to analyze the heat
capacity analytically due to complexity of Eq. (46); hence,
we plot it in Fig. 3 for different values of a, α2, and D.
Clearly, the positivity of the heat capacity C is sufficient to
ensure thermodynamic stability. Figure 3 shows that heat
capacity is discontinuous exactly at one point for a given
value of a and α2, which is identified as the critical radius
rc. Further, we note that there is a flip of sign in the heat
capacity around rc. Thus, the black hole is thermodynami-
cally stable for rþ < rc, whereas it is thermodynamically
unstable for rþ > rc, and there is a phase transition at
rþ ¼ rc from the stable to unstable phases. Thus, the heat
capacity of an Einstein–Gauss–Bonnet black hole, in any
dimension for different values of a and α2, is positive for
rþ < rc, while for rþ > rc, it is negative. It is worthwhile
to mention that the critical radius rc changes drastically in a
string cloud model, thereby affecting the thermodynamical
stability. Indeed, the value of rc increases with the increase
in the string cloud parameter a for a given value of the
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Gauss–Bonnet coupling constant α2. On the other hand, the
rc decreases with an increase in α2 in all dimensions for
D > 6, and rc increases with α2 in D ≤ 6. It is notable that
the black hole is thermodynamically stable when the
temperature of black hole satisfies 0 < T < Tc, while it
is unstable for T > Tc [ðTcÞ is critical temperature at the
critical radius rc].

VII. CONCLUSION

Lovelock theories share the property of general relativity
that no derivatives of the curvature tensor, and thus only
second derivatives of the metric tensor, arise in the field
equations. It follows that Lovelock gravities share a number
of additional nice properties with Einstein gravity that are
not enjoyed by other more general higher-curvature theo-
ries. Hence, these theories receive significant attention,
especially when finding black hole solutions. In this paper,
we have obtained exact static spherically symmetric black
hole solutions to general relativity, Einstein–Gauss–Bonnet
gravity, and the third-order Lovelock gravity (see the
Appendix) in the background of a cloud of strings in
arbitrary D ¼ nþ 2 dimensions. Thus, we have general-
ized the static, spherically symmetric black hole solutions
for these theories in a string cloud background. We then
proceeded to find exact expressions, in the Einstein–
Gauss–Bonnet gravity, for the thermodynamic quantities
like the black hole mass, Hawking temperature, and
entropy, and in turn also analyzed the thermodynamic
stability of black holes for the case of first- and second-
order theories. In addition, we explicitly brought out the
effect of a background string cloud on black hole solutions
and their thermodynamics.
In particular, these black holes are thermodynamically

stable with a positive heat capacity for the range
0 < r < rc, and their entropy does not obey a horizon
area formula. Interestingly, the Einstein–Gauss–Bonnet
black hole entropy has no correction from a string cloud
background. The possibility of a further generalization of
these results in arbitrary dimensional Lovelock gravity is an
interesting problem for future research.
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APPENDIX: GENERAL CASE, α3 ≠ 0
AND α2 ≠ 0 IN D DIMENSIONS

Here, we study exact solutions of general Lovelock
theories for a string cloud source in arbitrary dimensions
and look for particular solutions. Again, it is enough to
solve (19), which admits a solution,

fðrÞ ¼ 1þ ~α2
3 ~α3

r2 þ ϵ1ðrÞΔ1=3 þ ϵ2ðrÞ
Δ1=3 ð ~α22 − 3 ~α3Þ; ðA1Þ

where

ϵ1ðrÞ ¼
1

3ð2nÞ1=3 ~α3rðn−5Þ=3
;

ϵ2ðrÞ ¼
ð2nÞ1=3rðnþ7Þ=3

3~α3
;

Δ ¼ 3
ffiffiffi
3

p ffiffiffi
δ

p
~α3 þ 2 ~α2

�
~α2
2 −

9~α3
2

�
nrðnþ1Þ

þ 54 ~α3
2ðar −mÞ;

δ ¼ −n2ð ~α22 − 4 ~α3Þr2nþ2 þ 8rnþ1ðar −mÞ ~α2
× n

�
~α22 −

9 ~α3
2

�
þ 108 ~α2

2ðar −mÞ2;

andm is again an integration constant related to the mass of
the black hole.
In Figs. 4 and 5, we have plotted fðrÞ for the general

Lovelock gravity case α2 ≠ α3 ≠ 0 in various dimensions.
Figure 4 shows the variation of fðrÞ with fixed α2 and
varying α3; Fig. 5, shows the variation of fðrÞwith fixed α3
and varying α2.
The solution (A1) reduces to the Lovelock black hole

for a ¼ 0. However, the solution is very complex and
difficult to analyze, and hence, in what follows, we
specialize to the seven-dimensional case.
a.α3 ≠ 0α2 ≠ 0, andD ¼ 7: It may be noted that in seven

dimensions we can see the role of both second-order and
third-order Lovelock parameters. It is interesting to observe
that enormous simplification occurs in the above solution
in seven dimensions ðD ¼ 7Þ. The metric can be written as

fðrÞ ¼ 1þ ~α2
3 ~α3

r2 þ Δ1
3

30~α3
þ 10r4ð ~α22 − ~α3Þ

Δ1
3

; ðA2Þ

where

Δ ¼ 300
ffiffiffi
3

p
~α3

ffiffiffi
δ

p
þ5400ðar −mÞ ~α32 þ 10 ~α2

2r6

ð10 ~α2 − 45 ~α3Þ;
δ ¼ 25ð4 ~α3 − ~α2

2Þ þ 40 ~α2r6γðar −mÞ þ 108 ~α3
2

ðar −mÞ2:
To proceed further, we consider a simple but interesting case
of the following.
b. ~α3 ¼ 2 ~α2

2=9: The metric function fðrÞ reads

fðrÞ ¼ 1þ 3r2

2 ~α2
þ 3Δ1

3

20 ~α22
þ 5r4

Δ1
3

; ðA3Þ

Δ ¼ 200
ffiffiffiffiffi
16

p
~α2
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ðar −mÞ2 ~α22

25r12

48

�
~α2
2

s

−
800 ~α2

2ðar −mÞ
3

: ðA4Þ
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1. Einstein-Lovelock (ELL) case

In D-dimensional spacetime, we can see the roles of both
second- and third-order Lovelock parameters simultaneously.
A simplifying, yet interesting case in the solution (A1) can be

obtained if ~α3 ¼ ~α2
2

3
. The metric function fðrÞ reads simply

fðrÞ ¼ 1þ ϵ3ðrÞΔ1=3 −
ϵ4ðrÞ
Δ1=3 ; ðA5Þ

with

ϵ3ðrÞ ¼
1

32=3n ~α3rn
; ϵ4ðrÞ ¼

nrnþ4

31=3
;

Δ ¼ ð9r5ðar −mÞ þ
ffiffiffi
3

p ffiffiffi
δ

p
Þ ~α23n2r2n;

δ ¼ n2r2nþ12 þ 27~α3ðra −mÞ2r10
~α3

: ðA6Þ
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In Figs. 6 and 7, we have plotted fðrÞ for the ELL case in
variousdimensions.Figure6showsthevariationoffðrÞ taking
fixed α2 and varying α3; Fig. 7 shows the variation of fðrÞ
taking fixed α3 and varying α2.
The above solution in seven dimensions simplifies to

fðrÞ ¼ 1þ ϵ5ðrÞΔ1=3 −
ϵ6ðrÞ
Δ1=3 ; ðA7Þ

with

ϵ3ðrÞ ¼
31=3ð25Þ1=3
15~α3r5

; ϵ4ðrÞ ¼
r932=3ð25Þ2=3

15
;

Δ ¼ ð9r5ðar −mÞ þ
ffiffiffi
3

p ffiffiffi
δ

p
Þ ~α23r10;

δ ¼ 25r22 þ 27~α3ðra −mÞ2r10
~α3

: ðA8Þ
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