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Modified gravity theories with geometry-matter coupling, in which the action is an arbitrary function of
the Ricci scalar and the matter Lagrangian [fðR;LmÞ gravity], and of the Ricci scalar and of the trace of the
matter energy-momentum tensor [fðR; TÞ gravity], respectively, have the intriguing property that the
divergence of the matter energy-momentum tensor is nonzero. In the present paper, by using the formalism
of open thermodynamic systems, we interpret the generalized conservation equations in these gravitational
theories from a thermodynamic point of view as describing irreversible matter creation processes, which
could be validated by fundamental particle physics. Thus particle creation corresponds to an irreversible
energy flow from the gravitational field to the created matter constituents, with the second law of
thermodynamics requiring that space-time transforms into matter. The equivalent particle number creation
rates, the creation pressure and the entropy production rates are obtained for both fðR;LmÞ and fðR; TÞ
gravity theories. The temperature evolution laws of the newly created particles are also obtained. In the case
of the fðR; TÞ gravity theory the open irreversible thermodynamic interpretation of a simple cosmological
model is presented in detail. It is also shown that due to the geometry-matter coupling, during the
cosmological evolution a large amount of comoving entropy could be produced.
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I. INTRODUCTION

The recently released Planck satellite data of the 2.7 deg
cosmic microwave background (CMB) full sky survey [1],
as well as the measurement of the tensor modes from large
angle CMB B-mode polarization by BICEP2 [2] have
generally confirmed the standard Λ cold dark matter
cosmological model. The BICEP2 data, pointing toward
a tensor-to-scalar ratio r ¼ 0.2þ0.07

−0.05 , have provided very
convincing evidence for the standard inflationary scenario,
which predicts the generation of gravitational waves during
the de Sitter exponential expansion. However, there are
some tensions between the BICEP2 results and the Planck
limits on standard inflationary models [3]. On the other
hand, observations of the type Ia supernovae have con-
vincingly shown that our universe presently experiences an
accelerating evolution, for which the most natural explan-
ation would be the presence of the dark energy, having an
equation of state parameter w ¼ −1.018� 0.057 for a flat
universe [4].
From a theoretical point of view, the necessity of

explaining dark energy, as well as the second dominant
component of the Universe, dark matter [5], raises the
fundamental question if the standard Einstein-Hilbert
action S ¼ R ðR=2þ LmÞ ffiffiffiffiffiffi−gp

d4x, where R is the scalar
curvature and Lm is the matter Lagrangian density, and in
which matter is minimally coupled to the geometry, can
give an appropriate quantitative description of the Universe

on all scales, going from the boundary of the Solar System
to the edge of the Universe.
A theory with an explicit coupling between an arbitrary

function of the scalar curvature and the Lagrangian density
of matter was proposed in [6]. The gravitational action
of this gravity theory is of the form S ¼ R ff1ðRÞþ
½1þ λf2ðRÞ�Lmg ffiffiffiffiffiffi−gp

d4x. In these models an extra force
acting on massive test particles arises, and the motion is no
longer geodesic. Moreover, in this framework, one can also
explain dark matter [6]. The initial “linear” geometry-
matter coupling introduced in [6] was extended in [7], and
a maximal extension of the Einstein-Hilbert action with
geometry-matter coupling, of the form S ¼ R

d4x
ffiffiffiffiffiffi−gp

f
ðR;LmÞ was considered in [8]. The cosmological and
astrophysical implications of the fðR;LmÞ type gravity
theories were investigated in [9].
An alternative model to fðR;LmÞ gravity is the fðR; TÞ

gravity theory [10], where T is the trace of the matter
energy-momentum tensor Tμν. The corresponding action is
given by S ¼ R ½fðR; TÞ=2þ Lm� ffiffiffiffiffiffi−gp

d4x. The depend-
ence of the gravitational action on T may be due to the
presence of quantum effects (conformal anomaly), or of
some exotic imperfect fluids. When the trace of the energy-
momentum tensor T is zero, T ¼ 0, which is the case of the
electromagnetic radiation, the field equations of the fðR; TÞ
theory reduce to those of the fðRÞ gravity. The cosmo-
logical and astrophysical implications of the fðR; TÞ
gravity were considered in [11], and it was shown that
such gravity theories explain the accelerating evolution*t.harko@ucl.ac.uk
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of the Universe. For a recent review of modified gravity
theories with geometry-matter coupling see [12].
Both fðR; LmÞ and fðR; TÞ gravity have the intriguing

property that once geometry-matter coupling is introduced,
the four-divergence of the energy-momentum tensor is
nonzero. It is the purpose of the present paper to give a
thermodynamic interpretation of the gravity theories with
geometry-matter coupling in the framework of the irre-
versible thermodynamic of open systems. More exactly, we
consider that the nonconservativity of the matter energy-
momentum tensor is related to irreversible matter creation
processes, in which, due to the coupling between matter
and geometry, there is an energy flow between the
gravitational field and matter, with particles permanently
added to the space-time.
The systematic investigation of the role of irreversible

matter creation processes in general relativity and cosmol-
ogy did start with the papers [13] and [14]. The description
of particle creation is based on the reinterpretation of the
matter-energy stress tensor in Einstein’s equations, by
modifying the usual adiabatic energy conservation laws,
and thereby including irreversible matter creation. Thus
matter creation corresponds to an irreversible energy flow
from the gravitational field to the created matter constitu-
ents. This point of view results from consideration of
the thermodynamics of open systems in the framework
of cosmology. In a gravitational system the second law of
thermodynamics requires that space-time transforms into
matter, while the inverse transformation is forbidden. As
shown in [14], the usual initial singularity associated with
the big bang is structurally unstable with respect to
irreversible matter creation. The inclusion of dissipative
processes into the Einstein field equations lead to the
possibility of cosmological models that start from empty
conditions and gradually build up matter and entropy.
Gravitational entropy takes a simple meaning as associated
with the entropy that is necessary to produce matter. This
leads to an extension of the third law of thermodynamics,
as now the zero point of entropy becomes the space-time
structure out of which matter is generated [13].
The phenomenological approach for matter creation

introduced in [13,14] was reformulated in a manifestly
covariant way in [15]. The expressions for the entropy
production rate and the temperature evolution equation
were also obtained, and some of their consequences were
discussed. The effects and implications of the irreversible
matter creation processes on the cosmological evolution
were extensively analyzed in [16–36]. In particular, a
theoretical model, called creation of cold dark matter
was analyzed in [26]. It can be described macroscopically
by introducing a negative pressure due to matter creation.
Therefore, the mechanism is capable to accelerate the
Universe, without the need of an additional dark energy
component. An alternative cosmological model, which
assumes the existence of gravitational particle creation

was studied in [27]. The model fits well the supernova
observations. In this scenario one can alleviate the cosmic
coincidence problem, with dark matter and dark energy
being of the same nature, but acting at different scales.
Cosmological particle creation can take place from the

quantum vacuum, due to external conditions, which are
caused by the expansion or contraction of the Universe.
This process was first discussed by Schrödinger [37], who
understood that the cosmic evolution could lead to a mixing
of positive and negative frequencies and that this would
mean creation or destruction of matter due to the expansion
of the Universe. Later on this quantum phenomenon was
studied via the modern techniques of quantum field theory
in curved space-times in [38–43]. In quantum field theory
particle production is directly connected with the curvature
of the Universe and, when the field equations are formu-
lated in the form of harmonic oscillator equation without
friction part, the effect of gravity appears in the effective
mass. The quantum rate of matter creation is maximum
near the initial cosmological singularity, and postinfla-
tionary reheating may be explained from gravitational
particle creation.
In this work, by using the formalism of the open

irreversible thermodynamic systems, we reformulate the
nonzero divergence of the energy-momentum tensor of the
ideal fluid in the fðR;LmÞ and fðR; TÞ gravity theories as
an energy balance equation in the presence of matter
creation. The particle number balance equation is also
obtained, as well as the particle creation rate. The particle
creation rate depends on both the thermodynamic param-
eters of the system, as well as of the functional form of the
derivatives with respect to Lm and T of the function f
giving the geometry-matter coupling. When f ≡ 0, the
system is conservative. The supplementary particle creation
pressure, induced by matter creation, is also determined,
and it is shown that it is proportional to the particle creation
rate. With the help of the creation pressure the divergence
of the energy-momentum tensor can be rewritten in the
form of an effective conservation equation, with the total
pressure equal to the sum of the thermodynamic and
creation pressures. The explicit form of the entropy, and
of the entropy creation rates, associated with the particle
transfer from geometry to matter, is also determined. The
time evolution of the entropy is determined by the particle
creation rates. The time evolution of the temperature of
general thermodynamic systems with energy and pressure
depending on both particle numbers and temperature is also
obtained. In the case of fðR;LmÞ gravity the behavior of
the thermodynamic parameters describing matter creation
are explicitly obtained for Lm ¼ −p. The thermodynamic
interpretation of a cosmological model corresponding to
simple choice of the function fðR; TÞ is also discussed in
detail. Even though the approach proposed in the present
paper is phenomenological, quantum particle creation
processes [37–43] can give a microscopic justification to
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the proposed interpretation of the modified gravity models
with geometry-matter coupling.
The present paper is organized as follows. In Sec. II the

field and conservation equations of the fðR;LmÞ and
fðR; TÞ gravity theories are briefly reviewed. The inter-
pretation of the fðR;LmÞ gravity theory in the framework
of the thermodynamic processes in open irreversible
systems with matter creation is developed in Sec. III.
The irreversible thermodynamic interpretation of the
fðR; TÞ gravity theory is presented in Sec. IV. We discuss
and conclude our results in Sec. V. In the present paper we
use the natural system of units with c ¼ 8πG ¼ 1, and the
Landau-Lifshitz [44] conventions for the geometric and
physical quantities.

II. GENERALIZED GRAVITY MODELS WITH
GEOMETRY-MATTER COUPLING

In the present section we briefly review two generalized
gravity theories, in which the four-divergence of the matter
energy-momentum tensor is nonzero. We consider the
fðR;LmÞ and the fðR; TÞ theories, and we present the
field and the conservation equations for each theory.

A. f ðR;LmÞ gravity
The most general action A for a fðR;LmÞ type modified

theory of gravity involving an arbitrary coupling between
matter and curvature is given by [8]

A ¼
Z

fðR;LmÞ
ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where fðR;LmÞ is an arbitrary function of the Ricci scalar
R, and of the Lagrangian density corresponding to matter,
Lm. The only requirement for the function fðR;LmÞ is to be
an analytical function of R and Lm, respectively; that is, it
must possess a Taylor series expansion about any point.
The matter energy-momentum tensor Tμν is defined as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð2Þ

By assuming that the Lagrangian density Lm of the
matter depends only on the metric tensor components,
and not on its derivatives, we obtain Tμν ¼ Lmgμν−
2∂Lm=∂gμν.
Varying the action with respect to the metric tensor gμν

we obtain the field equations of the model as

fRðR;LmÞRμν þ P̂μνfRðR;LmÞ −
1

2
½fðR;LmÞ

− fLm
ðR;LmÞLm�gμν ¼

1

2
fLm

ðR;LmÞTμν; ð3Þ

where we have denoted fRðR;LmÞ ¼ ∂fðR; LmÞ=∂R and
fLm

ðR; LmÞ ¼ ∂fðR;LmÞ=∂Lm, respectively, and we have
introduced the operator P̂μν, defined as

P̂μν ¼ gμν□ −∇μ∇ν; ð4Þ

with □ ¼ ∇μ∇μ. The operator P̂μν has the property
P̂μ
μ ¼ 3□.
By contracting the field equations Eq. (3), we obtain the

scalar equation

3□fR þ fRR − 2f ¼
�
1

2
T − 2Lm

�
fLm

; ð5Þ

where T ¼ Tμ
μ is the trace of the matter energy-momentum

tensor. By eliminating the term □fRðR; LmÞ between
Eqs. (3) and (18), we can reformulate the field equations as

Rμν ¼ ΛðR;LmÞgμν þ
1

fRðR;LmÞ
∇μ∇νfRðR;LmÞ

þ ΦðR;LmÞ
�
Tμν −

1

3
Tgμν

�
; ð6Þ

where we have denoted

ΛðR;LmÞ ¼
2fRðR;LmÞR − fðR;LmÞ þ fLm

ðR;LmÞLm

6fRðR;LmÞ
ð7Þ

and

ΦðR; LmÞ ¼
fLm

ðR;LmÞ
fRðR;LmÞ

; ð8Þ

respectively.
By taking the covariant divergence of Eq. (3), with the

use of the mathematical identity [45]

½□;∇ν�F ¼ ð□∇ν −∇ν□ÞF ¼ Rμν∇μF; ð9Þ

where F is any arbitrary function of the space-time
coordinates xμ, we obtain for the divergence of the
energy-momentum tensor Tμν the following relationship:

∇μTμν ¼ ∇μ ln ½fLm
ðR;LmÞ�ðLmgμν − TμνÞ

¼ 2∇μ ln ½fLm
ðR; LmÞ�

∂Lm

∂gμν : ð10Þ

Generally the matter Lagrangian Lm is a function of the
matter energy density ρ, the pressure p as well as the other
thermodynamic quantities, such as the specific entropy s or
the baryon number n, so that Lm ¼ Lmðρ; p; s; nÞ. In the
simple (but physically the most relevant) case in which
the matter obeys a barotropic equation of state, so that the
pressure is a function of the energy density of the matter
only, p ¼ pðρÞ, the matter Lagrangian becomes a function
of the energy density only, and hence Lm ¼ LmðρÞ. Then,
the matter Lagrangian is given by [46,47]
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LmðρÞ ¼ ρ

�
1þ

Z
p

0

dp
ρ

�
− pðρÞ; ð11Þ

while the energy-momentum tensor can be written as

Tμν ¼ ½ρþ pðρÞ þ ρ ~ΠðρÞ�UμUν − pðρÞgμν; ð12Þ

respectively, where

~ΠðρÞ ¼
Z

ρ

0

p
ρ2

dρ ¼
Z

p

0

dp
ρ

−
pðρÞ
ρ

: ð13Þ

The expression ~ΠðρÞ þ pðρÞ=ρ represents the specific
enthalpy of the fluid. From a physical point of view ~ΠðρÞ
can be interpreted as the elastic (deformation) potential
energy of the body, and therefore Eq. (12) corresponds to
the energy-momentum tensor of a compressible elastic
isotropic system.

B. f ðR;TÞ gravity
As a second example of a modified theory of gravity

with nonconserved energy-momentum tensor we consider
the fðR; TÞ gravity, with action having the following
form [10]:

A ¼ 1

16π

Z
fðR; TÞ ffiffiffiffiffiffi

−g
p

d4xþ
Z

Lm
ffiffiffiffiffiffi
−g

p
d4x; ð14Þ

where fðR; TÞ is an arbitrary function of the Ricci scalar, R,
and of the trace T of the stress-energy tensor of the matter,
Tμν. Lm is the matter Lagrangian density. We define the
variation of T with respect to the metric tensor as

δðgαβTαβÞ
δgμν

¼ Tμν þ Θμν; ð15Þ

where

Θμν ≡ gαβ
δTαβ

δgμν
: ð16Þ

By varying the gravitational action Eq. (14), we obtain the
field equations of the fðR; TÞ gravity model as [10]

fRðR; TÞRμν −
1

2
fðR; TÞgμν þ P̂μνfRðR; TÞ

¼ 8πTμν − fTðR; TÞTμν − fTðR; TÞΘμν; ð17Þ

where fRðR;TÞ¼ ∂fðR;TÞ=∂R and fTðR; TÞ ¼ ∂fðR; TÞ=
∂T, respectively. Note that when fðR; TÞ≡ fðRÞ, from
Eq. (17) we obtain the field equations of fðRÞ gravity [48].
Contracting Eq. (17) gives the following relation

between the Ricci scalar R and the trace T of the
energy-momentum tensor:

fRðR; TÞRþ 3□fRðR; TÞ − 2fðR; TÞ
¼ 8πT − fTðR; TÞT − fTðR; TÞΘ; ð18Þ

where we have denoted Θ ¼ Θμ
μ.

By eliminating the term □fRðR; TÞ between Eqs. (17)
and (18), the gravitational field equations can be written in
the form

fRðR; TÞ
�
Rμν −

1

3
Rgμν

�
þ 1

6
fðR; TÞgμν

¼ 8π

�
Tμν −

1

3
Tgμν

�
− fTðR; TÞ

�
Tμν −

1

3
Tgμν

�

− fTðR; TÞ
�
Θμν −

1

3
Θgμν

�
þ∇μ∇νfRðR; TÞ: ð19Þ

By taking the covariant divergence of Eq. (17), with the use
of the following mathematical identity [10,45,49]:

∇μ

�
fRðR; TÞRμν −

1

2
fðR; TÞgμν þ P̂μνfRðR; TÞ

�

≡ 1

2
fTðR; TÞ∇μTgμν; ð20Þ

we obtain for the divergence of the energy-momentum
tensor Tμν the equation

∇μTμν ¼
fTðR; TÞ

8π − fTðR; TÞ
�
ðTμν þ ΘμνÞ∇μ ln fTðR; TÞ

þ∇μΘμν −
1

2
∇μTgμν

�
: ð21Þ

For the tensor Θμν we find

Θμν ¼ −2Tμν þ gμνLm − 2gαβ
∂2Lm

∂gμν∂gαβ : ð22Þ

III. THERMODYNAMIC INTERPRETATION
OF THE GEOMETRY-MATTER COUPLING

IN f ðR;LmÞ GRAVITY

In the present section we investigate the fðR;LmÞ gravity
theory from the point of view of the thermodynamics of the
matter creation irreversible processes. As a first step in our
study we obtain the energy conservation equation, which,
as compared to the standard adiabatic conservation equa-
tion, contains an extra term, which can be interpreted as a
matter creation rate. Matter creation acts as an entropy
source, and the entropy flux and the temperature evolution
of the gravitational system with nonminimal geometry
matter coupling are obtained.
In the case of a perfect cosmological fluid with energy

density ϵ, thermodynamic pressure p and normalized four-
velocityUν, ν¼0;1;2;3, satisfying the conditionUνUν¼1,
the energy-momentum tensor Tμν is given by
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Tμν ¼ ðϵþ pÞUμUν − pgμν: ð23Þ

We also introduce the projection operator hνλ, defined as
hνλ ¼ δνλ −UλUν, with the property Uνhνλ ¼ 0.

A. The energy conservation equation

By taking the covariant divergence of Eq. (23) we obtain

∇μTμν ¼ ð∇μϵþ∇μpÞUμUν þ ðϵþ pÞ∇μUμUν

þ ðϵþ pÞUμ∇μUν −∇μpgμν: ð24Þ

Therefore Eq. (10) takes the form

ð∇μϵþ∇μpÞUμUν þ ðϵþ pÞ∇μUμUν

þ ðϵþ pÞUμ∇μUν −∇μpgμν ¼ ∇μ ln ½fLm
ðR;LmÞ�

× ½ðLm þ pÞgμν − ðϵþ pÞUμUν�: ð25Þ

Multiplying Eq. (25) with hνλ gives the momentum
balance equation for a perfect fluid in the alternative
fðR;LmÞ gravity theory as

Uμ∇μUλ¼d2xλ

ds2
þΓλ

μνUμUν

¼ 1

ϵþp
fhνλ∇νpþhλμ∇μ ln ½fLm

ðR;LmÞ�ðLmþpÞg:

ð26Þ

By multiplying Eq. (25) with Uν, and by taking into
account the identity Uν∇μUν ¼ 0, we finally obtain the
energy balance equation in the fðR;LmÞ gravity theory as

_ϵþ 3ðϵþ pÞH ¼ d
ds

ln ½fLm
ðR;LmÞ�ðLm − ϵÞ; ð27Þ

where we have denoted H ¼ ð1=3Þ∇μUμ, and _¼ Uμ∇μ ¼
d=d~s, respectively, where d~s is the line element corre-
sponding to the metric gμν, d~s2 ¼ gμνdxμdxν.
In the following we assume a homogeneous and

isotropic cosmological model, with the line element given
by the Friedmann-Robertson-Walker (FRW) metric,

d~s2 ¼ dt2 − a2ðtÞðdx2 þ dy2 þ dz2Þ; ð28Þ
where aðtÞ is the scale factor. Moreover, we adopt a
comoving coordinate system with Uμ ¼ ð1; 0; 0; 0Þ. In
the FRW geometry H ¼ _a=a, Uμ∇μ ¼_¼ d=dt, and
Eq. (27) can be written in the equivalent form,

d
dt

ðϵa3Þ þ p
d
dt

a3 ¼ a3
d
dt

ln ½fLm
ðR;LmÞ�ðLm − ϵÞ: ð29Þ

In the standard general relativistic case fðR;LmÞ ¼
R=2þ Lm, which gives fLm

ðR;LmÞ ¼ 1, with Eq. (29)
reducing to the standard adiabatic matter conservation law

dðϵa3Þ þ pda3 ¼ 0. Moreover, due to our choice of the
geometry, all the nondiagonal components of the energy-
momentum tensor are equal to zero, so that Tμν ¼ 0, μ ≠ ν.
In particular this condition implies the impossibility of
heat transfer in the FRW models of modified gravity with
geometry-matter coupling, since the condition T0i ≡ 0,
i ¼ 1; 2; 3 must always hold.

B. The matter and entropy creation rates

In its general form, for a system containing N particles
in a volume V ¼ a3, the second law of thermodynamics is
given by [14]

d
dt

ðϵa3Þ þ p
d
dt

a3 ¼ dQ
dt

þ h
n
d
dt

ðna3Þ; ð30Þ

where dQ is the heat received by the system during time dt,
h ¼ ϵþ p is the enthalpy per unit volume, and n ¼ N=V is
the particle number density. In the following we restrict
our analysis to adiabatic transformations defined by the
condition dQ ¼ 0, that is, we ignore proper heat transfer
processes in the cosmological system. For these types of
thermodynamic transformations Eq. (30) represents the
formulation of the second law of thermodynamics that
explicitly takes into account the variation of the number of
particles, described by the term ðh=nÞdðna3Þ=dt. Hence in
the thermodynamic approach of open systems the “heat”
(internal energy) received by the system is entirely due to
the change in the number of particles. From a cosmological
perspective, this change is due to the transfer of energy
from gravitation to matter, with the creation of matter
acting as a source of internal energy. Equivalently, for
adiabatic transformations dQ=dt ¼ 0, Eq. (30) can be
written as

_ϵþ 3ðϵþ pÞH ¼ ϵþ p
n

ð _nþ 3HnÞ: ð31Þ

Therefore, from a thermodynamic point of view,
Eq. (29), giving the energy conservation equation in the
fðR;LmÞ gravity theory, can be interpreted as describing
matter creation in a homogeneous and isotropic geometry,
with the particle number time variation given by the
equation

_nþ 3nH ¼ n
ϵþ p

d
dt

ln ½fLm
ðR;LmÞ�ðLm − ϵÞ ¼ Γn;

ð32Þ
where the particle creation rate Γ is defined as

Γ ¼ 1

ϵþ p
d
dt

ln ½fLm
ðR;LmÞ�ðLm − ϵÞ: ð33Þ

Therefore the energy conservation equation can be
written in the fðR;LmÞ gravity theory as
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_ϵþ 3ðϵþ pÞH ¼ ðϵþ pÞΓ: ð34Þ

For adiabatic transformations Eq. (30), describing par-
ticle creation in open systems, can be written as an effective
energy conservation equation of the form

d
dt

ðϵa3Þ þ ðpþ pcÞ
d
dt

a3 ¼ 0; ð35Þ

or, equivalently,

_ϵþ 3ðϵþ pþ pcÞH ¼ 0; ð36Þ

where pc, called the creation pressure, is defined as [14]

pc ¼ −
ϵþ p
n

dðna3Þ
da3

¼ −
ϵþ p
3nH

ð _nþ 3nHÞ

¼ −
ϵþ p
3

Γ
H
: ð37Þ

Therefore in the fðR;LmÞ gravity theory the creation
pressure is determined by the geometry-matter coupling
and is given by

pc ¼ −
1

3H
d
dt

ln ½fLm
ðR;LmÞ�ðLm − ϵÞ: ð38Þ

The second law of thermodynamics can be written by
decomposing the entropy change into an entropy flow deS
and an entropy creation diS, so that the total entropy S of
the system is given by [13,14]

dS ¼ deSþ diS; ð39Þ

with diS > 0. To evaluate the entropy flow and the entropy
production, we start from the total differential of the
entropy [14],

T dðsa3Þ ¼ dðϵa3Þ þ pda3 − μdðna3Þ; ð40Þ

where T is the temperature, s ¼ S=a3, and μ is the
chemical potential given by

μn ¼ h − T s: ð41Þ

For closed systems and adiabatic transformations dS ¼ 0
and diS ¼ 0. However, in the presence of matter creation
there is a nonzero contribution to the entropy. For homo-
geneous systems we still have deS ¼ 0. In contrast, matter
creation contributes to the entropy production, and the
entropy time variation is given by [14]

T
diS
dt

¼ T
dS
dt

¼ h
n
d
dt

ðna3Þ − μ
d
dt

ðna3Þ

¼ T
s
n
d
dt

ðna3Þ ≥ 0: ð42Þ

From Eq. (42) we obtain for the time variation of the
entropy the equation

dS
dt

¼ S
n
ð _nþ 3HnÞ ≥ 0: ð43Þ

With the use of Eq. (32), giving the particle number
balance in fðR;LmÞ gravity theory, we obtain for the
entropy production the equation

1

S
dS
dt

¼ 1

ϵþ p
d
dt

ln ½fLm
ðR;LmÞ�ðLm − ϵÞ ≥ 0: ð44Þ

The entropy flux vector Sμ is defined as [15]

Sμ ¼ nσUμ; ð45Þ

where σ ¼ S=N is the specific entropy per particle. The
entropy creation rate must satisfy the second law of
thermodynamics, ∇μSμ ≥ 0. Since the specific entropy
obeys the Gibbs relation [15],

nT dσ ¼ dϵ −
h
n
dn; ð46Þ

and by taking into account the definition of the chemical
potential μ of the system as

μ ¼ h
n
− T σ; ð47Þ

we obtain

∇μSμ ¼ ð _nþ 3nHÞσ þ nUμ∇μσ

¼ 1

T
ð _nþ 3HnÞ

�
ϵþ p
n

− μ

�
; ð48Þ

where we have taken into account the relation

nT _σ ¼ _ϵ −
ϵþ p
n

_n ¼ 0; ð49Þ

which follows immediately from Eq. (31). With the use of
Eq. (32) we obtain for the entropy production rate asso-
ciated with the particle creation processes in fðR;LmÞ
gravity the expression

TIBERIU HARKO PHYSICAL REVIEW D 90, 044067 (2014)

044067-6



∇μSμ ¼
1

T
n

ϵþ p
d
dt

ln ½fLm
ðR;LmÞ�

× ðLm − ϵÞ
�
ϵþ p
n

− μ

�
: ð50Þ

In the general case of a perfect comoving fluid with two
essential thermodynamic variables, the particle number
density n, and the temperatures T , it is conventional to
express ϵ and p in terms of n and T by means of the
equilibrium equations of state,

ϵ ¼ ϵðn; T Þ; p ¼ pðn; T Þ: ð51Þ
Then the energy conservation equation (34) takes the form

∂ϵ
∂n _nþ ∂ϵ

∂T _T þ 3ðϵþ pÞH ¼ Γn: ð52Þ

With the help of the general thermodynamic relation [15]

∂ϵ
∂n ¼ ϵþ p

n
−
T
n
∂p
∂T ; ð53Þ

we obtain the temperature evolution of the newly created
particles in the fðR;LmÞ gravity theory as

_T
T

¼ _n
n
∂p
∂ϵ ¼ ðΓ− 3HÞ∂p∂ϵ

¼ 1

ϵþ p
∂p
∂ϵ

�
d
dt

ln ½fLm
ðR;LmÞ�ðLm − ϵÞ − 3Hðϵþ pÞ

�
:

ð54Þ

C. The case Lm ¼ −p
The exact form of the Lagrangian of the matter is one of

the most intriguing theoretical problems in general rela-
tivity. One possible choice is Lm ¼ −p, which was used in
[50–52] to derive the equation of motion of test fluids
in standard general relativity. In this case, as pointed out in
[53], the extra force, given by Eq. (26), and which is one of
the distinguishing features of modified gravity theories
with geometry-matter coupling, identically vanishes. On
the other hand, as argued in [54], other choices for the
matter Lagrangian, like Lm ¼ ϵ or Lm ¼ −na, where a is
the physical free energy defined as a ¼ ϵ=n − Ts, are also
possible [52,55]. In fact, all these expressions are on shell
representations of a more general Lagrangian density
obtained through backsubstitution of the equations of
motion into the related action [52].
In the following we investigate the consequences of the

choice Lm ¼ −p for the matter Lagrangian. In this case the
extra force in Eq. (26) vanishes, showing that in this model
of fðR;LmÞ gravity the motion of the test fluids is geodesic.
On the other hand, with this choice the right hand side of
the energy conservation equation (27) does not vanish,

showing that the particle creation processes are present in
the model. The particle number balance equation (32)
becomes

_nþ 3nH ¼ −n
d
dt

ln ½f−pðR;−pÞ�; ð55Þ

where f−p denotes the derivative of fðR;−pÞ with respect
to −p, and can be immediately integrated to give

na3 ¼ n0a30
f−pðR;−pÞ

: ð56Þ

Therefore the variation of the total number of particles
within a volume V is inversely proportional to the deriva-
tive of f with respect to the matter Lagrangian. The energy
conservation equation (34) takes the form

_ϵþ 3ðϵþ pÞH ¼ −ðϵþ pÞ d
dt

ln ½f−pðR;−pÞ�: ð57Þ

From Eq. (38) the creation pressure pc is obtained as

pc ¼
ϵþ p
3H

d
dt

ln ½fLm
ðR;LmÞ�: ð58Þ

For a radiationlike fluid with p ¼ ϵ=3 we obtain for the
variation of the energy density the expression

ϵa4 ¼ ϵ0a40
½f−pðR;−pÞ�4=3

; ð59Þ

where ϵ0 and a0 are arbitrary constants of integration.
For the total entropy variation from Eq. (44) we find

S ¼ S0
f−pðR;−pÞ

; ð60Þ

where S0 is an arbitrary constant of integration. In a
cosmological fluid where the density and pressure are
functions of the temperature T only, ϵ ¼ ϵðTÞ, p ¼ pðTÞ,
the entropy is given by [56]

S ¼ ðϵþ pÞV
T

: ð61Þ

For a radiation fluid ϵ ¼ 3p, and it follows that the
function f satisfies the following partial differential
equation:

∂
∂ð−pÞ fðR;−pÞ ¼ −

S0TðaÞ
4ð−pÞa3 : ð62Þ

By assuming a cosmological model with fðR;−pÞ ¼
f0ðRðaÞÞg0ð−pÞ, Eq. (62) gives
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f0ðRðaÞÞ ¼ −
S0TðaÞ
a3

;
dg0ð−pÞ
dð−pÞ ¼ 1

4ð−pÞ ; ð63Þ

which fixes the matter Lagrangian dependence of the
action as

g0ðLmÞ ¼
1

4
lnLm: ð64Þ

IV. IRREVERSIBLE THERMODYNAMIC
INTERPRETATION OF THE f ðR;TÞ

GRAVITY THEORY

In the present section we consider the thermodynamic
interpretation of the fðR; TÞ gravity theory. In the present
study we assume again that the energy-momentum tensor
of the matter is given by Eq. (23). In order to obtain some
explicit results we fix the matter Lagrangian from the
beginning as

Lm ¼ −p: ð65Þ

The trace of the matter energy-momentum tensor is
given by T ¼ ϵ − 3p. Then, with the use of Eq. (22), we
obtain for the variationΘμν of the energy-momentum tensor
of a perfect fluid with respect to metric tensor gμν the
expression [10]

Θμν ¼ −2Tμν − pgμν ¼ −2ðϵþ pÞUμUν þ pgμν: ð66Þ

A. Energy and particle creation rates in f ðR;TÞ gravity
With the use of Eq. (66) the divergence of the energy-

momentum tensor in fðR; TÞ gravity theory follows
immediately from Eq. (21) as

∇μTμν ¼ −
fTðR; TÞ

8π þ fTðR; TÞ
�
ðϵþ pÞUνUμ∇μ ln fTðR; TÞ

þ∇ν
ϵ − p
2

�
: ð67Þ

Multiplying Eq. (67) with Uν gives

Uν∇μTμν ¼ −
fTðR; TÞ

8π þ fTðR; TÞ
�
ðϵþ pÞUμ∇μ ln fTðR; TÞ

þ Uν∇ν
ϵ − p
2

�
: ð68Þ

From Eq. (68), with the use of the explicit form of the
matter energy-momentum tensor we obtain the energy
conservation equation in fðR; TÞ gravity as

_ϵþ3ðϵþpÞH¼−
fTðR;TÞ

8πþfTðR;TÞ

×

�
ðϵþpÞUμ∇μ lnfTðR;TÞþUν∇ν

ϵ−p
2

�
:

ð69Þ

We interpret again Eq. (69) as describing adiabatic
irreversible thermodynamic particle creation in a cosmo-
logical context, according to Eq. (31). Therefore the
particle balance equation is given by

_nþ 3nH ¼ Γn; ð70Þ
where for the case of the fðR; TÞ gravity the particle
creation rate is defined as

Γ ¼ −
fTðR; TÞ

8π þ fTðR; TÞ
�
d
dt

ln fTðR; TÞ þ
1

2

_ϵ − _p
ϵþ p

�
: ð71Þ

The energy conservation equation can be formulated in an
alternative way as

d
dt

ðϵa3Þ þ p
d
dt

a3 ¼ ðϵþ pÞa3Γ: ð72Þ

In the fðR; TÞ gravity theory, the creation pressure
corresponding to the particle production from the gravita-
tional field, defined in Eq. (38), is given by

pc ¼
ϵþ p
3H

fTðR; TÞ
8π þ fTðR; TÞ

�
d
dt

ln fTðR; TÞ þ
1

2

_ϵ − _p
ϵþ p

�
:

ð73Þ
If fðR; TÞ is independent of T (the general relativistic

limit), then fTðR; TÞ≡ 0 and both Γ and pc vanish. Hence
we reobtain the standard cosmological evolution without
matter creation and with the evolution of the Universe
obeying a strict conservation law of the total energy.
From Eq. (43) we obtain the time variation of the entropy,

which is entirely due to the matter creation processes, as

SðtÞ ¼ S0 exp

�Z
t

0

Γðt0Þdt0
�
; ð74Þ

where S0 is an arbitrary constant of integration.With the use
of Eq. (48), we obtain for the entropy production rate the
expression

∇μSμ ¼
n
T
Γ
�
ϵþ p
n

− μ

�
¼ −

n
T

�
ϵþ p
n

− μ

�

×
fTðR; TÞ

8π þ fTðR; TÞ
�
d
dt

ln fTðR; TÞ þ
1

2

_ϵ − _p
ϵþ p

�
:

ð75Þ
By assuming that the energy density and the thermody-

namic pressure of the newly created particles are, according
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to Eqs. (51), functions of both the particle number n and the
temperature T , the temperature time variation of the created
particles in the open thermodynamic system follows from
Eq. (54), and in the fðR; TÞ gravity is given by

1

c2s

_T
T

¼ Γ − 3H ¼ −
�

fTðR; TÞ
8π þ fTðR; TÞ

×

�
d
dt

ln fTðR; TÞ þ
1

2

_ϵ − _p
ϵþ p

�
þ 3H

�
; ð76Þ

where c2s ¼ ∂p=∂ϵ is the speed of sound.

B. Cosmological applications

In the following we consider the thermodynamic inter-
pretation of a simple fðR; TÞ modified gravity theory [10].
We assume that the function fðR; TÞ is given by

fðR; TÞ ¼ Rþ 2gðTÞ; ð77Þ

where gðTÞ is an arbitrary function of the trace of the
energy-momentum tensor T ¼ ϵ − 3p of matter. The gravi-
tational field equations immediately follow from Eq. (17)
and are given by

Rμν −
1

2
Rgμν ¼ 8πTμν − 2g0ðTÞTμν − 2g0ðTÞΘμν þ gðTÞgμν;

ð78Þ

where the prime denotes a derivative with respect to the
argument.
By taking the matter source as a perfect fluid, we have

Θμν ¼ −2Tμν − pgμν, and then the field equations become

Rμν −
1

2
Rgμν ¼ 8πTμν þ 2g0ðTÞTμν

þ ½2pg0ðTÞ þ gðTÞ�gμν: ð79Þ

Bymodeling the matter content of the Universe as dust with
p ¼ 0, the gravitational field equations can be obtained as

Rμν −
1

2
Rgμν ¼ 8πTμν þ 2g0ðTÞTμν þ gðTÞgμν: ð80Þ

These field equations were also proposed in [57] to solve
the cosmological constant problem. The simplest cosmo-
logical model can be obtained by assuming a dust matter
dominated universe (p ¼ 0, T ¼ ρ), and by choosing the
function gðTÞ so that gðTÞ ¼ λT, where λ is a constant,
giving

fTðR; TÞ ¼ 2λ ¼ const: ð81Þ

For the flat FRW metric, the gravitational field equations
are given by

3H2 ¼ ð8π þ 3λÞϵ ð82Þ

and

2 _H þ 3H2 ¼ −λϵ; ð83Þ

respectively. Thus this fðR; TÞ gravity model is equivalent
to a gravitational model with an effective cosmological
constant Λeff ∝ H2 [10,57]. For this choice of fðR; TÞ the
gravitational coupling becomes an effective time dependent
coupling, of the form Geff ¼ G� 2g0ðTÞ. Therefore the
presence of the term 2gðTÞ in the gravitational action
modifies the nature of the gravitational interaction between
matter and geometry, replacing the gravitational constant G
by a running gravitational coupling parameter.
The field equations reduce to a single equation for H,

2 _H þ 3
8π þ 4λ

8π þ 3λ
H2 ¼ 0; ð84Þ

with the general solution given by

HðtÞ ¼ 2ð8π þ 3λÞ
3ð8π þ 4λÞ

1

t
¼ H0

t
; ð85Þ

where H0 ¼ 2ð8π þ 4λÞ=3ð8π þ 3λÞ. The scale factor
evolves according to aðtÞ ¼ tH0 , while the matter energy
density of the Universe can be obtained as

ϵðtÞ ¼ ϵ0
t2
; ð86Þ

where ϵ0 ¼ 3H2
0=ð8π þ 3λÞ. The deceleration parameter q,

defined as

q ¼ d
dt

1

H
− 1; ð87Þ

is obtained as

q ¼ 1

H0

− 1 ¼ 8π þ λ

2ð8π þ 4λÞ : ð88Þ

If q < 0, the expansion of the Universe is accelerating,
while q > 0 corresponds to a decelerating phase.
The energy conservation equation follows from Eq. (69)

and is given by

_ϵþ 3
8π þ 2λ

8π þ 3λ
ϵH ¼ 0: ð89Þ

The particle creation rate, due to the energy transfer from
the gravitational field to the matter, is obtained as

ΓðtÞ ¼ −
λ

8π þ 2λ

_ϵ

ϵ
¼ 3λ

8π þ 3λ
H ¼ Γ0

t
; ð90Þ
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where Γ0 ¼ ð2λ=3Þð8π þ 4λÞ=ð8π þ 3λÞ2. The time varia-
tion of the particle number in the open matter-gravitation
system is described by the equation

_n ¼ Γ0 − 3H0

t
n; ð91Þ

and is given by

nðtÞ ¼ n0tΓ0−3H0 ; ð92Þ

where n0 is an arbitrary constant of integration. The
creation pressure, obtained from Eq. (73), is determined as

pcðtÞ ¼
λ

3ð8π þ 2λÞ
_ϵ

H
¼ −

λ

8π þ 3λ
ϵ ¼ −

pc0

t2
; ð93Þ

where pc0 ¼ λϵ0=ð8π þ 3λÞ. Finally, for the time variation
of the entropy of the Universe, which is due to the creation
of the particles from the gravitational field, we obtain

SðtÞ ¼ S0tΓ0 : ð94Þ

Therefore we have obtained a full thermodynamic inter-
pretation, in the framework of open irreversible thermo-
dynamic systems, of this simple fðR; TÞ cosmological
model. The particle creation rate is proportional to the
Hubble function, and it is a linearly decreasing function of
time. The particle number created during this expansionary
phase decreases during the cosmological evolution. The
particle creation processes generate a large amount of
comoving entropy, whose time dependence is given by a
power law function.

V. DISCUSSIONS AND FINAL REMARKS

In the present paper we have investigated in a systematic
way the possibility that modified gravity theories with
geometry-matter coupling can be interpreted as providing a
phenomenological description of particle production in the
cosmological fluid filling the Universe. One of the common
features of these classes of gravity theories is the non-
conservation of the matter energy-momentum tensor. By
using the mathematical formalism of the open thermody-
namic systems we have provided a physical interpretation
of the extra terms generated by the nonminimal geometry-
matter coupling as describing particle production, with the
gravitational field acting as a particle source. Both
fðR;LmÞ and fðR; TÞ gravity theories do admit such an
interpretation, and the particle production rates, entropy,
creation pressure and entropy generation rate have been
explicitly obtained as functions of the coupling functions f
and of their derivatives, respectively.
The phenomenological cosmological particle creation

formalisms considered in the present paper have been
extensively discussed in the literature within the context

of standard general relativity. Hence, the geometric cou-
pling to matter of alternative gravity theories is not strictly
necessary for this type of cosmological approaches.
However, there is a fundamental difference between the
thermodynamic of open systems as formulated in the
framework of standard general relativity, and in theories
with geometry-matter coupling. While in general relativity
the particle creation rates and the creation pressure either
must be chosen based on some plausible physical consid-
erations or must be inferred from some microscopic
description, in both fðR;LmÞ and fðR; TÞ modified gravity
theories the coupling between geometry and matter com-
pletely determines the particle creation rates, the creation
pressure and the entropy production, respectively. As one
can see from Eqs. (33) and (38), in fðR;LmÞ gravity theory
Γ and pc are completely determined by the derivatives of
the function fðR;LmÞwith respect to the matter Lagrangian
Lm and by the matter Lagrangian itself. In the case of
fðR; TÞ gravity theory, the particle creation rates and the
creation pressure, given by Eqs. (71) and (73), respectively,
are also determined by the derivative of fðR; TÞ with
respect to T. Hence, in these classes of theories all the
irreversible thermodynamic quantities are fully determined
by the gravitational action. In the general relativistic limit
with fðR; LmÞ ¼ R=2þ Lm, and fðR; TÞ independent of T,
all Γ and pc are identically equal to zero. This result shows
the essential role played by the coupling between matter
and geometry in the phenomenological description of the
cosmological particle production processes.
On the other hand, it has been suggested by Zeldovich

[58] and later by Murphy [59] and [60] that the introduction
of viscosity in the cosmological fluid is nothing but a
phenomenological description of the effect of creation of
particles by the nonstationary gravitational field of the
expanding universe. A nonvanishing particle production
rate is equivalent to a bulk viscous pressure in the cosmo-
logical fluid, or, from a quantum point of view, with a
viscosity of the vacuum. This is due to the simple circum-
stance that any source term in the energy balance of a
relativistic fluid may be formally rewritten in terms of an
effective bulk viscosity.
The energy-momentum tensor of a relativistic fluid with

bulk viscosity as the only dissipative phenomena can be
written as [61]

Tμν ¼ ðϵþ pþ ΠÞUμUν − ðpþ ΠÞ; ð95Þ

where Π is the bulk viscous pressure. The particle flow
vector Nμ is given by Nμ ¼ nUμ. Limiting ourselves to
second-order deviations from equilibrium, in the frame-
work of causal thermodynamics the entropy flow vector Sμ

takes the form [62]

Sμ ¼ sNμ −
τΠ2

2ξT
Uμ; ð96Þ
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where τ is the relaxation time, and ξ is the coefficient of
bulk viscosity. In the case of a homogeneous and isotropic
geometry, the energy conservation equation in the presence
of bulk viscous dissipative processes is obtained as

_ϵþ 3ðϵþ pþ ΠÞH ¼ 0: ð97Þ
By comparing Eq. (97), giving the conservation equation

for a bulk viscous cosmological fluid, with Eq. (36), which
includes in the energy balance the creation of particles from
the gravitational field, it follows that if one can take

pc ¼ Π; ð98Þ
particle creation is equivalent with the introduction of an
effective bulk viscous pressure in the energy-momentum
tensor of the cosmological fluid. Hence the causal bulk
viscous pressure Π acts as a creation pressure. However,
there is a major difference between the particle creation
irreversible processes in open thermodynamic systems
and bulk viscous processes, and this difference is related
to the expression for the entropy production rate. While the
entropy production rate associated with particle creation is
given by [15]

∇μSμ ¼ −
3Hpc

T

�
1þ μΓn

3Hpc

�
≥ 0; ð99Þ

in the presence of bulk viscous dissipative processes the
entropy production rate can be obtained as [61]

∇μSμ ¼ −
Π
T

�
3H þ τ

ξ
_Πþ τ

2ξ
Π
�
3H þ _τ

τ
−
_ξ

ξ
−

_T
T

��
:

ð100Þ
In the particle creation model in open thermodynamics

systems the entropy production rate is proportional to the
creation pressure, while in the viscous dissipative processes
thermodynamic interpretation ∇μSμ is quadratic in the
creation pressure, ∇μSμ ∝ p2

c=ξT , and, moreover, involves
a new dynamical variable, the bulk viscosity coefficient.
In the present paper we have adopted a phenomeno-

logical thermodynamical approach for the description of
matter creation in cosmology, with the particle creation rate
being determined by the coupling between matter and
geometry. Such an approach cannot give any indication on
the type or nature of the created particles. However, it is
natural to expect that such creation processes are consistent
with the similar processes that appear in the framework of
the quantum particle creation in cosmology. Generally,
a static gravitational field does not produce particles.
However, a time-dependent gravitational field generally
produces particles. In conventional quantum mechanics,
tunneling from a small scale factor a to large a would be
described by the wave function which contains only

outgoing waves as a → ∞ [63]. The decaying part of
the wave function in the classically forbidden region can be
represented as ΨðaÞ ∝ exp f− R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½VðaÞ − ϵ�p
dag, where

VðaÞ is the quantum potential, and ϵ is the conformal
energy of the scalar mode. When a massive scalar field is
conformally coupled to gravity, with an action of the form
SΦ ¼ R ðgμν∇μΦ∇νΦ=2 − m2

ΦΦ
2 þ RΦ2=12Þ ffiffiffiffiffiffi−gp

d4x,
unlike in conventional quantum mechanics, the resulting
Schrödinger equation contains a negative kinetic term for
the scale factor, and the potential VðaÞ also enters with a
negative sign. Therefore in quantum cosmology, and
quantum particle creation processes, the excitation of the
field Φ makes the tunneling processes exponentially easier,
due to the increase of the effective value of ϵ [63].
Therefore, the quanta Φ of the quantum field tend to be
copiously created. Therefore, based on the quantum anal-
ogy, we expect that most of the particles created due to the
geometry-matter coupling may be in the form of some
scalar particles (bosons) that cosmologically may represent
the dark matter content of the Universe. In the simple
fðR; TÞ cosmological model analyzed in the previous
section we have seen that the particle creation rate is
maximum at the beginning of the cosmological expansion.
Therefore we may also consider that most of the dark
matter was created at the early stages of the cosmological
evolution. On the other hand, self-interacting dark matter
bosons may condense to form a Bose-Einstein condensate,
and this hypothesis seems to be confirmed by the study of
the galactic rotation curves [64,65].
One of the intriguing problems in modern cosmology is

the entropy problem [66,67]. By using the open thermo-
dynamic system interpretation, in the framework of theories
with geometry-matter coupling models that start from
empty conditions and gradually build up matter and
entropy can easily be constructed. In these models also
the gravitational entropy takes a simple meaning, being
associated with the entropy that is necessary to produce
matter. Matter creation process are modeled classically and
on a phenomenological level by means of a creation
pressure, with particles continuously added to the cosmo-
logical space-time. The dynamics and evolution of the
Universe are entirely determined by particle production
processes, which, in turn, essentially depend on the
geometry-matter coupling, and the influence of particle
production on geometry is essential. As a consequence of a
large particle creation rate, inflationary behavior can also be
obtained. The evolution of the Universe is determined, for a
given equation of state, by the numerical values of a single
parameter Γ, containing both the thermodynamics param-
eters of the system, as well as the geometry-matter
coupling. Matter creation processes are naturally stopped
after a finite interval of time, and the Universe may end in a
decelerating era. A large amount of comoving entropy is
produced during the evolution of the Universe.
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The study of the irreversible matter-creation processes
in the homogeneous and isotropic flat FRW geometry
in models with geometry-matter coupling opens the
possibility of considering the viability of these gravity
theories in a cosmological context. However, in order to
confirm the validity of the thermodynamic interpretation
developed in the present paper, it is necessary to consider
a wider range of cosmological and astrophysical tests of
the fðR;LmÞ and fðR; TÞ type theories. In particular,
an essential test of these theories would be the analysis
of their classical macroscopic predictions in structure
formation with linear perturbations (in the Newtonian
limit in small scales), and in observations fitting, includ-
ing the study of the effects of matter creation on the
CMB anisotropies. Essentially the models introduced in
the present paper are some simple toy models, whose main

interest is to begin probing and testing alternative gravity
theories.
The gravitational theories considered in the present paper

predict the possibility that matter creation, associated with
geometry-matter coupling can also occur in the present-day
universe, as initially considered by Dirac [68]. The exist-
ence of some forms of matter-geometry coupling are not in
contradiction with the cosmological observations or with
some astrophysical data [9,11], but observational evidence
of particle creation on a cosmological scale is still missing.
Presumably, the functional forms of the functions f enter-
ing in the present gravitational theories will be furnished by
fundamental particle physics models of decaying vacuum
energy density and gravitational coupling, thus permitting
an in depth comparison of the predictions of the theory with
observational data.
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