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The relation between Gribov ambiguity and degeneracies in the symplectic structure of physical systems
is analyzed. It is shown that, in finite-dimensional systems, the presence of Gribov ambiguities in regular
constrained systems (those where the constraints are functionally independent) always leads to a degenerate
symplectic structure upon Dirac reduction. The implications for the Gribov-Zwanziger approach to QCD
are discussed.
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I. INTRODUCTION

A. Gribov problem and the Zwanzinger
restriction

In his seminal paper, Gribov showed that a standard
gauge condition, such as the Coulomb or the Landau
choices, fails to provide proper gauge fixings1 in Yang-
Mills theories [3]. This so-called Gribov problem, that
affects non-Abelian gauge theories, means that a generic
gauge fixing intersects the same gauge orbit more than once
(Gribov copies) and may fail to intersect others. Algebraic
gauge conditions free of Gribov ambiguities are possible,
but those choices are affected by severe technical problems
as, for instance, incompatibility with the boundary con-
ditions that must be imposed on the gauge fields in order to
properly define the configuration space for the theory [4].
Additionally, Singer [5] showed that Gribov ambiguities
occur for all gauge-fixing conditions involving derivatives
(see also Ref. [6]), and moreover, the presence of the
Gribov problem breaks BRST symmetry at a nonperturba-
tive level [7].2

The Gribov problem occurs because it is generically
impossible to ensure positive definiteness of the Faddeev-
Popov (FP) determinant everywhere in functional space.
The configurations for which the FP operator develops a
nontrivial zero mode are those where the gauge condition
becomes “tangent” to the gauge orbits and it therefore fails
to intersect them. The Gribov horizon (GH), where this
happens, marks the boundary beyond which the gauge

condition intersects the gauge orbits more than once
(Gribov copies). The appearance of Gribov copies invalid-
ates the usual approach to the path integral, and one way to
avoid overcounting is to restrict the sum over field
configurations to the so-called Gribov region around
Aμ ¼ 0, where the FP operator is positive definite (see,
in particular, Refs. [3,10–14]).
In the case of flat, topologically trivial space-time, the

restriction to the Gribov region coincides with the usual
perturbation theory around Aμ ¼ 0 (with respect to a
suitable functional norm [14]). The restriction to the first
Gribov region takes into account the infrared effects related
to the partial elimination of the Gribov copies, in the sense
that it only guarantees the exclusion of those copies
obtained by (“small”) gauge transformations perturbatively
connected to Aμ ¼ 0 [11,15,16]. It has been shown that
nonperturbatively accessible gauge copies may exist within
the Gribov region as well if the space-time is not flat or is
topologically nontrivial [17–19]. The complete elimination
of the gauge copies if the space is not flat or its topology is
nontrivial can be a very difficult issue, and here we do not
consider those possibilities, restricting the path integral to
the first Gribov region.
Remarkably enough, the partial elimination of Gribov

copies in perturbation theory is related to the nonperturba-
tive infrared physics [3]. The nonperturbative input in the
modified path integral is the restriction to the Gribov
region. When one takes into account the presence of
suitable condensates [20–24], the agreement with lattice
data is excellent [25,26]. Moreover, within this approach, it
has been possible to solve an old issue on the Casimir
energy and force for the Yang-Mills field in the MIT bag
model [27].
A common criticism to the Gribov-Zwanziger approach

that restricts the functional space to the Gribov region is
that it goes against Feynman’s postulate of summing over
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1A gauge fixing is called proper if it intersects all gauge

orbits only once [1,2].
2See also Refs. [8,9].
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all histories. There are various arguments that answer this
criticism. First of all, the configurations outside the Gribov
region are copies of some configuration inside the Gribov
region [11,12]. Therefore, the Gribov restriction avoids
overcounting, and no relevant physical configurations are
lost. Second and most importantly, this framework con-
siderably improves the analytic results of standard pertur-
bation theory like the glueball spectrum, which closely
reproduces the lattice results [24].
Hence, it is natural to look for examples in a context

simpler than Yang-Mills theory, in which the issue of the
Gribov restriction can be directly analyzed. Here we show
in some toy models with a finite number of degrees of
freedom that it may not be necessary to impose the Gribov
restriction “by hand,” but it arises naturally from the
dynamics of the system.

B. Gribov problem and dynamic degeneracy

In Dirac’s formalism for constrained systems [1,2],
gauge-invariant mechanical systems are characterized by
the presence of first-class constraints ϕi ≈ 0, i ¼ 1;…; n.
Gauge fixing in those systems is achieved by the intro-
duction of n gauge conditions Gi ≈ 0, so that the 2n
constraints fGi;ϕjg become a second-class set. In this
context, the Gribov problem is the statement that the
second-class nature of this set cannot hold globally: the
Dirac matrix defined by their Poisson brackets is not
invertible everywhere in phase space; it is degenerate.
Degenerate Hamiltonian systems on the other hand, are

those whose symplectic form is not invertible in a subset Σ
of phase space Γ [28]. In classical degenerate systems, the
evolution takes place over nonoverlapping causally dis-
connected subregions of the phase space separated by
degenerate surfaces Σ. This means that if a system is
prepared in one subregion, it never evolves to a state in a
different subregion. This still holds in the quantum domain
for some simple degenerate systems [29]. Degenerate
systems are ubiquitous in many areas of physics, from
fluid dynamics [30] to gravity theories in higher dimen-
sions [31,32], in the strong electromagnetic fields of
quasars [33], and in systems such as massive bigravity
theory [34], which has been shown to possess degenerate
sectors where the degrees of freedom change from one
region of phase space to another [35].
Here we will show that Gribov ambiguity and the

existence of degeneracies are related problems, and that
the GH can be identified as a surface of degeneracy Σ. This
means that the system would be naturally confined to a
region surrounded by a horizon, exactly as proposed
by Zwanziger [10]. This interpretation of the GH, as a
surface of degeneracy that acts as a boundary beyond
which the evolution cannot reach, makes the restriction in
the sum over histories a natural prescription and not an ad
hoc one.

II. DEGENERATE SYSTEMS

We now briefly review classical [28] and quantum [29]
degenerate systems. In order to fix ideas, let us consider a
system described by the first-order action:

I½u� ¼
Z

dtðXAðuÞ _uA −HðuÞÞ; with A ¼ 1;…; N:

ð1Þ

This action can be interpreted in two not exactly equivalent
ways: A) The uA’s are N generalized coordinates, and
Lðu; _uÞ ¼ XðuÞA _uA −HðuÞ is the Lagrangian. B) The uA’s
are noncanonical coordinates in an N-dimensional phase
space Γ, where N is necessarily even, and Eq. (1) gives the
action in Hamiltonian form.
In the first approach, for each u there is a canonically

conjugate momentum in the 2N-dimensional canonical
phase space ~Γ given by

pA ¼ ∂L
∂ _uA : ð2Þ

In this case, this definition gives a set of primary
constraints,

ΦA ¼ pA − XAðuÞ ≈ 0; ð3Þ

whose (canonical) Poisson brackets define the antisym-
metric matrix

½ΦA;ΦB� ¼ ∂AXB − ∂BXA ≡ ΩABðuÞ: ð4Þ

If ΩAB is invertible—which requires N to be even—the
constraints ΦA ≈ 0 are second class, and ΩABðuÞ gives the
Dirac bracket necessary to eliminate them.3 Elimination of
these second-class constraints in the 2N-dimensional
canonical phase space ~Γ ¼ fuA; pAg corresponds to choos-
ing half of the u’s as coordinates and the rest as momenta,
and ΩABðuÞ will be identified as the (not necessarily
canonical) presymplectic form in the reduced
N-dimensional phase space Γ. In fact, in the
Hamiltonian approach, the presymplectic form can be read
from the equations of motion for the action in Eq. (1),

ΩABðuÞ _uA þ EAðuÞ ¼ 0; ð5Þ

where

ΩAB ≡ ∂AXBðuÞ − ∂BXAðuÞ and EA ≡ ∂AHðuÞ: ð6Þ

This reasoning shows that in the open sets where ΩAB is
invertible, the Lagrangian and Hamiltonian versions of this

3SinceΩAB is a curl, it satisfies the identity ∂AΩBC þ ∂BΩCA þ
∂CΩAB ¼ 0 (or Ω ¼ dX ⇒ dΩ≡ 0).
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system are equivalent. In this case, the inverse symplectic
form, ΩAB, defines the Poisson bracket for the theory in
(not necessarily canonical) coordinates:

ΩAB ¼ ½uA; uB�: ð7Þ

In what follows, we will refer to Γ as the phase space
where u are the coordinates. The presymplectic form
ΩABðuÞ is a function of the phase space coordinates uA,
and its determinant can vanish on some subset Σ ⊂ Γ
of measure 0. Degenerate systems are characterized by
having a presymplectic form whose rank is not constant
throughout phase space. Moreover, in its evolution a
degenerate system can reach a degenerate surface Σ where
det½ΩAB� ¼ 0 in a finite time,

Σ ¼ fu ∈ ΓjϒðuÞ ¼ 0g; ð8Þ

where ϒðuÞ ¼ ϵA1A2…ANΩA1A2
…ΩAN−1AN

is the Pfaffian of
ΩAB, and det½ΩAB� ¼ ðϒÞ2.
Generically, a degenerate surface represents a co-

dimension-1 submanifold in phase space and, as shown
in Ref. [28], the classical evolution cannot take the system
across Σ. The equations of motion [Eq. (5)] can be solved
for _uA provided ΩAB can be inverted. Moreover, the
velocity diverges in the vicinity of Σ, and if ΔðuÞjΣ ¼ 0
is a simple zero, the velocity changes sign across Σ.
Therefore, an initial state on one side of Σ could never
reach the other: there is no causal connection between
configurations on opposite sides of Σ. This degeneracy
surface Σ acts as a source or sink of orbits, splitting the
phase space into causally disconnected, nonoverlapping
regions (see Fig. 1).
In the quantum case, the degeneracy of the symplectic

form becomes the singular set of the Hamiltonian, and the
corresponding Hilbert spaceH is endowed with a weighted
scalar product,

hψ1;ψ2i ¼
Z

dVψ�
1wψ2; ð9Þ

where dV ¼ ffiffiffi
g

p
dnu is the volume form, and the weight

wðuÞ is the Pfaffian ϒðuÞ of the symplectic form ΩAB:

wðuÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ½ΩABðuÞ�

p
¼ ϒðuÞ; ð10Þ

defined in order for the Hamiltonian to be symmetric and
for the norm in H to be positive definite.
Since singular points must be excluded from the domain

of the Hamiltonian operator, for consistency they should
also be excluded from the domain of the wave functions.
This means that the Hilbert space includes wave functions
that can be discontinuous at the degenerate surfaces.
Allowing discontinuous wave functions implies that the
solutions can have support restricted to a single region
bounded by Σ. Therefore, the Hilbert space is a direct sum
of orthogonal subspaces of functions defined on each side
of the degenerate surface and, in complete analogy with the
classical picture, there is no quantum tunneling across Σ.

III. GAUGE FIXING AND GRIBOV AMBIGUITY

The quantum description of a gauge-invariant system can
be achieved by first fixing the gauge and then applying the
quantization prescription to the remaining classical degrees
of freedom. Let Γ be a phase space described by gener-
alized coordinates uA (A ¼ 1; 2;…; N), endowed with a
symplectic form ΩABðuÞ everywhere invertible. Consider
now an open patch of the phase space Γwhere a system has
local symmetries generated by a set of first-class constraints
ϕiðuÞ ≈ 0, ði ¼ 1;…; n < N=2Þ. Following Dirac’s pro-
cedure, for a system with n first-class constraints, an equal
number of gauge-fixing conditions,

GiðuÞ ≈ 0; i ¼ 1;…; n; ð11Þ

must be included so that the whole set of constraints,

fγIg ¼ fGi;ϕjg; I ¼ 1;…; 2n < N; ð12Þ

is second class (see Ref. [1]). In order to define a proper
gauge fixing, two conditions must be fulfilled: every orbit
must intersect the surface defined by the set fGig in Γ
(accessibility), and orbits cannot intersect the surface
defined by fGig more than once (complete gauge fixation)
[2]. In other words, the surface in phase space defined by

FIG. 1 (color online). Qualitative flow of the orbits near the degeneracy surface (thick line), which can act as a sink or as a source.
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the gauge conditions in Eq. (11) must intersect every orbit
once and only once.
The submanifold defined by setting the constraints fγIg

strongly equal to zero corresponds to the reduced gauge-
fixed phase space of the system, which will be denoted
by Γ0:

Γ0 ≔ fuA ∈ ΓjγIðuÞ ¼ 0; I ¼ 1;…; 2ng: ð13Þ

In Γ0, a new Poisson structure is introduced by the Dirac
bracket ½; ��:

½M;N�� ¼ ½M;N� − ½M; γI�CIJ½γJ; N�; ð14Þ

where CIJ is the inverse of the Dirac matrix constructed
from the second-class constraints fγIg,

CIJ ¼ ½γI; γJ� ¼ ΩAB∂AγI∂BγJ: ð15Þ

The symplectic form for the gauge-fixed system in the
reduced phase space defines the Dirac bracket [Eq. (14)].
Suppose now that the set of gauge conditions fGig fails to
fix completely the gauge in a region of phase space, leading
to a Gribov ambiguity (see Fig. 2). This means that if a
configuration uA satisfies the gauge conditions GiðuÞ ≈ 0,
there exists a gauge-transformed configuration uA þ δuA

that also satisfies it, namely

δGiðq; pÞ ≈ ∂AGiδuA ¼ 0: ð16Þ

Since gauge transformations are generated by first class
constraints,

δuA ¼ ϵj½uA;ϕj� ¼ ϵjΩAB∂Bϕj; ð17Þ

where ϵj are infinitesimal parameters, the condition for the
existence of Gribov copies [Eq. (16)] takes the form

ϵjΩAB∂AGi∂Bϕj ¼ ϵj½Gi;ϕj� ¼ 0; ð18Þ

which has nontrivial solutions (ϵi ≠ 0) provided

det ½Gi;ϕj� ¼ 0:

The matrix ½Gi;ϕj� corresponds to the FP operator in gauge
field theory, whose definition is

Mij ¼ ½Gi;ϕj� ¼ ΩAB∂AGi∂Bϕj: ð19Þ

Gribov ambiguity occurs if the determinant of the FP
operator Mij vanishes. The Gribov copies continuously
connected to a given configuration are related by the
corresponding zero modes. The GH is defined to be the
subset Ξ of phase space Γ where the FP determinant
vanishes:

Ξ ≔ fuA ∈ Γj det½Mij� ¼ 0g: ð20Þ

Now, let us observe that the Dirac matrix [Eq. (15)] for the
set of constraints fγIg contains Mij as a submatrix

CIJ ¼ ½γI; γJ� ¼
�ΩAB∂AGi∂BGj Mij

−Mij ΩAB∂Aϕi∂Bϕj

�
: ð21Þ

Hence, as the set fϕig is first class, the determinant of the
Dirac matrix is given weakly by the square of the FP
determinant,

det½CIJ� ≈ ðdet½Mij�Þ2: ð22Þ

In an open set whereMij is invertible, the Dirac bracket in
Eq. (14) can be safely defined. On the other hand, since at
the GH det½Mij� vanishes, the determinant of the Dirac
matrix vanishes as well, and the Dirac bracket becomes ill
defined there. Moreover, in the next section, we will see
that a Gribov ambiguity implies a degeneracy of the
symplectic form for the gauge-fixed system at the GH.

IV. GRIBOV HORIZON AND
DEGENERATE SURFACES

In general, the gauge generators ϕi ≈ 0, together with the
gauge-fixing conditions Gi ≈ 0 form a set of 2n second-
class constraints. However, this is not globally true in the
presence of a Gribov ambiguity, which can have nontrivial
consequences in the symplectic structure of the reduced
phase space. This can be seen when considering an open set
where the Dirac matrix CIJ is invertible, CIJCJK ¼ δIK .
Setting the constraints strongly to zero defines the reduced
gauge-fixed (“physical”) phase space, which is generically
a co-dimension-2n surface Γ0 embedded in phase space Γ.
Even though we started the analysis with a globally

invertible symplectic form, implementing the gauge fixing
changes the Poisson structure, and a new symplectic form

FIG. 2 (color online). The gauge condition GiðuÞ ≈ 0 (thick
line) intersects the gauge orbits (thin lines) more than once,
provided there exist points where the orbits run tangent to the
gauge condition.
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for the reduced phase space must be found. In order to
explicitly write the symplectic form in the reduced phase
space, it is useful to take adapted coordinates
fUAg ¼ fu�a; vIg, where fu�ag are “first-class” coordi-
nates (in the sense that they have vanishing brackets with all
second-class constraints; see Ref. [2])

u�a ¼ ua − ½ua; γI�CIJγJ with a ¼ 1;…; N − 2n; ð23Þ

while fvIg is chosen as the set of second-class constraints
[Eq. (12)]

vI ¼ γI with I ¼ 1;…; 2n: ð24Þ

Consequently, fu�ag and fvIg are canonically independent
coordinates, i.e.,

½u�a; vI� ¼ 0: ð25Þ

The conditions vI ¼ 0 define the reduced phase space, and
the u�’s fix the position within the reduced phase space Γ0.
The matrix of their Poisson brackets, given by

Ω̂AB ¼ ½UA;UB� ¼
�
ωab 0

0 CIJ

�
; ð26Þ

where

ωab ¼ ½u�a; u�b� ≈ ½ua; ub��; ð27Þ

is the inverse of the symplectic form in the reduced phase
space ωab.
The passage from the generic coordinates fuAg to the

adapted ones, fUAg ¼ fu�a; γIg, must be well defined.
Then, the Jacobian for the transformation,

J A
B ¼

�∂UA

∂uB
�

¼
� ∂Bu�a

∂Bγ
I

�
; ð28Þ

is invertible. Assuming the original Poisson structure
[Eq. (7)] to be well defined, i.e., det½ΩAB� ¼ ΩðuÞ ≠ 0,
the new Poisson bracket in the adapted coordinates satisfies

det½Ω̂AB� ¼ ðdet½J A
B�Þ2Ω: ð29Þ

Hence, we arrive at the following theorem.
Theorem: For a system with Gribov ambiguity, the

symplectic form on the reduced phase space, ωab, neces-
sarily degenerates at the Gribov horizon.
Proof: Since the coordinates UA are globally well

defined, the determinant of the Jacobian [Eq. (28)] is finite
everywhere. In particular, it must approach a finite value
J ðūÞ on the GH,

det½J A
B�⟶

u→ū
J ðūÞ ≠ 0; ð30Þ

where ū stands for the values of the coordinates at the GH
[Eq. (20)]. From Eq. (26), this means that

det½Ω̂AB� ¼ det½ωab� det½CIJ�⟶
u→ū

J ðūÞ2ΩðūÞ: ð31Þ

On the other hand, from Eq. (22) we know that the
determinant of the Dirac matrix vanishes at the GH, and
therefore the determinant of the Poisson structure on the
reduced phase space must be singular,

det½ωab�⟶
u→ū

∞:

Consequently, the reduced phase space symplectic form
necessarily degenerates at the GH,

det½ωab�⟶
u→ū

0: ð32Þ

▪
A well-defined Poisson structure ωab at the GH
(det½ωabðūÞ� finite) requires det½Ω̂AB�⟶

u→ū
0, and conse-

quently, the coordinates fUAg should be ill defined there.
This might happen if the constraints [Eq. (12)] are not
functionally independent at the GH—that is, if the con-
straints fail to be regular. If this problem is not produced by
an erroneous choice of gauge fixing, it can only be due to
an irregularity in the first-class constraints at the GH.
Irregularity in dynamical systems is an independent prob-
lem from degeneracy and requires special handling to
define the system in a consistent manner [36]. An example
of a system with Gribov ambiguity where the reduced
symplectic form is nondegenerate due to irregularities will
be analyzed in Sec. VI.
The importance of this result is that when the global

coordinates are well defined, the induced symplectic form
of the gauge-fixed theory degenerates at the GH.
Consequently, as shown in Refs. [28,29], the dynamics
is restricted to the regions of phase space bounded by the
degeneracy surface. This argument puts the Gribov-
Zwanziger restriction on a firm basis: the previous analysis
(which strictly speaking only holds for finite-dimensional
systems) suggests that the system cannot cross the GH
(since it is a degenerate surface for the corresponding
Hamiltonian system), and therefore, the Gribov-Zwanziger
restriction would be naturally respected by the dynamics.

V. THE FLPR MODEL

In this section, we illustrate the previous discussion with
a solvable model proposed by Friedberg, Lee, Pang, and
Ren (FLPR), which presents a Gribov ambiguity for
Coulomb-like gauge conditions [37]. This model has been
extensively studied in attempts to understand how the
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Gribov ambiguity could be circumvented [38–40]. We will
show that, in this gauge, the symplectic form for the gauge-
fixed system becomes degenerate at the GH. Closely
related models, for which Dirac quantization is nontrivial,
have been analyzed in Ref. [41].
The Lagrangian for the FLPR model is

L ¼ 1

2
ðð_xþ αyqÞ2 þ ð_y − αxqÞ2 þ ð_z − qÞ2Þ − VðρÞ;

ð33Þ

where fx; y; z; qg are Cartesian coordinates, ρ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ y2

p
,

and α > 0 is a coupling constant. The velocity _q is absent,
and therefore the coordinate q plays the role of an auxiliary
field or Lagrange multiplier. The associated canonical
momenta are given by

px ¼
∂L
∂ _x ¼ _xþ αyq; py ¼

∂L
∂ _y ¼ _y − αxq;

pz ¼
∂L
∂ _z ¼ _z − q; pq ¼

∂L
∂ _q ¼ 0: ð34Þ

Following Dirac’s procedure, we find one primary
constraint:

φ ¼ pq ≈ 0: ð35Þ

The total Hamiltonian is given by

HT ¼ 1

2
ðp2

x þ p2
y þ p2

zÞ þ ½αðxpy − ypxÞ þ pz�q
þ ξφþ VðρÞ; ð36Þ

where ξ is a Lagrange multiplier. Time preservation of the
constraint φ leads to the secondary constraint

ϕ ¼ pz þ αðxpy − ypxÞ ≈ 0; ð37Þ

which leads to no new constraints for the system. Since φ
and ϕ have vanishing Poisson bracket, they form a first-
class set, reflecting the fact that they generate the local4

gauge symmetries. The constraint φ generates arbitrary
translations in q,

δφðx; y; z; qÞ ¼ ð0; 0; 0; εðtÞÞ; δφðpx; py; pz; pqÞ ¼ 0;

ð38Þ

while ϕ generates helicoidal motions,

δϕðx; y; z; qÞ ¼ ϵðtÞð−αy; αx; 1; 0Þ;
δϕðpx; py; pz; pqÞ ¼ αϵðtÞð−py; px; 0; 0Þ; ð39Þ

as shown in Fig. 3. Both transformations leave invariant the
Hamiltonian [Eq. (36)] for arbitrary ϵðtÞ and εðtÞ. Note that
the system is invariant under rotations in the x-y plane,
translations in z, and time translations, but these are global
symmetries that lead to conservation of the z components
of the angular and the linear momenta, and the energy.
Symmetries [Eqs. (38) and (39)], instead, are not rigid
but local.
The gauge freedom generated by φ can be fixed by the

gauge condition

G ¼ q ≈ 0; ð40Þ

which is analogous to the temporal gauge A0 ¼ 0 in
Maxwell theory. Thus, the coordinate q and its conjugate
momentum pq can be eliminated from phase space by an
algebraic gauge choice, as happens with A0 in electrody-
namics, which also enters as a Lagrange multiplier. This
partial gauge fixing eliminates the term ξφ from the
Hamiltonian [Eq. (36)] and identifies q as a Lagrange
multiplier. The result is a Hamiltonian system in the
six-dimensional phase space Γ with coordinates fuAg ¼
fx; px; y; py; z; pzg and a single (necessarily first-class)
constraint ϕ ≈ 0. The Poisson bracket in this phase space is
given by

½M;N�Γ ¼ ΩAB∂AM∂AN; ð41Þ

where ΩAB is the canonical Poisson bracket, and the
canonical symplectic form is

- 5

0

5

x

- 5
0

5y

- 5

0

5

z

FIG. 3 (color online). The orbits generated by gauge trans-
formations in the FLPR model are helicoids of the form
ðx; y; zÞ ¼ ðρ cos½αεðtÞ�; ρ sin½αεðtÞ�; εðtÞÞ.

4Locality here refers to time.
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ΩAB ¼

0
BBBBBBBBB@

0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

1
CCCCCCCCCA
: ð42Þ

Following Ref. [37], the gauge freedom generated by ϕ
is to be eliminated by a gauge condition Gðx; y; zÞ ≈ 0,
where G is a linear homogeneous function, which is in
some sense analogous to the Coulomb gauge. Since the
system is invariant under rotations in the x-y plane, we can
choose the gauge condition to be independent of y. Hence,
we take

G ¼ z − λx ≈ 0; ð43Þ

which is called the “λ-gauge”. As can be seen, for λ ≠ 0
the condition in Eq. (43) does not fix the gauge globally
(see Fig. 4). In the same way as the Coulomb gauge
does in Yang-Mills theory, it has a Gribov ambiguity at
y ¼ −ðαλÞ−1. In fact, the nontrivial Poisson bracket,

M ¼ ½G;ϕ� ¼ 1þ αλy; ð44Þ

which corresponds to the Faddeev-Popov determinant,
indicates that these are second-class constraints everywhere
in Γ0, except at y ¼ −ðαλÞ−1. Consequently, the determi-
nant of the Dirac matrix (22) vanishes where the condition
G ≈ 0 fails to fix the gauge—that is, on the Gribov horizon:

Ξ ¼ fðx; px; y; py; z; pzÞ ∈ ΓjM ¼ 0g: ð45Þ

When the second-class constraints [Eqs. (37) and (43)]
are set strongly equal to zero, z and pz can be eliminated
from the phase space. The four-dimensional reduced phase
space Γ0, parametrized with coordinates ðx; px; y; pyÞ,
acquires a noncanonical Poisson structure given by the
Dirac bracket [Eq. (14)], where γI are the second-class
constraints fG;ϕg,

γI∶ γ1 ¼ G ¼ z − λx; γ2 ¼ ϕ ¼ pz þ αðxpy − ypxÞ;
ð46Þ

and CIJ is the inverse of the Dirac matrix CIJ ≡ ½γI; γJ�.
In this case, the Dirac matrix is given by

CIJ ¼ ½γI; γJ�Γ ¼
�

0 M

−M 0

�
; ð47Þ

and the Dirac brackets are given by

½x; px�� ¼
1

M
; ½x; y�� ¼ 0; ½x; py�� ¼ 0;

½y; py�� ¼ 1; ½y; px�� ¼
αλx
M

; ½px; py�� ¼ − αλpx

M
:

ð48Þ

In the reduced phase space, the Poisson matrix [Eq. (27)]
takes the form

ωab ¼

0
BBB@

0 1
M 0 0

− 1
M 0 − αλx

M − αλx
M

0 αλx
M 0 1

0 αλpx
M −1 0

1
CCCA; ð49Þ

and the corresponding symplectic form is

ωab ¼

0
BBB@

0 −M −αλpx αλx

M 0 0 0

αλpx 0 0 −1
−αλx 0 1 0

1
CCCA: ð50Þ

It can be checked that this symplectic form is closed,
∂aωbc þ ∂bωca þ ∂cωab ¼ 0, and therefore in a local
chart it can be expressed as the exterior derivative of a
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FIG. 4 (color online). The surface defined by the λ-gauge
condition G ¼ z − λx ¼ 0 is a plane (here plotted for λ ¼ 1).
The Gribov ambiguity in the FLPR model is reflected by the fact
that this plane intersects some gauge orbits more than once.
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1-form, ωab ¼ ∂aXb − ∂bXa (or ω ¼ dX), which can be
integrated as

Xðx; px; y; pyÞ ¼ ðpx þ αλ½ypx − xpy�Þdxþ pydy: ð51Þ

The determinant of the symplectic form in the reduced
phase space can be read off from Eq. (50) and is given by

det½ωab� ¼ M2: ð52Þ

Clearly, ωab degenerates precisely at the Gribov [Eq. (45)]
restricted to the constraint surface, and the degeneracy
surface [Eq. (8)] is given by

Σ ¼ fðx; px; y; pyÞ ∈ Γ0jϒðuÞ≡M ¼ 0g: ð53Þ

This corresponds to a particular realization of the behavior
in Eq. (32). In fact, defining σ2 ¼ 1þ α2λ2ρ2 > 0, the
eigenvalues of the reduced symplectic form are given by
f�iωþ;�iω−g, where

ω� ¼ 1ffiffiffi
2

p ½σ2 þM2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2 þM2Þ2 − 4M2

q
�1=2: ð54Þ

Near the degeneracy, ωþ and ω− can be expanded in
powers of M, leading to

ωþ ≈ σ; ω− ≈
M
σ

: ð55Þ

Hence, as the system approaches the degeneracy, ωþ goes
linearly to zero, while ω− never vanishes, which means that
the symplectic form ωab has a simple zero in the degen-
eracy surface, and this system corresponds to the class of
degenerate systems discussed in Refs. [28] and [29].
It is reassuring to confirm that the degeneracy is not an

artifact introduced by the change of coordinates fUAg →
fu�a; vIg defined in Eq. (23), which in this case is given by

x� ¼ xþ αyz
M

; p�
x ¼

px þ αpyzþ αλpz

M
;

y� ¼ y − αxðz − λxÞ
M

; p�
y ¼ py − αpxðz − λxÞ

M
;

v1 ¼ γ1 ¼ z − λx; v2 ¼ γ2pz þ αðxpy − ypxÞ: ð56Þ

In fact, the Jacobian [Eq. (28)] is given in this case by

J A
B ¼

0
BBBBBBBBBB@

1
M 0 0 0 αy

M 0

0 1
M − αλpx

M
αλx
M

αλpy

M
λ
M

αλx
M 0 1 0 − αx

M 0

αλpx
M 0 0 1 − αλpx

M 0

−λ 0 0 0 1 0

αpy −αy −αpx αx 0 1

1
CCCCCCCCCCA
; ð57Þ

which, in spite of the apparent singularities in its entries,
has a unit determinant everywhere in phase space:
ðdetJ ÞjΓ ≡ 1.

A. Effective Lagrangian for the gauge-fixed system

The gauge-fixed system is a degenerate one described by
a first-order Hamiltonian action, as presented in Eq. (1),

Igf½u� ¼
Z

dt½ _uaXaðuÞ −HgfðuÞ�; ð58Þ

where Xa is given by Eq. (51), Hgf is the gauge-fixed
Hamiltonian,

Hgf ¼
1

2
ð1þ α2y2Þp2

x þ
1

2
ð1þ α2x2Þp2

y − α2xypxpy

þ Vðx2 þ y2Þ

¼ 1

2
gijpipj þ Vðx2 þ y2Þ: ð59Þ

Here, the matrix

gij ≔
� ð1þ α2y2Þ −α2xy

−α2xy ð1þ α2x2Þ

�
ð60Þ

is the inverse of the metric

gij ≔
1

1þ α2ρ2

� ð1þ α2x2Þ α2xy

α2xy ð1þ α2y2Þ

�
: ð61Þ

B. Gauge orbits and phase space

Gribov ambiguity results from the fact that the surface
defined by a gauge condition does not intersect every gauge
orbit once and only once. As was mentioned in Sec. III, this
is a requirement to achieve a proper gauge fixing [2]. In the
case of the FLPR model, this clearly happens because the
plane defined by Eq. (43) intersects some gauge orbits
many times for λ > 0, as can be seen in Fig. 4. The G ¼ 0
plane intersects more than once any orbit such that
x2 þ y2 > ðαλÞ−2. The only way that this does not happen
is if λ ¼ 0.
Degenerate surfaces divide phase space into dynamically

disconnected regions. In this case, the presence of the
GH defines two regions in physical gauge-fixed space
(see Fig. 5):
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Cþ ≔ fðx; y; zÞjz − λx ¼ 0; 1þ αλy > 0g; ð62Þ

C− ≔ fðx; y; zÞjz − λx ¼ 0; 1þ αλy < 0g: ð63Þ
These two regions are not equivalent, since onlyCþ contains
at least one representative of every gauge orbit, while not all
gauge orbits pass through C−. To restrict the analysis of the
system to one region or the other is consistent in the sense
that all states whose initial condition is in one region will
remain there always (see Ref. [29]). In Yang-Mills theories,
the Gribov region corresponds to the neighborhood of
Aμ ¼ 0 in the functional space of connections where the
FP operator is positive definite [4] and “small copies”
(namely, points infinitesimally close which belong to the
same gauge orbit) are absent. In the Yang-Mills case, all the
gauge orbits cross the Gribov region at least once [12].
Similarly to what happens in the Yang-Mills case, within the
region Cþ (which contains at least one representative of
every gauge orbit) there are still large copies.5

C. Quantization

In order to define the quantum theory, the Hilbert space
for the system must be equipped with an inner product that
provides a scalar product and a norm,

∥ψðuÞ∥ ¼
�Z

d2u
ffiffiffi
g

p
wðuÞjψðuÞj2

�
1=2

: ð64Þ

In the FLPR model, g ¼ ð1þ α2ρ2Þ−1 is the determinant
of the metric [Eq. (61)], and the weight wðuÞ is such that the
Hamiltonian is symmetric—that is,

Z
d2u

ffiffiffi
g

p
wðuÞψ�

1ðuÞðĤψ2ðuÞÞ

¼
Z

d2u
ffiffiffi
g

p
wðuÞðĤψ1ðuÞÞ�ψ2ðuÞ: ð65Þ

As discussed in Sec. II, the proper choice for the measure
wðuÞ corresponds to the Pfaffian of the symplectic form
ωab [Eq. (50)], given in this case by Eq. (53),

wðuÞ ¼ ϒ ¼ M ¼ 1þ αλy; ð66Þ

whose zeros define the degeneracy surface [Eq. (8)].
In order to see this, let us define new variables fπig
canonically conjugate to the u’s, so that

½ui; πj�� ¼ δij; fuig ¼ fx; yg: ð67Þ

A simple calculation using Eq. (48) leads to the following
expression of the momenta in terms of the π’s:

px ¼
1

1þ αλy
ðπx þ αλxπyÞ; py ¼ πy: ð68Þ

The quantum operators are then obtained via the
prescription

ui ⟶ ûi ¼ ui;

πi ⟶ π̂i ¼ −iℏ∂i;

½; �� ⟶ 1

iℏ
½; �ðCommutatorÞ: ð69Þ

Using Eq. (68), the classical Hamiltonian [Eq. (59)] can be
rewritten as

H ¼ 1

2
hijπiπj þ V; ð70Þ

where hij is the inverse of the metric
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FIG. 5 (color online). In the case of the FLPR model, the
Gribov horizon (vertical plane), y ¼ −ðαλÞ−1, and the constraint
surface (inclined plane), G ¼ 0, are plotted for λ ¼ 1 and
α ¼ 1=3. The GH divides the constraint surface into two
dynamically disconnected regions.

5We remind the reader that large copies are points belonging to
the same gauge orbit (and, of course, satisfying the same gauge
condition) which are not infinitesimally close. This means that
large copies (unlike the small ones) do not correspond to zero
modes of the Faddeev-Popov operator. In Yang-Mills theory, the
pattern of appearance of the large Gribov copies within the
Gribov region is very complicated, and only a few examples
are known [14].
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hij ¼
1

1þ α2ρ2

×

� ð1þ αλyÞ2 þ α2ð1þ λ2Þx2 α2xy − αλx

α2xy − αλx 1þ α2y2

�
:

ð71Þ

At the quantum level, the correct ordering for the
quantum operators in Eq. (69) that renders the
Hamiltonian symmetric—and invariant under general coor-
dinate transformations—is the one for which Ĥ is a
Laplacian for the metric hij [42], i.e.,

Ĥ ¼ −ℏ2

2

1ffiffiffiffiffiffijhjp ∂ið
ffiffiffiffiffiffi
jhj

p
hij∂jÞ þ VðρÞ; ð72Þ

where h is the determinant of Eq. (71) and where the
integration measure in Eq. (64) is

R
d2u

ffiffiffi
h

p
. A straightfor-

ward computation leads to

ffiffiffi
h

p
¼ ð1þ αλyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2ρ2
p ¼ ffiffiffi

g
p

ϒ; ð73Þ

which confirms Eq. (66). Hence, the measure of the Hilbert
space vanishes exactly where the symplectic form does.
Then, according to the results in Ref. [29], this permits us to
interpret the corresponding Hilbert space as a collection of
causally disconnected subspaces: there is no tunneling from
one side of the degenerate surface to the other. In turn, this
confirms the dynamical correctness of imposing the restric-
tion to the interior of the Gribov region, at least for the first
quantization.

VI. IRREGULAR CASE

As mentioned in Sec. IV, there is an exceptional case in
which the reduced symplectic form is nondegenerate at the
GH. As will be shown in the following, this could happen
if the constraints fail to be functionally independent—i.e.,
if they are irregular [2,36].
A set of constraints is regular if they are functionally

independent on the constraints surface. For a set of
constraints [Eq. (12)], this is ensured by demanding that
the Jacobian

KI
B ¼ ∂γI

∂uB
����
Γ0

ð74Þ

have maximal rank. In particular, for a set of two
constraints fG;ϕg, this means

dG∧ dϕjΓ0
≠ 0 ⇒ ∂ ½AG∂B�ϕjΓ0

≠ 0; ð75Þ

while the Dirac matrix [Eq. (21)] takes the form

CIJ ¼
�

0 M

−M 0

�
; ð76Þ

where M ¼ ½G;ϕ� is the FP determinant. Hence, using
Eqs. (14) and (21), the reduced phase space symplectic
form [Eq. (27)] can be expressed weakly as

ωab ≈ ½ua; ub�� ¼ Ωab þM−1ΩaCΩDb∂ ½CG∂D�ϕ: ð77Þ

This suggests that, if the constraints fail the regularity test
[Eq. (75)] at the GH, the singularity in the inverse of the FP
determinant M−1 can be canceled by the vanishing
quantity ∂ ½CG∂D�ϕ, and no degeneracies would appear
even in the presence of Gribov ambiguity.
Another way to see this picture for a general set of

constraints [Eq. (12)], fγIg ¼ fGi;ϕjg, is by noting that, as
the original symplectic structure [Eq. (7)] is considered to
be well defined (det½ΩAB� ¼ Ω), the determinant of the
Poisson bracket in the new coordinates UA ¼ ½u�a; vI�,
defined by Eqs. (23) and (24), is given by Eq. (29), which
can be evaluated on the constraint surface Γ0:

det½Ω̂AB�jΓ0
¼ ðdet½J A

B�Þ2ΩjΓ0
: ð78Þ

On the other hand, the Jacobian [Eq. (28)] evaluated on
γI ¼ 0 can be written in terms of Eq. (74) as

J A
BjΓ0

¼
� ∂Bu�a

KI
B

�
: ð79Þ

Hence, if the constraints [Eq. (12)] are irregular at the GH,
both KI

B and J A
BjΓ have nonmaximal rank, implying that

the determinant det½J A
B� vanishes at the intersection of the

GH and Γ0. Therefore,

det½Ω̂AB�jΓ0
⟶
u→ū

0: ð80Þ

Then, looking again at Eq. (26), we see that in this case, the
vanishing of det½CIJ� at the GH does not imply that the
reduced phase space Poisson structure should blow up and
degeneracies in the symplectic structure of the gauge-fixed
system can be overcome. However, this situation is even
more pathological than the degenerate one, as the gauge-
fixed system does not describe the dynamics of the original
system. A detailed analysis of the consequences of irregu-
larity in the abelianizability of a set of constraints and the
gauge-fixing procedure can be found in Ref. [43]. In the
following, an explicit example of this situation will be
presented.

A. Example: Christ-Lee model

The Lagrangian for the Christ-Lee model [44] is
given by
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L ¼ 1

2
ð_xþ αyqÞ2 þ ð_y − αxqÞ2 − Vðx2 þ y2Þ;

where α > 0 is a coupling constant. The canonical
momenta of the system are given by

px ¼ _xþ αyq; py ¼ _y − αxq; pq ¼ 0: ð81Þ

Dirac’s method leads to the following first-class
constraints:

φ ¼ pq ≈ 0; ϕ ¼ xpy − ypx ≈ 0; ð82Þ

which generate arbitrary translations in q and rotations in
the x-y plane, respectively. The total Hamiltonian is given
by

HT ¼ 1

2
ðp2

x þ p2
yÞ þ αðxpy − ypxÞqþ ξφþ VðρÞ; ð83Þ

where ξ is a Lagrange multiplier. As before, the constraint φ
can be trivially eliminated by the introduction of a gauge
condition G ¼ q ≈ 0. The Dirac bracket associated with
this pair of constraints is just the Poisson bracket in the
coordinates fx; px; y; pyg, and using this we can set φ and
G strongly to zero. Now we will focus on the constraint ϕ,
whose action on the coordinates generates circular orbits in
phase space.
As we are interested in Gribov ambiguity, we will pick

the following gauge condition [39]:

G ¼ y − μx ≈ 0; ð84Þ

with μ a constant. The Dirac matrix for this set of
constraints γI ¼ fG;ϕg with I ¼ 1, 2 is given by
Eq. (76), where

M ¼ ½G;ϕ� ¼ xþ μy

and there exists a GH [Eq. (20)] defined by

Ξ ≔ fðx; px; y; pyÞ ∈ ΓjM ¼ 0g: ð85Þ

The Poisson structure of the space is given via the Dirac
bracket [Eq. (14)], where the γI’s are the second-class
constraints fG;ϕg. This leads to

½x; px�� ¼
x
M

; ½x; y�� ¼ 0; ½x; py�� ¼
y
M

;

½y; py�� ¼
μy
M

; ½y; px�� ¼
−μy
M

;

½px; py�� ¼
μpxpy

M2
: ð86Þ

Once the second-class constraints G and ϕ are strongly
equal to zero,

y ¼ μx; py ¼ μpx; ð87Þ

we are left with only one degree of freedom corresponding
to the variable x. The Gribov horizon restricted to the
constraint surface G ¼ 0 is given by x ¼ 0 (see Fig. 6).
Then, the reduced phase space symplectic form [Eq. (27)]
turns out to be nondegenerate:

ωab ¼
�

0 −ð1þ μ2Þ
1þ μ2 0

�
; det½ωab� ¼ ð1þ μ2Þ2:

ð88Þ

However, in this case, the constraints fG;ϕg are not
functionally independent at the GH. To see this, consider
the sub-block Eq. (74) of Eq. (79), whose rank determines
the functional independence of the constraints fG;ϕg,

KI
B ¼ ∂γI

∂uB
����
Γ0

¼
� −μ 0 1 0

μpx −μx −px x

�
: ð89Þ

This matrix has nonmaximal rank on the GH restricted to
the constraint surface (x ¼ 0); then the constraints are not
regular there because their gradients are proportional.
The gauge-fixed Lagrangian now reads

L ¼ 1

2
ð1þ μ2Þ_x2 − Vðð1þ μ2Þx2Þ; ð90Þ

which seems to be free of degeneracy at the GH. However,
this is an illusion because the absence of degeneracy results
from the fact that the constraints are no longer functionally
independent, so that the system, on the Gribov horizon,
fails to be regular.
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FIG. 6 (color online). Orbits for the Christ-Lee model are given
by circles centered at the origin. The GH (y ¼ −x=μ) and the
surface G ¼ 0 (y ¼ μx) are plotted for μ ¼ 2. The GH restricted
to the constraint surface corresponds to the point x ¼ y ¼ 0.
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VII. CONCLUSIONS AND FURTHER COMMENTS

We have discussed the relation between Gribov ambi-
guity and degeneracy in Hamiltonian systems. In our
analysis, the Gribov-Zwanziger restriction can be seen as
a prescription consistent with the fact that it is respected by
the dynamics, both classically and quantum mechanically,
at least in finite-dimensional Hamiltonian systems.
In gauge systems with a finite number of degrees of

freedom, the existence of Gribov ambiguity in the gauge-
fixing conditions leads to a degenerate symplectic structure
for the reduced system: the degenerate surface in the reduced
phase space is the GH restricted to the constraint surface. It is
important to observe that, although in the FLPR model the
Gribov ambiguity can be circumvented by choosing λ ¼ 0
(leading to the analog of the axial gauge in field theory), an
analogous choice is not possible for Yang-Mills theories. In
fact, as shown in Ref. [5], in order to include relevant
nontrivial configurations—like instantons—in the function
space of the theory, certain boundary conditions must be
imposed on the fields, which rule out algebraic gauge
conditions (see also Ref. [4]). In this sense, a consistent
analog of the limit λ → 0 for field theories does not exist, the
Gribov ambiguity is unavoidable for gauge theories, and
degeneracies should be expected in the gauge-fixed system.
As we have shown, when the requirement of regularity is not
imposed, a nondegenerate gauge-fixed system can be
obtained. However, this is not a solution to the problem.
Regularity is a key requirement for a set of constraints to be
well defined, as irregularities lead to a Lagrangian that does
not describe the real dynamics of the original system.
Even if the generalization of our results to field theories

is conceptually straightforward, an interesting future direc-
tion for this work is to look for explicit degeneracies in the
gauge-fixed symplectic form of Yang-Mills type theories. It
is important to note that even though our analysis extends in
a straightforward way to the cases with more than one
Gribov horizon, which include the case of Yang-Mills
theory in which there are infinite Gribov horizons [45] (for
a detailed analysis, see also Ref. [46]), the problem involves
additional important technical difficulties, such as, for
instance, the definition of the reduced phase space when
nonalgebraic gauge conditions are adopted. In particular,
when set strongly to zero, this kind of gauge conditions do
not allow us to express one field as local functions of the
remaining ones, and a local action for the physical degrees

of freedom with the reduced symplectic form is not
available. These difficulties in the standard Hamiltonian
formulation for Yang-Mills theories make the path integral
formalism better suited. However, an interesting novel
Hamiltonian approach to QCD, where Dirac reduction is
considered, has been recently developed in Ref. [47], which
could be worth studying within this context.
On the other hand, the question of whether the degen-

eracy surface can act as a sink or as a source in Yang-Mills
theories is as interesting as it is extremely difficult and
deserves further investigation. The difficulty stems from the
fact that in Yang-Mills the Gribov horizon is an infinite-
dimensional hypersurface with quite a complicated top-
ology. Hence, in order to determine whether the degeneracy
is a sink or a source, one should have a complete
characterization of the geometry in the vicinity of the
horizon, a task that seems out of reach for us for the time
being. We hope to come back to this interesting issue in a
future publication.
The fact that the GH is a degeneracy surface for the

gauge-fixed system, which persists at the quantum level,
strongly supports the consistency of the Gribov restriction
for QCD, as the degeneracy divides phase space into
causally disconnected regions. Even though the Gribov-
Zwanziger idea is heuristic and supported by the fact that
every orbit intersects the Gribov region [12] (which means
that no physical information is lost if the restriction is
applied), the results it yields have gained acceptance due to
their match with the lattice data. Our results provide a novel
point of view for the problem in support of the Gribov-
Zwanziger proposal that makes it worth a deeper study
within the Hamiltonian framework.
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