
Examination of a simple example of gravitational wave memory

Alexander Tolish,1,* Lydia Bieri,2,† David Garfinkle,3,4,‡ and Robert M. Wald1,§
1Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA

2Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1120, USA
3Department of Physics, Oakland University, Rochester, Michigan 48309, USA

4Michigan Center for Theoretical Physics, Randall Laboratory of Physics, University of Michigan,
Ann Arbor, Michigan 48109-1120, USA

(Received 29 May 2014; published 26 August 2014)

We examine a simple example of gravitational wave memory due to the decay of a point particle into two
point particles. In the case where one of the decay products is null, there are two types of memory: a null
memory due to the null particle and an ordinary memory due to the recoiling timelike particle. In the case
where both decay products are timelike, there is only ordinary memory. However, this ordinary memory
can mimic the null memory in the limit where one of the decay products has a large velocity.
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I. INTRODUCTION

Gravitational wave memory, a permanent change in the
detector after the gravitational wave has passed, has been
known since the work of Zel’dovich and Polnarev [1]. In
the weak field slow-motion approximation there is a simple
relation between the gravitational wave memory and the net
change in the second time derivative of the quadrupole
moment of the source. However, the simple picture of
memory based on the weak field slow-motion case was
changed by the work of Christodoulou [2] who found an
additional memory effect related to the energy carried away
in gravitational radiation. The work of [2] (based on the
stability result of Christodoulou and Klainerman [3]) used
the full nonlinear Einstein equation, and presented the
additional memory effect as due to the nonlinear treatment,
calling the previously known memory effect “linear” and
the new memory “nonlinear.” However, in cases where
electromagnetic waves [4–6] or neutrinos [7–9] are present,
they also contribute to the nonlinear memory effect with the
energy of their radiation playing exactly the same role as
that of the energy of gravitational waves. Because of this, it
has recently been argued [10] that instead of linear and
nonlinear one should think of these two types of memory as
“ordinary” and “null” where the null memory is due to
stress energy that gets out to null infinity.
The weak field slow-motion approximation allows the

construction of many simple examples of sources whose
gravitational wave memory can be calculated explicitly.
However, it is more difficult to find a simple, explicit
example of the null memory. Recently such an example was
provided in [11] which calculates the memory due to the
gravitational waves created by the decay of a particle of

mass M that emits a null particle of energy E. The decay
process gives rise to an impulsive gravitational wave whose
Weyl tensor can be calculated explicitly. The memory is
then calculated by integrating the geodesic deviation
equation to find the permanent displacement of the gravi-
tational wave detector. In [11] it is assumed that E ≪ M
and the memory is calculated to first order in E=M. The
results are shown to agree with the formulas for the null
memory given in [2,10]. This agreement is both reassuring
and puzzling. The puzzling part comes from the fact that
there are two types of memory treated in [10]: ordinary
memory and null memory. So why does the calculation of
[11] agree with just the null part of the memory? One
possible explanation is that the calculation of [11] is first
order in E=M and the ordinary memory occurs only at
higher order. To see whether this explanation is correct,
we will in Sec. II extend the calculation of [11] by
finding the memory due to the decay process without
making any assumption of smallness of E=M. We will then
compare to the memory formula of [10] to see how much of
the memory is ordinary and how much of the memory
is null.
In Sec. III we will generalize the calculation of [11]

in a different way. Once again the particle of mass M will
decay by emitting a particle of energy E; however in this
case the emitted particle will travel at a speed β < 1 rather
than at the speed of light. We will calculate the memory
both by finding the impulsive gravitational wave using the
method of [11] and by using the memory formula of [10].
Here the memory will only be ordinary memory, since the
emitted particle is traveling at a speed slower than light.
Nonetheless, in the limit as β → 1 we would expect to
recover the results of the previous section. That is, we
would expect the ordinary memory of the emitted particle
to somehow “imitate” the null memory of the null particle
with that imitation becoming better as the speed of the
emitted particle approaches the speed of light. By
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performing the calculation we will see to what extent and in
what sense this expectation is correct.
Our conclusions are given in Sec. IV.

II. MEMORY OF A NULL PARTICLE

In calculations of gravitational wave memory, the ends of
the detector are assumed to travel on geodesics, and the
memory is essentially the second integral of the geodesic
deviation equation. In perturbation theory, the metric is
written as gab ¼ ηab þ hab where ηab is a flat metric and
hab is small. The geodesic deviation equation governing the
separation Da of two nearby geodesics is

d2Da

dt2
¼ −RtatbDb; ð1Þ

where the Riemann tensor Rabcd is given in terms of the
metric perturbation by

Rabcd ¼
1

2
ð∂b∂chad þ ∂a∂dhbc − ∂b∂dhac − ∂a∂chbdÞ:

ð2Þ

Since the detector is assumed to be far from the source, one
only needs the Riemann tensor, and therefore the metric
perturbation, to order 1=r.
We now specialize to the particular case treated in [11]:

the decay, at time t ¼ 0, of a particle of mass M at rest
into a null particle of energy E that travels in the z direction
and a recoiling particle of mass M0 that travels in the −z
direction. Due to the axisymmetry of the problem, it
follows that to order 1=r we have

Rtatb ¼ Wðθaθb − ϕaϕbÞ; ð3Þ

for some scalar W. Here θa and ϕa are unit vectors in the θ
and ϕ directions. From Eq. (3) it follows that we only need
to calculate one component of Rtatb to find all components.
In particular, it follows from the standard expressions for
spherical coordinates that

W ¼ Rtxty

ð1þ cos2θÞ cosϕ sinϕ
: ð4Þ

The reason for choosing Rtxty is that for the metric of [11],
this component is particularly simple to calculate. Since
hxy; htx, and hty all vanish, it follows from Eq. (2) that

Rtxty ¼ −
1

2
∂x∂yhtt; ð5Þ

so the only component of the metric that we need
is htt. However to leading order in 1=r it follows from
Eqs. (44)–(46) of [11] that

htt ¼
k
r
þ 1

r
ΘðuÞ

�
−2M þ 2M0γð1þ v2Þ

ð1þ v cos θÞ þ 4E
1 − cos θ

�
:

ð6Þ

Here k is a constant, Θ is the step function, u ¼ t − r is the
retarded time, and v and γ are respectively the speed and
gamma factor of the recoiling particle. Note however that
M0 and v are not independent quantities. Rather they are
determined by M and E as follows: The conservation of
four-momentum for the decay is

M0γ ¼ M − E; ð7Þ

M0γv ¼ E: ð8Þ

Using Eqs. (7) and (8) in Eq. (6), some straightforward but
tedious algebra yields

htt ¼
k
r
þ 2

r
ΘðuÞ Eð1þ cos2θÞ

ð1 − cos θÞð1 − ðE=MÞð1 − cos θÞÞ :

ð9Þ

Then using Eq. (9) in Eq. (5) we obtain

Rtxty ¼
−1
r
δ0ðuÞ Eð1þ cos2θÞ

ð1 − cos θÞð1 − ðE=MÞð1 − cos θÞÞ
× sin2θ cosϕ sinϕ: ð10Þ

Here δ is the Dirac delta function. Now using Eq. (10) in
Eq. (4) we obtain

W ¼ −1
r
δ0ðuÞ Eð1þ cos θÞ

1 − ðE=MÞð1 − cos θÞ : ð11Þ

Finally, using Eq. (11) in Eq. (1) and integrating twice with
respect to time, we find that the net change in separation
ΔDa is given by

ΔDa ¼
E
r

1þ cos θ
1 − ðE=MÞð1 − cos θÞ ðθaθb − ϕaϕbÞDb: ð12Þ

We now compare the result of Eq. (12) to the memory
formula of [10]. In particular, we would like to know how
much of the memory is ordinary memory and how much
is null memory. In [10] the memory is expressed in terms
of a tensor mAB on the unit two-sphere. (Here capital letter
indices are used for tensors on the unit two-sphere, and
all such indices are raised and lowered with the unit two-
sphere metric). Given an initial separation d in the B
direction, the change in separation in the A direction is
given by

Δd ¼ −
d
r
mA

B: ð13Þ
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To make comparisons with the notation and results of [11]
note that in the case of axisymmetry the memory tensor
takes the form

mAB ¼ CðθÞðθAθB − ϕAϕBÞ; ð14Þ

for some function CðθÞ. Here θA and ϕA are unit vectors on
the unit two-sphere in the θ and ϕ directions. It then follows
that the net change in separation can be expressed as

ΔDa ¼ −
CðθÞ
r

ðθaθb − ϕaϕbÞDb: ð15Þ

The memory tensor is determined as the solution of the
following system:

DADAΦ ¼ ΔP − 8πF; ð16Þ

DBmAB ¼ DAΦ: ð17Þ

Here DA is the derivative operator on the unit two-sphere
and F is the energy per unit solid angle radiated to null
infinity. The quantity ΔP is defined as follows: define
Pðu; θ;ϕÞ to be the limit to null infinity of r3Ctrtr where
Cabcd is the Weyl tensor. Then Pð�∞Þ is defined to be
limu→�∞P and ΔPðθ;ϕÞ is defined to be Pð∞Þ − Pð−∞Þ.
Due to the axisymmetry of the problem, there must be
functions AðθÞ and BðθÞ such that

ΔP − 8πF ¼ AðθÞ; ð18Þ

Φ ¼ BðθÞ: ð19Þ

The consistency of Eqs. (16) and (17) requires that AðθÞ
have vanishing l ¼ 0 and l ¼ 1 part.
Using the ansatz of Eqs. (14), (18), and (19)) we find that

Eqs. (16) and (17) become

d
dθ

�
sin θ

dB
dθ

�
¼ sin θA; ð20Þ

d
dθ

ðsin2θCÞ ¼ sin2θ
dB
dθ

: ð21Þ

The memory can be divided into ordinary memory and null
memory as follows: Φ ¼ Φ1 þ Φ2 which satisfy

DADAΦ1 ¼ ΔP − ðΔPÞ½1�; ð22Þ

DADAΦ2 ¼ −8πðF − F½1�Þ; ð23Þ

where the subscript ½1� denotes the l ¼ 0 and l ¼ 1 part.
Then mAB ¼ m1AB þm2AB which satisfies

DBm1AB ¼ DAΦ1; ð24Þ

DBm2AB ¼ DAΦ2: ð25Þ

Herem1AB, the memory due toΔP, is the ordinary memory,
while m2AB, the memory due to F, is the null memory.
In each case, ordinary memory or null memory, Eqs. (20)
and (21) hold, with AðθÞ ¼ ΔP − ðΔPÞ½1� in the case of
ordinary memory and AðθÞ ¼ −8πðF − F½1�Þ in the case
of null memory.
We now work out the null memory for the case of the

decay of a particle of mass M emitting a null particle of
energy E. Since the particle is emitted in the z direction, it
follows that F ¼ Eδ where δ is the delta function which
vanishes everywhere except θ ¼ 0 and whose integral over
the unit two-sphere is 1. We then find

−8πðF − F½1�Þ ¼ 2Eð−4πδþ ð1þ 3 cos θÞÞ: ð26Þ

Thus to find the null memory, we must solve Eqs. (20) and
(21) with A given by the right-hand side of Eq. (26). Note
that since δ vanishes for θ > 0, what we need to do is to
solve Eqs. (20) and (21) for θ > 0with A¼ 2Eð1þ3cosθÞ.
Given a solution for θ > 0 we can then verify that Eqs. (16)
and (17) are satisfied in a distributional sense. Wewill solve
the equations in this section and then give the demonstra-
tion that the solution is a distributional solution in
Appendix A. For θ > 0 Eq. (20) becomes

d
dθ

�
sin θ

dB
dθ

�
¼ Eð2 sin θ þ 6 sin θ cos θÞ; ð27Þ

from which we find

sin θ
dB
dθ

¼ Eð−2 cos θ þ 3sin2θ þ c0Þ; ð28Þ

for some constant c0. Since the left-hand side of this
equation vanishes at θ ¼ π, we must have c0 ¼ −2, and
therefore

sin θ
dB
dθ

¼ Eð1 − 2 cos θ − 3cos2θÞ: ð29Þ

Now from Eq. (21) we obtain

d
dθ

ðsin2θCÞ ¼ E sin θð1 − 2 cos θ − 3cos2θÞ; ð30Þ

for which the solution is

sin2θC ¼ Eð− cos θ − sin2θ þ cos3θ þ c1Þ; ð31Þ

for some constant c1. Since the left-hand side vanishes at
θ ¼ π it follows that c1 ¼ 0 and thus

C ¼ −Eð1þ cos θÞ: ð32Þ
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Then using Eq. (15) it follows that the displacement due to
the null part of the memory is

ΔDa ¼
E
r
ð1þ cos θÞðθaθb − ϕaϕbÞDb: ð33Þ

Comparing to Eq. (12) we find that to first order in E=M the
memory is entirely null memory, as asserted in [11].
We now calculate the ordinary memory. For this we must

calculate ΔP. Note that before the particle decays, the
metric perturbation is just that of a Schwarzschild metric of
mass M. Therefore Pð−∞Þ is just the P of Schwarzschild.
After the decay, and after the null particle has hit null
infinity, the metric perturbation is again, that of a
Schwarzschild metric, but now with mass M0 and boosted
with velocity v in the −z direction. We thus need to
calculate the P of both boosted and unboosted
Schwarzschild. In Appendix B, we will derive the follow-
ing result: for a particle of energy E moving with velocity
Vẑ, where jVj < 1, the quantity P is given by

P ¼ −2Eð1 − V2Þ2
ð1 − V cos θÞ3 : ð34Þ

Before the decay, we have a particle of mass M and zero
velocity, so it follows that Pð−∞Þ ¼ −2M. After the decay,
it follows from Eqs. (7) and (8) that the recoiling particle
has energy M − E and velocity V ¼ −E=ðM − EÞ. It
therefore follows from Eq. (34) that

Pð∞Þ ¼ −2Mð1 − 2E
MÞ2

ð1 − E
M ð1 − cos θÞÞ3 ; ð35Þ

and therefore that

ΔP ¼ 2M

�
1 −

ð1 − 2E
MÞ2

ð1 − E
M ð1 − cos θÞÞ3

�
: ð36Þ

Then computing and subtracting the l ¼ 0 and l ¼ 1 part
of Eq. (36) we find that

ΔP − ðΔPÞ½1�

¼ 2M
�
1 −

ð1 − 2E
MÞ2

ð1 − E
M ð1 − cos θÞÞ3 −

E
M

ð1þ 3 cos θÞ
�
:

ð37Þ

We are now in a position to explain the agreement of the
calculation of [11] with the null memory. Since that
calculation is first order in E=M and agrees with the null
memory, it follows that to first order in E=M the ordinary
memory must vanish. However, the ordinary memory is
due to the recoiling particle, and we would certainly expect
that ΔP of the recoiling particle contains terms that are first
order in E=M. Indeed, it follows from Eq. (36) that to first

order in E=M we have ΔP ¼ 2Eð1þ 3 cos θÞ. Thus,
though to first order ΔP does not vanish, it consists purely
of l ¼ 0 and l ¼ 1 parts. Since those parts do not
contribute to the memory, it follows that to first order in
E=M the ordinary memory for this process vanishes.
Now to find the ordinary memory, we must solve

Eqs. (20) and (21) with A given by the right-hand side
of Eq. (37). Define the quantities s and X by s ¼ E=M and

X ¼ 1 − sð1 − cos θÞ: ð38Þ

Then Eq. (20) becomes

d
dθ

�
sin θ

dB
dθ

�
¼ M sin θ½8ð1 − sÞ − 6X − 2ð1 − 2sÞ2X−3�:

ð39Þ

Integrating this equation we find

sin θ
dB
dθ

¼ −
M
s
½8ð1 − sÞX − 3X2 þ ð1 − 2sÞ2X−2 þ c0�;

ð40Þ

where c0 is a constant. This constant must be chosen so that
the right-hand side of Eq. (40) vanishes at θ ¼ 0, which
corresponds to X ¼ 1. It then follows that

c0 ¼ −8ð1 − sÞ þ 3 − ð1 − 2sÞ2: ð41Þ

Equation (21) then becomes

d
dθ

ðsin2θCÞ ¼ −
M sin θ

s

× ½8ð1 − sÞX − 3X2 þ ð1 − 2sÞ2X−2 þ c0�:
ð42Þ

Integrating this equation we find

sin2θC¼M
s2

½4ð1− sÞX2 −X3 − ð1− 2sÞ2X−1 þ c0Xþ c1�;
ð43Þ

where c1 is a constant. The right-hand side of Eq. (43) must
vanish at θ ¼ 0, which yields

c1 ¼ −4ð1 − sÞ þ 1þ ð1 − 2sÞ2 − c0: ð44Þ

Using Eqs. (41) and (44) in Eq. (43), some straightforward
algebra yields

sin2θC ¼ −
M
s2

X−1ðX − 1Þ2ðX − ½1 − 2s�Þ2: ð45Þ

Then using Eq. (38) in Eq. (45) we obtain
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C ¼ −
�
E2

M

�
sin2θ

1 − ðE=MÞð1 − cos θÞ : ð46Þ

Then using Eq. (15) it follows that the displacement due to
the ordinary part of the memory is

ΔDa ¼
�
E2

Mr

�
sin2θ

1 − ðE=MÞð1 − cos θÞ ðθaθb − ϕaϕbÞDb:

ð47Þ

Adding the null memory displacement of Eq. (33) to the
ordinary memory displacement of Eq. (47) yields the total
displacement, which agrees with the result of Eq. (12).

III. MEMORY OF A TIMELIKE PARTICLE

We now consider the memory due to the decay of a
particle of mass M where both particles produced in the
decay are timelike. The particle moving in the z direction
will have energy E and velocity βẑ where 0 < β < 1. The
recoil particle will have energy ~E and velocity ~β ẑ where
−1 < ~β < 0. Note that ~E and ~β are not independent
quantities: the conservation of energy and momentum in
the decay requires

M ¼ Eþ ~E; ð48Þ

0 ¼ Eβ þ ~E ~β; ð49Þ

which yields

~E ¼ M − E; ð50Þ

~β ¼ −βE
M − E

: ð51Þ

First we calculate the memory using the method of [11].
As in Sec. II, the axisymmetry of the problem means that
the electric part of the Weyl tensor is of the form in Eq. (3)
with W given by Eq. (4) and Rtxty given by Eq. (5). Thus,
we only need to calculate the perturbed metric component
htt. Note that the situation is very similar to that of [11],
with the same metric before the decay, and after the decay
the null particle and recoiling particle replaced by two
timelike particles. It then follows from Eqs. (44) and (45) in
[11] that in our case to leading order in 1=r we have

htt ¼
k
r
þ 1

r
ΘðuÞ

�
−2M þ 2Eð1þ β2Þ

1 − β cos θ
þ 2 ~Eð1þ ~β2Þ

1 − ~β cos θ

�
:

ð52Þ

Then applying Eqs. (48) and (49) to Eq. (52) we obtain

htt ¼
k
r
þ 1

r
ΘðuÞ 2Eβðβ − ~βÞð1þ cos2θÞ

ð1 − β cos θÞð1 − ~β cos θÞ : ð53Þ

Then using Eq. (53) in Eq. (5) we obtain

Rtxty ¼
−1
r
δ0ðuÞ Eβðβ − ~βÞð1þ cos2θÞ

ð1 − β cos θÞð1 − ~β cos θÞ
× sin2θ cosϕ sinϕ: ð54Þ

Now using Eq. (54) in Eq. (4) we obtain

W ¼ −1
r
δ0ðuÞ Eβðβ − ~βÞsin2θ

ð1 − β cos θÞð1 − ~β cos θÞ : ð55Þ

Finally, using Eq. (55) in Eq. (1), integrating twice with
respect to time, and using Eq. (51) to eliminate ~β we find
that the net change in separation ΔDa is given by

ΔDa ¼
Eβ2sin2θ

rð1 − β cos θÞð1 − ðE=MÞð1 − β cos θÞÞ
× ðθaθb − ϕaϕbÞDb: ð56Þ

In order to get some insight into the relation between
ordinary memory and null memory, we calculate the
memory of the timelike decay again, but this time using
the method of [10]. It follows from Eq. (34) that for this
decay process we have

ΔP ¼ 2M −
2Eð1 − β2Þ2
ð1 − β cos θÞ3 −

2 ~Eð1 − ~β2Þ2
ð1 − ~β cos θÞ3 : ð57Þ

Because in this case the entire memory is ordinary memory,
it follows that the l ¼ 0 and l ¼ 1 part of ΔP vanish, so
there is no need to perform a subtraction of this part. To
find the memory, we need to solve Eqs. (20) and (21) with
A given by the right-hand side of Eq. (57). Integrating
Eq. (20) we obtain

sin θ
dB
dθ

¼ −2M cos θ þ Eð1 − β2Þ2
βð1 − β cos θÞ2

þ
~Eð1 − ~β2Þ2

~βð1 − ~β cos θÞ2 þ c0: ð58Þ

The constant of integration c0 is fixed by demanding that
the right-hand side vanish at θ ¼ 0 which, using Eqs. (48)
and (49) yields

c0 ¼ −1
�
E
β
þ

~E
~β

�
: ð59Þ

Equation (21) then becomes

EXAMINATION OF A SIMPLE EXAMPLE OF … PHYSICAL REVIEW D 90, 044060 (2014)

044060-5



d
dθ

ðsin2θCÞ ¼ sin θ
�
−2M cos θ þ Eð1 − β2Þ2

βð1 − β cos θÞ2 þ
~Eð1 − ~β2Þ2

~βð1 − ~β cos θÞ2 þ c0

�
; ð60Þ

from which we obtain

sin2θC ¼ Mcos2θ −
Eð1 − β2Þ2

β2ð1 − β cos θÞ −
~Eð1 − ~β2Þ2

~β2ð1 − ~β cos θÞ
− c0 cos θ þ c1: ð61Þ

The constant of integration c1 is fixed by demanding that
the right-hand side vanish at θ ¼ 0 which, using Eqs. (48),
(49), and (59) yields

c1 ¼
E
β2

þ
~E
~β2

− 2M: ð62Þ

Finally, applying Eqs. (48), (49), (59), and (62) to Eq. (61)
some straightforward algebra yields

C ¼ −Eβ2sin2θ
ð1 − β cos θÞð1 − ðE=MÞð1 − β cos θÞÞ : ð63Þ

Then using Eq. (15) it follows that the displacement is
given by Eq. (56)
We now consider the null limit of the timelike decay, that

is we consider at fixed E the limit as β → 1. First note that
in the limit as β → 1 Eq. (56) goes to Eq. (12). That is, as
the timelike particle approaches the speed of light the
memory produced by the timelike decay approaches the
memory produced by the null decay. Though this is
certainly what we would expect, we now consider how
to reconcile this limit with our picture of the two types of
gravitational wave memory. The null decay has both
ordinary memory sourced by ΔP and null memory sourced
by F. The timelike decay has only ordinary memory. Thus,
since the memory of the timelike decay approaches that of
the null decay in the limit as β → 1, it follows that some
piece of ΔP must mimic the −8πF of the null particle.
In particular, define ΔPE to be the middle term on the
right-hand side of Eq. (57). That is

ΔPE ¼ −
2Eð1 − β2Þ2
ð1 − β cos θÞ3 : ð64Þ

In physical terms, one can think of ΔPE as the contribution
of the particle of energy E to the source of the memory.
It follows from Eq. (64) that for θ ≠ 0 we have
limβ→1ΔPE¼0 and that for all β < 1 we have

R
ΔPEdΩ ¼

−8πEwhere the integral is over the unit two-sphere and dΩ
is the usual volume element. It then follows that in a
distributional sense we have limβ→1ΔPE ¼ −8πEδ. Thus,
in the limit as the timelike particle becomes null the ΔP of
the timelike particle becomes the −8πF of the null particle.

IV. CONCLUSIONS

Our calculations of the memory due to particle decay
provide a simple and explicit example of two types of
gravitational wave memory. The null memory is associated
with the angular distribution of energy radiated to null
infinity. The ordinary memory is associated with the
change in the quantity P which has to do with the
asymptotic state of the matter that does not get to null
infinity. However, as emphasized in [11], one should not
think of the memory as being “caused” by the radiation of
energy to null infinity (or by the change in P). Rather, it is
the decay process itself which creates gravitational waves
that give rise to the memory. That same decay process also
results in energy radiated to null infinity and a change in the
quantity P. Nonetheless, the memory is associated with
energy radiated to null infinity and change in P in the sense
that knowledge of these quantities alone is sufficient to
calculate the memory.
Ordinary and null memory are distinct just as timelike

particles differ from null particles. Nonetheless, just as a
timelike particle with high velocity mimics a null particle,
so the ordinary memory can mimic the null memory. This
comes about because for high velocity the Ctrtr component
of the curvature is strongly peaked in the forward direction
and thus mimics the energy flux of a null particle.
Our use of the point particle idealization limits our

results to linearized gravity, since point particles do not
make sense in the full nonlinear theory of general relativity
[12]. Nonetheless, we expect that our conclusions on the
nature of gravitational wave memory continue to hold in
the full theory.
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APPENDIX A: DISTRIBUTIONAL
MEMORY SOLUTION

We now verify that the solution found in Sec. II for the
memory of a null particle is a distributional solution. ForΦ2

to be a distributional solution of Eq. (23) means that for any
smooth function g on the two-sphere we have

Z
dΩ½Φ2DADAgþ 8πðF − F½1�Þg� ¼ 0; ðA1Þ
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where the integral is over the two-sphere with dΩ the usual two-sphere volume element. Thus, we must evaluate the
left-hand side of Eq. (A1) with Φ2 equal to the B specified in Eq. (29) and F − F½1� given in Eq. (26), and g an arbitrary
smooth function. If the result is zero, then the solution is a distributional solution. We have

Z
dΩ½BDADAgþ 2Eð4πδ − ð1þ 3 cos θÞÞg� ¼ 8πEgjθ¼0 þ lim

ϵ→0

Z
θ>ϵ

dΩ½BDADAg − 2Eð1þ 3 cos θÞg�

¼ 8πEgjθ¼0 þ lim
ϵ→0

Z
θ>ϵ

dΩDAðBDAg − gDABÞ

þ lim
ϵ→0

Z
θ>ϵ

dΩg½DADAB − 2Eð1þ 3 cos θÞ�

¼ 8πEgjθ¼0 þ lim
ϵ→0

�
ð−2π sin θÞ

�
B
∂g
∂θ − g

dB
dθ

��
θ¼ϵ

þ lim
ϵ→0

Z
θ>ϵ

dΩg
�

1

sin θ
d
dθ

�
sin θ

dB
dθ

�
− 2Eð1þ 3 cos θÞ

�

¼ ð2πgjθ¼0Þ
�
4Eþ lim

θ→0
sin θ

dB
dθ

�

þ lim
ϵ→0

Z
θ>ϵ

dΩg
�

1

sin θ
d
dθ

ðEð1 − 2 cos θ − 3cos2θÞÞ − 2Eð1þ 3 cos θÞ
�

¼ ð2πgjθ¼0Þ½4Eþ lim
θ→0

Eð1 − 2 cos θ − 3cos2θÞ� ¼ 0: ðA2Þ

Therefore the B specified by Eq. (29) is a distributional solution of Eq. (23) with the F − F½1� given in Eq. (26).
For Eq. (25) to be satisfied in a distributional sense means that for any smooth vector field VA on the two-sphere

we have

Z
dΩ½m2ABDBVA − Φ2DAVA� ¼ 0: ðA3Þ

Thus we must evaluate the left-hand side of Eq. (A3) withm2AB given by the expression in Eq. (14) with C given in Eq. (32)
and with Φ2 equal to the B specified in Eq. (29) and with VA an arbitrary smooth vector field. If the result is zero, then
Eq. (25) is satisfied in a distributional sense. We have

Z
dΩ½CðθAθB − ϕAϕBÞDBVA − BDAVA� ¼ lim

ϵ→0

Z
θ>ϵ

dΩ½CðθAθB − ϕAϕBÞDBVA − BDAVA�

¼ lim
ϵ→0

Z
θ>ϵ

dΩDB½CðθAθB − ϕAϕBÞVA − BVB�

þ lim
ϵ→0

Z
θ>ϵ

dΩ½−VADBðCðθAθB − ϕAϕBÞÞ þ VBDBB�

¼ lim
θ→0

2π sin θVθðB − CÞ þ lim
ϵ→0

Z
θ>ϵ

dΩVθ

�
dB
dθ

−
dC
dθ

− 2 cot θC

�

¼ lim
ϵ→0

Z
θ>ϵ

dΩ
Vθ

sin θ

�
sin θ

dB
dθ

− sin θ
dC
dθ

− 2 cos θC

�

¼ lim
ϵ→0

Z
θ>ϵ

dΩ
Vθ

sin θ
½Eð1 − 2 cos θ − 3cos2θÞ − Esin2θ

þ 2E cos θð1þ cos θÞ� ¼ 0: ðA4Þ

Therefore the B and C given respectively by Eqs. (29) and (32) provide a distributional solution of Eq. (25).
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APPENDIX B: CALCULATION OF P FOR
BOOSTED SCHWARZSCHILD PERTURBATION

Associatedwith the usual spherical coordinates ðt; r; θ;ϕÞ
there is the usual orthonormal tetrad ðta; ra; θa;ϕaÞ.
Introduce the null tetrad ðla; na; ma; m̄aÞ given by

la ¼ 1ffiffiffi
2

p ðta þ raÞ; ðB1Þ

na ¼ 1ffiffiffi
2

p ðta − raÞ; ðB2Þ

ma ¼ 1ffiffiffi
2

p ðθa þ iϕaÞ; ðB3Þ

m̄a ¼ 1ffiffiffi
2

p ðθa − iϕaÞ: ðB4Þ

The Schwarzschild metric of mass M has (to first order in
perturbation of the flat metric ηab) the Weyl tensor [13]

Cabcd ¼ −
M
r3

ðηacηbd − ηadηbc þ 12l½anb�l½cnd�

þ 12m½am̄b�m½cm̄d�Þ: ðB5Þ

Now consider a massM moving with velocity Vẑ. Then the
mass is at rest in the coordinate system ðt0; x0; y0; z0Þ where

t0 ¼ γðt − VzÞ; ðB6Þ

z0 ¼ γðz − VtÞ; ðB7Þ

where γ ¼ ð1 − V2Þ−1=2 and the x and y coordinates are
unchanged. The Weyl tensor then takes the form

Cabcd ¼ −
M
r03

ðηacηbd − ηadηbc þ 12l0½an0b�l0½cn0d�

þ 12m0½am̄0
b�m0½cm̄0

d�Þ: ðB8Þ

We would like to express the Weyl tensor of the moving
mass in terms of the coordinates and null tetrad of the
stationary observer. Since we are interested in quantities at
null infinity, we will work only to leading order in 1=r.
From Eqs. (B6) and (B7) it follows that

r0 ¼ rγð1 − V cos θÞ; ðB9Þ

u0 ¼ u
γð1 − V cos θÞ : ðB10Þ

From Eq. (B10) we obtain

l0
a ¼

1

γð1 − V cos θÞla: ðB11Þ

Then from Eqs. (B6) and (B11) we find

n0a ¼ γ

�
V2sin2θ

1 − V cos θ
la þ ð1 − V cos θÞna

− V sin θðma þ m̄aÞ
�
: ðB12Þ

Finally using the fact that ϕ and r sin θ are unchanged by
the Lorentz transformation, we obtain

m0
a ¼ ma −

V sin θ
1 − V cos θ

la: ðB13Þ

(The complex conjugate of this equation gives the trans-
formation for m̄a.) We then find that the quantity P is
given by

P ¼ r3Ctrtr

¼ r3lanblcndCabcd

¼ −M
�
r
r0

�
3

ð−1þ 3ðlan0aÞ2ðnbl0
bÞ2Þ ðB14Þ

¼ −2M
γ3ð1 − V cos θÞ3 : ðB15Þ

However, Mγ is the energy E of the particle, and
γ−4 ¼ ð1 − V2Þ2. We therefore obtain

P ¼ −2Eð1 − V2Þ2
ð1 − V cos θÞ3 : ðB16Þ
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