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We study the large scale structure formation in Eddington-inspired Born-Infeld (EiBI) gravity. It is found
that the linear growth of scalar perturbations in EiBI gravity deviates from that in general relativity for
modes with large wave numbers (k), but the deviation is largely suppressed with the expansion of the
Universe. We investigate the integrated Sachs-Wolfe effect in EiBI gravity, and find that its effect on the
angular power spectrum of the anisotropy of the cosmic microwave background is almost the same as that
in the Lambda–cold dark matter (ΛCDM) model. We further calculate the linear matter power spectrum in
EiBI gravity and compare it with that in the ΛCDM model. Deviation is found on small scales
(k≳ 0.1h Mpc−1), which can be tested in the future by observations from galaxy surveys.
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I. INTRODUCTION

Purely affine theory of gravity has drawn a lot of
attention since it was first proposed by Eddington [1].
Schrödinger generalized Eddington’s theory to a nonsym-
metric metric [2]. One of the advantages of Eddington
affine theory is that it can automatically generate a
cosmological term. But in these early papers, matter fields
are not included. Attempts to add matter fields in this
theory have been an interesting topic [3,4]. Recently, a new
alternative theory called Eddington-inspired Born-Infeld
(EiBI) gravity was proposed by Banados and Ferreira [5].
EiBI gravity is equivalent to general relativity in vacuum;
but when matter fields are included, it presents many
interesting properties. It is claimed to be singularity free
both at the beginning of the Universe [5,6] and during the
gravitational collapse of dust [7]. In Ref. [8], EiBI gravity
as an alternative to inflation was discussed.
Despite the good properties EiBI gravity exhibits, the

validity of this theory has also been an important topic. It was
found that the tensor perturbation and the nonzero wave
number modes of scalar perturbations in EiBI gravity are
unstable deep in the Eddington regime [8–11], while it was
shown that thevector perturbations and the zerowave number
modes of scalar perturbations are stable for positive κ (an
extra parameter in EiBI gravity) in Ref. [10]. In Ref. [12], the
authors argued that there exist curvature singularities at the
surface of polytropic stars and unacceptable Newtonian limit

in EiBI gravity. On the other hand, researchers try to find out
how we can remove these pathologies. In Ref. [13], Liu et al.
investigated a thick brane model in EiBI gravity. They found
that the instability of tensor perturbation does not exit in their
model. In Ref. [8], Avelino and Ferreira found another
solution to the instability problem of tensor perturbation
by considering matter sources with a time-dependent state
parameter. Recently, Kim argued that the problem of singu-
larity at the surface of a star can be cured by taking into
account the gravitational backreaction [14]. These extensions
make EiBI gravity amore consistent theory and a prospective
alternative to general relativity.
Other papers have also been done to constrain the

parameter κ from compact stars [7,15,16], tests in solar
system [17], astrophysical and cosmological observations
[18], and nuclear physics [19,20]. The strongest constraint
on the parameter κ implies jκj < 10−3 kg−1 m5 s−2 [19].
More relevant studies can be found in Refs. [21–39].
It was shown in Refs. [5,6,24] that, in the low density

and curvature limit, EiBI gravity recoveries the conven-
tional Friedman cosmology. But these studies only con-
sidered a homogeneous and isotropic universe. It is
worthwhile to examine the cosmological consequences
of perturbations in EiBI gravity. In Ref. [11], the authors
found that a nearly scale-invariant power spectrum for both
scalar and tensor primordial quantum perturbations can be
obtained in EiBI gravity without introducing the inflation.
However, it remains to be seen whether these primordial
quantum perturbations can lead to proper cosmic micro-
wave background (CMB) and large scale structure of the
Universe consistent with observations.
In this paper, we investigate the evolution of cosmo-

logical perturbations after the last scattering and the large
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scale structure formation in EiBI gravity. First, we use the
linear perturbed equations derived in [10] to obtain the
approximate equations governing the scalar perturbations.
Then we discuss these equations in subhorizon and super-
horizon regimes and compare them with those in the
ΛCDM model. Finally, we solve the perturbed equations
by numerical methods for all wave numbers in the range we
are concerned with and calculate the integrated Sachs-
Wolfe effect and linear matter power spectrum. We find that
the linear matter power spectrum in EiBI gravity deviates
from that in the ΛCDM model when k≳ 0.1h Mpc−1,
which can be further tested in the future by observations
from galaxy surveys.
Arrangement for this paper is as follows. In Sec. II, we

briefly review the framework of EiBI gravity and its
application to cosmology. In Sec. III, we discuss the linear
scalar perturbed equations in EiBI gravity. In Sec. IV, we
solve the perturbed equations and compare the results with
those in the ΛCDM model. In Sec. V, we discuss the
integrated Sachs-Wolfe effect and the linear matter power
spectrum in EiBI gravity. Finally, conclusions and dis-
cussions are presented in Sec. VI.

II. FIELD EQUATIONS AND COSMOLOGICAL
BACKGROUND

The action for EiBI gravity is given by [5]

S¼ 2

κ

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgμνþ κRμνðΓÞj

q
− λ

ffiffiffiffiffiffiffiffiffiffiffiffi
−jgμνj

q �
þSM; ð1Þ

where RμνðΓÞ represents the symmetric part of the Ricci
tensor built with the connection Γ and λ is a dimensionless
constant which is different from 0 (here we work in Planck
units c ¼ 8πG ¼ 1). In the following part we will take
λ ¼ 1þ κΛ, as it is well known that Λ here acts as an
effective cosmological constant when jκRj is small [5].
Varying the action (1) independently with respect to the
metric and the connection, respectively, yields

ffiffiffi
q

p
qμν ¼ λ

ffiffiffi
g

p
gμν − κ

ffiffiffi
g

p
Tμν; ð2Þ

qμν ¼ gμν þ κRμν; ð3Þ

where qμν is the auxiliary metric compatible with the
connection.
Now we consider the case of a homogeneous and

isotropic universe which can be described by the
Friedmann-Robertson-Walker (FRW) metric

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj: ð4Þ

The corresponding auxiliary metric is taken to be

qμνdxμdxν ¼ −XðtÞ2dt2 þ a2ðtÞYðtÞ2δijdxidxj: ð5Þ

For simplicity, we have assumed the spacetime to be spatial
flat. Furthermore, we assume that the matter field is
dominated by pressureless cold dark matter and the effect
of radiation can be neglected. So the energy-momentum
tensor of matter field can be written as Tμν ¼ ρuμuν. Then
solving Eqs. (2) and (3) yields [5,6,9]

H2 ¼ G
6F2

; ð6Þ

with

G ¼ 1

κ

�
1þ 2X2 − 3

X2

Y2

�
; ð7Þ

F ¼ 1 −
3κð1þ κΛÞρ

4½1þ κðρþ ΛÞ�ð1þ κΛÞ ; ð8Þ

X2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κΛÞ3

1þ κðρþ ΛÞ

s
; ð9Þ

Y2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ κðρþ ΛÞ�ð1þ κΛÞ

p
: ð10Þ

Here ρ is the energy density of dark matter.
If jκj is sufficiently small so that fjκρj; jκΛjg ≪ 1,

Eq. (6) can be expanded in terms of κρ and κΛ:

H2 ¼ 1

3
ðρþ ΛÞ þ 1

8
κρ2 þOððκρÞ2Þ: ð11Þ

Note that, since ρ is larger than Λ or at least has the same
order as Λ up to now, we have used OððκρÞ2Þ to stand for
the higher-order terms such as ðκρÞ2, κ2ρΛ, ðκΛÞ2, etc.
When κ → 0, Eq. (11) reduces to the standard Friedmann
equation with a cosmological constant. Taking the deriva-
tive with respect to t of Eq. (11) and considering the
continuity equation for cold dark matter _ρþ 3Hρ ¼ 0, we
can obtain a useful equation:

_H ¼ −
1

2
ρ −

3

8
κρ2 þOððκρÞ2Þ: ð12Þ

It will be used to simplify the perturbed equations in the
following sections.
To parametrize Eqs. (11) and (12) for later calculations,

we take

ρ ¼ 3H2
0Ωma−3; ð13Þ

Λ ¼ 3H2
0ΩΛ; ð14Þ

γ ¼ κH2
0: ð15Þ

Here Ωm, ΩΛ, and H0 are the matter density parameter, the
vacuum energy density parameter, and the Hubble constant
at present, respectively (a is normalized so that a ¼ 1 at
present), and γ characterizes the deviation from general
relativity. These parameters satisfy
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Ωm þ ΩΛ þ 9

8
γΩ2

m ¼ 1: ð16Þ

So only two of them are independent. Furthermore, it is
also useful to define a dimensionless Hubble parameter h,
so that H0 ¼ 100h km s−1 Mpc−1.

III. LINEAR SCALAR PERTURBATIONS

Now we consider a perturbed FRW metric in the
Newtonian gauge (here we are only concerned with the
scalar perturbations):

ds2 ¼ −ð1þ 2ΦÞdt2 þ a2ðtÞð1 − 2ΨÞδijdxidxj: ð17Þ

Noting that the auxiliary metric is related to the physical
metric and matter fields according to Eq. (2), the corre-
sponding perturbed auxiliary metric is taken to be

qμνdxμdxν ¼ −XðtÞ2ð1þ 2αÞdt2
þ a2ðtÞYðtÞ2ð1 − 2βÞδijdxidxj: ð18Þ

The relations between the perturbations of the auxiliary
metric and the physical metric are given in Refs. [6,10,13] as

α ¼ Φ −
1

4

κδρ

1þ κðρþ ΛÞ ; ð19Þ

β ¼ Ψ −
1

4

κδρ

1þ κðρþ ΛÞ : ð20Þ

Then the equations for the growth of perturbations in the
linear regime have been obtained in Ref. [10].
The perturbed conservation equations in Fourier space

lead to

_δ ¼ 3 _Ψþ k2

a2
δu; ð21Þ

_δu ¼ −Φ: ð22Þ

Here δ ¼ δρ
ρ is the relative energy density perturbation, and

δu is related to the longitudinal part of the spatial velocity
perturbation: δuLi ¼ ∂iδu. The perturbed Eq. (3) gives

X2

Y2
a−2∇2Φþ 6

�
ä
a
þ Ÿ
Y
−H

_X
X
þ 2H

_Y
Y
−

_X
X

_Y
Y

�
Φþ 3

�
H þ

_Y
Y

�
_Φþ 3Ψ̈þ 6

�
H −

1

2

_X
X
þ

_Y
Y

�
_Ψ

−
1

4
κa−2

X2

Y2

∇2δρ

1þ κðρþ ΛÞ −
3

4
κ∂2

t

�
δρ

1þ ðρþ ΛÞ
�
−
3

4
κ

�
3H þ 3

_Y
Y
−

_X
X

�
∂t

�
δρ

1þ κðρþ ΛÞ
�

−
1

2

�
1þ 3κ

�
ä
a
þ Ÿ
Y
−H

_X
X
þ 2H

_Y
Y
−

_X
X

_Y
Y

��
δρ

1þ κðρþ ΛÞ − κa−2∂t

�
ρ

1þ κðρþ ΛÞ∇
2δu

�

− κa−2
�
2
_Y
Y
−

_X
X

�
ρ

1þ κðρþ ΛÞ∇
2δu ¼ 0; ð23Þ

�
H þ

_Y
Y

�
Φþ _Ψ −

1

4
κ∂t

�
δρ

1þ κðΛþ ρÞ
�
−
1

4
κ

�
H þ

_Y
Y

�
δρ

1þ κðΛþ ρÞ þ
1

2

ρ

1þ κðΛþ ρÞ δu ¼ 0; ð24Þ

Φ −Ψ ¼ κ
Y2

X2

�
∂t

�
ρ

1þ κðρþ ΛÞ δu
�
þ
�
H −

_X
X
þ 3

_Y
Y

�
ρ

1þ κðρþ ΛÞ δu
�
: ð25Þ

Substituting Eqs. (9) and (10) into Eqs. (23), (24), (25) and expanding them with respect to κρ, we obtain

3H

�
1 −

3

4
κρ

�
_Φþ 6

�
_H

�
1 −

3

4
κρ

�
þH2

�
Φ −

k2

a2
Φþ 3Ψ̈þ 6H

�
1þ 3

8
κρ

�
_Ψ

−
3

4
κρδ̈ −

3

4
κρH_δþ 3

4
κρð _H − 2H2Þδ − 1

2
ρ½1 − κðρþ ΛÞ�δþ 1

4
κρ

k2

a2
δ ¼ OððκρÞ2Þ; ð26Þ

H

�
1 −

3

4
κρ

�
Φþ _Ψ −

1

4
κρ_δþ 1

2
κρHδþ 1

2
ρ½1 − κðρþ ΛÞ�δu ¼ OððκρÞ2Þ; ð27Þ

Φ −Ψ ¼ κρð _δu − 2HδuÞ þOððκρÞ2Þ: ð28Þ
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Here we have used the continuity equation _ρþ 3Hρ ¼ 0 to
eliminate the term _ρ and written the equations in Fourier
space. Equations (21), (22), (26), (27), and (28) govern the
cosmological scalar perturbations Φ, Ψ, δ and δu. But it
should be noted that only four of theses equations are
actually independent. Given appropriate initial conditions
and the expansion history governed by Eqs. (11) and (12),
we can solve these differential equations and calculate
related observational quantities to compare with observa-
tions. However, these equations are too complicated for
an analytic treatment, so we first look at two wavelength
regimes: wavelengths much smaller than the Hubble horizon
(subhorizon), and wavelengths much larger than the Hubble
horizon (superhorizon). It will give us a first impression how
EiBI gravity deviates from general relativity. Then we will
show the numerical results in the next section.

A. Subhorizon regime

First, we look at the perturbations which are deep inside
the Hubble horizon, i.e., k

a ≫ H. To get the equation
governing the perturbation δ deep inside the Hubble
horizon, we also apply the following approximations
[40–42]:

�
k2

a2
jΦj; k

2

a2
jΨj

�
≫ fH2jΦj; H2jΨj; Hj _Aj; jÄjg; ð29Þ

where A ¼ Φ;Ψ. Then from Eqs. (21), (22), (26), and (28),
we finally arrive at

�
1 −

3

4
κρ

�
δ̈þ 2H

�
1 −

3

8
κρ

�
_δ −

1

2

�
ρ −

1

2
κρ

k2

a2

�
δ ¼ 0:

ð30Þ
Note that if jκρj is sufficiently small so that the terms
associating with it can be neglected except the term − 1

2
κρ k2

a2

due to large value of k, Eq. (30) is exactly the same as that
derived by a different method in the nonrelativistic regime
in Ref. [18].
Unlike in general relativity, the pressureless cold dark

matter has a nonzero effective sound speed cseff ¼ 1
2

ffiffiffiffiffi
κρ

p
in EiBI gravity. For positive κ, the perturbation of dark
matter density exhibits an oscillating behavior when
1
2
κ k2

a2 > 1, which was first pointed out by Avelino [18].
However, in the case we consider in this paper, we will
choose jκj sufficiently small so that j 1

2
κ k2

a2 j < 1 for all wave
numbers in the range we are concerned with.
An important observational quantity is the growth rate of

clustering defined as

f ≡ d lnΔ
d ln a

; ð31Þ

whereΔ is the relative density perturbation in the comoving
gauge,

Δ ¼ δ − 3Hδu: ð32Þ
Here we do not use the relative density perturbation in the
Newtonian gauge because it depends on the specific gauge
we choose, while the observational quantities should be
gauge invariant. It is easy to check that the combination
δ − 3Hδu is invariant under gauge transformations.

B. Superhorizon regime

Nowwe go on with the superhorizon regime, i.e., ka ≪ H.
It is well known that the quantity R≡ −ΨþHδu defined
in the Newtonian gauge is conserved outside the Hubble
horizon in general relativity [43,44]. In Ref. [45],
Bertschinger had proven that the constancy of R also
holds for modified gravity theories that obey the energy-
momentum conservation ∇μTμν ¼ 0 (see also in Ref. [46]).
Thus we have

− _ΨþH _δuþ _Hδu ¼ 0: ð33Þ
Along with Eq. (22), we can get

Ψ̈þH _Φ −
Ḧ
_H
_ΨþH

�
2
_H
H

−
Ḧ
_H

�
Ψ ¼ 0: ð34Þ

It is the same as the case in general relativity. However,
from Eqs. (22), (28), and (33), we can obtain

Ψ − Φ ¼ κρ

�
2
H
_H
_Ψþ

�
1þ 2

H2

_H

�
Φ

�
; ð35Þ

which implies that Φ does not equal to Ψ as in general
relativity when the matter fields carry no anisotropic stress.
But the deviation will be suppressed by the expansion of
the Universe because ρ ∝ a−3.
An important quantity is the metric combination

Ψþ ≡Ψþ Φ
2

; ð36Þ

which affects the CMB power spectrum through the
integrated Sachs-Wolfe effect and weak gravitational lens-
ing. We will discuss the integrated Sachs-Wolfe effect in
detail later.

IV. NUMERICAL EVOLUTION

In this section, we present the numerical solutions for the
scalar perturbations. We choose Eqs. (21), (22), (27), and
(28) to be a complete set of differential equations, because
they are only first order and easier to solve. As mentioned
before, we need to give appropriate initial conditions. It
requires a knowledge of the evolution of the perturbations
at an early time before the photon decoupled with matter
(last scattering). However, to give an accurate prescription
of this era, we need to solve the multispecies Boltzmann
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equations [47–49], which is beyond the scope of this paper.
We will focus on the evolution of linear perturbations from
the time when photon decoupled with matter to the present.
At the time of decoupling, the Universe is already domi-
nated by matter fields. Neglecting the effects of radiation,
baryonic matter, and cosmological constantΛ, we can solve
the perturbed equations analytically. From the analytic
solutions, we assume a set of initial conditions. Using
these initial conditions, we solve Eqs. (21), (22), (27),
and (28) numerically.

A. Initial conditions

In Sec. III, we have expanded the perturbed equations
with respect to κρ. The zeroth-order equations are just the
same as those in general relativity. So we assume the
solutions can be expanded as

δ ¼ δð0Þ þ γδð1Þ þOðγ2Þ; ð37Þ

Φ ¼ Φð0Þ þ γΦð1Þ þOðγ2Þ; ð38Þ

Ψ ¼ Ψð0Þ þ γΨð1Þ þOðγ2Þ; ð39Þ

δu ¼ δuð0Þ þ γδuð1Þ þOðγ2Þ; ð40Þ

where δð0Þ, Φð0Þ, Ψð0Þ, and δuð0Þ are the same as the
solutions in general relativity (κ → 0):

δð0Þ ¼ 2c1

�
1þ k2

3ΩmH2
0

a

�
þ c2

�
3a−

5
2 −

2k2

3ΩmH2
0

a−
3
2

�
;

ð41Þ

Φð0Þ ¼ −c1 þ c2a−
5
2; ð42Þ

Ψð0Þ ¼ −c1 þ c2a−
5
2; ð43Þ

δuð0Þ ¼ 1

Ω
1
2
mH0

�
2

3
c1a

3
2 þ c2a−1

�
: ð44Þ

We are only interested in the growth modes of δ which are
important for structure formation, so we take c2 ¼ 0. Then
substituting Eqs. (37), (38), (39), and (40) into Eqs. (21),
(22), (27), and (28), we can obtain the first-order solutions,

δð1Þ ¼ c1

�
3

4
Ωma−3 −

k2

2H2
0

a−2 þ k4

2ΩmH4
0

a−1
�

þ 2c3

�
1þ k2

3ΩmH2
0

a

�
þ c4

�
3a−

5
2 −

2k2

3ΩmH2
0

a−
3
2

�
;

ð45Þ

Φð1Þ ¼ −c1
�
3Ωm

4
a−3 þ k2

4H2
0

a−2
�
− c3 þ c4a−

5
2; ð46Þ

Ψð1Þ ¼ −c1
�
−
Ωm

4
a−3 þ k2

4H2
0

a−2
�
− c3 þ c4a−

5
2; ð47Þ

δuð1Þ ¼ 1

Ω
1
2
mH0

�
−c1

�
1

8
Ωma−

3
2 þ k2

2H2
0

a−
1
2

�

þ 2

3
c3a

3
2 þ c4a−1

�
: ð48Þ

Is it easy to find that the contributions of the terms
associating with c3 and c4 in the above equations are just
modifications to the integral constants c1 and c2 in the
zeroth-order solutions, while the terms associating with c1
present much more interesting properties. So we assume
c3 ¼ c4 ¼ 0. Actually, if c1, c3, and c4 all have the same
order, the terms associating with c1 will be the dominated
parts of the first-order solutions at the initial time.
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FIG. 1. Evolution of the growth rate f for k ¼ 0.5h Mpc−1 (left) and k ¼ 0.2h Mpc−1 (right) in EiBI gravity with different values of γ.
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Under the above assumptions, we use the analytic forms
of the approximate solutions to determine the initial values
of δ, Φ, and δu. Note that Ψ can be expressed by Φ and δu
algebraically using Eqs. (22) and (28).

B. Numerical solutions

From Eqs. (45), (46), (47), and (48), we can acquire some
important information about the modifications of EiBI
gravity to general relativity. It can be seen that the deviations
grow with k at the beginning, but then will be largely
suppressed by the expansion of the Universe. It is also
confirmed by our numerical calculations. As is known that
when k is larger, the nonlinear effects will become more
significant and finally make the linear analysis unsuitable. So
we restrict k in the range ð0; 0.5hÞ Mpc−1. As mentioned in
Sec. III A, we require j 1

2
κ k2

a2i
j < 1, where ai ¼ 1

1þz� is the

scale factor at the time of decoupling. The redshift z� at that
time is 1090.43� 0.54 according to the results of Planck
2013 [50]. So the parameter jγj ¼ jκH2

0j should be the order
of 10−13 or smaller.
Figure 1 shows the growth rate f with respect to the scale

factor a for k ¼ 0.5h Mpc−1 and k ¼ 0.2h Mpc−1. The
parameter γ is taken to be �10−13 and �10−14. We have
also taken Ωm ¼ 0.315 suggested by Ref. [50]. It can be
seen that as jγj becomes smaller, the growth rate in EiBI
gravity approaches to that in the ΛCDM model. The
deviation is larger for bigger k, but due to the expansion
of the Universe, this deviation is largely suppressed at
present. For positive γ, the growth rate is smaller than that
in the ΛCDM model, so the growth of structure is sup-
pressed by the effect of the modification to the ΛCDM
model at an early time, which will affect the later process of
the formation of the large scale structure. The case with
negative γ is just the opposite. With the observations from
galaxy surveys, we may find some constraints on EiBI
gravity.

Figure 2 shows the evolution of Ψþ for k ¼ 0.5h Mpc−1
and k ¼ 0.2h Mpc−1. Similarly, as jγj becomes smaller, the
evolution of Ψþ in EiBI gravity approaches to that in
the ΛCDM model. The deviation is larger for bigger k. The
overall change of Ψþ from the time of decoupling to the
present is larger than that in the ΛCDM model for the case
with positive γ, while it is the opposite for negative γ. This
deviation from the ΛCDM model will affect the angular
power spectrum of CMB at low multipoles through the
integrated Sachs-Wolfe effect.

V. OBSERVATIONS

Galaxy surveys, such as the PSCz, 2dF, VVDS,
SDSS, 6dF, 2MASS, BOSS, and WiggleZ, provide us
plenty of information about the large scale structure
formation. They report data of the growth rate f at low
redshift or its combination with the rms matter fluctuations
at 8h−1 Mpc (σ8) and the matter power spectrum for a large
range of k. We can use them to test the concordance
cosmology model ΛCDM and modified gravity theories
such as fðRÞ [51–56]. Furthermore, WMAP and Planck
spacecraft provide us accurate data of the anisotropy of
CMB, which can also be used to constrain different gravity
models.
But in our case, according to the results presented in the

last section, the growth rate in EiBI gravity is nearly
indistinguishable from that in ΛCDM at late time (low
redshift), so we will focus on the effects on CMB and
matter power spectrum below.

A. Integrated Sachs-Wolfe effect

In Ref. [11], the authors showed that we can obtain a
nearly scale-invariant power spectrum for scalar perturba-
tions in EiBI gravity. So we assume the curvature power
spectrum in EiBI gravity can be written as
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FIG. 2. Evolution of the metric combination Ψþ for k ¼ 0.5h Mpc−1 (left) and k ¼ 0.2h Mpc−1 (right) in EiBI gravity with different
values of γ. Here Ψþi is the initial value of Ψþ.
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k3PR

2π2
¼ As

�
k
k0

�
ns−1

TðkÞ2; ð49Þ

where As is the amplitude of curvature power spectrum on
the scale k0 ¼ 0.05 Mpc−1, ns is the scalar spectrum power-
law index, and TðkÞ is the matter-radiation transfer function.
The integrated Sachs-Wolfe effect contributes to the

angular power spectrum of the temperature anisotropies
as [51]

CII
l ¼ 4π

Z
dk
k
½IIl �2

9

25

k3PR

2π2
; ð50Þ

where

IIlðkÞ ¼ 2

Z
dzG0ðzÞjlðkDÞ: ð51Þ

HereGðzÞ ¼ Ψþða;kÞ
Ψþðai;kÞ, jl is the spherical Bessel function, and

D ¼ R
dz=HðzÞ is the comoving distance.

It can be seen that the integrated Sachs-Wolfe effect
depends on the variation of Ψþ with time. For a matter
dominated universe in general relativity, Ψþ is time
independent, so there is no integrated Sachs-Wolfe effect.
But in EiBI gravity, even at the matter-dominated era,Ψþ is
not time independent. So there will be a difference between
these two theories. As is shown in the last section, the
overall change of Ψþ in EiBI gravity is larger than that in
the ΛCDM model for positive γ, while the case with
negative γ is just the opposite. These deviations will cause
an elevation or reduction of the angular power spectrum at
low multipoles.
However, a further analysis shows that the differences

caused by the modifications to general relativity are
extremely small. It is not difficult to understand, consid-
ering that the deviations appear for large k, but the transfer
function TðkÞ decreases significantly for these wave
numbers, making the contributions from these modes very
small. In fact, if we use the fitting formulas for TðkÞ
proposed in Ref. [57], we can calculate the contributions
of the integrated Sachs-Wolfe effect. The results show that
the CMB quadrupole power 6CII

2 =2π contributed by the
integrated Sachs-Wolfe effect is nearly indistinguishable
between EiBI gravity and the ΛCDMmodel, they all give a
value about 362.3. Here we have also taken
As ¼ 2.196 × 10−9, ns ¼ 0.9603, and Ωbh2 ¼ 0.02205
[50]. Note that the transfer function is actually different
in EiBI gravity. So for a more specific analysis, we need to
calculate it numerically by modifying the numerical codes,
such as CMBFAST [47–49] and CAMB [58,59]. A slower
but easier to modify program called CMBQUICK is also
available [60]. But it will be a complicated work and needs
a knowledge of the early evolution of the perturbations at
radiation-dominated era and matter-radiation transition in
EiBI gravity.

B. Linear matter power spectrum

As in Ref. [51], we can define the density growth:

DGða; kÞ ¼
Δða; kÞ
Δðai; kÞ

ai: ð52Þ

Then the linear matter power spectrum takes the form of

k3PL

2π2
¼ 4

25
D2

Gða; kÞ
k4

Ω2
mH4

0

k3PR

2π2
: ð53Þ

As mentioned in the last subsection, TðkÞ is different in
EiBI gravity. But in this paper, we focus on the growth of
structure after the time of decoupling, thus to compare with
the ΛCDM model we use the same fitting formulate for
transfer function as before.
Figure 3 shows the linear matter power spectrum at

present in EiBI gravity and the ΛCDM model. The
parameter γ is taken to be �10−13. It can be found that
when k≳ 0.1h Mpc−1, the power spectrum is lower in EiBI
gravity with positive γ, while the case with negative γ is just
the opposite. It is not a surprising result, if we consider the
discussions in Sec. IV B. For positive γ, at an early time
the growth of density perturbation is suppressed by the
modifications of EiBI gravity to ΛCDM model. This effect
is especially significant for large k. On the contrary, for
negative γ, the growth of density perturbation is strength-
ened, so the power spectrum is higher than ΛCDM at high
k. Deviations will be much more significant for even
larger k.
However, with the analysis in this paper, we cannot yet

compare the above results with observations directly. One
reason is that we do not know the accurate form of the
transfer function in EiBI gravity. The other is that for large
k, the nonlinear effects will become important. So non-
linear analysis is needed in future papers. But from the
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FIG. 3. Linear matter power spectrum at present in EiBI gravity
(γ ¼ �10−13) comparing with the ΛCDM model.
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results of the present work, we can see a trend of increasing
departure from the ΛCDM model with increasing wave
number k. So there should be a more significant departure
for even larger k, when nonlinear regime become impor-
tant. Nonlinear measurements of the mass power spectrum
through the cluster abundance, Lyman-α forest, and cosmic
shear will provide us a way to test EiBI gravity at high k
and give constraint on the only extra parameter κ.

VI. CONCLUSIONS AND DISCUSSIONS

The EiBI gravity has been one of the prospective
candidates for modified gravity theories, in which the
singularity at the beginning of the Universe can be avoided.
A lot of work has been done to analyze the stability of
cosmological perturbations in this theory and constrain it
using different astrophysical and cosmological observations.
In this paper, we have discussed the evolution of linear

scalar perturbations since the matter-dominated era and the
large scale structure formation in EiBI gravity. The growth
rate of clustering in EiBI gravity is found to deviate from
that in the ΛCDM model at an early time of the Universe.
The departure increases with wave number k. But at relative
low redshift, the growth rate in EiBI gravity approaches to
that in the ΛCDM model. The suppression (for positive γ)
or enhancement (for negative γ) on the growth of density
perturbation at an early time for large k affects the linear
matter power spectrum on small scales (large k). For
k≳ 0.1h Mpc−1, the matter power spectrum in EiBI
gravity with positive γ is lower than that in ΛCDM. For
negative γ, it is just the opposite. So it is prospective to use
the observational matter power spectrum to test EiBI
gravity and constrain the parameter κ ¼ γ=H2

0. If we require
that the linear matter power spectrum in EiBI gravity does
not deviate significantly from that in the ΛCDMmodel, the
parameter jγj should be the order of 10−14 or smaller. At
present it is still not a very strong constraint. In Ref. [19],
Avelino obtained jκj < 10−3 kg−1m5 s−2 by requiring that
gravity plays a subdominant role inside atomic nuclei,
which leads to jγj < 10−47. If we consider this constraint,
there will be no distinguishable deviation. Besides, we also
calculate the integrated Sachs-Wolfe effect in EiBI gravity,
and find that its effect on the angular power spectrum of
CMB is almost the same as that in the ΛCDM model.

However, somework still needs to be done before we can
compare the predictions of EiBI gravity directly with
observations. First, we must also analyze in detail the
evolution of scalar perturbations at a much earlier time
when the Universe is dominated by radiation, and the
transition from a radiation-dominated universe to a matter-
dominated one. Along with these analyses, we can obtain
more accurate transfer function by modifying correspond-
ing numerical codes such as CAMB, CMBFAST and
CMBQUICK. Second, to distinguish EiBI gravity with the
ΛCDM model, we need to compare the evolution of
perturbations with large k, at which wave number nonlinear
effect cannot be neglected. This can be solved by following
the halo-based description of nonlinear gravitational clus-
tering [61] or using numerical simulations.
Although within this paper, we cannot yet give a strong

constraint on the parameter κ comparable with that derived
from other methods such as considering the compact
objects or structure of nucleon, we have shown some
interesting behaviors of EiBI gravity on large scale struc-
ture formation, especially the linear matter power spectrum.
An analysis of nonlinear matter power spectrum in future
papers will give a stronger constraint on the deviations from
general gravity. Furthermore, despite the success of the
ΛCDMmodel in predicting the large scale structure, it may
have some problems on small scales, such as the missing
satellites problem or the cuspy halo problem. So it is
motivated to consider some modifications on these scales.
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