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We investigate the possibility of explaining theoretically the observed deviations of S2 star orbit around
the Galactic Centre using gravitational potentials derived from modified gravity models in the absence of
dark matter. To this aim, an analytic fourth-order theory of gravity, nonminimally coupled with a massive
scalar field, is considered. Specifically, the interaction term is given by the analytic functions fðRÞ and
fðR;ϕÞ where R is the Ricci scalar and ϕ is a scalar field whose meaning can be related to further
gravitational degrees of freedom. We simulate the orbit of the S2 star around the Galactic Centre in fðRÞ
(Yukawa-like) and fðR;ϕÞ (Sanders-like) gravity potentials and compare it with New Technology
Telescope/Very Large Telescope observations. Our simulations result in strong constraints on the range
of gravity interaction. In the case of analytic functions fðRÞ, we are not able to obtain reliable constraints
on the derivative constants f1 and f2, because the current observations of the S2 star indicated that they
may be highly mutually correlated. In the case of analytic functions fðR;ϕÞ, we are able to obtain reliable
constraints on the derivative constants f0, fR, fRR, fϕ, fϕϕ, and fϕR. The approach we are proposing
seems to be sufficiently reliable to constrain the modified gravity models from stellar orbits around the
Galactic Centre.
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I. INTRODUCTION

Extended theories of gravity [1] are alternative theories of
gravitational interaction developed from the exact starting
points investigated first by Einstein and Hilbert and aimed
from one side to extend the positive results of general
relativity and, on the other hand, to cure its shortcomings.
Besides other fundamental issues, like dark energy and
quantum gravity, these theories have been proposed like
alternative approaches to Newtonian gravity in order to
explain galactic and extragalactic dynamics without intro-
ducing dark matter [2,3]. In particular, the search for non-
Newtonian gravity is part of the quest for non-Einsteinian
physics, which consists of searching for deviations from
special and general relativity [4–6]. They are aimed at
addressing conceptual and experimental problems that have
recently emerged in astrophysics and cosmology from the
observations of the Solar System, binary pulsars, spiral
galaxies, clusters of galaxies, and the large-scale structure
of the Universe [7–11]. In general, these theories describe
gravity as a metric theory with a linear connection but there

are also affine, or metric-affine, formulations of the exten-
ded theories of gravity [1]. Essentially, they are based on
straightforward generalizations of the Einstein theory where
the gravitational action (the Hilbert-Einstein action) is
assumed to be linear in the Ricci curvature scalar R. fðRÞ
gravity is a type of modified gravity which generalizes
Einstein’s general relativity and it was first proposed in 1970
by Buchdahl [12]. It is actually a family of models, each one
defined by a different function of the Ricci scalar. The
simplest case just involves general relativity. In the case of
fðRÞ gravity, one assumes a generic function f of the Ricci
scalar R (in particular, analytic functions) and searches for a
theory of gravity having suitable behavior at small and large
scale lengths. As a consequence of introducing an arbitrary
function, there may be freedom to explain the accelerated
expansion and structure formation of the Universe without
adding unknown forms of dark energy or dark matter. One
type of the extended theories of gravity is characterized
by power-law Lagrangians [13,14]. Alternative approaches
to Newtonian gravity in the framework of the weak field
limit of fourth-order gravity theory have been proposed and
constraints on these theories have been discussed [15–22].
Yukawa-like corrections have been obtained in the

framework of fðRÞ gravity as a general feature of these
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theories [23–26]. It is important to stress that they emerge
as exact solutions in the context of extended gravity and
are not just put in by hand as phenomenological terms. The
physical meaning of such corrections needs to be confirmed
at different scales: for short distances, the Solar System,
spiral galaxies, and galaxy clusters. A compilation of
experimental, geophysical, and astronomical constraints
on Yukawa violations of the gravitational inverse square
law are given in Figs. 9 and 10 from [27] for different ranges.
These results show that the Yukawa term is relatively
well constrained for the short ranges. For longer distances
Yukawa corrections have been successfully applied to
clusters of galaxies [23,28,29]. Lucchesi and Peron [30]
analyzed pericenter general relativistic precession and gave
constraints on exponential potential to Solar System mea-
surements. However, further tests are needed in order to set
robust constraints on Yukawa corrections. Galactic stellar
dynamics could be of great aid in this program.
S stars are mainly young early-type stars that closely

orbit the massive compact object at the center of the Milky
Way, named Sgr A� [31–36]. These stars, together with a
recently discovered dense gas cloud falling towards the
Galactic Centre [37], indicate that the massive central object
is a black hole. In our simulation we will treat the central
object like a “massive compact object” since our goal was
only to study orbits of stars around the Galactic Centre,
no matter what the nature of the object is (black hole or not).
For at least one of them, called S2, there are some
observational indications that its orbit may deviate from
the Keplerian case due to relativistic precession [33,38].
However, we have to point out that the present astro-

metric limit is still not sufficient to definitely confirm such
a claim. On the other hand, the astrometric accuracy is
constantly improving from around 10 mas during the first
part of the observational period, currently reaching less
than 1 mas (0.3 mas); see [39]. Furthermore, some recent
studies provide more and more evidence that the orbit of
the S2 star is not closing (see, e.g., Fig. 2 in [38]). Here, we
fitted the NTT/VLT astrometric observations of the S2 star,
which contain a possible indication of orbital precession
around the massive compact object at the Galactic Centre,
in order to constrain the parameters of Sanders-like gravity
potential since this kind of potential has not been tested
at these scales yet. We obtained much larger orbital
precession of the S2 star in Sanders-like gravity than the
corresponding value predicted by general relativity. In
the paper [33] (page 1092, Fig. 13), authors presented
the Keplerian orbit but they have to move the position of
central point mass to explain orbital precession. In our
orbit, calculated by Sanders-like potential for best fitting
parameters, we also obtained precession, but with a fixed
position of the central point mass. In other words, we do not
need to move central point mass in order to get the fit.
As a general remark, the orbit of S2 will give astron-

omers the opportunity to test for various effects predicted

by general relativity. The orbital precession can occur
due to relativistic effects, resulting in a prograde pericenter
shift or due to a possible extended mass distribution,
producing a retrograde shift [40]. Both prograde relativistic
and retrograde Newtonian pericenter shifts will result in
rosette shaped orbits [41]. We have to stress that the current
astrometric limit is not sufficient to unambiguously confirm
such a claim. Weinberg et al. [42] discussed physical
experiments achievable via the monitoring of stellar
dynamics near the Galactic Centre with a diffraction-
limited, next-generation extremely large telescope.
The aim of this paper is to give the astronomical

constraints on extended theories of gravity by using the
peculiar dynamics of the S2 star. In particular, we want to
fix the ranges of Yukawa-like correction parameters by
adopting the NTT/VLT observations. The paper is organ-
ized as follows. Section II is devoted to a short summary of
extended gravity in view of the Newtonian limit where
Yukawa-like corrections emerge. The simulated orbits of
the S2 star in modified potential are considered in Sec. III.
In particular, we set the problem of how to constrain the
Yukawa-potential parameters. Section IV is devoted to the
results of the simulation. Conclusions are drawn in Sec. V.

II. EXTENDED THEORIES OF GRAVITY

Examples of extended theories of gravity are higher-order,
scalar-tensor gravities; see, for example, [1,3,10,43–49].
These theories can be characterized by two main features:
(i) the geometry can nonminimally couple to some scalar
field and (ii) higher-order curvature invariants can appear in
the action. In the first case, we are dealing with scalar-tensor
gravity, and in the second case we have higher-order gravity.
Combinations of nonminimally coupled and higher-order
terms can also emerge in an effective Lagrangian, producing
mixed higher-order/scalar-tensor gravity. A general class
of higher-order-scalar-tensor theories in four dimensions is
given by the effective action [1,50]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR;□R;□2R;…;□kR;ϕÞ

þ ωðϕÞϕ;αϕ
;α þ XLm�; ð1Þ

where f is an unspecified function of curvature invariants
and the scalar field ϕ and X ¼ 8πG. Here we use the
convention c ¼ 1.
The simplest extension of general relativity is achieved

assuming

R → fðRÞ; ωðϕÞ ¼ 0; ð2Þ
where the action (1) becomes [50]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðRÞ þ XLm�: ð3Þ

A general gravitational potential, with a Yukawa cor-
rection, can be obtained in the Newtonian limit of any
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analytic fðRÞ-gravity model. From a phenomenological
point of view, this correction allows us to consider
as viable this kind of model even at small distances,
provided that the Yukawa correction turns out not to be
relevant in this approximation, as in the so-called
chameleon mechanism [49].
One can assume, however, analytic Taylor expandable

fðRÞ functions with respect to the value R ¼ 0 that is the
Minkowskian background [50]:

fðRÞ ¼
X∞
n¼0

fðnÞð0Þ
n!

Rn ¼ f0 þ f1Rþ f2
2
R2 þ � � � ð4Þ

It is worth noting that, at the orderOð0Þ, the field equations
give the condition f0 ¼ 0 and the solutions at further orders
do not depend on this parameter. On the other hand,
considering the first term in R, f0 has the meaning of a
cosmological constant.
A further step is to analyze the Newtonian limit starting

from the action (1) and considering a generic function of
the Ricci scalar and the scalar field. Then the action
becomes [50]

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR;ϕÞ þ ωðϕÞϕ;αϕ
;α þ XLm�: ð5Þ

The scalar field ϕ can be approximated as the Ricci scalar.
In particular we get ϕ ¼ ϕð0Þ þ ϕð1Þ þ ϕð2Þ þ � � � and
the function fðR;ϕÞ with its partial derivatives (fR, fRR,
fϕ, fϕϕ, and fϕR) and ωðϕÞ can be substituted by their
corresponding Taylor series. In the case of fðR;ϕÞ, we
have [50]

fðR;ϕÞ ∼ fð0;ϕð0ÞÞ þ fRð0;ϕð0ÞÞRð1Þ þ fϕð0;ϕð0ÞÞϕð1Þ…;

ð6Þ

and analogous relations for the derivatives are obtained.
From the lowest order of field equations we have [50]

fð0;ϕð0ÞÞ ¼ 0; fϕð0;ϕð0ÞÞ ¼ 0; ð7Þ

and also in this modified fourth-order gravity a missing
cosmological component in the action (1) implies that the
space-time is asymptotically Minkowskian (the same out-
come as above). Moreover the ground value of scalar field
ϕ must be a stationary point of the potential.
An important remark is due at this point. As discussed

in detail in [50], a theory like fðR;ϕÞ is dynamically
equivalent to fðR;□RÞ and the meaning of the scalar
field results is also clearly related to the further gravita-
tional degrees of freedom that come out in extended
gravity [51,52].

III. SIMULATED ORBITS OF THE S2 STAR AND
THE YUKAWA-LIKE CORRECTIONS

In order to constrain the parameters of the fðRÞ and
fðR;ϕÞ models, we simulate orbits of the S2 star in
Yukawa-like gravity potentials and fit them to the astro-
metric observations obtained by the New Technology
Telescope/Very Large Telescope (NTT/VLT) (see Fig. 1 in
[33]), which are publicly available as the supplementary
online data to the electronic version of the paper [33] at
[53], and which are aimed at estimating the distance from
the Galactic Centre and to map the inner region of our
Galaxy.
As discussed, in fðRÞ-gravity, the scalar curvature R of

the Hilbert-Einstein action is replaced by a generic function
fðRÞ. As a result, in the weak field limit [54], the
gravitational potential is found to be Yukawa like [10,55]:

ΦðrÞ ¼ −
GM

ð1þ δÞr ½1þ δe−ðrΛÞ�; ð8Þ

where Λ2 ¼ −f1=f2 is an arbitrary parameter (usually
referred to as the range of interaction), depending on the
typical scale of the system under consideration, and
δ ¼ f1 − 1 is a universal constant. It is worth noticing that
δ and Λ depend on the parameters of the given fðRÞ gravity
model. It is important to stress that a Yukawa-like correc-
tion has been invoked several times in the past [56]. Such
corrections have been obtained, as a general feature, in the
framework of fðRÞ gravity [25] and successfully applied to
clusters of galaxies setting [29]. In general, one can relate
the length-scale Λ to the mass of the effective scalar field
introduced by the extended theory of gravity and then to the
mass and characteristic size of the self-gravitating system
[1]. The larger the mass, the smaller Λ will be and the faster
the exponential decay of the correction will be; i.e., the
larger the mass, the quicker the recovery of the Newtonian
dynamics. Equation (8) then gives us the opportunity to
investigate in a unified way the impact of a large class of
modified gravity theories, included in which are the
extended theories, since other details do not have any
impact on the galactic scales we are interested in.
In the fðR;ϕÞ gravity the gravitational potential is found

by setting the gravitational constant as

G ¼
�
2ωðϕð0ÞÞϕð0Þ − 4

2ωðϕð0ÞÞϕð0Þ − 3

�
G∞

ϕð0Þ ; ð9Þ

where G∞ is the gravitational constant as measured at
infinity and, by imposing α−1 ¼ 3 − 2ωðϕð0ÞÞϕð0Þ, the
gravity potential is [50]

ΦSTðxÞ ¼ −
G∞M
jxj

n
1þ αe−

ffiffiffiffiffiffiffiffi
1−3α

p
mϕjxj

o
ð10Þ

and a Sanders-like potential is fully recovered [56]. Such a
potential has often been used to obtain the rotation curves
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of spiral galaxies [57]. However, it is worth stressing that
the only Sanders potential is unable to reproduce the rotation
curves of spirals without dark matter, as pointed out in
an accurate study in [58]. However, the paradigm remains
valid and modifications of Newtonian potential can be
investigated in view of addressing the dark matter problem.
We can set the value of the derivatives of the Taylor

expansion as fRϕ ¼ 1; fRR ¼ 0; fR ¼ ϕ without losing
generality.
The simulated orbits of the S2 star in these two potentials

can be obtained by a numerical integration of the corre-
sponding differential equations of motion; that is,

_r ¼ v; μ̈r ¼ −∇ΦðrÞ; ð11Þ

where μ is the reduced mass in the two-body problem. We
assume the following mass and distance for the Sgr A�
central massive compact object around which the S2 star
is orbiting: M ¼ 4.3 × 106M⊙ and d⋆ ¼ 8.3 kpc, respec-
tively [33]. For simplicity reasons, we perform two-body
simulations and neglect perturbations from other members
of the S-star cluster, as well as from some possibly existing
extended structures composed by visible or darkmatter [16].
We simulate orbits of the S2 star and fit them to the NTT/

VLT astrometric observations for different combinations of
a priori given values of f1 and f2 in fðRÞ, and α and mϕ in
fðR;ϕÞ gravity potentials (below denoted as parameter1
and parameter2, respectively). Each simulated orbit is
defined by the following four initial conditions: two com-
ponents of initial position and two components of initial
velocity in orbital plane at the epoch of the first observation.
For each combination of parameter1 and parameter2, we
obtain the best fit initial conditions corresponding to a
simulated orbit with the lowest discrepancy in respect to
the observed one. The fitting itself is performed using the
LMDIF1 routine from theMINPACK-1 FORTRAN 77 library
which solves the nonlinear least squares problems by a
modification of the Marquardt-Levenberg algorithm [59],
according to the following procedure:
(1) In the first iteration we use a guess of initial position

ðx0; y0Þ and velocity ð_x0; _y0Þ of the S2 star in the
orbital plane (the true orbit) at the epoch of the first
observation;

(2) the true positions ðxi; yiÞ and velocities ð_xi; _yiÞ at all
successive observed epochs are then calculated by
the numerical integration of equations of motion
(11), and projected to the corresponding positions
ðxci ; yci Þ in the observed plane (the apparent orbit);

(3) discrepancy between the simulated and the observed
apparent orbit is estimated by the reduced χ2:

χ2 ¼ 1

2N − ν

XN
i¼1

��
xoi − xci
σxi

�
2

þ
�
yoi − yci
σyi

�
2
�
; ð12Þ

where ðxoi ; yoi Þ and ðxci ; yci Þ are the corresponding
observed and calculated apparent positions, N is the
number of observations, ν is the number of initial
conditions (in our case ν ¼ 4), and σxi and σyi are
uncertainties of the observed positions;

(4) the new initial conditions are estimated by the fitting
routine and steps 2 and 3 are repeated until the fit is
converging, i.e., until the minimum of reduced χ2 is
achieved.

Finally, we kept the values of parameter1 and parameter2
for which the smallest value of minimized reduced χ2 is
obtained—in other words, which results with the best fit
simulated orbit of the S2 star with the lowest discrepancy
with respect to the observed one.

IV. RESULTS AND DISCUSSION

Our point is that the Yukawa-like correction, coming
from fðRÞ gravity, can be used in order to fix the
coefficients in the expansion (4). For the expansion up
to the second order, we have two parameters to fix. Orbits
of the S2 star around the Galactic Centre are, in principle, a
very straightforward tool in order to test any theory of
gravity. In [2], there is an overview of self-gravitating
structures, at different scales, whose dynamics could be
described without asking for dark matter. According to [2],
the relations between f1, f2, and δ and the Λ parameters are
f1 ¼ 1þ δ, f2 ¼ −ð1þ δÞ=ðΛ2Þ.
Specifically, we have to find the minimal values of the

reduced χ2 in order to determine f1 and f2 assuming
f0 ¼ 0. This allows us to reconstruct fðRÞmodels up to the
second order.
Figure 1 presents the maps of the reduced χ2 over the

ff1 − f2g parameter space for all simulated orbits of
the S2 star which give at least the same or better fits to
the NTT/VLTobservations of the S2 star than the Keplerian
orbits (χ2 ¼ 1.89). The left panel corresponds to f1 in
the range ½−25; 0�, and the right panel to the range [0, 25],
respectively. We can see that, in a large region of the
parameter space, χ2 of the orbits in modified potential
is less than the value in Newtonian potential. However,
it seems that we cannot constrain both f1 and f2 using only
the observed S2 orbits because these two parameters are
strongly correlated. We can constrain only their ratio f1=f2.
According to [2], the effective mass is m2 ¼ −f1=ð3f2Þ.
The solutions are valid if m2 > 0, i.e., f1 and f2 are
assumed to have different signs.
This is a degeneracy problem that has to be removed in

order to obtain reliable results. Such a problem is also
found in fitting the flat rotation curve of spiral galaxies. As
is discussed in detail in [50], the f1=f2 degeneracy can be
removed by using potentials coming from fðR;ϕÞ gravity.
In this model, two potentials, ΨðxÞ and ΦðxÞ, result as
entries of the metric in the Newtonian limit. The combi-
nation of both potentials gives rise to the effective potential
(10) that affects the particle (in our case the S2 star).
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The potential includes the gravitational constant mea-
sured at infinity G∞. The relation between G∞ and G, the
gravitational constant measured in the laboratory, is given
by the above formula (9). If we take ωðϕ0Þ ¼ 1=2 and use
the relation 1=α ¼ 3 − 2ωðϕ0Þϕ0, we get ϕ0 ¼ 3 − 1=α.
Combining these relations, we get G∞ ¼ G=ð1þ αÞ.
Our aim is to determine f0, fR, fRR, fϕ, fϕϕ, and fϕR.

For the lowest order of the field, as we said, one can set
f0 ¼ 0 and fϕ = 0. We use also the further constraints given
in [50] at lowest order, that is, fϕR ¼ 1, fRR ¼ 0, and
fR ¼ ϕ0. This last relation gives fR ¼ ϕ0 ¼ 3 − 1=α.
For fðR;ϕÞ gravity, one can define a further effective

mass [50], that is, m2
ϕ ¼ −fϕϕ=ð2ωðϕ0ÞÞ, and if we take

ωðϕ0Þ ¼ 1=2, we immediately get fϕϕ ¼ −m2
ϕ.

Finally we can assume the following set of parameters:
f0 ¼ 0, fR ¼ 3 − 1=α, fϕ ¼ 0, fRR ¼ 0, fϕR ¼ 1, and
fϕϕ ¼ −m2

ϕ. These choices are physically reliable and mean
that we can assume an asymptotic Minkowski background,
i.e., f0 ¼ 0, that the general relativity is recovered for
fϕ ¼ 0, fRR ¼ 0, fϕR ¼ 1, and effective massive modes
(and then effective lengths) are related to fR ¼ 3 − 1=α
and fϕϕ ¼ −m2

ϕ. In particular, f0 ¼ 0 means that the
cosmological constant can be discarded at local scales.

Figures 2 and 3 are the maps of the reduced χ2 over
the fα −mϕg parameter space in fðR;ϕÞ gravity for all
simulated orbits of the S2 star which give at least the
same or better fits than the Keplerian orbits (χ2 ¼ 1.89).
The left panel in Fig. 2 corresponds to mϕ in [0, 0.06]
and α in [0, 0.33], and the right panel to the zoomed
range of mϕ in [0, 0.03] and α in [0, 0.05], respectively.
For α < 0, there is no region in the parameter space
where χ2 < 1.89 (the Keplerian case). For 0 < α < 1=3
there are two regions where χ2 < 1.89 (for mϕ < 0 and
mϕ > 0), but the absolute minimum is for mϕ < 0. We
obtained the absolute minimum of the reduced χ2 for α
in the interval [0.0001, 0.0004], and mϕ in the interval
½−0.0029;−0.0023� (see Fig. 3). The absolute minimum of
the reduced χ2 (χ2¼1.5011) is obtained for α¼0.00018
and mϕ¼−0.0026, respectively.
The simulated orbits of the S2 star around the Galactic

Centre in Sanders gravity potential (the blue solid line) and
in Newtonian gravity potential (the red dashed line) for
α ¼ 0.00018 and mϕ ¼ −0.0026 during 10 periods are
presented in Fig. 4. We can notice that the precession of the
S2 star orbit has the same direction as in general relativity.
The precession of the S2 star orbit in the same direction can
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also be obtained for some ranges of parameter δ in the
general Yukawa potential (for more details see paper [21]).
As can be read from Fig. 4, the best fit orbit in Sanders
gravity potential precesses for about 3°.1 per orbital period.
In the case of Sanders potential, analytical calculation of

orbital precession is very complicated to obtain, so we
calculated it numerically and presented it in Figs. 5 and 6 as
a function of α and mϕ. Assuming that a potential does
not differ significantly from Newtonian potential, we derive
perturbing potential from

VðrÞ ¼ ΦðrÞ − ΦNðrÞ; ΦNðrÞ ¼ −
GM
r

: ð13Þ

Obtained perturbing potential is of the form

VðrÞ ¼ −
GMα

rð1þ αÞ ðe
−

ffiffiffiffiffiffiffiffi
1−3α

p
·mϕ·r − 1Þ; ð14Þ

and it can be used for calculating the precession angle
according to Eq. (30) from paper [41]:

Δθ ¼ −2L
GMe2

Z
1

−1

z · dzffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p dVðzÞ
dz

; ð15Þ

where r is related to z via r ¼ L
1þez. By differentiating the

perturbing potential VðzÞ and substituting its derivative and
expression for the semilatus rectum of the orbital ellipse
(L ¼ að1 − e2Þ) in Eq. (15) above, and taking the same
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FIG. 3 (color online). The same as in Fig. 2, but for a narrow
region in the fα −mϕg parameter space around the absolute
minimum of the reduced χ2. With a decreasing value of χ2 (better
fit) colors in gray scale are darker. A few contours are presented
for specific values of reduced χ2 given in the figure’s legend.

FIG. 4 (color online). Comparison between the orbit of the S2
star in Newtonian potential (the red dashed line) and Sanders-like
potential for the best fit parameters (the absolute minimum of
reduced χ2 ¼ 1.5011) α ¼ 0.00018 and mϕ ¼ −0.0026 during
ten orbital periods (the blue solid line).
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FIG. 5 (color online). Numerically calculated angle of preces-
sion per orbital period as a function of parameters α in the range
[0.0001, 0.0003] and mϕ in the range ½−0.003;−0.002� in the
case of Sanders-like potential. With a decreasing value of angle
of precession colors are darker.
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FIG. 6 (color online). The same as in Fig. 5, but for α in the
range ½−0.0005; 0.0005� and mϕ in the range ½−0.003;−0.0025�.
The pericenter advance (like in GR) is obtained for positive α, and
retrograde precession for negative α. With a decreasing value of
angle of precession colors are darker.
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values for orbital elements of the S2 star as paper [19], we
obtained numerically for α ¼ 0.00018 and mϕ ¼ −0.0026
that precession per orbital period is 3°.053.
Graphical presentation of the precession per orbital

period for α in the range [0.0001, 0.0003] and mϕ in
½−0.003;−0.002� is given in Fig. 5, and the case for α in
½−0.0005; 0.0005� and mϕ in ½−0.003;−0.0025� is pre-
sented in Fig. 6. As one can see, pericenter advance
(like in general relativity [GR]) is obtained for positive
α, and retrograde precession for negative α. However, it
should be taken into account that fits better than Keplerian
are obtained only for positive α and hence for the
precession in the same direction as in GR.
General relativity predicts that the pericenter of the S2

star should advance by 0°.08 per orbital revolution [34],
which is much smaller than the value of precession per
orbital period in Sanders gravity potential, but the direction
of the precession is the same.

V. CONCLUSIONS

In this paper, we compared the observed and simulated
S2 star orbits around the Galactic Centre, in order to
constrain the parameters of gravitational potentials derived
from modified gravity models. The obtained results are
quite comfortable for the effective gravitational potential
derived from fðR;ϕÞ gravity that, essentially, reproduces
Sanders-like potentials [56,57] phenomenologically
adopted to explain the rotation curves of spiral galaxies.
Also if these kinds of potentials are not sufficient in
addressing completely the problem of dark matter in
galaxies [58], they give indications that alternative theories
of gravity could be viable in describing galactic dynamics.
In other words, orbital solutions derived from such a

potential are in good agreement with the reduced χ2

deduced for Keplerian orbits. This fact allows us to fix
the range of variation for α and mϕ, the two parameters
characterizing the potential (10). The precession of the S2

star orbit obtained for the best fit parameter values
(α ¼ 0.00018 and mϕ ¼ −0.0026) has the positive direc-
tion, as in general relativity.
In particular, we fitted the NTT/VLT astrometric obser-

vations of the S2 star, which contain a possible indication
for orbital precession around a massive compact object at
the Galactic Centre, in order to constrain the parameters of
Sanders-like gravity potential since this theory has not been
tested at these scales yet. We obtained much larger orbital
precession of the S2 star in Sanders-like gravity than the
corresponding value predicted by general relativity. In the
paper [34], the authors presented the Newtonian orbit but
with a moved position of central point mass in a different
way. In that way they explained observed precession. In our
calculated orbit of Sanders-like potential for best fitting
parameters, we also obtained precession, but with a fixed
position of central point mass since we do not have to
move it.
However, one should keep in mind that we considered

an idealized model ignoring many uncertainty factors,
such as extended mass distributions, perturbations from
nonsymmetric mass distribution, etc. Therefore, future
observations with advanced facilities which will enable
extremely accurate measurements of the positions of stars
of ∼10 μas [60], or the European Extra Large Telescope,
with an expected accuracy of ∼50–100 μas [61], are
needed in order to verify the claims in this paper. As a
final remark, we believe that the surveys aimed at giving
details on the dynamics around the Galactic Centre could
be a powerful tool to test theories of gravity.

S. C. acknowledges the support of INFN (iniziativa
specifica TEONGRAV). D. B., P. J., and V. B. J. wish to
acknowledge the support by the Ministry of Education,
Science and Technological Development of the Republic of
Serbia through Project No. 176003.

[1] S. Capozziello and M. De Laurentis, Phys. Rep. 509, 167
(2011).

[2] S.Capozziello andM.DeLaurentis,Ann. Phys. (Amsterdam)
524, 545 (2012).

[3] S. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59 (2011).
[4] S. Kopeikin and I. Vlasov, Phys. Rep. 400, 209 (2004).
[5] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys.

Rep. 513, 1 (2012).
[6] E. Fischbach and C. L. Talmadge, The Search for

Non-Newtonian Gravity (Springer, New York, 1999).
[7] S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002).
[8] S. Capozziello, V. F. Cardone, S. Carloni, and A. Troisi, Int.

J. Mod. Phys. D 12, 1969 (2003).

[9] S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner,
Phys. Rev. D 70, 043528 (2004).

[10] S. Capozziello and V. Faraoni, Beyond Einstein Gravity:
A Survey of Gravitational Theories for Cosmology and
Astrophysics, Fundamental Theories of Physics Vol. 170
(Springer, New York, 2010).

[11] G. Leon and E. N. Saridakis, Classical Quantum Gravity 28,
065008 (2011).

[12] H. A. Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970).
[13] S. Capozziello, V. F. Cardone, and A. Troisi, Phys. Rev. D

73, 104019 (2006).
[14] S. Capozziello, V. F. Cardone, and A. Troisi, Mon. Not. R.

Astron. Soc. 375, 1423 (2007).

CONSTRAINING EXTENDED GRAVITY MODELS BY S2 … PHYSICAL REVIEW D 90, 044052 (2014)

044052-7

http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://dx.doi.org/10.1002/andp.201200109
http://dx.doi.org/10.1002/andp.201200109
http://dx.doi.org/10.1016/j.physrep.2011.04.001
http://dx.doi.org/10.1016/j.physrep.2004.08.004
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1142/S0218271802002025
http://dx.doi.org/10.1142/S0218271803004407
http://dx.doi.org/10.1142/S0218271803004407
http://dx.doi.org/10.1103/PhysRevD.70.043528
http://dx.doi.org/10.1088/0264-9381/28/6/065008
http://dx.doi.org/10.1088/0264-9381/28/6/065008
http://dx.doi.org/10.1093/mnras/150.1.1
http://dx.doi.org/10.1103/PhysRevD.73.104019
http://dx.doi.org/10.1103/PhysRevD.73.104019
http://dx.doi.org/10.1111/j.1365-2966.2007.11401.x
http://dx.doi.org/10.1111/j.1365-2966.2007.11401.x


[15] A. F. Zakharov, A. A. Nucita, F. De Paolis, and G. Ingrosso,
Phys. Rev. D 74, 107101 (2006).

[16] A. F. Zakharov, A. A. Nucita, F. De Paolis, and G. Ingrosso,
Phys. Rev. D 76, 062001 (2007).

[17] A. A. Nucita, F. De Paolis, G. Ingrosso, A. Qadir, and
A. F. Zakharov, Publ. Astron. Soc. Pac. 119, 349 (2007).

[18] C. Frigerio Martins and P. Salucci, Mon. Not. R. Astron.
Soc. 381, 1103 (2007).

[19] D. Borka, P. Jovanović, V. Borka Jovanović, and A. F.
Zakharov, Phys. Rev. D 85, 124004 (2012).

[20] A. F. Zakharov, D. Borka, V. Borka Jovanović, and
P. Jovanović, Adv. Space Res. 54, 1108 (2014).

[21] D. Borka, P. Jovanović, V. Borka Jovanović, and A. F.
Zakharov, J. Cosmol. Astropart. Phys. 11 (2013) 050.

[22] B. Li and J. D. Barrow, Phys. Rev. D 75, 084010 (2007).
[23] V. F. Cardone and S. Capozziello, Mon. Not. R. Astron. Soc.

414, 1301 (2011).
[24] K. S. Stelle, Gen. Relativ. Gravit. 9, 353 (1978).
[25] S. Capozziello, A. Stabile, and A. Troisi, Mod. Phys. Lett. A

24, 659 (2009).
[26] L. Iorio, Mon. Not. R. Astron. Soc. 401, 2012 (2010).
[27] E. G. Adelberger, J. H. Gundlach, B. R. Heckel, S. Hoedl,

and S. Schlamminger, Prog. Part. Nucl. Phys. 62, 102 (2009).
[28] S. Capozziello, A. Stabile, and A. Troisi, Phys. Rev. D 76,

104019 (2007).
[29] S. Capozziello, E. de Filippis, and V. Salzano, Mon. Not. R.

Astron. Soc. 394, 947 (2009).
[30] D. M. Lucchesi and R. Peron, Phys. Rev. D 89, 082002

(2014).
[31] A. M. Ghez, M. Morris, E. E. Becklin, A. Tanner, and

T. Kremenek, Nature (London) 407, 349 (2000).
[32] A. M. Ghez, S. Salim, N. N. Weinberg, J. R. Lu, T. Do, J. K.

Dunn, K. Matthews, M. R. Morris, S. Yelda, E. E. Becklin,
T. Kremenek, M. Milosavljević, and J. Naiman, Astrophys.
J. 689, 1044 (2008).

[33] S. Gillessen, F. Eisenhauer, T. K. Fritz, H. Bartko,
K. Dodds-Eden, O. Pfuhl, T. Ott, and R. Genzel, Astrophys.
J. 707, L114 (2009).

[34] S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander,
R. Genzel, F. Martins, and T. Ott, Astrophys. J. 692,
1075 (2009).

[35] R. Schödel, T. Ott, R. Genzel et al., Nature (London) 419,
694 (2002).

[36] R. Genzel, F. Eisenhauer, and S. Gillessen, Rev. Mod. Phys.
82, 3121 (2010).

[37] S. Gillessen, R. Genzel, T. K. Fritz et al., Nature (London)
481, 51 (2012).

[38] L. Meyer, A. M. Ghez, R. Schödel, S. Yelda, A. Boehle,
J. R. Lu, T. Do, M. R. Morris, E. E. Becklin, and K.
Matthews, Science 338, 84 (2012).

[39] T. Fritz, S. Gillessen, S. Trippe, T. Ott, H. Bartko, O. Pfuhl,
K. Dodds-Eden, R. Davies, F. Eisenhauer, and R. Genzel,
Mon. Not. R. Astron. Soc. 401, 1177 (2010).

[40] G. F. Rubilar and A. Eckart, Astron. Astrophys. 374, 95
(2001).

[41] G. S. Adkins and J. McDonnell, Phys. Rev. D 75, 082001
(2007).

[42] N. N. Weinberg, M. Milosavljević, and A. M. Ghez,
Astrophys. J. 622, 878 (2005).

[43] S. Nojiri and S. D. Odintsov, Int. J. Geom. Methods Mod.
Phys. 04, 115 (2007).

[44] J. W. Moffat, J. Cosmol. Astropart. Phys. 05 (2005) 003.
[45] J. W. Moffat, J. Cosmol. Astropart. Phys. 03 (2006) 004.
[46] T. Biswas, E. Gerwick, T. Koivisto, and A. Mazumdar,

Phys. Rev. Lett. 108, 031101 (2012).
[47] S. Capozziello and M. Francaviglia, Gen. Relativ. Gravit.

40, 357 (2008).
[48] S. Capozziello, M. De Laurentis, and V. Faraoni, Open

Astron. J. 2, 1874 (2009).
[49] S. Capozziello and S. Tsujikawa, Phys. Rev. D 77, 107501

(2008).
[50] A. Stabile and S. Capozziello, Phys. Rev. D 87, 064002

(2013).
[51] S. Gottlöber, H.-J. Schmidt, and A. A. Starobinsky,

Classical Quantum Gravity 7, 893 (1990).
[52] L. Amendola, A. Battaglia-Mayer, S. Capozziello, S.

Gottlöber, V. Müller, F. Occhionero, and H.-J. Schmidt,
Classical Quantum Gravity 10, L43 (1993).

[53] See http://cdsbib.u‑strasbg.fr/cgi‑bin/cdsbib?2009ApJ..
.707L.114G.

[54] T. Clifton and J. D. Barrow, Phys. Rev. D 72, 103005
(2005).

[55] N. R. Napolitano, S. Capozziello, A. J. Romanowsky, M.
Capaccioli, and C. Tortora, Astrophys. J. 748, 87 (2012).

[56] R. H. Sanders, Astron. Astrophys. 136, L21 (1984).
[57] R. H. Sanders, Annu. Rev. Astron. Astrophys. 2, 1 (1990).
[58] F. Duval et al., Astron. Astrophys. 227, 33 (1990).
[59] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, User Guide

for MINPACK-1, Argonne National Laboratory Report
No. ANL-80-74, 1980.

[60] S. Gillessen, F. Eisenhauer, G. Perrin et al., Proc. SPIE Int.
Soc. Opt. Eng. 342, 77 (2010).

[61] See http://www.eso.org/public/products/brochures/
e‑eltsciencecase/.

S. CAPOZZIELLO et al. PHYSICAL REVIEW D 90, 044052 (2014)

044052-8

http://dx.doi.org/10.1103/PhysRevD.74.107101
http://dx.doi.org/10.1103/PhysRevD.76.062001
http://dx.doi.org/10.1086/517934
http://dx.doi.org/10.1111/j.1365-2966.2007.12273.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12273.x
http://dx.doi.org/10.1103/PhysRevD.85.124004
http://dx.doi.org/10.1016/j.asr.2014.05.027
http://dx.doi.org/10.1088/1475-7516/2013/11/050
http://dx.doi.org/10.1103/PhysRevD.75.084010
http://dx.doi.org/10.1111/j.1365-2966.2011.18465.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18465.x
http://dx.doi.org/10.1007/BF00760427
http://dx.doi.org/10.1142/S0217732309030382
http://dx.doi.org/10.1142/S0217732309030382
http://dx.doi.org/10.1111/j.1365-2966.2009.15811.x
http://dx.doi.org/10.1016/j.ppnp.2008.08.002
http://dx.doi.org/10.1103/PhysRevD.76.104019
http://dx.doi.org/10.1103/PhysRevD.76.104019
http://dx.doi.org/10.1111/j.1365-2966.2008.14382.x
http://dx.doi.org/10.1111/j.1365-2966.2008.14382.x
http://dx.doi.org/10.1103/PhysRevD.89.082002
http://dx.doi.org/10.1103/PhysRevD.89.082002
http://dx.doi.org/10.1038/35030032
http://dx.doi.org/10.1086/592738
http://dx.doi.org/10.1086/592738
http://dx.doi.org/10.1088/0004-637X/707/2/L114
http://dx.doi.org/10.1088/0004-637X/707/2/L114
http://dx.doi.org/10.1088/0004-637X/692/2/1075
http://dx.doi.org/10.1088/0004-637X/692/2/1075
http://dx.doi.org/10.1038/nature01121
http://dx.doi.org/10.1038/nature01121
http://dx.doi.org/10.1103/RevModPhys.82.3121
http://dx.doi.org/10.1103/RevModPhys.82.3121
http://dx.doi.org/10.1038/nature10652
http://dx.doi.org/10.1038/nature10652
http://dx.doi.org/10.1126/science.1225506
http://dx.doi.org/10.1111/j.1365-2966.2009.15707.x
http://dx.doi.org/10.1051/0004-6361:20010640
http://dx.doi.org/10.1051/0004-6361:20010640
http://dx.doi.org/10.1103/PhysRevD.75.082001
http://dx.doi.org/10.1103/PhysRevD.75.082001
http://dx.doi.org/10.1086/428079
http://dx.doi.org/10.1142/S0219887807001928
http://dx.doi.org/10.1142/S0219887807001928
http://dx.doi.org/10.1088/1475-7516/2005/05/003
http://dx.doi.org/10.1088/1475-7516/2006/03/004
http://dx.doi.org/10.1103/PhysRevLett.108.031101
http://dx.doi.org/10.1007/s10714-007-0551-y
http://dx.doi.org/10.1007/s10714-007-0551-y
http://dx.doi.org/10.1103/PhysRevD.77.107501
http://dx.doi.org/10.1103/PhysRevD.77.107501
http://dx.doi.org/10.1103/PhysRevD.87.064002
http://dx.doi.org/10.1103/PhysRevD.87.064002
http://dx.doi.org/10.1088/0264-9381/7/5/018
http://dx.doi.org/10.1088/0264-9381/10/5/001
http://cdsbib.u-strasbg.fr/cgi-bin/cdsbib?2009ApJ...707L.114G
http://cdsbib.u-strasbg.fr/cgi-bin/cdsbib?2009ApJ...707L.114G
http://cdsbib.u-strasbg.fr/cgi-bin/cdsbib?2009ApJ...707L.114G
http://cdsbib.u-strasbg.fr/cgi-bin/cdsbib?2009ApJ...707L.114G
http://cdsbib.u-strasbg.fr/cgi-bin/cdsbib?2009ApJ...707L.114G
http://cdsbib.u-strasbg.fr/cgi-bin/cdsbib?2009ApJ...707L.114G
http://cdsbib.u-strasbg.fr/cgi-bin/cdsbib?2009ApJ...707L.114G
http://dx.doi.org/10.1103/PhysRevD.72.103005
http://dx.doi.org/10.1103/PhysRevD.72.103005
http://dx.doi.org/10.1088/0004-637X/748/2/87
http://www.eso.org/public/products/brochures/e-eltsciencecase/
http://www.eso.org/public/products/brochures/e-eltsciencecase/
http://www.eso.org/public/products/brochures/e-eltsciencecase/
http://www.eso.org/public/products/brochures/e-eltsciencecase/

