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We discuss new exact solutions to nonminimally extended Einstein–Yang–Mills equations describing
spherically symmetric static wormholes supported by the gauge field of the Wu-Yang type in a dark energy
environment. We focus on the analysis of three types of exact solutions to the gravitational field equations.
Solutions of the first type relate to the model, in which the dark energy is anisotropic; i.e., the radial and
tangential pressures do not coincide. Solutions of the second type correspond to the isotropic pressure
tensor; in particular, we discuss the exact solution, for which the dark energy is characterized by the
equation of state for a string gas. Solutions of the third type describe the dark energy model with constant
pressure and energy density. For the solutions of the third type, we consider in detail the problem of
horizons and find constraints for the parameters of nonminimal coupling and for the constitutive parameters
of the dark energy equation of state, which guarantee that the nonminimal wormholes are traversable.

DOI: 10.1103/PhysRevD.90.044049 PACS numbers: 04.20.Jb, 04.20.Gz, 14.80.Hv

I. INTRODUCTION

Dark energy, the main constituent of a cosmic dark fluid,
is considered nowadays as a key element of numerous
cosmological models (see, e.g., Refs. [1–4]). Originally, the
term dark energy was introduced into the scientific lexicon
in order to explain the discovery of the late-time accelerated
expansion of the Universe [5–7]. However, there exist
alternative explanations of this observational fact, for
instance, in the framework of modified gravity (see, e.g.,
the review in Ref. [8] for references and details). This
means that we need to extend our knowledge about
interactions of the dark energy with matter and fields in
order to say definitely whether the dark energy is the real
medium with exotic properties or the accelerated expansion
of the Universe is the effective result of gravitational
interactions with modified laws of attraction/repulsion.
Clearly, there are dark energy interactions of two types:
the indirect and direct ones. The first channel of indirect
interaction with matter and fields is realized via the global
gravity field; this channel is just visualized by the accel-
erated expansion of the Universe. The most known channel
of direct interaction is presented by the coupling of the
dark energy with dark matter, the second constituent of the
dark fluid (see, e.g., Refs. [9–11]). The interactions of this
type describe fine details of the cosmological expansion
thus clarifying the fate of the Universe (big rip, little rip,
pseudorip, etc.), solving the coincidence problem and
answering the question of how many epochs of accelerated
and decelerated expansion the Universe history includes.
There are a few mathematical schemes of the description of
the coupling between the dark energy and dark matter; for

instance, in Ref. [12], we introduced the model force linear
in the 4-gradient of the dark energy pressure, which acts
on the dark matter particles in analogy with the classical
Archimedean force. The theory of direct dark energy
interactions with scalar, pseudoscalar, vector, electromag-
netic, and gauge fields is less elaborated at present but
seems to be very promising from the point of view of
cosmological and astrophysical applications. For instance,
in Ref. [13], studying the pyromagnetic, piezoelectric, and
striction-type schemes of the direct interactions between
the dark energy and electromagnetic field, we have found
that specific unlighted epochs can appear in the Universe
history. In other words, one can try to find some dark
energy fingerprints in the Universe history, which are
marked due to the coupling with electromagnetic fields.
In this paper, we consider the nonminimal scheme of

the indirect coupling of the dark energy to the gauge field.
The model with an SU(N) symmetric gauge field is known
to be indicated as the nonminimal one, if the Lagrangian of
the model contains the so-called cross invariants con-
structed as a tensorial product of the Riemann tensor,
Ri

kmn, and its convolutions, on the one hand, and of the
Yang–Mills field strength tensor, FðaÞ

ik , on the other hand
(see, e.g., Refs. [14–16] for references). To interpret the
role of the dark energy in such models, let us focus on
the examples of static spherically symmetric solutions to
the nonminimally extended Einstein–Yang–Mills equations
(see Refs. [16–18] for details). When the dark energy is
considered to be absent, we refer to the exact solutions
describing regular nonminimal Wu-Yang monopoles and
wormholes of a magnetic type [17,18] as well as traversable
nonminimal wormholes of an electric type [19]. When the
dark energy appears as the third player in the nonminimal
model, we intend to focus on the search for dark energy
fingerprints in the causal structure of the mentioned
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spherically symmetric static objects. To be more precise,
in this paper, we focus on exact solutions of the non-
minimally extended Einstein–Yang–Mills model, which
describe nonminimal wormholes supported by the Yang–
Mills field in the dark energy environment.
Let us mention that in the cosmological context the dark

energy is usually considered as a spatially homogeneous
substrate, the pressure and energy density of which depend
on time only. The most known model of this class relates to
the so-called Λ representation of the dark energy, charac-
terized by constant energy densityWðDEÞ ¼ Λ

8π and pressure
PðDEÞ ¼ − Λ

8π (several examples of wormhole solutions with
the Λ term can be found, e.g., in Refs. [20–22]). However,
when we deal with the dark energy influence on the throat
structure of the spherically symmetric static nonminimal
wormhole, it is natural to treat the dark energy as a static
spatially inhomogeneous substrate, the pressure of which
depends on the radial variable r only. The corresponding
approach is motivated mathematically in Sec. III B.
The paper is organized as follows. In Sec. II, we

formulate the six-parameter nonminimal Einstein–Yang–
Mills dark energy model and represent master equations for
the gauge and gravitational fields. In Sec. III, we introduce
key assumptions about the equation of state of the dark
energy and describe the Wu-Yang ansatz for the structure
of the gauge field. In Sec. IV, we present exact solutions of
the wormhole type for various models of the dark energy,
including the Λ-term-type configuration. In Sec. V, we
discuss in detail the causal structure of the spacetime for the
Λ-type case. Section VI is devoted to discussions.

II. NONMINIMAL MASTER EQUATIONS

A. Action functional

We start with the action functional

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

R
16π

þ LðDEÞ þ
1

4
FðaÞ
ik FikðaÞ

þ 1

4
RikmnFðaÞ

ik FðaÞ
mn

�
; ð1Þ

where as usual g ¼ detðgikÞ is the determinant of a metric
tensor gik, R is the Ricci scalar, and the Latin indices
without parentheses run from 0 to 3. The term LðDEÞ is the
Lagrangian describing the dark energy. The tensor of
nonminimal susceptibility Rikmn is defined as

Rikmn ≡ q1
2
Rðgimgkn − gingkmÞ

þ q2
2
ðRimgkn − Ringkm þ Rkngim − RkmginÞ

þ q3Rikmn; ð2Þ

where Rik and Rikmn are the Ricci and Riemann tensors,
respectively, and q1, q2, and q3 are the phenomenological

parameters describing the nonminimal coupling of the
Yang–Mills fields with gravitation. We consider the
Yang–Mills fields taking the values in the Lie algebra of

the gauge group SU(2), so that AðaÞ
i and FðaÞ

mn are the Yang–
Mills field potential and strength, respectively, and the
group index ðaÞ runs from 1 to 3. The Yang–Mills fields

FðaÞ
mn are connected with the potentials of the gauge field

AðaÞ
i by the well-known formulas (see, e.g., Ref. [23])

FðaÞ
mn ¼ ∇mA

ðaÞ
n − ∇nA

ðaÞ
m þ fðaÞðbÞðcÞA

ðbÞ
m AðcÞ

n : ð3Þ

Here, ∇m is a covariant spacetime derivative, and the
symbols fðaÞðbÞðcÞ ≡ εðaÞðbÞðcÞ denote the real structure
constants of the gauge group SU(2).
The nonminimal susceptibility tensors Rikmn (2) con-

tains three phenomenological parameters, q1, q2, and q3.
We consider these three parameters to be independent
coupling constants, and this choice is historically moti-
vated. In the pioneer work [24], Prasanna introduced only
one phenomenological parameter in front of the Riemann
tensor Rikmn in the new cross-term, and qRikmnFikFmn
appeared in the nonminimally extended Lagrangian. Later,
Drummond and Hathrell [25], using the one-loop correc-
tions to QED, showed that the tensor Rikmn possesses just
the structure (2), with q1 ¼ −5q, q2 ¼ 13q, and q3 ¼ −2q,
where the positive parameter q≡ αλ2e

180π is constructed by
using the fine structure constant α and the Compton
wavelength of the electron λe. In other words, direct
calculations of Drummond and Hathrell have fixed atten-
tion on the fact that there are three different coupling
nonminimal constants, q1, q2, and q3, which are propor-
tional to the one nonminimal parameter q with the
dimensionality of length in square. In Ref. [26], a general
Einstein–Maxwell model was studied, in the framework of
which the coupling constants q1, q2, and q3 are considered
to be independent parameters. The motivation of this idea
is based on the irreducible representation of the curvature
tensor

Rikmn ¼ Cikmn þ Eikmn þ Gikmn; ð4Þ
where Cikmn is the traceless Weyl tensor, and the standard
formulas are introduced:

Eikmn ≡ 1

2
ðSimgkn − Singkm þ Skngim − SkmginÞÞ;

Smn ≡ Rmn − 1

4
Rgmn;

Gikmn ≡ 1

12
Rðgimgkn − gingkmÞ;

Cmnmk ¼ 0; Sm
m ¼ 0; Gmn

mn ¼ R ð5Þ

(we follow the notations from Ref. [27]). Since Cikmn,
Eikmn, and Gikmn are independent (irreducible) parts of the
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decomposition of the Riemann tensor, it is reasonable to
represent the nonminimal susceptibility tensor as the sum
of three independent parts,

Rikmn ¼ λ1Gikmn þ λ2Eikmn þ λ3Cikmn; ð6Þ

with phenomenological constants λ1, λ2, and λ3. Clearly, (6)
converts into (2), when

λ1 ¼ 6q1 þ 3q2 þ q3; λ2 ¼ q2 þ q3; λ3 ¼ q3:

ð7Þ

In other words, we have two equivalent irreducible decom-
positions of the susceptibility tensor, (6) and (2), but we
prefer to use (2), keeping in mind historical motives.

B. Nonminimal extension of the
Yang–Mills equations

Variation of the action (1) with respect to the Yang-Mills
potential AðaÞ

i yields

∇kHðaÞik þ fðaÞðbÞðcÞA
ðbÞ
k HðcÞik ¼ 0: ð8Þ

The tensor HðbÞik ¼ FðbÞik þRikmnFðbÞ
mn is a non-Abelian

analog of the excitation tensor, known in the electrody-
namics [28,29].

C. Master equations for the gravitational field

The variation of the action functional (1) with respect to
metric yields

Rik − 1

2
Rgik ¼ 8πTðeffÞ

ik : ð9Þ

The effective stress-energy tensor TðeffÞ
ik can be divided into

five parts,

TðeffÞ
ik ¼ TðDEÞ

ik þ TðYMÞ
ik þ q1T

ðIÞ
ik þ q2T

ðIIÞ
ik þ q3T

ðIIIÞ
ik :

ð10Þ
The first term,

TðDEÞ
ik ≡− 2ffiffiffiffiffiffi−gp δ½ ffiffiffiffiffiffi−gp

LðDEÞ�
δgik

; ð11Þ

describes the stress-energy tensor of the dark energy.
As usual, we assume that this tensor possesses timelike
eigen-4-vector Ui normalized by unity and denote the
corresponding eigenvalue as W; i.e., we assume that

TðDEÞ
ik Uk ¼ WUi; gikUiUk ¼ 1: ð12Þ

The other three eigenvalues are denoted as Π1, Π2, and Π3.
The second term,

TðYMÞ
ik ≡ 1

4
gikF

ðaÞ
mnFmnðaÞ − FðaÞ

in Fk
nðaÞ; ð13Þ

is a stress-energy tensor of the pure Yang–Mills field. The
last three terms in (10) describe nonminimal contributions
into the stress-energy tensor. Since the parameters q1, q2,
and q3 are independent coupling constants appearing in
the irreducible representation of the susceptibility tensor
Rikmn (2), we decomposed this nonminimal contribution
into the stress-energy tensor as a sum of three terms with
q1, q2, and q3 in front of the following tensors:

TðIÞ
ik ¼ RTðYMÞ

ik − 1

2
RikF

ðaÞ
mnFmnðaÞ

þ 1

2
½D̂iD̂k − gikD̂

lD̂l�½FðaÞ
mnFmnðaÞ�; ð14Þ

TðIIÞ
ik ¼ − 1

2
gik

h
D̂mD̂lðFmnðaÞFl

n
ðaÞÞ

− RlmFmnðaÞFl
n
ðaÞ
i
− FlnðaÞ

�
RilF

ðaÞ
kn þ RklF

ðaÞ
in

�
− RmnFðaÞ

im FðaÞ
kn − 1

2
D̂mD̂m

�
FðaÞ
in FnðaÞ

k

�
þ 1

2
D̂l

h
D̂i

�
FðaÞ
kn F

lnðaÞ
�
þ D̂k

�
FðaÞ
in FlnðaÞ

�i
; ð15Þ

TðIIIÞ
ik ¼ 1

4
gikRmnlsFðaÞ

mnF
ðaÞ
ls

− 3

4
FlsðaÞ

�
Fi

nðaÞRknls þ Fk
nðaÞRinls

�
− 1

2
D̂mD̂n

h
Fi

nðaÞFk
mðaÞ þ Fk

nðaÞFi
mðaÞ

i
: ð16Þ

We use the rule

D̂mQ
ðaÞ…
…ðdÞ ≡∇mQ

ðaÞ…
…ðdÞ þ fðaÞ·ðbÞðcÞA

ðbÞ
m QðcÞ…

…ðdÞ þ � � �
− fðcÞ·ðbÞðdÞA

ðbÞ
m QðaÞ…

…ðcÞ −… ð17Þ

for the derivative of the arbitrary tensor defined in the group
space [30].

D. Compatibility conditions

The Bianchi identities require the total stress-energy

tensor to be divergence free, i.e., ∇kTðeffÞ
ik ¼ 0. Using the

decomposition (10)–(17) and the Yang–Mills field equa-
tions (8), one can show explicitly that this compatibility

condition reduces to the requirement ∇kTðDEÞ
ik ¼ 0; i.e., we

deal with a separate conservation law for the dark energy.
When all four eigenvalues,W,Π1,Π2, andΠ3 coincide, one

obtains that TðDEÞ
ik ¼ Λ

8π gik, and the compatibility conditions
yield∇iΛ ¼ 0; i.e., Λ is a constant. In other words, the case
when the dark energy can be presented in terms of
cosmological constant,
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W ¼ Λ
8π

; Π1 ¼ Π2 ¼ Π3 ¼ −P ¼ Λ
8π

¼ W; ð18Þ

is also included into our scheme of analysis.

III. NONMINIMAL WORMHOLE OF THE
WU-YANG TYPE IN THE DARK

ENERGY ENVIRONMENT

To model a traversable wormhole as a bridge joining two
different spacetimes, one needs to have specific “bricks”
possessing exotic properties, which guarantee violation of
the null energy condition in the wormhole throat [31,32].
The history of investigations in the wormhole sector of field
theory can be found in Refs. [33,34]; we point the attention
of the reader to the two episodes only. In 1973, Ellis [35]
and, independently, Bronnikov [36] constructed wormhole
solutions in the framework of the Einstein theory of gravity
with a scalar field, which has negatively defined kinetic
energy (phantom field in modern terminology). This first
example can be indicated, indeed, as the exotic one from
the point of view of classical field theory. The second
example is connected with the work of Barcelló and Visser
[37], who have shown that an ordinary (standard) scalar
field can support a wormhole structure if this scalar field is
nonminimally coupled to the spacetime curvature. These
two examples illustrate the typical alternative: to justify the
wormhole existence, one can either provide exotic proper-
ties of the bricks for its throat or admit that the bricks are
ordinary, but they interact nonminimally with spacetime
curvature. We use the second way for modeling the
wormhole configurations. For instance, in Ref. [19], one
can find exact solutions for a traversable wormhole
supported by an electric field nonminimally coupled to
curvature. In Ref. [18], we reconstructed the wormhole of
the Wu-Yang type supported by an SU(2) symmetric gauge
field of the magnetic type nonminimally coupled to gravity.
Since the model that we study now is a natural extension of
that model, let us comment briefly three key elements of the
wormhole-type solutions with a Wu-Yang-type gauge field
nonminimally coupled to gravity in the case in which the
interactions with dark energy are absent.
First of all, from our point of view, the gauge fields

attract special attention in the context of wormhole model-
ing: on the one hand, the Yang–Mills field is the most
known contributor into the modern high-energy physics
models; on the other hand, the Yang–Mills potentials form
SU(N) multiplets, thus providing a versatile instrument for
theoretical modeling.
Second, the pure Yang–Mills field itself is nonexotic,

since it cannot violate the null energy condition in the
wormhole throat, and, therefore, known wormhole solu-
tions require either an additional phantom scalar field
[38] or a surgery technique [39]; however, being coupled
nonminimally to the spacetime curvature, the Yang–Mills

field becomes able to organize a traversable wormhole
throat (see Ref. [18]).
Third, the traversability of the Wu-Yang wormhole and

the value of the radius of the throat can be the subject of
tuning: depending on the relationships between the princi-
pal nonminimal coupling constant q and the magnetic
charge ν, the throat happens to be closed or opened (see
Ref. [18] for details). The following question is of great
interest: physical processes of what type could regulate
the traversability of the nonminimal Wu-Yang wormhole?
The results of Ref. [18] show that when the charge ν grows
horizons appear, and the wormhole becomes nontravers-
able (the cosmic gates happen to be closed). When the
coupling constant q increases, the cosmic gates, per contra,
become opened. As it will be shown below, when we
consider an additional element of the theoretical modeling,
the dark energy, we obtain a new possibility for modeling
the cosmic gates opening and closing.

A. Wu-Yang type solution to the
Yang–Mills field equations

Let us consider a static spherically symmetric spacetime
with the metric

ds2 ¼ σ2Ndt2 − dr2

N
− R2ðrÞðdθ2 þ sin2θdφ2Þ;

r ∈ ð−∞;þ∞Þ: ð19Þ

Here, σ, N, and RðrÞ are functions depending on the radial
coordinate r only. Since the functions, which characterize
the dark energy, do not enter the master equations for the
gauge field, we obtain immediately that, as in the cases of a
nonminimal SU(2) monopole [17] and wormhole [18], the
special ansatz (see Refs. [40,41]),

A0 ¼ Ar ¼ 0; Aθ ¼ itφ; Aφ ¼ −iν sin θ tθ;
ð20Þ

gives the exact solution with the field strength tensor of the
following form:

Fik ¼ δθi δ
φ
kFθφ; Fθφ ¼ iν sin θ tr: ð21Þ

The parameter ν is an integer, and it denotes a magnetic
charge. Let us remind the reader that the generators tr, tθ,
and tφ are the position-dependent ones and are connected
with the standard generators of the SU(2) group as

tr ¼ cos νφ sin θ tð1Þ þ sin νφ sin θ tð2Þ þ cos θ tð3Þ;

tθ ¼ ∂θtr; tφ ¼ 1

ν sin θ
∂φtr; ð22Þ

they satisfy the relations
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½tr; tθ� ¼ itφ; ½tθ; tφ� ¼ itr; ½tφ; tr� ¼ itθ: ð23Þ

The system of Yang–Mills equations (8) is satisfied
identically for arbitrary curvature tensor and for an arbitrary
equation of state of the dark energy.
Again, this solution is effectively Abelian; i.e., by the

suitable gauge transformation U ¼ expð−iθtφÞ, it can be
converted into the product of the Dirac-type potential and
the gauge group generator tð3Þ.

B. Assumptions about the dark energy

The simplest variant to introduce the dark energy is
known to connect with cosmological Λ term. In the de
Sitter spacetime with the so-called t representation of the
metric,

ds2 ¼ dt2 − a2ðt0Þe2
ffiffi
Λ
3

p
ðt−t0Þðdr2 þ r2dΩ2Þ; ð24Þ

the dark energy pressure and energy-density scalar are
constant, and they can be written, respectively, in the form

PðDEÞ ¼ − Λ
8π

; WðDEÞ ¼
Λ
8π

; PðDEÞ þWðDEÞ ¼ 0:

ð25Þ

In more sophisticated models, these quantities are consid-
ered to be functions of cosmological time PðDEÞðtÞ,
WðDEÞðtÞ; nevertheless, the specific equation of state with
PðDEÞðtÞþWðDEÞðtÞ≤0 remains the distinguishing feature.
The de Sitter spacetime can also be described in the so-

called r representation using the equivalent metric

ds2 ¼
�
1 − Λr2

3

�
dt2 −

�
1 − Λr2

3

�−1
dr2 − r2dΩ2;

ð26Þ

which, clearly, is static and depends on the radial variable
r only. The corresponding Schwarzschild–Reissner–
Nordström, etc., extensions of the model lead to the
replacements

�
1 − Λr2

3

�
→

�
1 − Λr2

3
− 2M

r
þ Q2

2r2

�

→

�
1 − Λr2

3
þ fðrÞ

�
; ð27Þ

where M is the mass and Q is the charge of the object.
Studying this model and more sophisticated models, we
have a possibility to interpret the contributions containing
Λ in terms of dark energy of the Λ type. Our ansatz is that
one can develop this idea and consider the dark energy
in the r representation, i.e., using the functions PðDEÞðrÞ,

WðDEÞðrÞ satisfying the typical condition PðDEÞðrÞþ
WðDEÞðrÞ ≤ 0.
For the static spherically symmetric configuration, the

two diagonal components of the effective stress-energy
tensor coincide, TðeffÞθ

θ ¼ TðeffÞφ
φ. Based on this fact, we

assume that two of the three eigenvalues,Π1,Π2, andΠ3, of
the stress-energy tensor of the dark energy also coincide,
thus providing the following definitions:

−P∥ ≡ TðDEÞr
r; −P⊥ ≡ TðDEÞθ

θ ¼ TðDEÞφ
φ: ð28Þ

In other words, we can introduce longitudinal, P∥, and
transversal, P⊥, pressures, prescribed to the dark energy.
We assume that the dark energy equations of state are
linear:

P∥ ¼ ω∥W; P⊥ ¼ ω⊥W: ð29Þ

When the dark energy is considered to possess an isotropic
pressure, we have to put ω∥ ¼ ω⊥.

IV. EXACT SOLUTIONS TO THE
GRAVITATIONAL FIELD EQUATIONS

A. Key equations

For the metric (19), only four components of the Einstein
tensor Gk

i ¼ Rk
i − 1

2
δki R are nonvanishing, G0

0, Gr
r, and

Gθ
θ ¼ Gφ

φ. To describe the gravity field, we use the
following three independent equations. First, we consider
the difference of the first two equations, G0

0 −Gr
r ¼

8πðTðeffÞ0
0 − TðeffÞr

rÞ, yielding�
1 − κq1

R4

��
σ0R0

σR
− R00

R

�
¼ κð10q1 þ 4q2 þ q3ÞR02

R6

þ 4πðW þ P∥Þ
N

: ð30Þ

Second, we use the Einstein equation G0
0 ¼ 8πTð effÞ0

0,
which gives

1 − NR02

R2
−
�
1 − κq1

R4

��
N0R0

R
þ 2NR00

R

�

¼ κ

R4

�
1

2
− q1 þ q2 þ q3

R2
þ ð13q1 þ 4q2 þ q3ÞNR02

R2

	
þ 8πW: ð31Þ

Third, we consider the compatibility equation∇kTð effÞ
ik ¼ 0,

which can be reduced now to the equation of hydrostatic
equilibrium:

P0
∥ þ

2R0

R
ðP∥ − P⊥Þ þ ðW þ P∥Þ

ðσ2NÞ0
2σ2N

¼ 0: ð32Þ

DARK ENERGY FINGERPRINTS IN THE NONMINIMAL … PHYSICAL REVIEW D 90, 044049 (2014)

044049-5



The parameter κ is defined as κ ¼ 8πν2. The prime denotes
the derivative with respect to the variable r.

1. Energy density distribution

Equation (32) can be easily resolved using equations of
state (29); this procedure yields

WðrÞ ¼ W0

�
RðrÞ
Rð0Þ

�
2α

½σ2ðrÞNðrÞ�−γ;

α≡ ω⊥ − ω∥

ω∥
; γ ≡ 1þ ω∥

2ω∥
; ð33Þ

where Rð0Þ ≠ 0 is the value of the radial function RðrÞ at
r ¼ 0 and W0 is an integration constant with dimension-
ality of energy density. We have to stress that the formula
(33) describes the distribution of the energy density of the
dark energy for arbitrary radial function RðrÞ satisfying the
condition Rð0Þ ≠ 0.

2. Examples of the radial function RðrÞ
The function RðrÞ can be chosen according to physical

requirements; when we consider the wormhole-type sol-
utions, we assume that

Rð0Þ ¼ a > 0; R0ð0Þ ¼ 0; R00ð0Þ > 0; ð34Þ

where a is the throat radius:
(1) The most known function satisfying these conditions

is RðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
; it is even with respect to the

variable r. We will use it below for the
reconstruction of exact solutions to the master
equations with constant dark energy pressure; this
radial function displays the asymptotic behav-
ior Rðr → ∞Þ → r.

(2) The conditions (34) are satisfied for the so-called
catenary-type function RðrÞ ¼ a cosh r

a, which is
also even function and has the asymptote
Rðr → ∞Þ → ae

r
a. This function satisfies the equa-

tion R00 ¼ 1
a R thus simplifying the equations (30)

and (31). We will use this radial function below for
the case of isotropic dark energy pressure with
equation of state P ¼ − 1

3
W.

(3) The equation (30) can be simplified essentially,
when we consider RðrÞ to satisfy the equation

�
1 − κq1

R4

�
R00

R
¼ − κð10q1 þ 4q2 þ q3ÞR02

R6
; ð35Þ

which follows from (30) with σ ≡ 1 and
W þ Pjj ¼ 0. The corresponding solution can be
presented in quadratures as

Kr ¼
Z

R

a
dξ

ξ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ4 − a4

p ð36Þ

and satisfies the conditions (34), when 12q1 þ 4q2þ
q3 ¼ 0, q1 ¼ a4

κ > 0, and K is arbitrary constant.

B. List of models: Reference model
with absent dark energy

When the dark energy is absent, Eqs. (30) and (31)
coincide with Eqs. (25) and (27) of Ref. [18], if we put
RðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
, W ¼ 0, and P∥ ¼ 0. Let us remind the

reader that in the case of reference model we deal with
one-parameter family of exact solutions describing the
wormhole with the throat radius a, when the following
relationships between model parameters hold:

q1 ¼
a4

κ
; q2 ¼ − 10a4

3κ
− a2

6
; q3 ¼

4a4

3κ
þ 2a2

3
:

ð37Þ

In fact, the product of the nonminimal parameter q1 and of
the parameter κ ¼ 8πν2 predetermines the value of the
throat radius; thus, the wormhole does not exist when
q1κ ¼ 0. Since the value of the metric function NðrÞ at

r ¼ 0 can be written as Nð0Þ ¼ 1
3
ð1 − jνj

νðcritÞ
Þ with

νðcritÞ ≡
ffiffiffiffiffi
2q1
π

q
, it is clear that Nð0Þ > 0 and the wormhole

is traversable, when jνj < νðcritÞ. When the gauge charge of
the object, ν, is changing (e.g., due to the charge loss) and
becomes less than the critical value νð critÞ, the correspond-
ing wormhole becomes traversable. In other words, the
dimensionless parameter κ

4a2 ¼ jνj
νðcritÞ

is the guiding parameter

of the model. Below, we will refer to these results,
discussing new features of the model under consideration.

C. List of models: First model with ω∥ ¼ −1
When ω∥ ¼ −1, i.e., W þ P∥ ¼ 0, Eq. (30) does not

contain the metric function NðrÞ and thus converts into the
equation for the function σ only. Direct integration gives us
σ as a function of RðrÞ and its derivative as follows:

σ¼σ0R0
�
R4−κq1

R4

�
β

; β≡10q1þ4q2þq3
4q1

: ð38Þ

We are interested in the analysis of regular solutions for
σðrÞ. The first regularity requirement directly follows from
(30) (supplemented by the relationshipW þ P∥ ¼ 0): since
R0ð0Þ ¼ 0 but R00ð0Þ ≠ 0, we have to put ð1 − κq1

R4ð0ÞÞ ¼ 0.

This regularity requirement fixes the nonminimal param-
eter q1: first, it has to be positive, q1 > 0; second, it
has to be connected with the throat radius a as
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Rð0Þ ¼ a ¼ ðκq1Þ14. The second regularity requirement can
be explained as follows. When the throat conditions (34)
are satisfied, one obtains that Rðr → 0Þ → aþ 1

2
R00ð0Þr2,

and R0ðr → 0Þ → R00ð0Þr. This means that the function
σðrÞ is regular at r ¼ 0, if and only if 1þ 2β ¼ 0, i.e.,
when 12q1 þ 4q2 þ q3 ¼ 0. As a result, we obtain the
regular solution for the metric function:

σðrÞ ¼ σ0
R0R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 − a4

p ; σð0Þ ¼ σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
2
R00ð0Þ

r
: ð39Þ

As for the integration constant σ0, if we assume that
R0ðr → ∞Þ → 1, we can put σ0 ¼ 1, providing σð∞Þ ¼ 1.
Equation (31), clearly, admits the solution with finite

value Nð0Þ, when

1

R2ð0Þ ¼
κ

R4ð0Þ
�
1

2
− q1 þ q2 þ q3

R2ð0Þ
�
þ 8πW0: ð40Þ

Thus, regularity of the metric functions σðrÞ and NðrÞ is
possible, when three nonminimal coupling parameters q1,
q2, and q3 are connected with the wormhole throat radius
Rð0Þ ¼ a by the following relationships:

q1 ¼
a4

κ
;

q2 ¼ − 10a4

3κ
− a2

6
− 8πW0

3κ
a6;

q3 ¼
4a4

3κ
þ 2a2

3
þ 32πW0

3κ
a6: ð41Þ

When the dark energy is absent, i.e., W0 ¼ 0, these
formulas recover the relationships (37) for the nonminimal
Wu-Yang wormhole obtained in Ref. [18].
Taking into account (41), we obtain immediately the

metric function NðrÞ in the form

NðrÞ¼ R

R02ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4−a4

p
Z

r

0

R0ðxÞdx
R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4−a4

p
�
R4−a4

−κðR2−a2Þ
2

−8πW0a6
��

R
a

�
4−2ω⊥ −1

�	
: ð42Þ

The value Nð0Þ is finite; it is positive when

aR00ð0ÞNð0Þ ¼ 1

3
− κ

12a2
þ 4π

3
W0ðω⊥ − 2Þa2 > 0: ð43Þ

There are four interesting subcases.
(i) ω⊥ ¼ −1:

It is the subcase, when P⊥ ¼ P∥ ¼ −W ¼ −W0,
and thus the scalars of the energy and pressure of
the dark energy are constant. We deal now with the
effective cosmological constant connected with W0

by the relation Λ ¼ 8πW0. The metric function NðrÞ
simplifies

NðrÞ ¼ RðrÞ
R02ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 − a4

p
Z

r

0

R0ðxÞdx
R2ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − a2

R2 þ a2

s

×

�
ðR2 þ a2Þð1 − ΛR2Þ −

�
κ

2
þ Λa4

��
;

ð44Þ

nevertheless, the integral cannot be expressed in
elementary functions; graphs, which illustrate
the behavior of the functions of this type, will be
discussed below. Since now

aR00ð0ÞNð0Þ ¼ 1

3
− κ

12a2
− Λa2

2
; ð45Þ

the wormhole is traversable, when

Nð0Þ > 0 ⇒ Λ <
2

3a2

�
1 − κ

4a2

�
: ð46Þ

(ii) ω⊥ ¼ 0:
In this subcase, the dark energy manifests dust

properties in the tangential directions, P⊥ ¼ 0. The
corresponding metric function NðrÞ is

NðrÞ ¼ RðrÞ
R02ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 − a4

p
Z

r

0

R0ðxÞdx
R2ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − a2

R2 þ a2

s

×

�
ðR2 þ a2Þð1 − 8πW0a2Þ − κ

2

�
; ð47Þ

and the traversability condition Nð0Þ > 0 gives

8πW0 <
1

a2

�
1 − κ

4a2

�
: ð48Þ

(iii) ω⊥ ¼ 1:
In this case, the dark energy behaves as a stiff

matter in the tangential directions, and we obtain

NðrÞ ¼ RðrÞ
R02ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 − a4

p
Z

r

0

R0ðxÞdx
R2ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − a2

R2 þ a2

s

×

�
ðR2 þ a2Þ −

�
κ

2
þ 8πW0a4

��
; ð49Þ

thus, the traversability condition yields
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8πW0 <
2

a2

�
1 − κ

4a2

�
: ð50Þ

(iv) ω⊥ ¼ 2:
For this very special case, the parameter W0 is

hidden,

NðrÞ ¼ R

R02ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 − a4

p
Z

r

0

R0ðxÞdx
R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − a2

R2 þ a2

s

×

�
R2 þ a2 − κ

2

�
; ð51Þ

and the traversability condition reads a2 > κ
4
.

D. List of models: Second model
with ω∥ ¼ ω⊥ ¼ − 1

3

This model relates to the isotropic dark energy with the
equation of state W þ 3P ¼ 0; such a model was indicated
in Ref. [42] as a “string gas.” In the cosmological context,
the conditionW þ 3P ¼ 0 leads to the requirement that the
acceleration parameter qðtÞ is equal to zero identically, and
the scale factor is a linear function of the cosmological
time. Let us study this model in the context of the wormhole
structure analysis.
When P ¼ − 1

3
W, the energy density of the dark energy

is distributed according to the formula

WðrÞ ¼ W0σ
2N; ð52Þ

and Eq. (30) for the metric function σðrÞ happens to be
decoupled from Eq. (31), which describes the metric
function NðrÞ. Indeed, Eq. (30) converts now to the
Bernoulli differential equation,

σ0 ¼ σ

RR0ðR4 − κq1Þ
�
RR00ðR4 − κq1Þ

þð10q1 þ 4q2 þ q3ÞκR02 þ 8π

3
W0R6σ2

�
; ð53Þ

the formal solution to which has the form

σ ¼ R0
�
1 − κq1

R4

�
β

×

�
C − 16πW0

3

Z
drRR0

�
1 − κq1

R4

�ð2β−1Þ�−1=2
;

β ¼ 10q1 þ 4q2 þ q3
4q1

: ð54Þ

In this paper, we discuss (as an illustration) only one
regular solution of this type with requirements q1 ¼ 0,
4q2 þ q3 ¼ 0, and 8π

3
W0a2 þ 1 ¼ 0. The last condition

relates to the negative effective cosmological constant.
This special solution is characterized by σðrÞ≡ 1 and
the radial function RðrÞ, which describes the well-known
catenary curve:

RðrÞ¼acosh
r
a
; Rð0Þ¼a; R0ð0Þ¼0; R00ð0Þ¼ 1

a
:

ð55Þ

The metric function NðrÞ is now the solution to the linear
equation

N0 ¼ − N
R0R

½2R00Rþ R02 þ 8πW0R2�

− 1

2R0R5
½6κq2 − 2R4 þ κR2�; ð56Þ

and it can be presented as the polynomial

NðzÞ ¼
�
3κq2
a4

þ κ

2a2
− 1

�
þ zC

þ z2
�
6κq2
a4

þ κ

2a2

�
− z4

κq2
a4

; ð57Þ

where z ¼ tanh r
a and C is an integration constant. Let us

mention that Nð−rÞ ¼ NðrÞ, when C ¼ 0. If, in addition,
we choose the nonminimal coupling constant q2 according
to the relationship

4κq2
a4

¼ 1 − κ

2a2
; ð58Þ

we obtain that Nðr ¼ �∞Þ ¼ 1 and Nð0Þ ¼ 1
4
ð κ
2a2 − 1Þ. In

other words, the regular wormhole with a catenary-type
throat filled by the isotropic dark energy with the equation
of state P ¼ − 1

3
W is traversable, when κ > 2a2.

V. CAUSAL STRUCTURE OF WU-YANG
WORMHOLES WITH DARK ENERGY

OF THE Λ TYPE

A. Search for horizons by the method
of auxiliary function

Let us consider the model with isotropic dark energy
characterized by the following equations of state:

P∥ ¼ P⊥ ¼ −W ¼ −W0 ¼ − Λ
8π

: ð59Þ

Clearly, it is the case that can be reduced to the nonminimal
Einstein–Yang–Mills model with cosmological constant Λ.
This submodel of the general model (of the wormhole filled
with the dark energy) is chosen to analyze in more details
the problem of horizons. To be more precise, we are
interested to know how many horizons the nonminimal
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Wu-Yang wormhole has and where these horizons appear.
For this purpose, we fix the radial function as

RðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
ð60Þ

so that the regular metric function (39) takes the form

σðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

r2 þ 2a2

s
; σð∞Þ ¼ 1; σð0Þ ¼ 1ffiffiffi

2
p :

ð61Þ

The function σðrÞ reaches neither zero nor infinite values;
thus, the causal structure of the wormhole is predetermined
only by the properties of the function NðrÞ, which can be
written as follows [see (44)]:

NðrÞ ¼ ðr2 þ a2Þ3=2
r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2a2

p
Z

r

0

x2dx

ðx2 þ a2Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2a2

p

×

�
−Λx4 þ x2ð1 − 3Λa2Þ þ

�
2a2 − κ

2
− 3Λa4

��
;

ð62Þ

Nð0Þ ¼ 1

3
− κ

12a2
− Λa2

2
: ð63Þ

Clearly, we deal with three-parameter family of regular
solutions: the metric function N depends on the cosmo-
logical constant Λ, on the gauge charge κ ≡ 8πν2, and on
the parameter of the nonminimal coupling q1 through the
throat radius a≡ ðκq1Þ14. Horizons are known to appear at
r ¼ rðsÞ, where rðsÞ are the zeroes of the metric function,
i.e., NðrðsÞÞ ¼ 0. It is convenient to introduce the dimen-
sionless variable ξ ¼ r

a and to rewrite (62) as

NðξÞ ¼ ðξ2 þ 1Þ3=2
ξ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ 2

p I3ðξÞ
�
f

�
ξ;

κ

a2

�
− Λa2

�
: ð64Þ

Here, we introduce the auxiliary function

f

�
ξ;

κ

a2

�
≡ I2ðξÞ

I3ðξÞ
− κ

2a2
I1ðξÞ
I3ðξÞ

; ð65Þ

based on the integrals

I1ðξÞ ¼
Z

ξ

0

x2dx

ðx2 þ 1Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2

p ð66Þ

I2ðξÞ ¼
Z

ξ

0

x2ðx2 þ 2Þdx
ðx2 þ 1Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2

p ð67Þ

I3ðξÞ ¼
Z

ξ

0

x2ðx4 þ 3x2 þ 3Þdx
ðx2 þ 1Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2

p : ð68Þ

These integrals do not include parameters; besides, all three
functions, I1ðξÞ, I2ðξÞ, and I3ðξÞ, are odd functions of ξ,
and they grow monotonically for 0 < ξ < ∞. The auxiliary
function fðξ; κ

a2Þ is even with respect to the variable ξ and
possesses the following asymptotical properties:

f

�
ξ → 0;

κ

a2

�
¼ 2

3

�
1 − κ

4a2

�
≡ fð0Þ; ð69Þ

f

�
ξ → ∞;

κ

a2

�
∼

3

ξ3
→ 0: ð70Þ

The equation N ¼ 0, which determines the horizons,
reduces now to the equation

f

�
ξ;

κ

a2

�
¼ Λa2; ð71Þ

thus illustrating the fact that only two effective dimension-
less parameters, κ

a2 and Λa2, predetermine the structure of
horizons. Typical plots of the function fðξ; κ

a2Þ for several
values of the dimensionless parameter κ

a2 are presented
in Fig. 1.
To find the number of horizons, one can determine the

number of points in which the horizontal straight line
y ¼ Λa2 crosses the graph of the function y ¼ fðξ; κ

a2Þ.
Clearly, depending on the values of the parameters κ

a2 and
Λa2, zero, one, two, three, or four cross-points can appear.
Let us discuss this feature in more details.

0.2

0.4

0.6

–8 –6 –4 –2 20 4 6

f( )

y= a2

FIG. 1. Plots of the functionfðξ; κ
a2Þ for sixvaluesof theparameter

κ
a2: 0; 1;…; 5. The upper curve relates to the minimal value of the
guiding parameter, κ

a2 ¼ 0; the maximal value of the function is
fð0; 0Þ ¼ 2

3
; and this curve plays the role of separatrix.When κ

a2 ¼ 4,
fð0; 4Þ ¼ 0 according to (69). The lower curve corresponds to the
value κ

a2 ¼ 5. When κ
a2 ≤ 2, the graphs have only one extremum

(maximum) at ξ ¼ 0.When κ
a2 > 2, two symmetricmaxima andone

minimum (at ξ ¼ 0) appear in the graphs. When the parameter κ
a2

increases, themaxima drift to the left and right, respectively, and the
minimal values behave as fð0; κ

a2 → ∞Þ → −∞.
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B. Structure of horizons

To simplify the analysis, we distinguish three cases,
which correspond to the following values of the guiding
parameter κ

a2: first, 0 ≤ κ
a2 ≤ 2; second, 2 < κ

a2 ≤ 4; and
third, κ

a2 > 4.

1. First case: 0 ≤ κ
a2
≤ 2

For these values of the guiding parameter κ
a2, the graph

of the function y ¼ fðξ; κ
a2Þ lies at y > 0, and it has one

maximum at ξ ¼ 0, namely, fmax ¼ fð0Þ. The second
guiding parameter, Λa2, changes, formally speaking, in
the interval −∞ < Λa2 < ∞.
(a) When Λ ≤ 0, the horizontal straight line y ¼ Λa2 is

below the graph of the function y ¼ fðξ; κ
a2Þ; thus,

there is no crossing. This means that NðξÞ > 0 for
arbitrary ξ, the metric has no horizons, and the
wormhole throat is traversable.

(b) When 0 < Λa2 < fð0Þ, there are two roots of the
equation NðξÞ ¼ 0 (symmetrical with respect to the
axis ξ ¼ 0). The metric has two horizons, which can
be indicated as the cosmological ones (see, e.g.,
Ref. [19]), since between them the R region is situated
with a traversable wormhole throat.

(c) When Λa2 ¼ fð0Þ, we obtain that Nð0Þ ¼ 0, and two
horizons coincide, being situated at r ¼ 0. The worm-
hole throat is nontraversable.

(d) When Λa2 > fð0Þ, the straight line y ¼ Λa2 lies
above the graph of the function y ¼ fðξ; κ

a2Þ. There
is no crossing of these lines, and there are no horizons.
Nevertheless, NðξÞ < 0 for arbitrary ξ; i.e., now, we
cannot speak about a wormhole in the standard sense
of the word.

2. Second case: 2 < κ
a2
≤ 4

For these values of the guiding parameter κ
a2, the graph of

the function y ¼ fðξ; κ
a2Þ lies at y ≥ 0, and it has two

symmetric maxima, f�max, and one minimum, at ξ ¼ 0,
i.e., fmin ¼ fð0Þ ≥ 0:
(a) When Λa2 < 0, again the straight line y ¼ Λa2 lies

below the graph of the function y ¼ fðξ; κ
a2Þ, NðξÞ > 0

for arbitrary ξ, the metric has no horizons, and the
wormhole throat is traversable.

(b) When 0 < Λa2 < fmin ¼ fð0Þ, the equationNðξÞ ¼ 0
has two roots. Again, there are two horizons of the
cosmological type with intermediate R region and the
traversable throat.

(c) When Λa2 ¼ fð0Þ ¼ 0, we obtain Nð0Þ ¼ 0; i.e., the
double horizon lies at ξ ¼ 0.

(d) When fmin < Λa2 < f�max, the straight line y ¼ Λa2

crosses the graph of the auxiliary function in four
points: ξ ¼ �ξin, ξ ¼ �ξout. Between pairs of hori-
zons (ξin < jξj < ξout), there exist two R regions. The
external horizons at ξ ¼ �ξout can be indicated as the

cosmological ones, while the internal horizons at ξ ¼
�ξin are the event horizons.

(e) When Λa2 ¼ fmin ¼ fð0Þ, two internal horizons
coincide; effectively, there are three horizons, and
the corresponding wormhole is nontraversable, since
one (double) horizon is situated at ξ ¼ 0.

(f) When Λa2 ¼ f�max, the corresponding external and
internal horizons coincide, so that two horizons appear
instead of four; the wormhole is nontraversable.

(g) WhenΛa2 > f�max, againNðξÞ is negative everywhere.

3. Third case: κ
a2
> 4

The graph of the auxiliary function has two symmetric
maxima and one minimum at ξ ¼ 0; however, now the
minimal value is negative, fð0Þ < 0. Again, the causal
structure depends on the value of the guiding param-
eter Λa2:
(a) When Λa2 < fð0Þ < 0, the straight line y ¼ Λa2 is

below the graph of the auxiliary function, and again
NðξÞ > 0 everywhere; thus, the wormhole throat is
traversable.

(b) When Λa2 ¼ fð0Þ < 0, there is the double horizon in
the throat.

(c) When fð0Þ < Λa2 ≤ 0, the equation NðξÞ ¼ 0 has
two symmetric roots. These roots correspond to the
pair of the event horizons with a T region be-
tween them.

(d) When 0 < Λa2 < f�max, there are four crossing points:
ξ ¼ �ξin, ξ ¼ �ξout. At ξin < jξj < ξout, there are R

0

0.2

0.4

0.6

2/3

1/3

2 4 6 8 a2

a2

I

I

II

II

III

FIG. 2. Domains on the semiplane of the parameters κ
a2 > 0 and

Λa2, in which the Λ-influenced nonminimal Wu-Yang wormhole
has a traversable or nontraversable throats. Domain I (shaded)
indicates wormholes with a traversable throat, i.e., when
Nð0Þ > 0. Domain II relates to the spacetimes with two R regions
and a T region between them; the throat is nontraversable in this
case. Domain III corresponds to the spacetimes without R regions.
The straight line Λa2 ¼ fð0; κ

a2Þ ¼ 2
3
ð1 − κ

4a2Þ (dark) starts at κ
a2 ¼

0 with Λa2 ¼ 2
3
. The curved line Λa2 ¼ f�maxð κ

a2Þ (grey) starts at
κ
a2 ¼ 2 with Λa2 ¼ 1

3
; at κ ¼ 2a2, these two lines cross.
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regions, harbored by horizons. The external horizons
can be indicated as the cosmological ones, while the
internal horizons are the event ones.

(e) When Λa2 ¼ f�max, the external and internal horizons
coincide.

(f) When Λa2 > f�max, the straight line y ¼ Λa2 does not
cross the graph of the function y ¼ fðξ; κ

a2Þ; again,
NðξÞ < 0 for arbitrary ξ.

C. Intermediate summary

To summarize the results of the analysis, we consider the
plane of the parameters κ

a2, Λa
2, and indicate the domains

without horizons, with one, two, three, and four horizons.
The results are illustrated in Fig. 2.

VI. DISCUSSION

In this paper, we discuss new exact solutions of the
wormhole type obtained in the framework the model of
nonminimal coupling between the gauge field of the
Wu-Yang type and gravity in a dark energy environment.
The solutions of this model form a seven-parameter family:
they depend generally on three nonminimal coupling
constants q1, q2, and q3 [see (2)]; on two parameters ω∥
and ω⊥, which appear in the equation of state for the dark
energy (29); on the charge of the gauge field ν [see (21)],
entering the master equations for the gravity field via the
parameter κ≡ 8πν2; and on the initial value of the energy
density of the dark energy W0, which can be transformed
into the effective cosmological constant in some special
cases. To visualize exact solutions by presenting the metric
function σðrÞ in the explicit form and the metric function
NðrÞ in quadratures, we considered various models with
fixed parameters ωjj and ω⊥. Along this line, we discussed
the solutions withω∥ ¼ −1 and various ω⊥ (the model with
anisotropic dark energy; see Sec. IV C), the solution with
ω⊥ ¼ ω∥ ¼ − 1

3
(analog of a string gas; see Sec. IV D), and

the solutions withω⊥ ¼ ω∥ ¼ −1 [the model with effective
cosmological constant Λ ¼ 8πW0; see Sec. IV C, item (i)]).
Then, we extracted four-, three-, and two-parameter

families of regular exact solutions from the mentioned
four-parameter families by fixing the nonminimal coupling
constants q1, q2, and q3. In particular, when these constants
are presented by Eq. (41), the first constitutive parameter is
ω∥ ¼ −1, and the second one, ω⊥, is arbitrary; we find
the four-parameter family of the wormhole-type solutions
with a describing the throat radius,W0, connected with the
initial value of the dark energy density (33), κ ¼ 8πν2, and
ω⊥ (see Sec. IV C). When four guiding parameters of this
anisotropic model, a, W0, κ, and ω⊥, satisfy the inequality

1þ 4πW0ðω⊥ − 2Þa2 > κ

4a2
;

the throat of this wormhole is traversable, since the metric
functionsσðrÞandNðrÞare regular, andσð0Þ > 0,Nð0Þ > 0.

Another very interesting result is obtained for the
isotropic distribution of the dark energy with ω∥ ¼ ω⊥ ¼
− 1

3
(this equation of state is known as a string gas [42]).

If we assume that q1 ¼ 0, 4q2 þ q3 ¼ 0 and 8π
3
W0a2þ

1 ¼ 0, the corresponding nonminimal wormhole is char-
acterized by the catenary-type throat profile RðrÞ ¼
a cosh r

a, by the metric function σ ≡ 1 and by the function
NðrÞ presented explicitly by the polynomial of the fourth
order of the variable z ¼ tanh r

a [see Eq. (57)]. The most
illustrative regular solution of this type relates to the one-
parameter model in which C ¼ 0 and the additional require-
ment (58) is used in order to fix the nonminimal coupling
parameter q2. This solution is of the form

NðrÞ ¼ tanh2
r
a
þ 1

4

�
κ

2a2
− 1

�
cosh−4 r

a
;

and it has asymptotes Nð�∞Þ ¼ 1 and a finite value at
the center Nð0Þ ¼ 1

4
ð κ
2a2 − 1Þ. When κ > 2a2, the presented

function NðrÞ has no zeros; thus, this wormhole is
traversable, and it links two regions of the spacetime
with constant negative spatial curvature (or spatially open
universes).
For the isotropic distribution of the dark energy with

ωjj ¼ ω⊥ ¼ −1, the solution (61), (62) describes a sym-
metric magnetic wormhole joining two asymptotically de
Sitter (or asymptotically anti-de Sitter) regions with the
effective cosmological constant Λ ¼ 8πW0. This solution
belongs to the same class of exact solutions describing
nonminimal wormholes, which we obtained and discussed
in Ref. [18] (magnetic wormholes joining two asymptoti-
cally Minkowski regions) and in Ref. [19] (electric worm-
holes joining an asymptotically Minkowski region and
asymptotically de Sitter one). For this model, we consid-
ered in detail the problem of horizons and showed that,
depending on the values of two effective guiding param-
eters κ

a2 and 8πW0a2 ≡ Λa2, the metric function NðrÞ
admits one, two, three, and four zeros or does not admit
zeros at all. Correspondingly, there are two principally
different wormhole configurations in the dark energy
environment, which can be indicated as wormholes with
traversable throats. First, the wormhole can have no
horizons, and thus it is traversable in the general sense;
this is possible when Λa2 < 2

3
ð1 − κ

4a2Þ. Second, the worm-
hole can have two symmetric horizons, which are distant
from the throat. The throat of such wormhole is traversable,
and two horizons, in this sense, can be considered as the
ones of a cosmological type. All other configurations have
to be indicated as nontraversable. Indeed, when there is one
zero of the metric function NðrÞ, or there are three zeros,
one horizon is inevitably situated at r ¼ 0; i.e., it appears
just in the wormhole throat. When NðrÞ has four zeros, all
four horizons are distant from the throat; nevertheless, this
configuration has to be indicated as the nontraversable
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wormhole, since, in addition to the pair of cosmological
horizons, two distant event horizons, which close the
entrance to the throat and the exit from it, appear.
To conclude, we have to emphasize two new aspects of

the obtained results.
First, we have shown that the dark energy influence can

effectively regulate the traversability of the nonminimal
Wu-Yang wormholes: it can create the horizon just inside
the throat, and it can organize two distant horizons at the
entrance and exit of the throat. On the other hand, the dark
energy can open the nonminimal wormhole throat for
traveling from one region of the spacetime to another.
For instance, when we deal with the dark energy of the Λ
type, we can distinguish two situations: for the case Λ ¼ 0
and κ

4a2 > 1, the wormhole is nontraversable; when Λ ≠ 0

and Λa2 < 2
3
ð1 − κ

4a2Þ, the entrance to the wormhole throat
happens to be opened. When the dark energy pressure is not
constant, using the t representation of the model, we could
try to find specific epochs in the Universe history for which
the cosmic gates related to fixed gauge charge ν are opened
or closed; we hope to discuss this problem in the future.
Second, our study allows us to view from a new

perspective a situation with the number of fundamental

constants. The problem can be formulated as follows: is at
least one nonminimal coupling constant (e.g., q1) a new
constant of nature, or should all three parameters, q1, q2,
and q3, be reduced to the combinations of already-known
fundamental constants? Our study gives food for thought in
this relation. One can assume that the nonminimal coupling
constants can be connected with parameters of the dark
energy. For instance, if we assume that Λ is negative (it is
typical for anti-de Sitter asymptotes) and require that the
valueNð0Þ of the metric functionNðrÞ [see (63)] is positive
and does not depend on the value of the gauge charge ν, we
obtain that q1 ¼ − 1

6Λ and Nð0Þ ¼ 1
3
> 0. In other words,

the key nonminimal coupling constant is not independent
and is reciprocal to the cosmological constant. Clearly, this
relationship is not unique, and we hope to discuss a few
interesting ideas in the next work.
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