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We study the spectrum and perturbative stability of Freund-Rubin compactifications on Mp ×MNq,
whereMNq is itself a product of N q-dimensional Einstein manifolds. The higher-dimensional action has a
cosmological term Λ and a q-form flux, which individually wraps each element of the product; the
extended dimensions Mp can be anti-de Sitter, Minkowski, or de Sitter. We find the masses of every
excitation around this background, as well as the conditions under which these solutions are stable. This
generalizes previous work on Freund-Rubin vacua, which focused on the N ¼ 1 case, in which a q-form
flux wraps a single q-dimensional Einstein manifold. The N ¼ 1 case can have a classical instability when
the q-dimensional internal manifold is a product—one of the members of the product wants to shrink while
the rest of the manifold expands. Here, we will see that individually wrapping each element of the product
with a lower-form flux cures this cycle-collapse instability. The N ¼ 1 case can also have an instability
when Λ > 0 and q ≥ 4 to shape-mode perturbations; we find the same instability in compactifications with
general N, and show that it even extends to cases where Λ ≤ 0. On the other hand, when q ¼ 2 or 3, the
shape modes are always stable and there is a broad class of AdS and de Sitter vacua that are perturbatively
stable to all fluctuations.
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I. INTRODUCTION

Compactifications that rely on flux to buttress the extra
dimensions against collapse were first studied by Freund
and Rubin [1]. The simplest such models invoke a q-form
flux, which uniformly wraps a q-dimensional internal
Einstein manifold. The stability and spectrum of these
compactifications were studied in a series of classic
papers [2–6].
In this paper, we will look at generalizations of these

simple compactifications to the case where the internal
manifold is a product of N q-dimensional Einstein mani-
folds, and each submanifold is individually wrapped by a
q-form flux. We find the spectrum of small fluctuations
around these backgrounds as well as the conditions for
stability. Our motivations are fourfold.
First, the N ¼ 1 case has a perturbative instability when

the internal q-dimensional manifold is itself a product, and
the q-form flux collectively wraps the entire product. The
fluctuation mode in which one element of the product
shrinks while the rest of the manifold grows can be
unstable. We will see that moving to higher N explicitly
stabilizes that mode; when each element of an internal
product manifold is individually wrapped by a lower-form
flux, the solution is stable against cycle collapse.
Second, this analysis covers a wide class of interesting

models. Compactifications of string theory down to four
dimensions often take the internal manifold to be a product

of Einstein manifolds [7,8], so a general study of their
spectrum can teach us about low-energy physics.
Furthermore, compactifications with nontrivial internal
topology can open up new possibilities in the study of
AdS/CFT. For instance, there is a 27-dimensional bosonic
M-theory with a 4-form flux [9] which has compactifica-
tions down to AdS27−4N × ðS4ÞN ; the spectrum found in
this paper should match to a CFT dual. The results in this
paper would be straightforward to extend to supersym-
metric setups as well, allowing for the study of compacti-
fications of IIB string theory such as AdS4 × ðS3Þ2, which
our results suggest are stable, or compactifications of
M-theory such as AdS3 × ðS4Þ2, which our results suggest
may be unstable.
Third, these product manifold setups give rise to land-

scapes that, because of their complexity, serve as interesting
toy models of the string theory landscape while at the same
time, because they are made of such simple ingredients, still
allow for direct computation. The number of flux lines
wrapping each cycle is quantized and quantum nucleations
of charged branes mediate transitions between the vacua.
An upcoming paper will show that such landscapes
generically have a large or even unbounded number of
de Sitter vacua [10].
Finally, this paper represents an extension of computa-

tional methods to a case where the background fields are
not uniform over the internal manifold. If the submanifolds
differ in the amount of flux that wraps them, then they will
also differ in their curvature, so their product will not be an
Einstein manifold (will not have Rαβ proportional to gαβ).
Studying these nonuniform compactifications involves
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developing new techniques; we give an explicit decom-
position of the modes into transverse and longitudinal
eigenvectors of the Laplacian restricted to each submani-
fold. Under this decomposition, the modes decouple and
we can read off the spectrum.

A. Review of the N ¼ 1 case

Before we discuss compactifications on a product of N
individually-wrapped Einstein manifolds, it will be helpful
first to review the well-studied case of compactifications on
a single Einstein manifold.
The simplest Freund-Rubin compactifications are of the

formMp ×Mq, where a q-form flux wraps a q-dimensional
positive-curvature Einstein space. The p extended dimen-
sions form a maximally symmetric manifold, either de
Sitter, Minkowksi, or anti-de Sitter. These compactifica-
tions are solutions to the equations of motion that follow
from the action

S ¼
Z

dpxdqy
ffiffiffiffiffiffi
−g

p �
R −

1

2q!
F2
q − 2Λ

�
; ð1Þ

where Λ is a higher-dimensional cosmological constant.
The q-form flux is taken to uniformly wrap the extra
dimensions

Fq ¼ cvolMq
; ð2Þ

where volMq
is the volume form of Mq and c is the flux

density; for compactifications without warping, this uni-
form distribution of flux is the only static solution to
Maxwell’s equation.
The study of the stability of these solutions to small

fluctuations was done by [5,6] and three classes of
instabilities were found:

(i) Total-volume instability: When Λ > 0, there can be
an instability for the total volume of the internal
manifold to either grow or shrink. This instability

turns on whenever the density of flux lines wrapping
the extra dimensions is too small.

(ii) Lumpiness instability: When Λ > 0 and the internal
manifold is a q-sphere with q ≥ 4, there can be
instability for the internal sphere to become lumpy.
Depending on the flux density, spherical-harmonic
perturbations with angular momentum l ≥ 2 can be
unstable.

(iii) Cycle-collapse instability: When Mq is a product
manifold, there may be an instability for part of the
manifold to grow, while the rest shrinks down to
zero volume. For instance, if a 4-form flux is
wrapped around the product of two 2-spheres, then
there is an instability in which one of the spheres
grows while the other collapses, but with the total
volume being preserved.

Let us discuss these instabilities and their endpoints in more
detail:
The “total-volume instability” can be understood from

the perspective of the effective potential. When the shape of
the internal manifold and the number of flux lines n
wrapping it are held fixed, you can describe the total-
volume modulus as a field living in an effective potential.
When Λ ≤ 0, the effective potential resembles the left panel
of Fig. 1, with a single AdS minimum (Veff < 0). As the
number of flux lines is increased, the minimum moves
rightward to larger volumes, and upward to less negatively
curved AdS spacetimes. The flux density c is equal to the
number of flux lines n divided by the volume; it turns out
that increasing n shifts the minimum far enough to the right
that even though the number of flux lines is increased, the
density of flux lines around the manifold decreases—
increasing n decreases c. When Λ > 0, the effective
potential looks qualitatively different, as shown in the right
panel of Fig. 1: instead of having one extremum, the
potential now has either two or zero extrema. When the
number of flux lines n is small enough, the potential has a
minimum at small volume and a maximum at large volume.

FIG. 1 (color online). The Einstein-frame effective potential Veff for the total volume behaves differently depending on the sign of the
higher-dimensional cosmological constant Λ. If Λ ≤ 0, then the potential has a single AdS minimum for any number of flux lines n. If
Λ > 0, then the potential has either two or zero extrema depending on the magnitude of n; the maximum is always dS, while the
minimum can be either AdS, Minkowksi, or dS. The total-volume instability corresponds to being a maximum and not a minimum on
this plot.
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Increasing the number of flux lines past a critical value
causes the minimum and maximum to merge and annihi-
late. Small volume means large flux density, so the large c
solutions correspond to minima where the total volume
mode is explicitly stabilized and small c solutions corre-
spond to maxima where the total volume mode is explicitly
unstable. The endpoint of this instability is therefore either
flow out toward decompactification or flow in toward the
stable minimum, where the volume is smaller and the flux
density is correspondingly larger [11].
The “lumpiness instability,” like the total-volume insta-

bility, only exists when Λ > 0. The instability is perhaps
surprising because the normal intuition that comes from
banging drums and plucking strings is that higher modes
have a higher mass and play a higher pitch. The lumpiness
instability, however, defies this intuition: the total-volume
mode, with angular momentum l ¼ 0, can be stable while
a mode with l ≥ 2 can have a negative mass squared. The
origin of the instability, mathematically, is the coupling of
metric modes and flux modes. For the higher-angular-
momentum perturbations (l ≥ 2), the two modes form a
coupled system that needs to be diagonalized, while for the
l ¼ 0 and l ¼ 1 modes, only a single mode enters and no
diagonalization is necessary. (Roughly, the l ¼ 0 mode of
the flux potential perturbations is gauge because the total
number of flux lines is a conserved quantity; and the l ¼ 1

mode of the metric perturbations is gauge because
shifting a sphere by an l ¼ 1 spherical harmonic gives a
translated sphere, which has the same induced metric.)
Diagonalization mixes the shape and flux modes and can
give rise to negative mass squareds. When Λ ≤ 0, these
negative mass squareds all lie above the Breitenlohner-
Freedman (BF) bound [12], but when Λ > 0 instabilities
can appear; the details are as follows:

(i) When q ¼ 2, all higher-mode fluctuations have a
positive mass.

(ii) When q ¼ 3, all higher-mode fluctuations have a
stable mass squared.

(iii) When q ≥ 4 and Λ > 0, higher-mode fluctuations
can be unstable.

If a solution flows down this instability, where does it land?
Warped compactifications on prolate, oblate, and otherwise
lumpy spheres have been found numerically [13–15],
analogous to the lumpy black string solutions found in
the study of the Gregory-Laflamme instability [16,17];
these warped compactifications likely are the endpoint of
this flow, but their stability has not been checked, so it is not
known whether they are minima or saddle points of the
effective potential.
The “cycle-collapse instability,” unlike the first two, can

exist not only when Λ > 0 but also when Λ ¼ 0 or Λ < 0.
Earlier discussions of this instability appeared in [18–20].
The cycle-collapse instability is related to the fact that the
compactification uses a highest-form flux to stabilize the
internal manifold: a q-form flux around a q-dimensional

manifold. Highest-form fluxes are not sensitive to sub-
curvatures, so when one submanifold gets a little smaller
and the other gets a little bigger, the flux cannot react to pull
things back. Wrapping flux around the internal manifold
has stabilized the total volume, but it has not stabilized
the volume of each submanifold individually. What is the
endpoint of this instability? The endpoint cannot be that
the collapsing cycle stabilizes at a smaller size, so that the
internal manifold is a lopsided product of unequal sub-
manifolds, because that would violate the equations of
motion: Maxwell’s equation makes flux lines repel, so Tμν

would to be uniform in the extra dimensions, but ipso facto
Rμν would not be uniform in a lopsided vacuum. It is
therefore natural to conjecture that the endpoint of this
instability is for the collapsing cycle to shrink to zero size
and pinch off, causing spacetime to vanish in a bubble of
nothing [21,22]. This process is akin to closed string
tachyon condensation, described in [23].
This cycle-collapse instability can be understood in

terms of the effective potential. For example, if the internal
manifold is S2 × S2, and you wrap n units of a 4-form
uniformly around the entire internal manifold, and you fix
the shape of both spheres, then the effective potential for
the radii R1 and R2 is, schematically,

Veff;4-form ∼
1

ðR2
1R

2
2Þ2=ðp−2Þ

�
n2

ðR2
1R

2
2Þ2

−
1

R2
1

−
1

R2
2

þ Λ

�
:

ð3Þ

The first term comes from the flux lines, which repel and
push the radii out to larger values; the next two terms are
from the curvatures of the spheres, which want the spheres
to shrink to zero size. The fact that the highest-form flux is
insensitive to sub-curvatures is reflected in the fact that the
flux term depends only on the total-volume combination
ðR2

1R
2
2Þ2. The solution with R1 ¼ R2 sits at a saddle point of

this effective potential; there is an instability for one sphere
to expand while the other collapses and Veff → −∞.
Because the cycle-collapse instability is related to the use

of a highest-form flux, this suggests a simple solution to
stabilize product manifolds: do not use a highest-form flux.
Instead of wrapping a single flux around the entire internal
product manifold, wrap a lower-form flux individually
around each element of the product. We can understand
how this resolves the cycle-collapse instability from the
perspective of the effective potential. If you take the setup
from above, but instead wrap n1 units of a 2-form flux
around the first sphere, and n2 units around the second
sphere, the effective potential is

Veff;2-form ∼
1

ðR2
1R

2
2Þ2=ðp−2Þ

�
n21
R4
1

þ n22
R4
2

−
1

R2
1

−
1

R2
2

þ Λ

�
:

ð4Þ
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The flux term now depends on R1 and R2 individually, and
is therefore sensitive to perturbations and able to restore the
manifold to the vacuum. In trying to stabilize the cycle-
collapse instability, we are led to consider Freund-Rubin
compactifications with N > 1.

B. Results for general N

No one likes having a movie spoiled,1 but the same is
likely not true of technical physics papers: for N > 1, we
find that the cycle-collapse instability is essentially cured,
that the other two classes of instability persist, and that no
new classes arise.
We find a total-volume instability when Λ > 0 and the

flux density wrapping any submanifold gets too small (as in
the N ¼ 1 case).
We find a lumpiness instability can exist when the right

conditions are met. For N > 1:
(i) When q ¼ 2, all higher-mode fluctuations have

positive mass.
(ii) When q ¼ 3, all higher-mode fluctuations have a

stable mass squared.

(iii) When q ≥ 4, lumpiness instabilities can appear
for any Λ. This is unlike the N ¼ 1 case, where
all compactifications with Λ ≤ 0 were stable.

These details are expanded upon and contrasted with the
N ¼ 1 case in Figs. 2 and 3.
While we have essentially cured the cycle-collapse

instability, we find a residual version in the somewhat
degenerate case whenMq;i is itself a product. (For instance,
consider the case where the internal manifold is
S2 × S2 × S2 × S2. If you wrap an 8-form flux around
the whole thing, you are in the N ¼ 1 case and we have
seen that you have an instability. If you instead split the
manifold up into two pairs of S2 ’s, and wrap a 4-form flux
individually around both pairs, then you are in the N ¼ 2
case, and you still have an instability. Only in the N ¼ 4
case, where each sphere is individually wrapped by a
2-form flux, is the compactification stable.)
There are no other instabilities beside these three: all of

the extra types of fluctuations that exist when N > 1, such
as the angles between the submanifolds and the off-
diagonal form fluctuations, all have positive mass. We
find the standard story for higher-spin fluctuations: a
massless vector for every Killing vector of the internal
manifold, a massless graviton, massless higher-spin form
fields associated with harmonic forms of the internal

FIG. 2. The stability of the shape modes of a single (N ¼ 1)
q-sphere wrapped by a q-form flux, for different signs of the
higher-dimensional cosmological constant Λ. AdSp solutions are
always stable against zero-mode fluctuations and can exist for
any sign of Λ; dS solutions, however, can only exist when Λ > 0
and only some of them are stable to zero-modes. The right-most
column lists properties of those dSp’s that are stable to zero-mode
fluctuations, meaning they are minima of the effective potential
in Fig. 1. When Λ ≤ 0, the solution is always AdS and always
stable to all fluctuations; though negative mass squareds exist
for q ≥ 3, they are always above the BF stability bound. When
Λ > 0, the solution switches from AdS to Minkowski to dS
depending on the flux and unstable mass squared can exist
amongst the higher-mode fluctuations. Stability in this case
depends on q. These results were derived in [5,6] and we discuss
them in Sec. V B 1.

FIG. 3. The stability of the shape modes of the product of N
q-spheres, each individually-wrapped by a q-form flux, for
different signs of the higher-dimensional cosmological constant
Λ. As in Fig. 2, the right-most column lists properties of those
dSp’s that are stable to zero-mode fluctuations, meaning they are
minima of the effective potential in Fig. 1. As in the N ¼ 1 case,
when Λ ≤ 0, the solution is always AdS; and when Λ > 0, the
solution switches from AdS to Minkowski to dS depending on
the flux. Also as in the N ¼ 1 case, when the spheres each have
q ¼ 2 or q ¼ 3 dimensions, the shape modes are always stable
(for q ¼ 3 the mass squareds may be negative, but they are
always greater than the BF stability bound). However, for higher
q, there are differences from theN ¼ 1 case; most markedly, even
for Λ ≤ 0, the shape modes may be unstable. These results are
derived in detail in Sec. V B 2.

1It was his sled.
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manifold, and Kaluza-Klein towers of massive partners
stacked above each of these massless fields.
The results we find here refute claims in the literature. In

[24–26], Minkowksi compactifications of the form M4 ×
S2 × S2 and M4 × S2 × S2 × S2 were argued to be unstable
to l ¼ 1 perturbations; below we show how correct
handling of residual gauge invariance proves these modes,
and indeed all modes of these compactifications, are
completely stable.
Our results encompass and generalize previous work on

the N ¼ 1 case in [5,6].

C. Notation

We will be investigating product manifolds of the form
Mp ×Mq;1 × � � � ×Mq;N . We use coordinate x and indices
μ; ν;… for the Mp and coordinates yi and indices αi; βi;…
forMq;i. Capital Roman indicesM;N;… run over thewhole
manifold. We define the exterior derivative as ðdwÞα1…αk

¼
k∇½α1wα2…αk� and the exterior co-derivatives as
ðd†wÞα3…αk

¼ ∇α2wα2…αk . If k indices are enclosed in square
brackets ½…�, they are antisymmetrized over and a combi-
natoric factor 1=k! is included. If k indices are enclosed in
parentheses ð…Þ, they are symmetrized over, a combinatoric
factor 1=k! is included, and the trace is removed. This final
part not being the norm, we have added periodic reminders
throughout the text. The Riemann tensor is defined so that
2∇½A∇B�VC ¼ −RD

CABVD and RAB ¼ RC
ACB. We use a

mostly plus metric signature ð−;þ;…;þÞ, which means
that the scalar Laplacian □ and the Hodge Laplacian △ ¼
ðdþ d†Þ2 are both negative semidefinite.

II. BACKGROUND SOLUTION

We will investigate compactifications of D ¼ pþ Nq
dimensions down to p dimensions, where the internal
manifold is the product Mq;1 × � � � ×Mq;N , and a q-form
flux Fq wraps each Mq;i individually. These compactifi-
cations will be solutions to the equations of motion that
follow from the action

S ¼
Z

dpxdqy1…dqyN
ffiffiffiffiffiffi
−g

p �
R −

1

2q!
F2
q − 2Λ

�
; ð5Þ

where Λ is a higher-dimensional cosmological constant.
Einstein’s equation is

RMN ¼ T̄MN ≡ 1

2

1

ðq − 1Þ!FMP2…Pq
FN

P2…Pq

−
1

2

q − 1

D − 2

1

q!
F2
qgMN þ 2

D − 2
ΛgMN; ð6Þ

where T̄MN is the trace-subtracted energy momentum
tensor T̄MN ≡ TMN − 1

D−2TP
PgMN. Maxwell’s equation is

d†Fq ≡∇MFMP2…Pq
¼ 0: ð7Þ

The q-form flux Fq is the exterior derivative of a flux
potential Aq−1, so Fq ¼ dAq−1.
We look for solutions where the q-form flux wraps each

Mq separately

Fq ¼
XN
i¼1

civolMq;i
; ð8Þ

where ci is the flux density and volMq;i
is the volume form

for the ithMq; volMq;i
is only nonzero when all q indices are

from Mq;i, in which case it is equal to the q-dimensional
Levi-Civita tensor density. This ansatz automatically solves
Maxwell’s equation Eq. (7); for compactifications without
warping, Maxwell’s equation demands that the q-form flux
is uniform in the q-cycle it wraps.
That the flux is uniform forces the Mq;i to be Einstein,

which in turn guarantees that the extended dimensions Mp
are maximally symmetric. We define radii of curvature L
and Ri for Mp and Mq;i, respectively, so that

Rμν ¼
p − 1

L2
gμν; Rαiβj ¼

q − 1

R2
i

gαiβjδij; Rμαi ¼ 0:

ð9Þ
All the off-diagonal terms are 0. TheRi are all positive, but we
allowforanalyticcontinuation to imaginaryL.WhenL−2 > 0,
Mp is a de Sitter space;whenL−2 < 0,Mp is anAnti-de Sitter
space; and when L−2 ¼ 0, Mp is a Minkowski space.
Einstein’s equation Eq. (6) relates the distance scales to

the flux densities

p − 1

L2
¼ −

1

2

q − 1

D − 2

XN
i¼1

c2i þ
2

D − 2
Λ ð10Þ

q − 1

R2
i

¼ 1

2
c2i þ

p − 1

L2
: ð11Þ

The solution is Minkowski (L−2 ¼ 0) when the ci satisfy

XN
i¼1

c2i ¼
4

q − 1
Λ: ð12Þ

The solution with no flux at all (ci ¼ 0) is sometimes called
the Nariai solution; the solution where one of the ci → ∞,
sending Ri → 0 and L−2 → −∞, we argued in [22], should
be thought of as the “nothing state.”
Equations (10) and (11) provide a solution to the

equations of motion, but we do not yet know if this
solution is stable or unstable. To determine its stability,
we need to find the mass spectrum of small fluctuations
around this background. For de Sitter or Minkowski
compactifications, stability means that all of these masses
are positive; for AdS compactifications, the mass squareds
may be negative—stability means that all of the mass
squareds are no more negative than the BF bound [12].
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To first order, the equations of motion for small
fluctuations around the background solution are coupled
partial differential equations. Finding the spectrum means
solving these equations, and that will be the project of the
bulk of this paper. We will solve them in two steps. First,
we perform two simultaneous decompositions on the
fluctuations: a Hodge decomposition into transverse and
longitudinal parts, and a decomposition into eigenvectors
of the Lichnerowicz Laplacian. These two decompositions
break the coupled partial differential equations apart into
coupled ordinary differential equations. Second, by choos-
ing the right combinations of fields, we can diagonalize
the equations, and from the resulting decoupled ordinary
differential equations, we can directly read off the spec-
trum. In Sec. III, we will derive the first-order equations of
motion. Step one of the solution happens in Sec. IVand step
two happens in Sec. V.

III. FIRST-ORDER EQUATIONS OF MOTION

Consider small perturbations to the background fields
gMN and AP2…Pq

:

gMN → gMN þ hMN; and

AP2…Pq
→ AP2…Pq

þ BP2…Pq
: ð13Þ

We will define fq ¼ dBq−1 so that

Fq ¼ dAq → Fq þ fq: ð14Þ

To first order in the fluctuations hMN and BP2…Pq
,

Einstein’s equation becomes

Rð1Þ
MN ¼ T̄ð1Þ

MN; ð15Þ
where

Rð1Þ
MN ¼ −

1

2
½□hMN þ∇M∇NhPP −∇M∇PhPN −∇N∇PhPM

− 2RM
PQ

NhPQ −RM
PhPN −RN

PhPM�; ð16Þ
and

T̄ð1Þ
MN ¼ −

1

2

1

ðq − 2Þ!FM
Q
P3…Pq

FN
RP3…PqhQR

þ 1

2

q − 1

D − 2

1

ðq − 1Þ! ðF
Q
P2…Pq

FRP2…PqhQRÞgMN

þ p − 1

L2
hMN þ 1

2

1

ðq − 1Þ!
× ðfMP2…Pq

FN
P2…Pq þ fNP2…Pq

FM
P2…PqÞ

−
q − 1

D − 2

1

q!
ðfP1…Pq

FP1…PqÞgMN: ð17Þ

To first order in the fluctuations hMN and BP2…Pq
,

Maxwell’s equation becomes

∇MfMP2…Pq
− gMNΓQð1Þ

MN FQP2…Pq

−
Xq
k¼1

ΓQð1Þ
MPk

FM
P2…Pk−1QPkþ1…Pq

¼ 0; ð18Þ

where

ΓPð1Þ
MN ¼ 1

2
ð∇MhNP þ∇NhMP −∇PhMNÞ ð19Þ

is the Christoffel symbol to first order in hMN . Notice that if
at least two of the indices P2;…; Pq come from different
submanifolds then only the first term in Eq. (18) is nonzero;
in other words, more than singly off-diagonal terms in
Maxwell’s equation decouple from gravity. In order to
determine the stability and spectrum of these compactifi-
cations, we need to solve Eqs. (15) and (18), which are
coupled partial differential equations. That project begins
in Sec. IV.

IV. DECOMPOSING THE FLUCTUATIONS

The Lichnerowicz operator △L is a generalization of the
Laplacian to tensors; it is given by

△LTa1…am ≡□Ta1…am −
Xm
i¼1

Rc
aiTa1���ai−1caiþ1���am

þ
Xi;j¼m

i;j¼1;i≠j
Rc

ai
d
aj
Ta1���ai−1caiþ1���aj−1dajþ1���am:

ð20Þ

Acting on a scalar, the Lichnerowicz operator is the
Laplacian △LT ¼ □T. Acting on a vector, it is the
Laplacian shifted by a term proportional to the Ricci tensor
△LTa ¼ □Ta − Rb

aTb. Acting on a symmetric 2-tensor,
it is the Laplacian shifted by terms proportional to the
Ricci and Riemann tensors △LTab ¼ □Tab − Rc

aTcb−
Rc

bTca þ 2Rc
a
d
bTcd. Finally, acting on a differential k-

form, the Lichnerowicz operator is equal to the Hodge
Laplacian △LFk ¼ ðdþ d†Þ2Fk. On an Einstein manifold,
△L commutes with traces, gradients, and symmetrized
derivatives.
The reason this is a helpful definition is clear from

Eq. (16): all the curvature terms can be collected into a
single Lichnerowicz Laplacian. Eigenvectors of △L, there-
fore, are not coupled by RMN ; if they are coupled it is only
by TMN. The equations of motion also decouple under the
Hodge decomposition into longitudinal and transverse.
Because our internal manifold is a product, we have a

choice: we can either decompose on the whole manifold at
once, or we can decompose separately on each element of
the product. The equations of motion make the choice
for us—only in the second case does TMN decouple. This
choice, however, introduces some new complications for
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the Hodge decomposition that we would like to be
conducting simultaneously. In Sec. IVA, we discuss the
simultaneous Hodge and Lichnerowicz decomposition and
address this complication; this section also serves to define
notation used in the rest of the paper. In Sec. IV B, we give
the decomposition explicitly for our fluctuation fields, and
in Sec. IV C we plug in to the equations of motion.

A. The Lichnerowicz/Hodge decomposition

It will be helpful to discuss a few simple examples
explicitly first, before we return to our fluctuation fields. In
this subsection, let us forget about extended dimensions
and consider decomposing on a compact Einstein manifold
MNq. Below, we will discuss the Hodge/Lichnerowicz
decomposition of scalar fields, vector fields, symmetric
two-tensors, and differential k-forms. In each case, we first
discuss the decomposition generally on a compact Einstein
manifoldMq, and then we give special attention to the case
of a product manifold MNq ¼ Mq;1 × � � � ×Mq;N .
Scalars: We will denote scalar eigenvectors by YI and

their eigenvalues by λI:

△LYI ≡□YI ¼ λIYI: ð21Þ

When the internal manifold is a q-sphere, λI ¼
−lðlþ q − 1Þ=R2, where l ¼ 0; 1; 2;… is the angular
momentum and R is the radius of the sphere. Eigenvectors
of the Laplacian on a compact manifold give a complete
basis, so a general scalar field ϕðyÞ can be decomposed

ϕðyÞ ¼
X
I

ϕIYIðyÞ; ð22Þ

where ϕI denotes the component of ϕðyÞ that lies along
the eigenvector YI. The scalar Laplacian on a compact
manifold is negative semi-definite: all the λI ≤ 0. In fact,
Lichnerowicz [27] proved that there is only a single zero
eigenvalue λI¼0 ¼ 0, and that the next least negative
eigenvalue is bounded from above: λI≠0 ≤ −q=R2, where
R is the radius of curvature. The bound is saturated when
Y ¼ YI¼C is a conformal scalar, which satisfies

∇ðα∇βÞYI¼C ≡∇α∇βYI¼C −
1

q
gαβ□YI¼C ¼ 0: ð23Þ

Small diffeomorphisms along the direction ∇αYI¼C only
affect the conformal factor of the metric. When the
internal manifold is a q-sphere, the l ¼ 1 mode is exactly
such a conformal scalar; indeed conformal scalars only
exist when the internal manifold is a sphere [28]. Taking
divergence of Eq. (23) proves that λI¼C indeed saturates
the Lichnerowicz bound.
When the internal manifold is a product, we can be more

specific. The Laplacian breaks up into pieces on each
submanifold □y ¼ □y1 þ � � � þ□yN , so we can write the

eigenvectors and eigenvalues for the full manifold explic-
itly in terms of the eigenvectors and eigenvalues on each
submanifold:

YðyÞI ¼ YI1
1 ðy1Þ � � �YIN

N ðyNÞ; and λI ¼
XN
k¼1

λIkk : ð24Þ

We will use YI as a shorthand for this product. When
the internal manifold is a product of N q-spheres, each
eigenvector is identified by a list of N spherical har-
monic l’s.
Vectors: The Hodge decomposition theorem states that

vector fields can be uniquely decomposed into a transverse
and a longitudinal part, VαðyÞ ¼ VT

αðyÞ þ VL
α ðyÞ, with

∇αVT
α ¼ 0 and VL

α ðyÞ expressible as the divergence of a
scalar VL

α ðyÞ ¼ ∇αϕðyÞ. We will denote transverse vector
eigenvectors by YI

α and their eigenvalues by κI:

△LYI
α ≡□YI

α − Rα
βYI

β ¼ κIYI
α; ð25Þ

where ∇αYI
α ¼ 0. When the internal manifold is a q-sphere

κI ¼ −ðlþ 1Þðlþ q − 2Þ=R2, where l ¼ 1; 2;… is the
angular momentum. The YI

α form a complete basis for
transverse vectors. Gradients of the scalar eigenvectors
satisfy

△L∇αYI ¼ λI∇αYI; ð26Þ

and form a basis for longitudinal vectors. A general vector
field VαðyÞ can therefore uniquely be decomposed as

VαðyÞ ¼
X
I

VT;IYI
α þ VL;I∇αYI: ð27Þ

The divergence of Vα is

∇αVαðyÞ ¼
X
I

VL;IλIYI; ð28Þ

because the YI form an orthonormal basis (once we have
defined a reasonable dot product),∇αVαðyÞ ¼ 0 if and only
if VL;I ¼ 0 for all I.
Similarly to the scalar case, △L is negative definite.

In this case, there is no zero mode and all the eigenvalues
are bounded from above by a Lichnerowicz bound
κI ≤ −2ðq − 1Þ=R2. The inequality is saturated when Yα ¼
YI¼K
α is a Killing vector, which satisfies

∇αYI¼K
β þ∇βYI¼K

α ¼ 0: ð29Þ

Small diffeomorphisms along the direction YI¼K
α leave the

metric invariant. On a sphere, the l ¼ 1 vector spherical
harmonic is a Killing vector. Taking the trace and diver-
gence of Eq. (29) proves that YI¼K is transverse and that
λI¼K indeed saturates the Lichnerowicz bound.
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In the case that the compact manifold is a product
manifold, the eigenvectors on the full manifold can be
written as a product of the eigenvectors on each submani-
fold. If the vector’s single index comes from Mq;i, then all
the other Mq;j’s contribute a scalar eigenvector to the
product and Mq;i contributes a vector eigenvector, either
transverse or longitudinal. If it’s transverse, we define the
shorthand

YI
αiðyÞ
≡ YI1ðy1Þ � � �YIi−1ðyi−1ÞYIi

αiðyiÞYIiþ1ðyiþ1Þ � � �YIN ðyNÞ;
ð30Þ

and if it is longitudinal, we can write it as the product as

∇I
αiYðyÞ

¼YI1ðy1Þ���YIi−1ðyi−1Þ∇αiY
IiðyiÞYIiþ1ðyiþ1Þ���YIN ðyNÞ:

ð31Þ

These two together form a complete basis for vectors fields,
so a general vector field can be decomposed as

VαiðyÞ ¼
X
I

VT;I
i YI

αiðyÞ þ VL;I
i ∇αiY

IðyÞ: ð32Þ

The associated eigenvalues are

△LYI
αi ¼

�X
k≠i

λIkk þ κIii

�
Yαi ; and

△L∇αiY ¼
�X

k

λIkk

�
∇αiY: ð33Þ

We have broken the vector into N transverse parts VT;I
k ,

and N longitudinal parts VL;I
k . Crucially, despite the fact

that the VL;I
k refer to components that are longitudinal on a

Mq;k, we will be able to form combinations that are
transverse on the whole manifold. To see this, try setting
the divergence of Vα to zero:

XN
k¼1

∇αkVαk ¼
X
I

XN
k¼1

λIkV
L;I
k YIðyÞ ¼ 0: ð34Þ

Because the YIðyÞ are orthonormal, we see that enforcing
transversality of Vα enforces one condition on the VK;I

k for
each I:

XN
k¼1

λIkV
L;I
k ¼ 0: ð35Þ

Of the N independent modes VL;I
k , therefore, we can

construct N − 1 linearly independent combinations that
are transverse on the whole manifold; they are not trans-
verse on a given submanifold, but their subdivergences

cancel for the whole manifold. In total, therefore, we have
broken the vector up into 2N components, of which 2N − 1
are transverse and 1 is longitudinal.
Symmetric 2-tensors: The Hodge decomposition theo-

rem states that symmetric 2-tensors can be uniquely
decomposed into a trace, a transverse traceless tensor,
and a component proportional to the divergence of a vector;
that vector can then further be decomposed into a transverse
and longitudinal part: TαβðyÞ ¼ Tγ

γðyÞgαβ þ TTT
ðαβÞðyÞ þ

∇ðαVT
βÞðyÞ þ∇ðα∇βÞϕðyÞ.2 The superscript T’s indicate

transversality, so ∇αTTT
ðαβÞ ¼ ∇βTTT

ðαβÞ ¼ 0 and ∇βVT
β ¼ 0.

We will denote transverse traceless tensor eigenvectors
of the Lichnerowicz Laplacian by YI

ðαβÞ and their eigen-
values by τI:

△LYI
ðαβÞ ¼ τIYðαβÞ; ð36Þ

and these form a complete basis for transverse traceless
symmetric 2-tensors. If the internal manifold is a
q-sphere, then τI ¼ −½lðlþ q − 1Þ þ 2ðq − 1Þ�=R2 where
l ¼ 2; 3;… is the angular momentum. Unlike scalar and
vector eigenvalues, the τI do not necessarily satisfy a
Lichnerowicz bound. If the internal manifold is topologi-
cally a sphere, then τI ≤ −4q=R2, which is saturated by the
l ¼ 2 mode of the sphere. However, if the internal
manifold is a product space, τI can violate this bound.
For instance, the mode in which one submanifold swells
while the rest shrinks in a volume-preserving way has
eigenvalue τI ¼ 0; the absence of a Lichnerowicz bound is
connected to the cycle-collapse instability discussed in
Sec. I A.
The trace is decomposed as a scalar, so let us focus on the

traceless part. A symmetric traceless tensor can be uniquely
decomposed as

TðαβÞðyÞ ¼
X
I

TTT;IYI
ðαβÞðyÞ þ TLT;I∇ðαYI

βÞðyÞ

þ TLL;I∇ðα∇βÞYIðyÞ; ð37Þ

where

△L∇ðαYI
βÞ ¼ κI∇ðαYI

βÞ; and

△L∇ðα∇βÞYI ¼ λI∇ðα∇βÞYI: ð38Þ

The divergence of TðαβÞ is

2As a quick reminder, subscripts in parentheses mean
both symmetrized and trace-free. In particular, because VT

β is
transverse, ∇ðαVT

βÞ ¼ 1
2
ð∇αVT

β þ∇βVT
α Þ and ∇ðα∇βÞϕ ¼

∇α∇βϕ − 1
q□ϕgαβ.
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∇αTðαβÞ ¼
X
I

TLT;I

�
1

2
κI þ q − 1

R2

�
YI
β

þ TLL;I

�
q − 1

q
λI þ q − 1

R2

�
∇βYI; ð39Þ

where we used the fact that the internal manifold is
Einstein, Rαβ¼ðq−1Þ=R2gαβ. Because the YI

β and ∇βYI

form an orthonormal basis, setting the divergence to zero
requires setting each term in the sum individually to zero;
for each I, either the T’s must be zero or the terms in
parentheses must be zero. But the terms in parentheses are
only zero if a Lichnerowicz bound is saturated, and Killing
vectors and conformal scalars do not contribute to the sums
in Eq. (37). Therefore, ∇αTðαβÞ ¼ 0 if and only if TLT;I ¼
TLL;I ¼ 0 for all I.
As before, if the internal manifold is a product of

Einstein spaces, we can write the eigenvectors on the full
manifold as products of eigenvectors on each submanifold.
We will need to distinguish between diagonal blocks,
where both indices come from the same submanifold,
and off-diagonal blocks, where the indices come from
different submanifolds. For diagonal blocks, we define the
shorthand

YI
ðαiβiÞðyÞ≡ YI1ðy1Þ � � �YIi−1ðyi−1ÞYIi

ðαiβiÞðyiÞ
× YIiþ1ðyiþ1Þ � � �YIN ðyNÞ; ð40Þ

and for the off-diagonal blocks (i ≠ j), we define the
shorthand

YI
αiβj

ðyÞ≡ YI1ðy1Þ � � �YIi−1ðyi−1ÞYIi
αiðyiÞ

× YIiþ1ðyiþ1Þ � � �YIj−1ðyj−1ÞYIj
βj
ðyjÞ

× YIjþ1ðyjþ1Þ � � �YIN ðyNÞ:

A symmetric tensor field on a product manifold can
therefore be uniquely decomposed as

Tαiβi ¼
X
I

TI
igαβY

I þ TTT;I
i YI

ðαiβiÞ þ TLT;I
i ∇ðαiY

I
βiÞ

þ TLL;I
i ∇ðαi∇βiÞY

I

Tαiβj ¼
X
I

TTT;I
ij YI

αiβj
þ TLT;I

ij ∇αiY
I
βj
þ TTL;I

ij ∇βjY
I
αi

þ TLL;I
ij ∇ðαi∇βjÞY

I; ð41Þ

where the first line is for the diagonal blocks and the second
line is for off-diagonal blocks (i ≠ j). Decomposing the
off-diagonal blocks is akin to squaring the decomposition
of a vector—each index contributes a vector harmonic,
either T or L. Symmetry of Tαβ imposes the constraints

TTT;I
ij ¼ TTT;I

ji ; TLT;I
ij ¼ TTL;I

ji ; TLL;I
ij ¼ TLL;I

ji :

ð42Þ
The associated eigenvalues are

△LYI
ðαiβiÞ ¼

�X
k≠i

λIkk þ τIii

�
YI
ðαiβiÞ;

△L∇ðαiY
I
βiÞ ¼

�X
k≠i

λIkk þ κIii

�
∇ðαiY

I
βiÞ;

△L∇ðαi∇βiÞY
I ¼

�X
k

λIkk

�
∇ðαi∇βiÞY

I;

△LYI
αiβj

¼
�X

k≠i;j
λIkk þ κIii þ κ

Ij
j

�
YI
αiβj

;

△L∇αiY
I
βj
¼
�X

k≠j
λIkk þ κ

Ij
j

�
∇αiY

I
βj
;

and △L∇αi∇βjY
I ¼

�X
k

λIkk

�
∇αi∇βjY

I: ð43Þ

In breaking up the tensor field Tαβ like this, we have
identified N sub-traces Ti, one from each diagonal block.
Because the background solution is not uniform over the
whole internal manifold, just over the submanifolds indi-
vidually, it will be helpful to think of tracelessness as
subtracting off all N subtraces, rather than just subtracting
off the total trace.
As before, we can find combinations of longitudinal

subparts that are transverse on the whole internal manifold.
To see this, take the divergence of the part that remains after
removing the N subtraces:X
k≠i

∇αkTαkβi þ∇αiTðαiβiÞ

¼
X
I

�X
k≠i

λiT
LT;I
ki þ

�
1

2
κi þ

q − 1

R2
i

�
TTL;I
i

�
YI
βi

þ
�X

k≠i
λiT

LL;I
ki þ

�
q − 1

q
λi þ

q − 1

R2
i

�
TLL;I
i

�
∇βiY

I ¼ 0:

ð44Þ
Because the eigenbasis is orthonormal, enforcing trans-

versality of the traceless part of Tαβ is equivalent to
enforcing two conditions for each I:

X
k≠i

λkT
LT;I
ki ¼ −

�
1

2
κi þ

q − 1

R2
i

�
TTL;I
i ;

and
XN
k≠i

λkT
LL;I
ki ¼ −

�
q − 1

q
λi þ

q − 1

R2
i

�
TLL;I
i : ð45Þ

In total, a symmetric two-tensor is broken up into
N subtraces, 3 × N diagonal-block traceless tensors, and
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4 × NðN − 1Þ=2 off-diagonal tensors; transversality enfor-
ces 2N conditions.
Differential k-forms: The Hodge decomposition

theorem states that differential form fields can also be
broken up into a transverse and longitudinal part, and
that the transverse part can be further broken up into a
co-exact and a harmonic part. We will use superscripts
T for co-exact, L for longitudinal, and H for harmonic.
Define co-exact eigenvectors and eigenvalues of the
Lichnerowicz Laplacian, which for forms equals the
Hodge Laplacian, as

½ðdþ d†Þ2Yk�½α1���αk� ¼ △LY ½α1���αk� ¼ τðkÞY ½α1���αk� ð46Þ

where d†Yq ¼ 0. For q-spheres, τðkÞ ¼ −½ðlþ kÞ×
ðlþ q − 1 − kÞ − kþ k2�=R2. Because they are co-
exact, our Yk can be written as

Y ½α1���αk� ¼ ϵγ1���γq−kα1���αk∇γ1Y ½γ2���γq−k�: ð47Þ

In other words, we use the fact that dq⋆qYk ¼ 0 to write
Yk ¼ ⋆qdqYq−k, a useful relation for forms with
k > q=2. Harmonic eigenvectors satisfy

dYH
k ¼ d†YH

k ¼ ðdþ d†Þ2YH
k ¼ 0: ð48Þ

Harmonic eigenvectors have zero eigenvalue; co-exact
eigenvalues are all bounded from above.
Adifferential k-form field can be uniquely decomposed as

F½α1���αk�ðyÞ ¼
X
I

FT;IYI
½α1���αk�ðyÞ þ FL;I∇½α1Y

I
α2���αk�ðyÞ

þ FH;IYH;I
½α1���αk�ðyÞ: ð49Þ

As before, if the manifold is a product, we can write the
eigenvectors explicitly as a product of eigenvectors on the
submanifolds. The k indices of a k-form are distributed
amongst the N submanifolds; each submanifold contributes
an eigenvector with the appropriate number of indices to
the product, either T or L orH. Wewill write these products
in our usual shorthand, so that, for instance, the component
of a 4-form that has 2 longitudinal indices on the ith
manifold, 2 transverse indices on the jth, and none on the
rest, will be written as:

∇½α1;iY
I
α2;i�½β1;jβ2;j� ≡∇½α1;iY

Ii
α2;i�ðyiÞY

Ij
½β1;jβ2;j�ðyjÞ

YN
k≠i;j

YIkðykÞ:

ð50Þ

Because Maxwell’s equation Eq. (18) decouples from
gravity when the forms are “off-diagonal enough”—more
than one index coming from a different submanifold—we
will never need to write down the full decomposition
explicitly. All we will ever need are the decompositions

of “diagonal” blocks and “singly off-diagonal” blocks.
They are

Fα1;i���αk;i ¼
X
I

FT;I
i Y ½α1;i���αk;i� þ FL;I

i ∇½α1;iYα2;i���αk;i�

þ FH;I
i YH

½α1;i���αk;i� ð51Þ

Fβjα2;i���αk;i ¼
X
I

FTT;I
ji���iY ½α2;i���αk;i�βj þFTL;I

ji���i∇½α2;iYα3;i���αk;i�βj

þFTH;I
ji���i Y

H
½α2;i���αk;i�βj þFLT;I

ji���i∇βjY ½α2;i���αk;i�

þFLL;I
ji���i∇βj∇½α2;iYα3;i���αk;i� þFLH;I

ji���i ∇βjY
H
½α2;i���αk;i�;

ð52Þ
where we have used the fact that there are no harmonic
1-forms on a positive curvature manifold.
Also as before, we will be able to take the components

that are longitudinal on the submanifolds and construct
combinations that are transverse on the whole manifold.
To see this, take the divergence:X
j

∇βjFβjα2;i���αk;i

¼
X
I

�X
j≠i

λjF
LT;I
j þ 1

k − 1
τðk−1ÞFL;I

i

�
Y ½α2;i���αk;i�

þ
�X

j≠i
λjF

LL;I
j

�
∇½α2;iYα3;i���αk;i�

þ
�X

j≠i
λjF

LH;I
j

�
YH
½α2;i���αk;i�: ð53Þ

Because the basis is orthonormal, enforcing transversal-
ity on the whole manifold enforces three distinct conditions
for each I:

X
j≠i

λjF
LT;I
j ¼ −

1

k − 1
τðk−1ÞFL;I

i ;

X
j≠i

λjF
LL;I
j ¼ 0; and

X
j≠i

λjF
LH;I
j ¼ 0: ð54Þ

To be harmonic on the whole manifold, each term in the
product must be harmonic (zero-mode scalars count as
harmonic). This confirms the Künneth formula, which tells
us the kth Betti number bkðZÞ of a product manifold
Z ¼ Z1 × � � � × ZN

bkðZÞ ¼
X

k1���kN;
with k1þ���þkN¼k

bk1ðZ1Þ � � � bkN ðZNÞ: ð55Þ

B. Decomposing the fluctuations

We can now give the explicit decompositions of our
fluctuation fields hMN and Bq.
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Decomposition of the gravity fluctuations: For hMN it
will be helpful to pull off the N subtraces3 which we define
as hi.

hðαiβiÞ ¼ hαiβi −
1

q
higαiβi : ð56Þ

The hi can be thought of as controlling the radius and shape
of the Mq;i. It will also be helpful to shift the metric
fluctuations for the p extended dimensions by defining

Hμν ≡ hμν þ
1

p − 2

X
i

higμν: ð57Þ

This shift is the linearized version of the Weyl transform
that takes you to Einstein frame, and it will cancel the
contributions of the extra-dimensional curvature to the ðμνÞ
component of Einstein’s equation. Because we make this
shift, most of our results do not necessarily apply to the
p ¼ 2 case, where Einstein frame is not available; only
equations without any factors of Hμν remain valid when
p ¼ 2. Of course, we will pull off the trace4

HðμνÞ ¼ Hμν −
1

p
Hgμν: ð58Þ

We are now ready to present the decomposition of the
linearized fluctuations:

HðμνÞðx; yÞ ¼
X
I

HI
ðμνÞðxÞYIðyÞ;

Hðx; yÞ ¼
X
I

HIðxÞYIðyÞ;

hiðx; yÞ ¼
X
I

hIiðxÞYIðyÞ;

hμαiðx; yÞ ¼
X
I

CT;I
μ;i ðxÞYI

αiðyÞ þ CL;I
μ;i ðxÞ∇αiY

IðyÞ;

hðαiβiÞðx; yÞ ¼
X
I

ϕTT;I
i ðxÞYI

ðαiβiÞðyÞ þ ϕTL;I
i ðxÞ∇ðαiY

I
βiÞðyÞ

þ ϕLL;I
i ðxÞ∇ðαi∇βiÞY

IðyÞ;
hαiβjðx; yÞ ¼

X
I

θTT;Iij ðxÞYI
αiβj

ðyÞ þ θLT;Iij ðxÞ∇αiY
I
βj
ðyÞ

þ θTL;Iij ðxÞ∇βjY
I
αiðyÞ þ θLL;Iij ðxÞ∇αi∇βjY

IðyÞ:
ð59Þ

Components with both indices on the internal manifold
are decomposed as a symmetric 2-tensor, with ϕi referring
to diagonal blocks, and θij referring to off-diagonal blocks.
Components with a single index on the internal manifold

are decomposed like a vector, which we call Cμ. Finally,
components with both indices along the extended dimen-
sions are decomposed as scalars on the internal manifold.
When the internal manifold is a product of N q-spheres, the
eigenvector is indexed by a list of N angular momenta
I ¼ ðl1;…;lNÞ. For example, if I ¼ ðl1 ¼ 0;l2 ¼ 5Þ, hI1
corresponds to varying the size of the first sphere as you
move around the second, and hI2 corresponds to changing
the shape of the second sphere uniformly in the first.
Symmetry of the metric enforces

θTT;Iij ¼ θTT;Iji ; θLT;Iij ¼ θTL;Iji ; θLL;Iij ¼ θLL;Iji :

ð60Þ

(Most) of the gauge freedom can be fixed by enforcing
transversality part that remains after the subtraces have
been subtracted off:

XN
i¼1

∇αihαiμ ¼ 0 and
XN
i¼1

∇αihαiβj ¼
1

q
∇βjhj; ð61Þ

for a total of D gauge-fixing conditions.
This gauge choice enforces

XN
i¼1

λiC
L;I
μ;i ¼ 0; ð62Þ

XN
i¼1;i≠j

λiθ
LT;I
ij ¼ −

�
1

2
κj þ

q − 1

R2
j

�
ϕTL;I
j ; ð63Þ

XN
i¼1;i≠j

λiθ
LL;I
ij ¼ −

�
q − 1

q
λj þ

q − 1

R2
j

�
ϕLL;I
j : ð64Þ

If YI¼K
αj is a Killing vector, whose eigenvalue κI¼K

j ¼
−2ðq − 1Þ=R2

j saturates the Lichnerowicz bound, then
the right-hand side of Eq. (63) is zero; Killing vectors
satisfy Eq. (29), and therefore ϕTL;I¼K

j does not contribute
to hMN . Likewise, if YI¼C is a conformal scalar, whose
eigenvalue λI¼C

j ¼ −q=R2
j saturates the Lichnerowicz

bound on excited modes, then the right-hand side of
Eq. (64) is zero; conformal scalars satisfy Eq. (23), and
therefore ϕLL;I

j does not contribute to hMN .
How much gauge freedom is left? Under a linearized

gauge transformation, δhMN ¼ ∇MξNðx; yÞ þ∇NξMðx; yÞ,
so a diffeomorphism not fixed by our gauge choice must
satisfy

δ

�XN
i¼1

∇αihαiβj −
1

q
∇βjhj

�
¼ 0

⇒
X
i

2∇αi∇ðαiξβjÞðx; yÞ ¼ 0; ð65Þ
3Let us slip in a quick reminder here that parentheses not only

symmetrize, but they also trace-subtract.
4Reminding you again here might be overkill.
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δ

�XN
i¼1

∇αihμαi

�
¼ 0 ⇒ □yξμðx; yÞ

þ∇μ

XN
i¼1

∇αiξαiðx; yÞ ¼ 0: ð66Þ

The first equation is solved by ξαðx; yÞ ¼ ϕðxÞ × VαðyÞ,
where VαðyÞ is either a constant, a Killing vector YI¼K

α , or
the gradient of a conformal scalar ∇αYI¼C. If Vα is either a
constant or a Killing vector, then the second equation is
solved when ξμðx; yÞ ¼ ψμðxÞYI¼0ðyÞ; if Vα is the diver-
gence of a conformal scalar, then the second equation is
solved by ξμðx; yÞ ¼ ∇μϕðxÞYI¼CðyÞ.
Thismeans that there is residual, unfixed gauge invariance

for the zero-mode sector, the Killing-vector sector, and the
conformal-scalar sector. For the zero-mode sector, this extra
gauge invariance shifts δhI¼0

μν ¼ ð∇μψν þ∇νψμÞYI¼0; we
find linearized diffeomorphism invariance for hI¼0

μν , which
allows for the existence of a massless p-dimensional
graviton. For the Killing-vector sector, this extra gauge
invariance shifts δCI¼K

μ ¼ ∇μϕðxÞYI¼K; we find linearized
U(1) gauge invariance, which allows for the existence of a
massless vector field for every Killing vector. Finally, for the
conformal-scalar sector, the extra gauge invariance shifts
δhI¼C

i ¼ 2λI¼CϕðxÞYI¼C. This is our first indication that
conformal scalars will require special treatment. Wewill see
below that, for the conformal-scalar sector, wewill be able to
construct a singlegauge invariant combinationof gravity and
form field fluctuations.
Decomposition of the form field fluctuations: Maxwell’s

equation only couples to gravity when all but one index is
from the same submanifold, and we will therefore only
need explicit decompositions for those modes:

Bα2;i���αq;iðx; yÞ ¼
X
I

bT;Ii ðxÞYI
½α2;i���αq;i�ðyÞ

þ bL;Ii ðxÞ∇½α2;iY
I
α3;i���αqi �

ðyÞ;
Bβjα3;i���αq;iðx; yÞ ¼

X
I

βTT;Iji���iðxÞYI
½α3;i���αq;i�βjðyÞ

þ βTL;Iji���iðxÞ∇½α2;iY
I
α3;i���αq;i�βjðyÞ

þ βTH;I
ji���i ðxÞYH;I

½α3;i���αq;i�ðyÞ
þ βLT;Iji���iðxÞ∇βjY

I
½α2;i���αq;i�ðyÞ

þ βLL;Iji���i ðxÞ∇βj∇½α2;iY
I
α3;i���αqi �

ðyÞ
þ βLH;I

ji���i ðxÞ∇βjY
H;I
½α2;i���αq;i�ðyÞ;

Bμα1;i���αq−2;iðx; yÞ ¼
X
I

bT;Iμ;i ðxÞYI
½α1;i���αq−2;i�ðyÞ

þ bL;Ii ðxÞ∇½α1;iY
I
α2;i���αq−2;i�ðyÞ

þ bH;I
μ;i ðxÞYH;I

½α1;i���αq−2;i�ðyÞ: ð67Þ

The components with no indices onMp are decomposed as
ðq − 1Þ-forms; we have used the notation bi for diagonal
blocks and βji���i for singly off-diagonal blocks. The
components with one index on Mp are decomposed as
ðq − 2Þ-forms; they are vectors from the perspective of
the Mp.
(Most) of the gauge freedom can be fixed by enforcing

transversality:

XN
k¼1

∇βkBβkα2;j���αq−1;j ¼ 0;
XN
k¼1

∇βkBβkμα3;j���αq−1;j ¼ 0;

ð68Þ

and; more generally; d†NqB ¼ 0: ð69Þ

For a total of Dq−2 gauge fixing conditions. These con-
ditions enforce

XN
k¼1;k≠j

λkβ
LT;I
ji���i ¼ −

1

q − 1
κjb

L;I
j ; ð70Þ

XN
k¼1;k≠j

λkβ
LL;I
ji���i ¼ 0; ð71Þ

XN
k¼1;k≠j

λkβ
LH;I
ji���i ¼ 0: ð72Þ

How much gauge invariance is left? Our gauge choice
does not touch the sector proportional to harmonic forms;
there is therefore enough residual gauge invariance to
account for a massless excitation for every harmonic k-
form. (There is a trivial constant harmonic q-form on
each q-dimensional Mq;i, and the bT;I¼0

i therefore have
residual gauge invariance. However, because the equa-
tions of motion depend only on f ¼ dB, the zero-mode
fluctuation bT;I¼0

i never appears; there is no physical
zero-mode fluctuation of f because such a mode would
change the number of flux lines, which is a conserved
quantity.)
Finally, we can return to the question of the extra

gauge invariance in the conformal-scalar sector. Notice
that FM1���Mq

shifts under linearized diffeomorphisms,
and in particular that under residual conformal-scalar
gauge invariance, Fα1;i���αq;iϵ

α1;i���αq;i→ciþbT;I¼C
i ϕðxÞYI¼C.

Perturbing a sphere by its l ¼ 1 mode shifts the sphere
to the left, leaving the metric invariant; if the flux moves
with it, that mode is gauge. On the other hand, if the
sphere shifts left while the flux sloshes right, that is a
physical perturbation of the background. The combina-
tion hI¼C

i − 2λI¼CbT;I¼C
i =ci is the one gauge invariant

combination of hI¼C
i and bT;I¼C

i ; it corresponds to
sloshing the flux in the opposite direction to the shift
of the sphere.
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C. Equations of motion for the fluctuations

Now we can get to work. In this subsection, we plug the
decompositions given above—Eqs. (59) and (67)—into the
first-order equations of motion—Eqs. (15) and (18).
Because the Lichnerowicz eigenbasis is orthonormal, the
components of the equations that lie along each eigenvector
must be true separately. We will use □x ¼ ∇μ∇μ as the
Laplacian on the p extended dimensions and △y as the
Lichnerowicz operator on the Nq internal dimensions; we
will also use △k as the Lichnerowicz operator restricted
to the kth submanifold, Mq;k. We also define MaxTμ ≡
□xTμ −∇ρ∇μTρ as the Maxwell operator acting on vectors
onMp—acting on a divergence-free vector, it could equally
well be written as △x.
From the ðμ; νÞ sector of Einstein’s equation, we get�
Rμν

ð1ÞðHI
ρσÞ −

1

2
□yHI

μν −
p − 1

L2
HI

μν þ Agμν

�
YI ¼ 0;

ð73Þ
where Rμν

ð1ÞðHI
ρσÞ is the linearized Ricci tensor for only

the extended p dimensions, and we have defined the
quantity A as

A≡XN
k¼1

�
1

2

1

p − 2

�
□x þ□y þ 2

p − 1

L2

�
hIk

−
1

2

q − 1

D − 2
c2k

�
hIk −

2

ck
□kb

T;I
k

��
: ð74Þ

From the ðμ; αiÞ sector of Einstein’s equation, we get��
Maxþ△y þ 2

p − 1

L2

�
CT;I
μ;i

þ△i

�
cib

T;I
μ;i −

1

q − 1
∇μcib

L;I
i

��
YI
αi ¼ 0; ð75Þ

and��
Maxþ△y þ 2

p − 1

L2

�
CL;I
μ;i −∇ρHI

ρμ

þ∇μ

�
HI −

1

p − 2

XN
k¼1

hIk −
1

q
hIi þ cib

T;I
i

��
∇αiY

I ¼ 0:

ð76Þ

From the ðαi; βiÞ sector of Einstein’s equation, we get��
□x þ△y þ 2

q − 1

R2
i

�
ϕTT;I
i

�
YI
ðαiβiÞ ¼ 0; ð77Þ

��
□x þ△y þ 2

q − 1

R2
i

�
ϕTL;I
i − 2∇μCT;I

μ;i

�
∇ðαiY

I
βiÞ ¼ 0;

ð78Þ

��
□x þ□y þ 2

q − 1

R2
i

�
ϕLL;I
i

þ
�
HI −

2

p − 2

XN
k¼1

hIk −
2

q
hIi − 2∇μCL;I

μ;i

��

×∇ðαi∇βiÞY
I ¼ 0; ð79Þ

and

��
□x þ□y þ 2

q − 1

R2
i

�
hIi

þ□i

�
HI −

2

p − 2

XN
k¼1

hIk −
2

q
hIi − 2∇μCL;I

μ;i

�

− qðc2i hIi − 2□icib
T;I
i Þ

þ q
q − 1

D − 2

XN
k¼1

ðc2khIk − 2□kckb
T;I
k Þ
�
gαiβiY

I ¼ 0: ð80Þ

Finally, from the ðαi; βjÞ, with i ≠ j, sector of Einstein’s
equation, we get

��
□x þ△y þ 2

p − 1

L2

�
θTT;Iij þ△jcjβ

TT;I
ij���j þ△iciβ

TT;I
ji���i

�
× YI

αiβj
¼ 0; ð81Þ

��
□x þ△y þ 2

p − 1

L2

�
θLT;Iij −∇μCT;I

μ;j

þ△j

�
cjβ

LT;I
ij���j −

1

q − 1
cjb

L;I
j

��
∇αiY

I
βj
¼ 0; ð82Þ

and

��
□x þ△y þ 2

p − 1

L2

�
θLL;Iij

þ 1

2

�
HI −

2

p − 2

XN
k¼1

hIk −
2

q
hIi − 2∇μCL;I

μ;i

�

þ 1

2

�
HI −

2

p − 2

XN
k¼1

hIk −
2

q
hIj − 2∇μCL;I

μ;j

�

þ cib
T;I
i þ cjb

T;I
j

�
∇αi∇βjY

I ¼ 0: ð83Þ

Of Maxwell’s equation, we only require the diagonal and
singly off-diagonal components. From the ðβ2;i;…; βq;iÞ
sector (after contracting with ϵαi

β2;i���βq;i ) we get
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�
ð□x þ△yÞcibT;Ii

þ c2i
2

�
H −

2

p− 2

XN
k¼1

hIk −
2

q
hi − 2∇μCL;I

μ;i

�
−
q− 1

q
c2i h

I
i

þ c2i

�
q− 1

q
△i þ

q− 1

R2
i

�
ϕLL;I
i

�
∇αiY

I ¼ 0; ð84Þ

and

�
△i∇μ

�
cib

T;I
μ;i −

1

q − 1
∇μcib

L;I
i

�

−
△i

q − 1
△ycib

L;I
i − c2i∇μCT;I

μ;i

þ c2i

�
1

2
△i þ

q − 1

R2
i

�
ϕTL;I
i

�
YI
αi ¼ 0: ð85Þ

From the ðμ; γ3;i;…; γq;iÞ sector (after contracting with
ϵαiβi

γ3;i���γq;i) we get

�
ðMaxþ△yÞ

�
cib

T;I
μ;i −

1

q − 1
∇μcib

L;I
i

�
− c2i C

T;I
μ;i

�
×∇½αiY

I
βi� ¼ 0; ð86Þ

½ðMaxþ△yÞcibL;Iμ;i − ðq − 2Þ∇νcib
T;I
μν �YI

½αiβi� ¼ 0; ð87Þ

and

½ðMaxþ△yÞbH;I
μ;i �YH;I

½αiβi� ¼ 0: ð88Þ

Finally, from the ðαi; γ3;j;…; γq;jÞ sector (after con-
tracting with ϵβjδj

γ3;i���γq;i) we get

½ð□x þ△yÞcjβTT;Iij���j − c2jθ
TT;I
ij �∇½βjYδj�αi ¼ 0; ð89Þ

½ð□x þ△yÞcjβLT;Iij���j − cj∇μbT;Iμ;j − c2jθ
LT;I
ij �∇αi∇½βjYδj� ¼ 0;

ð90Þ

½ð□x þ△yÞβTL;Iij���j − ðq − 2Þ∇μβTT;Iμ;ij���j�YI
½βjδj�αi ¼ 0; ð91Þ

�
ð□x þ△yÞβLL;Iij���j − ðq − 2Þ∇μ

�
βLT;Iμ;ij���j −

1

q − 2
bL;Iμ;j

��
×∇αiY

I
½βjδj� ¼ 0; ð92Þ

½ð□x þ△yÞβTH;I
ij���j �YH;I

½βjδj�αi ¼ 0; ð93Þ

and

½ð□x þ△yÞβLH;I
ij���j −∇μbH;I

μ;j �∇αiY
H;I
½βjδj� ¼ 0: ð94Þ

For the components that are more off-diagonal, the
equation of motion can be written as

d†dBq−1 ¼ ð△x þ△y − dd†pÞBq−1 ¼ 0; ð95Þ

where we have exchanged the d and d† and used the
gauge-fixing condition d†NqBq−1 ¼ 0. Equations (88) and
(91)–(94) are of precisely this form because they are
decoupled from metric fluctuations.
Our two partial differential equations have been broken

up into many ordinary differential equations—bite-sized
pieces we will devour in Sec. V.

V. THE SPECTRUM AND STABILITY

Equations (73)–(95) are now ordinary, coupled, second-
order differential equations for the fluctuations. The last
step in finding the spectrum of our compactification will be
to diagonalize, which brings the equations into the appro-
priate form for massive scalars, vectors, gravitons, and
k-forms—

□xϕðxÞ ¼ m2ϕðxÞ;
MaxVμðxÞ ¼ m2VμðxÞ and ∇μVμ ¼ 0;

□xTμνðxÞ ¼
�
m2 −

2

L2

�
TμνðxÞ;

∇μTμν ¼ 0 and Tμ
μ ¼ 0;

△xFk ¼ m2Fk and d†pFk ¼ 0 ð96Þ

—from which we can read off the masses.
In Sec. VA, we will first look at the zero-mode sector,

where we will find a massless graviton and the equation of
motion for the radii of the N internal manifolds. This latter
equation is where the total-volume instability appears;
we will show that as in the N ¼ 1 case, there is a range
of vacua for which this mode is explicitly stabilized. In
Sec. V B, we will look at the coupling of the diagonal
scalars hi and the bTi . It is here that the lumpiness instability
appears; we will show that as in the N ¼ 1 case, compac-
tifications involving 2-and 3-spheres are always stable, but
compactifications involving higher spheres can have insta-
bilities. In Sec. V C, we will look at the scalars that come
from off-diagonal components—the ϕi, the θij and the
βij���j modes. This is the sector where the cycle-collapse
instability appears. In Sec. V D, we discuss the coupling of
the graviphotonCμ to the one-form fluctuations bμ. We find
a massless vector for each Killing vector of the internal
manifold, plus extra massless vectors for each harmonic
2-form; the other vector fluctuations are all massive. In
Sec. V E, we find massive tensor fluctuations whose mass
is always above the Higuchi bound for consistent
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propagation of a massive graviton [29]. Finally, in Sec. V F,
we find the masses of the remaining form fluctuations,
which are decoupled from gravity. Threats to stability arise
only in Sec. VA and Sec. V B.

A. The Zero-mode sector

Let us first look at the zero modes, the equations of
motion proportional to YI¼0. These are Eqs. (73) and (80)
with all the y-derivatives set to zero, which can be written:

Rð1Þ
μν ðHI¼0

ρσ Þ − p − 1

L2
HI¼0

μν ¼ 0; ð97Þ

and

□xhI¼0
i ¼

�
qc2i − 2

q − 1

R2
i

�
hI¼0
i − q

q − 1

D − 2

XN
k¼1

c2kh
I¼0
k ;

ð98Þ

where Rð1Þ
μν ðHρσÞ is the linearized Ricci tensor just for the p

extended dimensions, and the superscript I ¼ 0 denotes the
zero mode.
Equation (97) is the equation for a massless spin-2

particle propagating on a maximally symmetric spacetime
with radius of curvature L. The transverse and traceless part
of Eq. (97) can be written

□xHI¼0
ðμνÞ ¼ −

2

L2
HI¼0

ðμνÞ: ð99Þ

A massless graviton propagating on a curved background
has an apparent mass of −2=L2 [3,30]. Together with
the surviving diffeomorphism invariance for the zero
mode demonstrated in Sec. IV B, we find the expected
p-dimensional massless graviton.
Equation (98) is the equation of motion for small

fluctuations in the radii of the N submanifolds. It is here
that the total-volume instability is found. Before discussing
the case of general N, let us return briefly to N ¼ 1.

1. The N ¼ 1 zero-mode sector

We can solve the background equations of motion
Eqs. (10) and (11) to get:

c2R2 ¼ 2ðD − 2Þðq − 1Þ
p − 1

−
R2

p − 1
ð4ΛÞ: ð100Þ

In Fig. 4, cR is plotted as a function of R. When Λ ¼ 0, cR
is a constant; when Λ < 0, cR grows with R; and when
Λ > 0, cR falls and hits 0 at a finite value of R. This
solution with cR ¼ 0 and R > 0 is the uncharged Nariai
solution. Independent of Λ, when R goes to zero, cR
approaches the same constant. This solution, which we dub
the “nothing state” in [22], is so overwhelmed by curvature

and flux density that the effects of nonzero Λ are incon-
sequential. The background equations of motion also tell us
that Mp is de Sitter when

de Sitter∶ c2R2 < 2ðq − 1Þ: ð101Þ

Now let us consider zero-mode fluctuations about this
background. There is a single fluctuation hI¼0, which can
be identified with fluctuations in the total volume of the
internal manifold. Its equation of motion is

□xhI¼0 ¼ 1

R2

�
−2ðq − 1Þ þ qðp − 1Þ

D − 2
c2R2

�
hI¼0: ð102Þ

The zero-mode therefore has a positive mass whenever

zero-mode stability∶ c2R2 > 2
q − 1

q
D − 2

p − 1
: ð103Þ

Comparing this zero-mode stability condition Eq. (103)
against the de Sitter condition in Eq. (101) shows that all
AdS and Minkowski vacua are stable against zero-mode
fluctuations—indeed these fluctuations always have pos-
itive mass. When Λ > 0, some de Sitter solutions are stable
and some are unstable. The stable de Sitter solutions
correspond to the small-volume minima of the effective
potential in Fig. 1, and unstable de Sitter solutions
correspond to the large-volume maxima. The zero-mode
instability of the Nariai solution is precisely the negative
mode identified in [31] that leads to the nucleation of
extremal black (p − 2)-branes in de Sitter space.

2. The N ≥ 2 zero-mode sector

We can solve the background equations of motion
Eqs. (10) and (11) to get:

FIG. 4 (color online). A plot of c2R2 vs. R2 for N ¼ 1. When
Λ ¼ 0, c2R2 is constant; when Λ < 0, c2R2 is a growing function
of R2; when Λ > 0, c2R2 falls and hits zero at a finite value of R2.
For any Λ, the state with R ¼ 0 is called the nothing state and has
the same value of c2R2. The state with c2R2 ¼ 0 and R > 0
(meaning c ¼ 0) is called the Nariai solution. Also plotted are the
conditions for having a de Sitter compactification, and for
stability against zero-mode perturbations.
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c2i R
2
i ¼

2ðD − 2Þðq − 1Þ
D − q − 1

−
R2
i

D − q − 1

�
4Λ − ðq − 1Þ

XN
k¼1;k≠i

c2i

�
: ð104Þ

This formula is analogous to Eq. (100), except for the new
term which accounts for the contribution of the flux around
the other submanifolds involved in the compactification.
Flux wrapped around the other submanifolds has the same
impact on ciRi as a negative contribution to the cosmo-
logical constant. The background field equations also tell
us that Mp is de Sitter when

de Sitter∶ c2i R
2
i < 2ðq − 1Þ; ð105Þ

if this equation is satisfied for any i, then it is necessarily
satisfied for all i. Every choice of a set of ci ’s corresponds
to a solution to the background equations of motion, but
some of these solutions have negatively curved internal
manifolds with R−2

i < 0. Excluding these hyperbolic sol-
utions restricts the allowed range of ci ’s to

R−2
i ≥ 0∶ c2i ≥ −2

p − 1

L2
¼ q − 1

D − 2

XN
k¼1

c2k −
4

D − 2
Λ:

ð106Þ
Finally, a special case of interest is when all the ci are

equal, ci ¼ c, and consequently all the Ri are equal,
Ri ¼ R; in this case the entire internal manifold is an
Einstein manifold. The solution to the background equa-
tions of motion can, in this special case, be written as:

c2R2jci¼c ¼
2ðD − 2Þðq − 1Þ

pþ N − 2
−

R2

pþ N − 2
ð4ΛÞ: ð107Þ

Now let us consider zero-mode fluctuations about this
background. We can write the zero-mode equation Eq. (98)
out more explicitly as:

□xhI¼0
i ¼

XN
j¼1

MijhI¼0
j ; ð108Þ

where Mij is an N × N matrix given by

Mij ¼

2
6664
0
BBB@

qc21 − 2 q−1
R2
1

0 0

0 . .
.

0

0 0 qc2N − 2 q−1
R2
N

1
CCCA

− q
q − 1

D − 2

0
BB@

c21 � � � c2N

..

. . .
. ..

.

c21 � � � c2N

1
CCA
3
775: ð109Þ

To check stability, we need to confirm that all of the
eigenvalues of this N × N matrix are positive or, if the
solution is AdS, that they are less negative than the BF
bound. We will show that the zero-mode sector of the
N > 1 case is qualitatively similar to the N ¼ 1 case.
In particular, we will show:

(i) All AdS and Minkowski compactifications are
stable—indeed all N zero-mode fluctuations have
positive mass.

(ii) There is a range of stable de Sitter vacua.
Our proof strategywill be as follows:wewill first identify a

friendly solution anddemonstrate that all of the eigenvalues of
Mij for this solution are positive. Then, to prove that another
solution with a certain set of ci ’s is stable, we will find a path
through ci space with a positive-definite determinant that
connects this solution to the friendly one. This will prove that
the solution is stable because if we start with all positive
eigenvalues, and we keep the determinant positive as we
move, then we must end with all positive eigenvalues.

Friendly solution: Einstein internal manifold, ci ¼ c.—Our
friendly solutions are ones for which the internal manifold
is an Einstein manifold—all of the ci are equal, ci ¼ c, and
all of the Ri are equal, Ri ¼ R. We can find the eigenvectors
and eigenvalues of Mij exactly for these solutions. The
eigenvalues are

m2 ¼ 1

R2

�
−2ðq − 1Þ þ qðpþ N − 2Þ

pþ Nq − 2
c2R2

�
;

withmultiplicity 1;

m2 ¼ 1

R2
ð−2ðq − 1Þ þ qc2R2Þ; withmultiplicityN − 1:

ð110Þ
The first eigenvalue corresponds to the eigenvector where all
of the hI¼0

i fluctuate in unison,
P

hI¼0
i , and other N − 1

eigenvalues corresponds to the N − 1 volume-preserving
fluctuations, such as hI¼0

1 − hI¼0
2 , hI¼0

1 þ hI¼0
2 − 2hI¼0

3 , and
soon.Of these eigenvalues, the total volume fluctuationgoes
unstable first, and it goes unstable precisely when Eq. (103)
is satisfied. There is a range of stable de Sitter minima with

2ðq − 1Þ
q

pþ Nq − 2

pþ N − 2
< c2R2 < 2ðq − 1Þ: ð111Þ

Paths with positive determinant.—Weare interested inpaths
through ci space that originate at this friendly solution and
preserve positivity of the eigenvalues. Such paths have
positive definite determinants. To find them, we will use
the matrix determinant lemma, which states that if A is an
N × N matrix and U and V are N × 1 column vectors, then

detðAþUVTÞ ¼ detðAÞð1þ VTA−1UÞ: ð112Þ

Mij is of precisely this form, with
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A ¼

0
BBB@

qc21 − 2 q−1
R2
1

0 0

0 . .
.

0

0 0 qc2N − 2 q−1
R2
N

1
CCCA;

U ¼

0
B@

1

..

.

1

1
CA; V ¼ −q

q − 1

D − 2

0
BB@

c12

..

.

c2N

1
CCA: ð113Þ

The determinant of Mij therefore is

detðMijÞ ¼
XN
i¼1

�� YN
k¼1;k≠i

qc2kR
2
k − 2ðq − 1Þ
Rk

2

�
1

NR2
i

×

�
qðpþ N − 2Þ
pþ Nq − 2

c2i R
2
i − 2ðq − 1Þ

��
: ð114Þ

Zeroes of the determinant are catastrophes of the effective
potential, where two or more extrema merge and annihilate.
A sufficient condition to prove detðMijÞ > 0 is that

c2kR
2
k > 2

q − 1

q
pþ Nq − 2

pþ N − 2
∀ k: ð115Þ

As long as Eq. (115) is true, all the terms in the product are
positive and the term in square brackets is positive, so the
sum is definitely positive. This proves that the entire strip
where, for all i,

2ðq − 1Þ
q

pþ Nq − 2

pþ N − 2
< c2i R

2
i < 2ðq − 1Þ ð116Þ

corresponds to de Sitter minima that are stable to zero-
mode fluctuations. Because Eq. (115) is not a necessary
condition for positivity of the determinant, there are other
stable dS minima as well.

B. Coupled diagonal scalars

Now let us look at the diagonal scalars hIi and b
T;I
i , which

also couple to θLL;Iij . This is the sector where the lumpiness
instability lives. Notice that HI never appears dynamically,
so Eq. (79) is a constraint that we can use to eliminate HI .
However, because Eq. (79) is proportional to ∇ðαiY

I
βiÞ, it is

automatically satisfied in the conformal-scalar sector andwe
cannot use it to eliminateHI¼C. Instead, to eliminate HI¼C,
we can use Eq. (84). It will be helpful to work in terms of
these combinations:

h̄Ii ¼ hIi − 2λi
bT;Ii

ci

b̄T;Ii ¼ bT;Ii −
1

2
ciϕ

LL;I
i

θ̄LL;Tij ¼ θLL;Tij −
bT;Ii

ci
−
bT;Ij

cj
: ð117Þ

In the conformal-scalar sector I ¼ C, h̄I¼C
i is the gauge-

invariant combination we identified in Sec. IV B.
In terms of the barred variables, Eqs. (80), (84) and (83)

can be written

□xh̄Ii ¼
�
−
XN
k¼1

λIk

�
h̄Ii þ

XN
j¼1

Mijh̄Ij − 2
q − 1

q
λIi h̄

I
i

−
4

c2i

q − 1

q
λIi

�
λIi þ

q
R2
i

�
cib̄

T;I
i ; ð118Þ

□xcib̄
T;I
i ¼

�
−
XN
k¼1

λIk

�
cib̄

T;I
i þ c2i

q − 1

q
h̄Ii

þ 2
q − 1

q
λIi cib

T;I
i ; ð119Þ

□xθ̄
LL;I
ij ¼

�
−
XN
k¼1

λIk − 2
p − 1

L2

�
θ̄LL;Iij

þ q − 1

q

�
h̄Ii þ 2λi

b̄T;Ii

ci
þ h̄Ij þ 2λj

b̄T;Ij

cj

�

þ 2
q − 1

R2
i

b̄T;Ii

ci
þ 2

q − 1

R2
j

b̄T;Ij

cj
: ð120Þ

For the first and third equations, we used Eq. (84) to
eliminate HI; only for the middle equation did we use the
constraint. Therefore: Eq. (118) is applicable in all sectors;
Eq. (119) is not applicable in the zero-mode sector or the
conformal-scalar sector, because in either case b̄i is not a
dynamical fluctuation; and Eq. (120) is only applicable
when both λIi and λIj are excited, because otherwise θ

LL;I
ij is

not a physical fluctuation of hαβ. Notice that the last term in
Eq. (118), which couples h̄Ii to b̄T;Ii , goes to zero for either
zero modes (with λI¼0

i ¼ 0) or conformal scalars (with
λI¼C
i ¼ −q=R2

i ), which is consistent with the fact that b̄T;Ii
is nondynamic in those two sectors.
First let us review how things worked in the N ¼ 1 case.

1. The N ¼ 1 coupled diagonal scalar sector

The N ¼ 1 case was studied in [5,6] and restudied in
[32]. This case is simple: there are no θij terms, just a
system of two coupled fields b̄I and h̄I ¼ hI − 2λbI=c
associated with a single eigenvalue λI . The equations of
motion for these two fields, can be written as

□x

�
h̄

cb̄

�
¼
�
1

R2

�
−q q−1

D−2 c
2R2 0

0 0

�
þ A

��
h̄

cb̄

�
;

ð121Þ

where we have defined the 2 × 2 matrix A by
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A ¼ 1

R2

 
−R2λI − 2ðq − 1Þ þ qc2R2 − 2 q−1

q R2λI − 4
c2R2

q−1
q R2λIðR2λI þ qÞ

q−1
q c2R2 −R2λI þ 2 q−1

q R2λI

!
: ð122Þ

(This—admittedly bizarre—way of writing it will be
helpful when we move to N > 1.) When λI ¼ 0 or when
λI ¼ −q=R2, only h̄ is dynamic and it decouples from b̄;
we can write the equation of motion out explicitly in those
two cases as:

□xh̄I¼0 ¼ 1

R2

�
−2ðq − 1Þ þ qðp − 1Þ

D − 2
c2R2

�
h̄I¼0; ð123Þ

□xh̄I¼C ¼ 1

R2

�
qþ qðp − 1Þ

D − 2
c2R2

�
h̄I¼C: ð124Þ

Equation (123) is the zero-mode equation studied in the
previous subsection. Zero-mode stability corresponds to

l ¼ 0 stability∶ c2R2 > 2
q − 1

q
D − 2

p − 1
: ð125Þ

Equation (124) is the formula for the single physical mode
in the conformal-scalar sector (it is the l ¼ 1 mode where
flux sloshes to one side of the sphere); this mode has
positive mass for all N ¼ 1 compactifications. To find the
masses of the higher modes, we need to compute the
eigenvalues of the 2 × 2 matrix in Eq. (121).
Let us first consider the case whereMp is de Sitter. In this

case, stability means that all the fluctuations need to have
m2 > 0. The condition that the eigenvalues of the 2 × 2
matrix are both positive is

higher l; m2 > 0∶ c2R2 <
lðlþ q − 1Þ − 2qþ 2

q − 2

D − 2

p − 1
;

ð126Þ

where we use λI ¼ −lðlþ q − 1Þ=R2. For q ¼ 2, this
inequality is automatic, so all higher-mode fluctuations
have a positive mass when q ¼ 2. For larger q, this is an
increasing function of l; this means that as you raise c from
the Nariai solution (with c ¼ 0), the first excited mode to
develop a negative mass has l ¼ 2, then l ¼ 3, and so on.
It also means that the worst-case mode for shape-stability is
l ¼ 2, for which

l ¼ 2; m2 > 0∶ c2R2 <
4

q − 2

D − 2

p − 1
: ð127Þ

To determine the stability of a de Sitter vacuum, there are
two relevant inequalities. First, cRmust satisfy Eq. (125) to
evade the total-volume zero-mode instability; second, cR
must satisfy Eq. (127) to evade the l ¼ 2 instability. [In
order to be de Sitter at all cR, must satisfy Eq. (101).]

Taking p ≥ 3, we find: for q ¼ 2 or q ¼ 3, de Sitter vacua
are only ever unstable to the l ¼ 0 mode; for q ¼ 4,
solutions with cR near the Minkowski value have an l ¼ 2
instability, and solutions with small cR have an l ¼ 0
instability, but there is an island of stability in between; for
q ≥ 5, that island is engulfed and all de Sitter solutions are
unstable either to l ¼ 0 or l ¼ 2 fluctuations. These
results are summarized in Fig. 2.
Next, let us consider the case where Mp is AdS. In this

case, stability means that all the fluctuations have mass
squareds that are no more negative than the BF bound [12]:

m2 > m2
BF ≡ 1

4

ðp − 1Þ2
L2

¼ p − 1

8

1

R2
ð2ðq − 1Þ − c2R2Þ:

ð128Þ

The case with Λ ¼ 0 (or for any value of Λ with c → ∞)
has simple eigenvalues: cR is given by

c2R2jΛ¼0 ¼
2ðD − 2Þðq − 1Þ

p − 1
; ð129Þ

and the eigenvalues of the 2 × 2 matrix in Eq. (121) are

m2 ¼ lðl − qþ 1Þ
R2

and

m2 ¼ ðlþ q − 1Þðlþ 2q − 2Þ
R2

: ð130Þ

The second eigenvalue is always positive for all l ≥ 2; the
first eigenvalue is negative whenever l < q − 1, and is
most negative when l ¼ ðq − 1Þ=2. We need to compare
these negative mass squareds to the BF bound which, for
this value of cR, corresponds to

m2
BF ¼ −

ðq − 1Þ2
4

1

R2
: ð131Þ

When the first eigenvalue is at its most negative,
l ¼ ðq − 1Þ=2, it exactly saturates the BF bound; all other
fluctuations are above the bound. This critical value of l is
only present in the spectrum when q is odd and bigger than
4. (If q is even, the critical value of l is not in the spectrum,
and if q ≤ 3 it corresponds to l ≤ 1, which is where the
modes require special treatment because of residual gauge
invariance.) In summary, when Λ ¼ 0, all fluctuation
modes are stable. When q is odd and bigger than 4, there
is a mode that lies exactly at the BF bound, but otherwise all
modes are above the bound.
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To complete our survey of the N ¼ 1 case, we need to
study the case when Λ ≠ 0. The c → ∞ nothing state has
the same value of cR and the same eigenvalues as in the
Λ ¼ 0 case, so let us start there and consider lowering c.
When Λ < 0, lowering c only makes shape modes more
stable, so all Λ ≤ 0 compactifications are stable. When
Λ > 0, however, lowering c makes shape modes less
stable and those modes that were previously near the BF
bound can get pushed under, into the unstable regime.
For odd q > 4, there was a mode exactly at the BF
bound when c was infinite and it immediately goes
unstable as you lower c; instability persists for all values
of c. For even q > 3, there was no mode at the BF
bound, so as you lower c from infinity there is a window
of stability before any mode goes unstable: these stable
vacua are deep AdS minima. When q ¼ 3, some modes
have a negative mass squared, but it is always above the
BF bound and the vacua are always stable; when q ¼ 2,
all fluctuation modes always have a positive mass.

In summary:
(i) The zero-mode is stable for all AdS solutions, as

well as for a range of dS solutions.
(ii) When q ¼ 2, all higher-mode fluctuations have

positive mass, for any Λ.
(iii) When q ¼ 3, all higher-mode fluctuations have a

stable mass squared, for any Λ.
(iv) When Λ ≤ 0, even for q ≥ 3, all higher-mode

fluctuations have a stable mass squared.
(v) When Λ > 0 and q ≥ 4, most vacua are unstable.

For more details, see Fig. 2.

2. The N ≥ 2 coupled diagonal scalar sector

We will show that for N ≥ 2, like for N ¼ 1, all shape
modes of q ¼ 2 and q ¼ 3 compactifications are stable but
that, unlike for N ¼ 1, instabilities can appear for q ≥ 4
even when Λ ≤ 0.
The fluctuation equations of motion, Eqs. (118)-(120),

can be written as

□x

0
BBBBBBBBBB@

h̄I1
c1b̄

T;I
1

..

.

h̄IN
cNb̄

T;I
N

θ̄LL;Iij

1
CCCCCCCCCCA

¼

0
BBBBBBBBB@

S 0

K
�
λtot − 2 p−1

L2

	
I

1
CCCCCCCCCA

0
BBBBBBBBBB@

h̄I1
c1b̄

T;I
1

..

.

h̄IN
cNb̄

T;I
N

θ̄LL;Iij

1
CCCCCCCCCCA
; ð132Þ

where S is an 2N × 2N matrix that reproduces the cou-
plings in Eqs. (118) and (119); K is an NðN − 1Þ=2 × 2N
matrix that reproduces the couplings of θ̄LL;Iij to h̄Ii , h̄

I
j, b̄

T;I
i

and b̄T;Ij in Eq. (120); I is the identity matrix; and
λtot ¼

P
λk.

The first thing to notice is that this matrix is block-lower-
triangular: the eigenvalues of the whole matrix are the same
as the eigenvalues of S, plus the eigenvalue −λtot − 2ðp −
1Þ=L2 occurring with multiplicity NðN − 1Þ=2. These extra
eigenvalues correspond to fluctuations of θLL;Iij while h̄Ii and

b̄T;Ii are 0; they therefore only contribute to the spectrum if

YIi
i and Y

Ij
i are excited, so that θLL;Iij corresponds to a

physical fluctuation of the metric. This implies that
λtot ≤ −q=R2

i − q=R2
j , which is more than enough to ensure

that −λtot − 2ðp − 1Þ=L2 > 0. So, all fluctuations of θ̄LL;Iij

at fixed h̄Ii ¼ b̄T;Ii ¼ 0 have a positive mass. In our search
for instabilities, we can focus on the eigenvalues of S.
The matrix S is only 2N × 2N if all of the λIi are excited.

If λIi ¼ 0 or if λIi ¼ −q=R2
i , then b̄T;Ii is not dynamic, h̄Ii

decouples from it, and the matrix S seals up by one row and
one column. Notice that taking a zero mode and promoting
it to a conformal-scalar mode preserves the dimension of S

and only adds positive numbers down the diagonal,
augmenting stability. In other words, a mode with
li ¼ 1 can only be unstable if the same mode except with
li ¼ 0 is even more unstable.
Scalar modes can be divided into two types: modes

where all of the li are either 0 or 1, and shape modes where
at least one of the li ≥ 2. If a solution is stable to zero
modes, it is necessarily stable to all modes of the first type.
In this section, we will investigate stability against the
second type of modes. We will prove that all shape-mode
fluctuations of q ¼ 2 and q ¼ 3 compactifications are
stable. Our proof strategy will be as in Sec. VA 2. First,
we will identify a friendly solution and demonstrate that for
it all shape-mode fluctuations are stable. Then, we will
consider paths through ci space that preserve this stability.

Friendly solution: ck ¼ 0 ∀ k.—Nariai For our friendly
solution, we are allowed to choose any point we like, so let
us make things as easy as we can and choose the solution
with ck ¼ 0 for all k; when Λ > 0, this is the Nariai
solution and when Λ ≤ 0, this corresponds to the solution
where the internal Mq;k have all blown up to infinite size
and L−2 ¼ 0. We have already seen that the Nariai solution
has an unstable zero-mode, but this will not matter for our

SPECTRUM AND STABILITY OF COMPACTIFICATIONS … PHYSICAL REVIEW D 90, 044047 (2014)

044047-19



purposes. While these solutions are not necessarily stable to
a mode where all of the li are 0 or 1, we will now show that
they are always stable against higher-mode fluctuations
where at least one of the li ≥ 2. For our purposes of
investigating stability against these higher-modes, the
Nariai solution therefore can function as our friendly
anchor solution.
When ck ¼ 0, the Mq;k decouple from one another,

because it was only the background flux density that was
coupling the submanifolds. The matrix S breaks apart
into 2 × 2 diagonal blocks, and the eigenvalues of the
ith block are

li ≥ 2; ck ¼ 0 ∀ k∶ m2 ¼ −λItot; and

m2 ¼ −λItot − 2
q − 1

R2
i

; ð133Þ

where the first eigenvalue corresponds to perturbations of
the flux and the second corresponds to perturbations of the

shape; both are positive because λItot ≤ λIi ≤ −2ðqþ 1Þ=R2
i ,

where we have used li ≥ 2. What about when li ¼ 0 or 1?
In those cases, there is only one physical mode for that
submanifold, and its eigenvalue is

l ¼ 0; ck ¼ 0∀ k∶ m2 ¼ −λItot − 2
q − 1

R2
i

ð134Þ

l ¼ 1; ck ¼ 0∀ k∶ m2 ¼ −λItot: ð135Þ

All of these modes are stable unless λItot > −2ðq − 1Þ=R2
i ,

which cannot happen when any of the lk ≥ 2.

Paths with positive determinant.—As we did in Sec. VA 2
a, wewill use the matrix determinant lemma. If all the λIi are
excited (which for spheres means li ≥ 2), then the matrix S
is 2N × 2N and can be written as AþUVT , whereU and V
are 2N × 1 column vectors. We define the 2 × 2 submatrix
Ai as

Ai ¼
1

R2
i

 
−R2

i λtot − 2ðq − 1Þ þ qc2i R
2
i − 2 q−1

q Ri
2λi − 4

c2i R
2
i

q−1
q R2

i λiðR2
i λi þ qÞ

q−1
q c2i R

2
i −R2

i λtot þ 2 q−1
q R2

i λi

!
; ð136Þ

which is analogous to the matrix A defined in the N ¼ 1
case in Eq. (122), so that

A ¼

0
B@

A1 0 0

0 . .
.

0

0 0 AN

1
CA; ð137Þ

UT ¼ ð 1 0 1 0 � � � 1 0 Þ; ð138Þ

VT ¼ −q
q − 1

D − 2
ð c21 0 c22 0 � � � c2N 0 Þ: ð139Þ

The determinant of S is given by detðAÞð1þ VTA−1UÞ, so

det S ¼
XN
i¼1

�� YN
k¼1;k≠i

detAk

�

×

�
detAi

N
− q

q − 1

D − 2
c2i

�
−λtot þ 2

q − 1

q
λi

���
;

ð140Þ

where the subdeterminants are

detAi ¼
c2i R

2
i ð2ðq− 1Þλi − qλtotÞ þ λtotð2ðq− 1Þ þR2

i λtotÞ
R2
i

;

ð141Þ

and the term in square brackets is

�
1

NR2
i

�
c2i R

2
i
pþ N − 2

D − 2
ð2ðq − 1Þλi − qλtotÞ

þλtotð2ðq − 1Þ þ R2
i λtotÞ

��
: ð142Þ

If λi ¼ 0, then b̄T;Ii is nondynamic, Ai loses a column and
a row to become a 1 × 1 matrix. The subdeterminant
becomes

ðdetAiÞI¼0 ¼ qc2i R
2
i − 2ðq − 1Þ − R2

i λtot
R2
i

; ð143Þ

and the term in square brackets in Eq. (140) gets replaced
by

�
1

NR2
i

�
qc2i R

2
i
ðpþ N − 2Þ

D − 2
− 2ðq − 1Þ − R2

i λtot

��
I¼0

:

ð144Þ

A sufficient condition for detðSÞ > 0 is for all the sub-
determinants and for all the terms in square brackets to be
positive for all i, so that every term in the sum in Eq. (140)
is positive. We will find conditions on the ciRi that ensure
this condition is met; we will treat the case where λi is
excited (λtot ≤ λi ≤ −2ðqþ 1Þ=Ri

2) and where λi is in its
zero mode (λi ¼ 0, λtot < 0) separately.
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If λi is excited, then the quantities we want to be positive
are those in Eq. (141) and Eq. (142). If 2ðq − 1Þλi > qλtot
these terms are automatically positive. If 2ðq−1Þλi<qλtot,
these terms are only positive for a range of ciRi, and the
tightest constraint on ciRi comes from Eq. (141) when li ¼
2 and all the other lk ¼ 0; positivity of both terms is
guaranteed by

l ¼ ð2; 0;…; 0Þ; m2 > 0∶ c2i R
2
i <

4

q − 2
: ð145Þ

If λi ¼ 0, then the quantities we want to be positive are
those in Eq. (143) and Eq. (144). The tightest constraint on
ciRi nowcomes fromEq. (143), and fromthemode forwhich
λtot is as close to zero as possible,meaning all thelk are set to
0 except a single lj ¼ 2. In that case, Eq. (143) becomes

l ¼ ð0; 2; 0;…; 0Þ; m2 > 0∶

ðdetAiÞI¼0 ¼ 1

R2
i

�
qc2i R

2
i − 2ðq − 1Þ þ R2

i

R2
j
2ðqþ 1Þ

�
> 0;

ð146Þ

which, using the background equation of motion 2ðq −
1ÞR−2

i þ 2ðq − 1ÞR−2
j ¼ c2i þ c2j canbewritten, forq ¼ 2or

q ¼ 3, as a sum of positive terms.
This analysis is analogous to Eq. (127) from the N ¼ 1

case, where positivity of the l ¼ 2 mode provided the
strongest bound on cR for stability of the de Sitter vacua. If
both the bound in Eq. (145) and the bound in Eq. (146) are
satisfied, then detðSÞ > 0 for all shape modes. [If either
bound is violated, we learn nothing about the sign of
detðSÞ.] For q ¼ 2, both conditions are guaranteed because
the bound on cR is itself unbounded; all fluctuations
around solutions with q ¼ 2 have positive mass. When
q ¼ 3, the bound in Eq. (145) overlaps with the de Sitter
condition in Eq. (105), so detðSÞ > 0 for all de Sitter vacua;
all fluctuations around de Sitter solutions with q ¼ 3 are
stable, but for AdS solutions, some mass squareds might go
negative. For q ≥ 4, this proof strategy reveals no infor-
mation about stability.
Next, let us look at AdS compactifications. In order to

prove stability of solutions with q ¼ 3, we need to prove
that, though some mass squareds may be negative, they are
never more negative than the BF bound—we need to
compare the mass squareds not to zero but to m2

BF. This
can be accomplished by taking S → S −m2

BFI and rerun-
ning the analysis above. Following these steps proves that
all fluctuations when q ¼ 3 are stable.

Instabilities for q ≥ 4.—We have just shown that Freund-
Rubin compactifications built of products of 2-or 3-
dimensional Einstein manifolds are always stable to shape
modes. The same is not true for q ≥ 4. For a given set of ci
and Λ and for a given mode specified by a set of λIi , stability

can be checked directly by evaluating the eigenvalues of the
matrix S defined in Eq. (132). The results of this analysis
are given in Fig. 3. When q ≥ 4 the solutions for some
values of ci and Λ are stable (for example N ¼ 2, p ¼ 4,
q ¼ 5, Λ ¼ þ1, with c1 ¼ c2 ¼ 10 and so L−2 ¼ −97=9 is
stable to all fluctuations), and the solutions for other values
are unstable (for example N ¼ 2, p ¼ 4, q ¼ 5, Λ ¼ 0,
with c1 ¼ 3 and c2 ¼ 4 and so L−2 ¼ −25=18 is unstable
to the modewith l1 ¼ 0 and l2 ¼ 2). In general, increasing
p aids stability (by lowering the BF bound), increasing q or
Λ hurts stability (for the same reason as inN ¼ 1), and for a
given value of p, q and Λ the stablest compactifications are
those with all of the ci equal. Unlike in the N ¼ 1 case
some q ¼ 5 and Λ > 0minima are now stable. The greatest
difference from the N ¼ 1 case, however, is that Λ ≤ 0 no
longer guarantees stability.

C. The remaining scalar fluctuations

In this section, we will look at the remaining scalar
fluctuations. First, in the diagonal TT sector, there is the
transverse tracelessmodeϕTT;I

i , which can be thought of as a
graviton propagating onMq;i; it is here that we will find the
cycle-collapse instability. Second, in the off-diagonal TT
sector, there is a coupled system made up of θTTij and βTTij…j.
Finally, in the off-diagonal TL sector, there is a coupled
systemmade of θLTij and βLTij…j. This list is complete because
the rest of the scalar fluctuations are either nondynamic, or
decoupled fromgravity.Ourgaugechoices inEqs. (63), (64),
and (70) essentially solve forϕLT

i ,ϕLL
i andbLi , so they should

not be thought of as dynamicvariables. (Implicit in ourgauge
choice is that βLTij…j and βLLij…j are solved for as well.) Form
fluctuations that are more than singly off-diagonal will be
treated in coordinate-free notation in Sec. V F.
Diagonal TT sector: The equation of motion for ϕTT;I

i ,
Eq. (77), can be written

□xϕ
TT;I
i ¼

�
−
X
k≠i

λk − τi − 2
q − 1

R2
i

�
ϕTT;I
i : ð147Þ

The worst-case scenario for stability is when the λk ¼ 0 for
all k ≠ i, so let us consider that case. When the internal
manifold is simply connected, τIii satisfies a Lichnerowicz
bound that τIii ≤ −4ðq − 1Þ=R2

1, which more than ensures
stability. However, whenMq;i is itself a product, this bound
can be violated. For instance, if Mq;i ¼ Sq−n × Sn, then the
mode in which the Sq−n grows, and the Sn shrinks in a
volume-preserving way, has τi ¼ 0; for this mode, ϕTT;I

i
has a negative mass. For de Sitter or Minkowski compac-
tifications, therefore, this mode is always unstable; for AdS
compactifications, stability can rescued only if ϕTT

i ’s
negative mass squared is less negative than the BF bound

−2
q − 1

Ri
2

≥ m2
BF ¼

1

4

ðp − 1Þ2
L2

: ð148Þ
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(Remember that for AdS compactifications L2 < 0.) In the
N ¼ 1 case, this condition is equivalent to q ≥ 9, as
discussed in [5]; for N ≥ 2 there is some wiggle-room
because the other ck’s can be used to push the compacti-
fication deep into AdS, making the BF bound arbitrarily
easy to be satisfied.
We should think of the cycle-collapse instability we

found here as a residual version of the instability in the
N ¼ 1 case. For instance, if you wrap an 8-form around

S2 × S2 × S2 × S2, you get 6 fields with a negative mass
squared (four choose two cycle-collapse instabilities). If
instead you wrap a 4-form around the first two S2’s and the
last two S2’s separately, then you only get two fields with a
negative mass—one cycle-collapse instability for each
individually wrapped S2 × S2.
Off-diagonal TT sector: Next, let us discuss the coupled

system made up of θTT;Iij and βTT;Iij…j. Equations (81) and (89)
become:

□x

0
BB@

cjβ
TT;I
ij…j

θTT;Iij

ciβ
TT;I
ji…i

1
CCA ¼

2
64−λtot

0
B@

1 0 0

0 1 0

0 0 1

1
CAþ

0
B@

0 c2j 0

−κj −2 p−1
L2 −κi

0 c2i 0

1
CA
3
75
0
BB@

cjβ
TT;I
ij…j

θTT;Iij

ciβ
TT;I
ji…i

1
CCA; ð149Þ

where we have defined λtot as the eigenvalue △yYI
αiβj

¼
λtotYI

αiβj

λtot ¼
XN

k¼1;k≠i;j
λk þ κi þ κj ≤ −2

q − 1

R2
i

− 2
q − 1

R2
j

; ð150Þ

and we have used the symmetry of the TT sector under
exchange of i and j. The eigenvalues of this 3 × 3 matrix
are

m2 ¼ −λtot; and

− λtot −
p − 1

L2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − 1Þ2

L4
− c2i κi − c2jκj

r
: ð151Þ

Worst-case scenario for stability is for all the λk with k ≠
i; j to be set to zero, so let us concentrate on that case.
Extremizing the negative branch of masses over κi and κj
subject to the constraints imposed by the Lichnerowicz
bound pushes the κ’s up against those constraints. The least
positive mass in this sector has κi ¼ −2ðq − 1Þ=R2

i and
κj ¼ −2ðq − 1Þ=R2

j , and this mass is still explicitly pos-
itive. The off-diagonal TT sector, therefore, contributes 3 ×
NðN − 1Þ=2 towers of massive scalars to the spectrum.
This sector has an extra zero mode when q ¼ 1, a

structure modulus that corresponds to the angle between
the sides of a flat torus. Our results do in fact extend to
q ¼ 1: take all the Ri → ∞ because an S1 has no intrinsic
curvature and consider the 1-form flux as the gradient of an
axion with nontrivial winding around each cycle. This flux
makes the cycles want to grow so, to have a minimum of
the effective potential, we must take Λ < 0; this gives an
AdS vacuum that is stable against total-volume fluctua-
tions. The Lichnerowicz bound on κ in this case is
undefined as written, but there is a vector harmonic with
κ ¼ 0: a constant vector pointing uniformly along the S1.
Indeed, plugging κi ¼ κj ¼ 0 and the rest of the λk ¼ 0 into
Eq. (151) reveals a massless fluctuation. When q ¼ 1 this

sector contributes an additional massless modulus field, but
for all q ≥ 2, these angles all have positive mass.
Off-diagonal TL sector: Finally, let us discuss the

coupled system made up of θLT;Iij and βLT;Iij…j. Equations (82)
and (90) are the relevant ones, and they contain useful
information in both their longitudinal and transverse compo-
nents. For the moment, we are interested in the transverse
information; the longitudinal information will be useful in
Sec. V D. To extract this information, we define:

θ̄LT;Iij ¼ θLT;Iij þ
�
1

2
κj þ

q − 1

R2
j

�� XN
k¼1;k≠j

λk

�−1

ϕTL;I
j ;

ð152Þ

β̄LT;Iijj ¼ βLT;Iijj þ κj
q − 1

� XN
k¼1;k≠j

λk

�−1

bTL;Ij : ð153Þ

These barred variables satisfy

XN
k¼1;k≠i

λiθ̄
LT;I
ij ¼ 0; and

XN
k¼1;k≠i

λiβ̄
LT;I
ijj ¼ 0: ð154Þ

We can extract the longitudinal information from
Eqs. (82) and (90) by multiplying them by −λk and
summing over all k ≠ j, which gives

��
□x þ△y þ 2

p − 1

L2

��
1

2
κj þ

q − 1

R2
j

�
ϕTL;I
j

þ ð△y − κjÞ∇μCT;I
μ;j þ

κj△y

q − 1
cjb

L;I
j

�
∇αiY

I
βj
¼ 0: ð155Þ

and
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�
ð□x þ△yÞ

κj
q − 1

cjb
L;I
j þ ð△y − κjÞcj∇μbT;Iμ;j

−
�
1

2
κj þ

q − 1

R2
j

�
cj2ϕ

TL;I
i

�
∇αi∇½βjY

I
δj� ¼ 0: ð156Þ

Finally, we can subtract this off to get the transverse
information. Equations (82) and (90) become

□x

 
cjβ̄

LT;I
ijj

θ̄LT;Iij

!

¼
�
−λtot

�
1 0

0 1

�
þ
 

0 c2j

κj −2 p−1
L2

!# 
cjβ̄

LT;I
ijj

θ̄LT;Iij

!
;

ð157Þ

where we have defined

λtot ¼
XN

k¼1;k≠j
λk þ κj ≤ −2

q − 1

R2
j

: ð158Þ

Eigenvalues of this 2 × 2 matrix are

m2 ¼ −λtot −
p − 1

L2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p − 1

L2

�
2

− c2jκj

s
: ð159Þ

As before, the worst-case scenario from the perspective of
stability is the mode where all of the λi with i ≠ j are set
to zero and where κj saturates its bound, but even this mode
is stable. The off-diagonal TL sector contributes 2 ×
NðN − 1Þ=2 towers of massive scalars.

D. Gravi-photons and One-forms

In this section, we will look at the vector fluctuations. We
will see they are all stable. First, in the T sector, there is the
coupled system made up of CT;I

μ;i and bT;Iμ;i . Second, in the L
sector, there is CL;I

μ;i , which will require a field redefinition
to decouple it from hi and bTi . And finally, in the H sector,
there are the tower of one-forms associated with harmonic
2-formsCH;I

μ;i . This list is complete because the remaining of
the vector fluctuations are either nondynamic, or decoupled
from gravity. Our gauge choice implicitly solves for bLμ;i
and form fluctuations that are more than singly off-diagonal
will be treated in coordinate-free notation in Sec. V F.

1. T sector

We first consider the coupled system made up of CT;I
μ;i

and bT;Iμ;i . Defining

b̄T;Iμ;i ¼ bT;Iμ;i −
1

q − 1
∇μb

L;I
i ; ð160Þ

means that we can write Eqs. (75) and (86) as

Max

 
CT;I
μ;i

cjb̄
T;I
μ;i

!

¼
"
−λtot

�
1 0

0 1

�
þ
 
−2 p−1

L2 −κj
c2j 0

!# 
CT;I
μ;i

cjb̄
T;I
μ;i

!
;

ð161Þ

where we have defined

λtot ¼
X
k≠j

λk þ κj ≤ −2
q − 1

R2
j

: ð162Þ

Equations (155) and (156), together with Eqs. (78) and
(85), can be used to prove that

∇μCT;I
μ;i ¼ ∇μb̄T;Iμ;i ¼ 0: ð163Þ

Masses of the fluctuations are given by the eigenvalues
of the 2 × 2 matrix above, which are

m2 ¼ −λtot þ
p − 1

L2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p − 1

L2

�
2

− c2jκj

s
: ð164Þ

When κj saturates its bound, and all the other λk ¼ 0, the
negative branch of this expression is exactly massless, and
otherwise this expression is manifestly positive. This means
that for every Killing vector of the internal manifold, we
find one massless vector propagating on our compactifi-
cation. Recall that our gauge fixing left the right amount of
residual gauge invariance to accommodate a massless
vector in the Killing sector. The T sector contributes two
towers of massive one-forms; the base of one of the towers
includes one massless vector for every Killing vector.

2. L sector

Equation (76) contains useful information in its longi-
tudinal and transverse parts. For now, we will be interested
in the transverse information, the longitudinal information
will be useful in Sec. V E. To extract the longitudinal
information, multiply the Eq. (76) by −λi and sum over all
i. This gives

�XN
k¼1

λk

��
∇ρHI

ρμ −∇μHI þ 1

p − 2

XN
k¼1

∇μhIk

�

þ
XN
k¼1

λk∇μ

�
1

q
hIk − ckb

T;I
k

�
¼ 0: ð165Þ

Subtracting this off from Eq. (76) gives
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�
Maxþ

XN
k¼1

λk þ 2
p − 1

L2

�
CL;I
μ;i

¼ 1

q
∇μ

�
hIi −

P
N
k¼1 λkh

I
kP

N
k¼1 λk

�

−∇μ

�
cib

T;I
i −

P
N
k¼1 λkckb

T;I
kP

N
k¼1 λk

�
:

To bring Eq. (5.4) into the appropriate form for a massive
vector, we define new vector field

VL
μ;i ≡ CL

μ;i −
1P

N
k¼1 λk þ 2 p−1

L2

∇μ

�
1

q

�
hIi −

P
N
k¼1 λkh

I
kP

N
k¼1 λk

�

−
�
cib

T;I
i −

P
N
k¼1 λkckb

T;I
kP

N
k¼1 λk

��
: ð166Þ

(CL;I
μ;i is only nonzero if at least two of the λk are turned on,

so the denominator of this expression is never zero.) In
terms of this new vector field, Eqs. (5.4) and (79) become

MaxVL
μ;i ¼

�
−
XN
k¼1

λk þ 2
p − 1

L2

�
VL
μ;i; ð167Þ

∇μVL
μ;i ¼ 0: ð168Þ

The masses of the vector fluctuations VL
μ;i are therefore

m2 ¼ −λtot þ 2
p − 1

L2
; ð169Þ

where

λtot ¼
XN
k¼1

λk ≤ min
i;j

�
−

q
R2
i
−

q
R2
j

�
; ð170Þ

which is at its least positive when only two modes are
excited to their l ¼ 1 modes. Even this worst-case mode
has a positive mass, so the L sector gives a tower of massive
vectors.

3. H sector

Finally, for the harmonic forms bH;I
μ;i , Eq. (88) becomes

MaxbH;I
μ;i ¼ −

�X
k≠i

λk

�
bH;I
μ;i : ð171Þ

The transversality constraint for bHμ;i can be extracted from
the longitudinal part of Eq. (94); multiplying Eq. (94) by
−λk and summing over all k gives

∇μbH;I
μ;i ¼ 0: ð172Þ

When all of the λk with k ≠ i are set to zero, we find a
massless vector for every harmonic two-form on Mq;i.
When the Mq;k are excited, we find a tower of massive
vectors above it.

E. Massive gravitons

Equation (73) can be written as

�
□x þ λtot þ

2

L2

�
HðμνÞ

¼ ∇ðμ∇νÞ



H −

2

p − 1

XN
k¼1

hIk þ 2cib
T;I
i −

2

q
hIi

�
; ð173Þ

where we have used Eq. (165) to eliminate divergences of
Hμν, and we have defined the notation h•i to mean

h•i ¼
P

N
i¼1 λi•

λtot
: ð174Þ

To manipulate this equation into the form appropriate for
a massive graviton, we need to define a new symmetric
tensor field:

ϕðμνÞ ¼ HðμνÞ þ
�

1

−λtot þ pþ2

L2

��
p − 2

p − 1

�

×∇ðμ∇νÞ



1

q
hIi − cib

T;I
i þ 1

p − 2

XN
k¼1

hIk

�
: ð175Þ

In terms of this new variable, Eqs. (73) and (165) become

□xϕðμνÞ ¼
�
−λtot −

2

L2

�
ϕðμνÞ ð176Þ

∇μϕðμνÞ ¼ 0: ð177Þ

This gives a tower of massive gravitons with masses given
by m2 ¼ −λtot > 0. (Recall that a massless graviton propa-
gating on curved space has an apparent mass squared of
−2=L2, and physical masses need to be compared against
this reference value [3,30]). The physical masses of this
tower are always positive. The Higuchi bound for con-
sistent propagation of a massive graviton [29] on de Sitter
space requires that the physical mass of the graviton
exceeds

m2 ≥
p − 2

L2
: ð178Þ

Even the first rung on the Kaluza-Klein ladder of massive
gravitons, with

ADAM R. BROWN AND ALEX DAHLEN PHYSICAL REVIEW D 90, 044047 (2014)

044047-24



lightest massive graviton∶ m2 ¼ min
i

�
q
R2
i

�

¼ min
i

�
1

R2
i

�
1þ c2i R

2
i

2

��
þ p − 1

L2
; ð179Þ

is above this bound. All massive gravitons are stable.

F. Uncoupled form fluctuations

The equations of motion for these decoupled form
fluctuations is

d†dB ¼ ð△x þ△y þ dd†pÞB ¼ 0; ð180Þ

where we used the gauge fixing condition d†NqB ¼ 0.
Equations (88) and (91)–(94) are of exactly this form
and are included in this discussion. Because they are
decoupled from gravity, we can use a decomposition on
the whole internal manifold, instead of decomposing
separately for each sub-manifold like we had to do for
the coupled modes. If the fluctuation has k indices along the
extended manifold Mp, we can decompose as

Bk ¼
X
I

bTk YNq−k þ bHk Y
H
Nq−k; ð181Þ

where we have used the gauge fixing condition d†Nq to kill
the entire longitudinal component. The equation of motion
then falls apart into

½ð△x þ△y − dpd
†
pÞbTk �YNq−k ¼ 0; ð182Þ

½d†pbk�dNqYNq−k ¼ 0; ð183Þ

½△xbHk �YH
Nq−k ¼ 0: ð184Þ

For the co-exact components, we find

△xbk ¼ −△ybk; and d†pbk ¼ 0: ð185Þ

Because the Laplacian △y is negative definite, this sector
contributes a tower of massive k-forms.
For the harmonic components, it is far simpler. We find

△xbk ¼ 0; ð186Þ

meaning that there is a massless k-form fluctuation for
every harmonic ðNq − kÞ-form.

VI. DISCUSSION

Freund-Rubin compactifications on product manifolds
with N ¼ 1 can have an instability to cycle collapse, where
one of the elements of the product shrinks down to zero
volume. Moving to higher N cures this instability. While
collectively wrapping a higher-form flux around the entire

product (N ¼ 1) leads to an instability, individually wrap-
ping a lower-form flux around each element of the product
(N > 1) does not. We have computed the spectrum of all
small fluctuations around these product compactifications,
and found the conditions for stability.
The only threats to stability arise in the scalar sector;

higher-spin fluctuations are all positive semidefinite.
Within the scalar sector, the only threats are the zero
modes and the coupled diagonal shape/flux system. The
results for stability are summarized in Figs. 2 and 3. The
zero-mode sector is stable for all AdS compactifications
and for a range of de Sitter compactifications. Stability of
the higher-mode fluctuations depends on q. All products of
2- or 3-dimensional Einstein manifolds are always stable
against higher-mode fluctuations; whereas for q ≥ 4,
higher-mode instabilities can exist and, when N ≥ 2, they
can exist for any Λ.
When q is very large, the unstable shape modes tend to

have very large angular momentum. For example,
AdS4 × S101, with c large so that the compactification is
deep in AdS and Λ > 0, is stable to all fluctuations except
for l ¼ 50. How can the l ¼ 50 mode be unstable while
the l ¼ 0; 1; 2;…49 and 51; 52;… modes are stable? Do
not drums ring higher on higher spherical harmonics? The
culprit is the coupling between the flux and shape modes,
and our percussion-sourced intuitions are correct when this
coupling is turned off.5 For instance, flux perturbations on a
fixed gravity background are stable and become increas-
ingly stable as you raise the angular momentum l.
Likewise, shape-mode fluctuations about the uncharged
Nariai solution are stable (although the zero-mode is not)
and they too become increasing stable with l, as we saw in
Sec. V B 2 a. The instability arises not from the flux or
metric fluctuations separately, but from their coupling to
each other and to the background flux: it is the off-diagonal
terms in Eq. (121) that produce the negative eigenvalues,
and the corresponding eigenvectors have support on both
kinds of fluctuations.
Coupling between modes is also responsible for the fact

that shape modes may go unstable for any Λ when N > 1
even though all shape modes are stable for Λ ≤ 0 when
N ¼ 1. Equation (104) makes it clear that flux wrapped
around other submanifolds has the same impact on ciRi as
a negative contribution to the cosmological constant, and
should therefore, applying the N ¼ 1 intuition, make the
mode only more stable. And yet we found the opposite. The
explanation is again the coupling between the modes: the
background flux couples the shapes modes on different
submanifolds, and the unstable eigenvector has support on
all of them. When we set ci ¼ 0 in Sec. V B 2 a we turned

5Another perhaps related case where the first mode to go
unstable is one with high-l is the wrinkles that form when a
balloon is depressed [33].
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off the background flux, which turned off the coupling and
restored the N ¼ 1 result separately for each sub-manifold.
Flow along the unstable shape-mode direction breaks the

symmetry of the internal manifold. Spontaneous breaking
of Poincaré symmetries arises in other systems with off-
diagonal coupling, for instance the Gregory-Laflamme
instability of [17], the striped-phase instability of [34],
and even the Jeans instability. The correlated stability
conjecture [35] links classical instabilities like that of the
shape modes to thermodynamic instabilities. If an endpoint
of the shape-mode instability exists, it must therefore be a
compactification on a warped product of lumpy spheres and
its vacuum energy must be lower than the original unstable
solution. Warped compactifications on lumpy spheres have
been found for the N ¼ 1 case [13], and likely exist for
larger N.
An upcoming paper [32] reanalyzes the N ¼ 1 case

directly in the action, varying to second order in the
fluctuations. This method has the advantage of being
extendable down to p ¼ 2, and it would be interesting
to apply it to general N.
Finally, all of these compactified solutions also corre-

spond to the near-horizon limit of extremal black (p − 2)-
branes; far from the branes, spacetime is D-dimensional
with a curvature set by Λ. Each of our three classes of
instability therefore has an interpretation in terms of an
instability of a black brane. The total-volume instability
corresponds to the negative mode of the Nariai black hole
responsible for the nucleation of charged black branes in de

Sitter space [31]. The cycle-collapse instability corresponds
to an instability of black branes whose horizons have
nontrivial topology. One can think of these black branes
with exotic horizons as living at the tip of a cone. For
instance, we saw that S2 × S2 compactifications wrapped
by a 4-form flux have an instability; to understand that
instability in terms of the near-horizon limit of a black
brane, consider the cone over S2 × S2 with Λ ¼ 0, which
has metric

ds2 ¼ dr2 þ r2dΩ2
2 þ r2dΩ2

2: ð187Þ

A black (p − 2)-brane inserted at the origin r ¼ 0 of this
metric has horizon topology of S2 × S2. Its near-horizon
limit is a compactified AdSp × S2 × S2 solution that suffers
from a cycle-collapse instability; the black brane too,
therefore, has an instability for one of the spheres to grow
while the other shrinks. Finally, the lumpiness instability
also must have an analog in the language of extremal black
branes. When N ¼ 1, the lumpiness instability only exists
for Λ > 0, so the analog is an instability of charged
extremal black branes in de Sitter space—their horizons
sprout lumps.
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