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In terms of gravitational solitons, we study the gravitational nonlinear effects of gravitational solitary
waves such as Faraday rotation. Applying Pomeransky’s procedure for the inverse scattering method,
which has been recently used for constructing stationary black hole solutions in five dimensions, to a
cylindrical spacetime in four dimensions, we construct a new cylindrically symmetric soliton solution. This
is the first example to be applied to the cylindrically symmetric case. In particular, we clarify the difference
from Tomimatsu’s single soliton solution, which was constructed by Belinski-Zakharov’s procedure.
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I. INTRODUCTION

Gravitational solitons in relativity are found in the
framework of the inverse scattering method as exact
solutions of the Einstein equations with two Killing vector
fields [1]. These solutions describe self-reinforcing soli-
tary waves (wave packets or pulses) that maintain their
shape while propagating in various physically interesting
background spacetimes. The gravitational soliton as a
gravitational wave interacts with the background itself as
its nonlinear effect of gravitation. On the other hand, in
recent years, the gravitational solitons have been studied
in the context of constructing black hole solutions in
higher dimensions. In particular, Pomeransky [2] has
improved the inverse scattering method which Belinski
and Zakharov [1,3] established so that one can con-
struct higher dimensional regular black hole solutions.
Surprisingly, this improved method has succeeded in
generating some physically interesting exact solutions
which describe a certain kind of stationary and axisym-
metric black hole [4,5]. The main aim of this paper is to
construct a new cylindrically symmetric gravitational
soliton which describes a gravitational wave by using
Pomeransky’s procedure rather than Belinski-Zakharov’s
original procedure [1].
Einstein and Rosen [6,7] provided the first cylindrical

gravitational wave with a þ mode only, where the vacuum
Einstein equation is reduced to a simple linear wave
equation. Piran et al. [8] numerically studied time evolution
and the nonlinear interaction of cylindrical gravitational
waves of both polarization modes (þ and × modes) and
showed that if an outgoing (ingoing) wave is linearly

polarized when an ingoing (outgoing) ×-mode wave is
present, the polarization for the outgoing (ingoing) wave
rotates via the nonlinear interaction as it propagates. Today
this effect is well known as the gravitational Faraday
effect. Tomimatsu [9] studied the gravitational Faraday
rotation for cylindrical gravitational solitons by using the
inverse scattering technique. The outgoing þ waves emit-
ted from an axis convert to the × mode completely in the
immediate interaction region, and finally the outgoing
waves contain both polarizations. For the single soliton
solution, the soliton disturbance exists only in the interior
region of a future light cone and a shock wave is present on
the future light cone. Further, to avoid the shock wave–like
structure on the light cone, he considered a two soliton
solution with complex poles, which behaves like the single
soliton field with a particular choice of the parameter.
Moreover, the interaction of gravitational soliton waves
with a cosmic string was also studied in [10–12].
In this paper, we study the nonlinear interaction of new

cylindrically symmetric soliton solutions which can be
generated by Pomeransky’s procedure. As is well known,
the most general metric for a cylindrically symmetric
spacetime can be described by the Kompaneets-Jordan-
Ehlers form [13]. Following Ref. [8], in terms of the metric
form, we calculate the wave amplitudes for the ingoing
(outgoing) gravitational waves with the þ and × modes.
According to Refs. [8,9], for such a cylindrically symmetric
spacetime, the polarization angles of gravitational waves
can be defined by the ratio of × wave amplitudes toþwave
ones. Using the useful definition and some convenient
formulas in Refs. [8,9], we will calculate the time develop-
ment of the polarization angles. We will find that for the
single soliton solution, the × mode which is initially
dominant near the axis of symmetry decreases with time
and at a certain time, fully converts to the þ mode. After
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that, in turns, it begins to increase, and finally again
the × mode is completely dominant. Moreover, we will
also show that the polarization vectors of two independent
modes change as the waves propagate through a back-
ground spacetime along a null geodesic (gravitational
Faraday rotation).
In the next section, we present the metric in a general

cylindrical spacetime and reduce the Einstein equation
with the symmetry to two-dimensional equations. In
Sec. III, using the improved inverse scattering method of
Pomeransky [2] rather than that of Belinski-Zakharov [1],
we will derive a single soliton solution from a Minkowski
metric. In particular, we compute the amplitudes and
polarization angles for ingoing and outgoing waves and
clarify the difference from the Tomimatsu solution [9]
generated by the latter procedure. As discussed in Ref. [9],
such a single soliton solution with real poles has a singular
behavior on the light cone, which means that outgoing
shock waves initially propagate at the speed of light.
Section V is devoted to the summary of this paper and
discussion of our results.

II. CYLINDRICALLY
SYMMETRIC SPACETIMES

Throughout this paper, we assume that a four-
dimensional spacetime admits two commuting Killing
vector fields, an axisymmetric Killing vector ∂=∂ϕ
and a spatially translational Killing vector ∂=∂z, where
the polar angle coordinate ϕ and the coordinate z have the
ranges 0 ≤ ϕ < 2π and −∞ < z < ∞, respectively. The
metric with cylindrical symmetry Uð1Þ × R is generally
written in the Kompaneets-Jordan-Ehlers form:

ds2 ¼ e2ψðdzþ ωdϕÞ2 þ ρ2e−2ψdϕ2 þ e2ðγ−ψÞðdρ2 − dt2Þ;
ð1Þ

where the functions ψ , ω, and γ depend on the time
coordinate t and radial coordinate ρ only. Following
Ref. [9], we find that the function γ is determined by

γ;t ¼
ρ

8
ðA2þ þ B2þ þ A2

× þ B2
×Þ; ð2Þ

γ;ρ ¼
ρ

8
ðA2þ − B2þ þ A2

× − B2
×Þ; ð3Þ

where

Aþ ¼ 2ψ ;v; ð4Þ

Bþ ¼ 2ψ ;u; ð5Þ

A× ¼ e2ψω;v

ρ
; ð6Þ

B× ¼ e2ψω;u

ρ
: ð7Þ

Here, the advanced ingoing and outgoing null coordinates u
and v are defined by u ¼ ðt − ρÞ=2 and v ¼ ðtþ ρÞ=2,
respectively. The indices þ and × denote the respective
polarizations. The ingoing and outgoing amplitudes are
defined by, respectively,

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þ þ A2

×

q
; B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2þ þ B2

×

q
; ð8Þ

and the polarization angles θA and θB for the respective
wave amplitudes are given by

tan 2θA ¼ A×

Aþ
; tan 2θB ¼ B×

Bþ
: ð9Þ

III. SINGLE SOLITON SOLUTIONS

Using Pomeransky’s procedure [2] for the inverse
scattering method, we construct a new single solitonic
solution. Let us choose a Minkowski metric as a seed,
whose 2 × 2 part is written as

g0 ¼ ð1; ρ2Þ: ð10Þ

First, we remove a soliton with a vector mð1Þ ¼ ð1; 0Þ at
t ¼ 0 from this seed metric, and then we get the metric
g00 ¼ ðμ2=ρ2; ρ2Þ. Next, we add back a nontrivial soliton
withmð1Þ ¼ ð1; aÞ at t ¼ 0 to g00, and then we can obtain the
metric of a single soliton solution.
This is how we can obtain the metric coefficients for the

single soliton solution, which are given by

e2ψ ¼ ðw2 − 1Þ4ρ2 þ a2w4

ðw2 − 1Þ4ρ2 þ a2w2
; ð11Þ

ω ¼ −
aðw2 − 1Þ3ρ2

ðw2 − 1Þ4ρ2 þ a2w4
; ð12Þ

e2γ ¼ a2w4 þ ð−1þ w2Þ4ρ2
ð−1þ w2Þ4ρ2 ; ð13Þ

where μ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − ρ2

p
− t and w≔− μ=ρ. From Eqs. (4)–(7),

it is straightforward to compute the respective wave
amplitudes Aþ, Bþ, A×, and B×:

Aþ¼−
2a2ðw−1Þw3ða2w3−ρ2ðw−2Þðw2−1Þ4Þ

ρðwþ1Þða2w2þρ2ðw2−1Þ4Þða2w4þρ2ðw2−1Þ4Þ ;

ð14Þ

SHINYA TOMIZAWA AND TAKASHI MISHIMA PHYSICAL REVIEW D 90, 044036 (2014)

044036-2



Bþ¼−
2a2w3ðwþ1Þðρ2ðwþ2Þðw2−1Þ4−a2w3Þ

ρðw−1Þða2w2þρ2ðw2−1Þ4Þða2w4þρ2ðw2−1Þ4Þ ;

ð15Þ

A×¼−
2aðw−1Þ3w2ðwþ1Þða2w2ð2w−1Þþρ2ðw2−1Þ4Þ

ða2w2þρ2ðw2−1Þ4Þða2w4þρ2ðw2−1Þ4Þ ;

ð16Þ

B×¼−
2aðw−1Þw2ðwþ1Þ3ða2w2ð2wþ1Þ−ρ2ðw2−1Þ4Þ

ða2w2þρ2ðw2−1Þ4Þða2w4þρ2ðw2−1Þ4Þ :

ð17Þ
Hence, from Eqs. (8), the respective wave amplitudes are
written as

A ¼ 2jajjw − 1jjwj2
ρjwþ 1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2w4 þ ρ2ðw2 − 1Þ4Þ

p ; ð18Þ

B ¼ 2jajjwþ 1jjwj2
ρjw − 1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2w4 þ ρ2ðw2 − 1Þ4Þ

p : ð19Þ

From Eqs. (9), the polarization θA and θB angles are
determined by

tan2θA ¼ ρðw2 − 1Þ2ða2w2ð2w− 1Þ þ ρ2ðw2 − 1Þ4Þ
awða2w3 − ρ2ðw− 2Þðw2 − 1Þ4Þ ; ð20Þ

tan2θB ¼ ρðw2 − 1Þ2ða2w2ð2wþ 1Þ− ρ2ðw2 − 1Þ4Þ
awðρ2ðwþ 2Þðw2 − 1Þ4 − a2w3Þ : ð21Þ

IV. ANALYSIS OF THE SINGLE
SOLITON SOLUTION

Now let us investigate the new single soliton solution in
detail. It is useful to know how the restrictive wave
components Aþ, Bþ, A×, and B× and the polarization
angles θA, θB behave near the boundaries of the spacetime,
A. the axis of symmetry ρ ¼ 0, B. the light cone t ¼ ρ,
C. the timelike infinity t → ∞, and D. null infinity v → ∞.
Throughout this paper, we assume t > 0. As mentioned
later, we cannot extend analytically the portion of a
spacetime region t > 0 to the region t < 0 because of
the existence of a singularity on the light cone t ¼ ρ. For
the region t < 0, the waves may have a different behavior
from that for t > 0 because on the axis ρ ¼ 0, the function
μ behaves differently for t > 0 and t < 0. Therefore,
studying the region t < 0 may also be interesting.
However, since in this paper we have an interest in how

shock wave pulses propagate throughout a spacetime as
time passes, we do not discuss this region.

A. On the axis ρ ¼ 0

Near the axis of symmetry ρ ¼ 0, the restrictive ampli-
tudes of ingoing and outgoing waves become

A ¼ B ¼ jaj
2t2

; ð22Þ

and the restrictive polarization angles take the values

tan θA ¼ − tan θB ¼ a
jaj

2t − jaj
2tþ jaj : ð23Þ

Note that here tan θA and tan θB are used rather than tan 2θA
and tan 2θB. As shown in Fig. 1, the polarization angle
θAð¼ −θBÞ of ingoing (outgoing) waves propagating on the
axis depends on time t. Initially, at t ¼ 0, the þ mode is
absent and the pure × mode only is present. After that,
the þ mode waves come to exist. In particular, when
t ¼ jaj=2, the × mode completely vanishes and theþmode
only is present. Further, after that, the þ mode converts to
the × mode and at t → ∞, approaches the × mode
completely. Note also that for the solution in [9], on the
axis, the × mode is always absent.
We see that the C-energy density is proportional to

γ;ρ ¼
a2w4ð1þ 6w2 þ w4Þ

ρð−1þ w2Þ2ða2w4 þ ð−1þ w2Þ4ρ2Þ ð24Þ

≃ a2

16t4
ρ: ð25Þ

Therefore, in contrast to the single soliton in Ref. [9], the C
energy does not diverge on the axis. It is regular on the axis
(for the solution in [9], it diverges).

FIG. 1 (color online). The time dependence of tanθAð¼−tanθBÞ
on the axis for ingoing (outgoing) waves, where we set a ¼ 1.
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Near the axis, the metric behaves as

ds2 ≃
�
1þ a2

4t2

�−1
ðdzþ adϕÞ2 þ ρ2

�
1þ a2

4t2

�
dϕ2

þ
�
1þ a2

4t2

�
ð−dt2 þ dρ2Þ: ð26Þ

Let us introduce a new coordinate ~z≔zþ aϕ. Then the
asymptotic behavior of the metric can be written as

ds2 ≃
�
1þ a2

4t2

�−1
d~z2 þ ρ2

�
1þ a2

4t2

�
dϕ2

þ
�
1þ a2

4t2

�
ð−dt2 þ dρ2Þ: ð27Þ

Therefore, under this choice of the periodicity Δϕ ¼ 2π,
there is no deficit angle for the solution.

B. On light cone (t ¼ ρ)

Since the amplitudes of the ingoing waves Aþ and A×
vanish on the light cone w ¼ 1ðt ¼ ρÞ [see Fig. 2 and
Eqs. (4), (6)], we see that no ingoing wave crosses it. On the
other hand, for the outgoing waves, B× vanishes on it but
Bþ diverges [see Eqs. (5) and (7)]; therefore, the þ mode
with infinite wave amplitude only exists there. Hence, from
this fact and Eq. (25), we can read off that the C-energy
density does also diverge on it. This singular behavior on
the light cone is similar to that in [9], where the largest
portion of the disturbance for the outgoing wave with both
þ and × modes lies on the light cone. The largest portion of
the outgoing gravitational radiation can be regarded as a

gravitational wave pulse propagating at the speed of light
from the axis ðt; ρÞ ¼ ð0; 0Þ to the null infinity. As will be
seen later, it should be noted that the gravitational shock
wave starting from the axis interacts with the background
spacetime and generates the outgoing × mode wave and
ingoing waves.

C. Timelike infinity t → ∞
Let us consider the limit t → ∞ while keeping the radial

coordinate ρ constant. It is easy to confirm that the
spacetime at the timelike infinity asymptotically behaves
as Minkowski spacetime; actually, at t → ∞ the metric
behaves as

ds2 ≃
�
1 −

a2

4t2

��
dzþ a

�
1þ ρ2

4t2

�
dϕ

�
2

þ ρ2
�
1þ a

4t2

�
dϕ2 þ

�
ρ2sin2θ þ 1

t2

�
dϕ2

þ
�
1þ a2

4t2

�
ð−dt2 þ dρ2Þ: ð28Þ

Hence, this implies that both the amplitudes of the
ingoing and outgoing gravitational waves gradually decay
and finally vanish completely:

A≃ a2

2t2
þOðt−3Þ; ð29Þ

B≃ a2

2t2
þOðt−3Þ: ð30Þ

We also find that tan θA and tan θB for the ingoing and
outgoing waves behave as, restrictively,

tan θA ≃ − tan θB ≃ 1; ð31Þ

which means that for the radial coordinate ρ fixed,
the × mode for the restrictive waves becomes dominant
as time passes.

D. Null infinity v → ∞ with u ¼ u0 > 0

We can see that at the null infinity v → ∞ with
u ¼ u0 > 0, the spacetime approaches Minkowski space-
time. In this limit, the metric at v → ∞ asymptotically
behaves as

ds2 ≃
�
dzþ a

4u1=20 b2
v1=2dϕ

�
2

þρ2dϕ2 þ b2ð−dt2 þ dρ2Þ; ð32Þ

where b≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ða=16u0Þ2

p
. This asymptotic metric form

seems to be singular at the infinity because of the existence
of the additional parameter a. To see that actually, the

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2. w ¼ constant curves in the ðt; ρÞ plane: each w ¼
constant curve denotes a straight line. The axis ρ ¼ 0 and the
light cone t ¼ ρðu ¼ 0Þ correspond to the lines w ¼ 0 and w ¼ 1,
respectively.
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metric is asymptotically flat, let us introduce new coor-
dinates ð~t; x; yÞ defined by

~t ¼ bt; ð33Þ

x ¼ bρ cos bϕ; ð34Þ

y ¼ bρ sin bϕ; ð35Þ

and then we can see that at v → ∞ the metric behaves as

ds2 ≃ −d~t2 þ dx2 þ dy2 þ dz2 þOðv−1=2Þ: ð36Þ
Therefore, at the null infinity, both the ingoing and out-
going waves asymptotically vanish.
Next, we see how the ingoing and outgoing waves

behave along null rays u ¼ u0ð> 0Þ by changing a value
of u0. Here, without loss of generality, we can assume
a > 0 because under the transformations a → −a and
ϕ → −ϕ, the single soliton solution is invariant. Note that
at the null infinity v → ∞, the restrictive wave amplitudes
behave as

A≃ 2jaju0
ð256u20 þ a2Þ1=2v3=2 ; ð37Þ

B≃ 2jaj
fð256u20 þ a2Þu0g3=2v1=2

; ð38Þ

and the restrictive polarization angles θA and θB behave as

tan θA ≃ −aþ ð256u20 þ a2Þ1=2
16u0

; ð39Þ

tan θB ≃ 16u0ð256u20 − 3a2Þ
aða2 − 768u20Þ þ ϵð256u20 þ a2Þ3=2 ; ð40Þ

where ϵ takes 1 when u0 < jaj=ð16 ffiffiffi
3

p Þ and −1
when u0 > jaj=ð16 ffiffiffi

3
p Þ.

E. Gravitational Faraday effect

It is physically interesting to see how the polarization
angle θB of the outgoing wave propagating from the axis
ρ ¼ 0 changes along some null rays u ¼ u0 by changing a
value of u0. This effect is well known as gravitational
Faraday rotation. Note that at v → ∞, tan θA is always
positive and the signature of tan θB depends on the value of
u0. Also note that on the axis ρ ¼ 0, tan θA ¼ − tan θB is
negative when 0 < u0 < a=4, positive when u0 > a=4, and
zero when u0 ¼ a=4.

(i) For u0 < jaj=16 ffiffiffi
3

p
(t < jaj=8 ffiffiffi

3
p

on the axis
ρ ¼ 0), both þ and × modes are present on the
axis. The ratio of the × mode wave to the þ mode
wave is decreasing along a null ray u ¼ u0 and
the outgoing wave converts to Bþ completely.

After that, a part of the pure þ mode converts to
the × mode and the ratio is increasing.

(ii) For jaj=16 ffiffiffi
3

p
< u0 <

ffiffiffi
3

p jaj=16 (
ffiffiffi
3

p jaj=8 < t <ffiffiffi
3

p jaj=8 on the axis ρ ¼ 0), both þ and × modes
are present on the axis. The ratio of the × modewave
to the þ mode wave is decreasing along a null ray
u ¼ u0 but does not vanish anywhere.

(iii) For u0 ¼
ffiffiffi
3

p jaj=16 (t ¼ ffiffiffi
3

p jaj=8 on the axis
ρ ¼ 0), both þ and × modes are present on the
axis. The ratio of the × mode wave to the þ mode
wave is decreasing along a null ray u ¼ u0 and
vanishes at infinity v → ∞. Therefore, at null
infinity, the þ mode wave only is present.

(iv) For
ffiffiffi
3

p jaj=16 < u0 < jaj=4 ( ffiffiffi
3

p jaj=8 < u0 < jaj=2
on the axis ρ ¼ 0), the behavior of the outgoing
wave is similar to the case of (i).

(v) For u0 ¼ jaj=4 (t ¼ jaj=2 on the axis ρ ¼ 0),
the × mode wave vanishes on the axis. The
pure þ mode wave emitted from the axis partially
converts to the × mode and then the ratio is
increasing along a null ray.

(vi) For jaj=4 < u0 (jaj=4 < t on the axis ρ ¼ 0),
both þ and × modes are present on the axis. The
ratio of the × mode wave to the þ mode wave is
increasing along a null ray u ¼ u0.

Next, see how the polarization angle θA of the ingoing
wave from the axis ρ ¼ 0 to the infinity v → ∞ changes
along some null rays u ¼ u0 by a value of u0.

(i) For u0 < jaj=4 (t < jaj=2 on the axis ρ ¼ 0),
both þ and × modes are present on the axis. The
ratio of the × mode wave to the þ mode wave is
decreasing along a null ray u ¼ u0 and the outgoing
wave converts to Bþ completely. Then, a part of the
pureþmode converts to × and the ratio is increasing.

(ii) For u0¼jaj=4 (t ¼ jaj=2 on the axis ρ ¼ 0),
the × mode wave vanishes on the axis. The
pure þ mode wave emitted from the axis partially
converts to the × mode and then the ratio is
increasing along a null ray.

(iii) For u0 > jaj=4 (t > jaj=2 on the axis ρ ¼ 0),
both þ and × modes are present on the axis. The
ratio of the × mode wave to the þ mode wave is
increasing along a null ray u ¼ u0 at large v ≫ jaj
and does not vanish and does not reach 1 anywhere.

V. DISCUSSION

In this paper, applying Pomeransky’s procedure for the
inverse scattering method to a cylindrically symmetric
spacetime, we have obtained the gravitational soliton as
an exact solution to vacuum Einstein equations with
cylindrical symmetry. We would like to emphasize that
this work is the first example to be generated by
Pomeransky’s procedure in such a cylindrical context. In
general, such a single soliton describes a gravitational wave
pulse with time-depending polarization angles propagating
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through a cylindrically symmetric spacetime. In terms of
the gravitational soliton, we have studied the effect of the
gravitational Faraday rotation of gravitational waves. In
particular, we have compared our single soliton solutions
with Tomimatsu’s single soliton [9] which was constructed
by the use of the original Belinski-Zakharov procedure.
Here, we would like to point out that there are essential

differences between the two solutions:
(i) For our solution, the C energy diverges on the light

cone u ¼ 0 as it does for Tomimatsu’s solution. The
outgoing wave with the largest portion of the
disturbance initially propagates at light velocity
and hence, we can physically interpret it as a
gravitational wave pulse. It should be noted that
for Tomimatsu’s solution both the þ and × modes
have infinite wave amplitude with the polarization
fixed, while for our solution the outgoing wave with
the þ mode only has infinite amplitude and the one
with the × mode vanishes there.

(ii) For our solutions, theC energy does not diverge on an
axis of symmetry, which is in contrast to the soliton
solutions in Ref. [9]. This difference comes from the
fact that for our solutions, the seed added back trivial
soliton(s); i.e., Minkowski has no singular behavior
on the axis. It is expected that Pomeransky’s pro-
cedure does not change this structure by the solitonic
transformations except at the point where the soliton
is added. For Tomimatsu’s solution, the singular
source on the axis continues to absorb and emit
gravitational waves constantly (therefore, amplitudes
do not decay near the axis forever). On the other hand,
for our solution, because of the absence of any
sources on the axis, a shock wave is emitted initially
from the origin of the spacetime and continues to
scatter waves backward and make a tail, which is
gradually damped and finally vanishes.

(iii) For our solutions, the polarization angles θA and θB
of gravitational waves on the axis have time
dependence. This behavior is in contrast to the
soliton solutions in Ref. [9], where the þ mode
amplitudes are dominant on the axis. At t ¼ 0, the
pure × mode amplitudes only are present on the axis.
As time goes on, the þ mode gradually increases,
and at some instance the × mode completely
vanishes and only the þ mode is left. Then the þ
mode is decreasing in turn and finally vanishes,
while the × mode only remains. It should be noticed
that the time dependence of the polarization of
gravitational waves on the axis is determined by
the behavior of the polarization of the ingoing waves
near the axis, because the outgoing waves are
derived just by reflection of the ingoing waves
due to the regularity of the axis.

(iv) At t → ∞ (with ρ constant), for our solutions, the
spacetime asymptotically approaches Minkowski,

and simultaneously both ingoing and outgoing
gravitational waves fade into the background space-
time. We also find that the × mode for the ingoing and
outgoing waves becomes dominant in the future. On
the other hand, for Tomimatsu’s solutions, the space-
time is not asymptotically Minkowski at timelike
infinity, and the waves do not vanish anywhere due
to the existence of the singular source on the axis as
mentioned above in (ii). The polarizations approach 0
for both ingoing and outgoing waves, and therefore,
theþmodes gradually become dominant in the future.

Among the properties mentioned above, one of the most
peculiar phenomena may be the × mode dominance of the
wave tail. As is well known, all of the Einstein-Rosen wave
pulses, which bear the þ mode only, have the tails which
approach the timelike infinity in the same way [14]. The
asymptotic forms of the ingoing and outgoing þ mode
amplitudes behave as 1=t2. On the other hand, for the wave
pulse treated here, the × mode tails for the ingoing and
outgoing waves have the same asymptotic form as the
Einstein-Rosen wave pulses, but the þ mode tails decay
more swiftly than the case of Einstein-Rosen wave pulses.
It seems to be plausible that the × mode plays the role
of the þ mode of the Einstein-Rosen wave pulses.
Actually we may support this statement with the aid of
the following basic equations of þ mode amplitudes
ðAþ; BþÞ and × mode amplitudes ðA×; B×Þ given in [8]:

Aþ;u ¼ Bþ;v ¼
Aþ − Bþ

2ρ
þ A×B×;

A×;u ¼
A× þ B×

2ρ
− AþB×; B×;v ¼ −

A× þ B×

2ρ
− BþA×:

For the right-hand side of each equation above, the first
term is the “linear” term which exists in the original
equations of the Einstein-Rosen waves and the second
one is the “nonlinear” term which gives new effects that are
absent in Einstein-Rosen waves like the gravitational
Faraday rotation. Substituting the exact form of the new
solution into the right-hand side of the above equations, we
can easily evaluate which term becomes dominant between
the linear and nonlinear terms as time goes to infinity. From
this simple evaluation, we know that for the × mode the
first term dominates the second one so that the linear term
controls the behavior of the × mode amplitudes, while for
the þ mode the second term keeps the size comparable to
the first term so that some nonlinear effect still has some
influence on the behavior of the þ mode. As a result, we
may suggest that the × mode behaves like the case of the
Einstein-Rosen waves, but the þ mode rapidly decreases
owing to the nonlinear effect originating from the second
term of the right-hand side of the equations. To study this
further, it would be interesting to clarify to what extent this
phenomenon occurs generally. From this point, we must
treat more general cases, including other soliton solutions
and nonsoliton solutions.
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