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This paper addresses the question of whether Witten’s proof of positive Arnowitt-Deser-Misner (ADM)
energy for classical general relativity [E. Witten, Commun. Math. Phys. 80, 381 (1981)] can be extended to
give a proof of positive energy for a nonperturbative quantization of general relativity. To address this
question, a set of conditions is shown to be sufficient for showing the positivity of a Hamiltonian operator
corresponding to the ADM energy. One of these conditions is a particular factor ordering for the constraints
of general relativity, in a representation where the states are functionals of the Ashtekar connection, and the
auxiliary, Witten spinor.
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I. INTRODUCTION

One of the most evident facts about the world is the
stability of empty space-time. In classical general relativity
we can explain this as a consequence of the positive energy
theorem, which establishes, in the asymptotically flat
context, that, when the constraints of the theory are
satisfied, and matter satisfies the positive energy condition,
the Arnowitt-Deser-Misner (ADM) mass is positive defi-
nite. Further, the ADMmass only vanishes when the space-
time is Minkowski space-time. This theorem was proved
first by Schoen and Yau [1], although here we will be
interested in a slightly later proof of Witten [2].
In this paper we discuss a corresponding result for the

quantum theory of gravity. Certainly the positive energy
theorem must extend in some suitable form to any viable
quantum theory of gravity. This is highly nontrivial in a
background-independent approach because, as a conse-
quence of the equivalence principle, the ADM Hamiltonian
comprises a bulk term, which is proportional to constraints,
and a boundary term, which is not positive definite off the
constraint surface.
To make progress towards such a quantum positive

energy theorem, we study a particular class of theories,
where the quantum state is a functional of the Ashtekar
connection [which is the chiral SUð2ÞLeft part of the space-
time connection] and an auxiliary spinor variable, the
Witten spinor. Working within this class of representations,
we establish a set of sufficient conditions for a quantization
of general relativity to have such a theorem. To do this, we
work at a formal level in which we pay attention to operator
ordering but not the details of a regularization scheme for
operator products.
One crucial issue that emerges is the requirement that the

spatial metric and frame fields be nondegenerate. This is a
necessary condition of the classical proof [3], and the
quantum proof requires correspondingly that 1̂ffiffiffiffiffiffiffiffiffi

detðqÞ
p be well

defined as a quantum operator. This is a challenge for the
standard Ashtekar-Lewandowski representation of loop
quantum gravity, which allows for states where the metric
operators are degenerate. This is indeed a crucial issue
because the fact that the configuration space of the theory
extends to degenerate three metrics is a consequence of
the fact that the action, equations of motion and con-
straints of the connection-based form of general relativity
are all low order polynomials, the same circumstance
which makes possible exact and nontrivial results in the
quantum theory.
As a by-product of our work, we show that some known

classical results have particularly simple derivations within
the Ashtekar formalism. These include Witten’s positive
energy theorem itself and the demonstration that there
exists a positive definite bulk Hamiltonian which is,
however, only equal to the ADM Hamiltonian on the
constraint surface.

A. Heuristic motivation

The positive energy theorem was for half a century or
more an open challenge to relativists. Many attempts were
made to prove flat space-time was stable, but none com-
pletely succeeded completely until a majestic tour de force of
geometric reasoning of Schoen and Yau [1]. This was
followed two years later by a proof of Witten [2], which
was as elegant as it was short. It is this proof of Witten’s that
we take as a template here for the quantum theory.
Witten’s proof was inspired by an observation about

supergravity made by Grisaru [4] and Deser and Teitelboim
[5]. This was that the Hamiltonian of supergravity is
positive definite because the ADM Hamiltonian is the
square of the supersymmetry charge. In informal notation,1
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1In this paper indices A; B; C;… ¼ 0; 1 are left-handed Weyl
spinor indices, while primed indices A0; B0; C0;… ¼ 00; 10 signify
the complex conjugate representation spanned by right-handed
Weyl spinors. a; b; c ¼ 1; 2; 3 are three-dimensional space-time
indices.
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HADM ¼ Q†
AQ

A ≥ 0: ð1Þ
The suggestion was that a positive energy proof for

general relativity could be gotten by restricting supergravity
to its bosonic sector, which is general relativity. Witten
realized this suggestion in a very clever way which can be
explained as follows.
Let us work in the chiral Hamiltonian formulation of

N ¼ 1 supergravity, as presented by Jacobson [6]. There,
both the Hamiltonian and the supersymmetry charge are a
sum of a bulk term proportional to constraints and a surface
integral taken at the boundary at spatial infinity. We will not
need the full formulation here, but to motivate Witten’s
proof we need to know two things about it. First, it extends
the Ashtekar formulation of general relativity. Its canonical
coordinates are the left-handed part of the gravitational
connection, or Ashtekar connection, AAB

a and the left-
handed gravitino field ψA

a . Their conjugate momenta are
the densitized frame field ~Ea

AB and the gravitino momenta
~πaA. The nonvanishing Poisson brackets are

fAAB
a ðxÞ; ~Ea

CDðyÞg ¼ δ3ðx; yÞδbaδABCD; ð2Þ

fψA
aðxÞ; ~πaCðyÞgþ ¼ δ3ðx; yÞδbaδCA: ð3Þ

Second, the constraint that generates left-handed super-
symmetry transformations has the form

SA ¼ Daπ
aA ¼ 0; ð4Þ

where Da is the left-handed part of the gravitational
connection, known as the Ashtekar connection.
The general relativity sector of supergravity can be taken

to be the configurations in which the spinor field ψA
a and its

conjugate momenta πaB vanish. But there is a larger sector of
the phase space which is gauge equivalent to general
relativity under local supersymmetry transformations.
The left-handed part of this is

ψA
a → δξψ

A
a ¼ fψA

a ;SðξÞg ¼ Daξ
A: ð5Þ

To fully parametrize this sector of supergravity, which is
gauge equivalent to general relativity, in a way that gets as
close to preserving the Poisson brackets as possible, we
may try to take

~πaA → ~Ea
ABξ

B: ð6Þ
Then2

fψA
aðxÞ; ~πaCðyÞgþ → ξEξ

Eδ3ðx; yÞδbaδCA: ð7Þ

Then the supersymmetry constraint SE becomes an
elliptic equation for ξE:

SE → GEFξF þWðξÞE ¼ 0 ð8Þ

where

WE ¼ ~Ea
EFDaξ

F ¼ 0 ð9Þ

is known as the Witten equation, as it plays a key role in
Witten’s proof.
The other term in the equation is

Ggr
AB ¼ Da

~Ea
AB ¼ 0; ð10Þ

which is the Gauss law constraint that generates local chiral
SUð2ÞL frame rotations.
To complete the description of this sector we may add a

conjugate momenta πE to the theory, satisfying

fξÞAðxÞ; ~πCðyÞgþ ¼ δCAδ
3ðx; yÞ: ð11Þ

This does not play much of a role, except in one
place below.
Let us call this sector of supergravity the bosonic sector

of supergravity. It is locally supergauge equivalent to
general relativity, although it might have novel topological
effects.
An appropriate restriction of the supercharge squared in

(1) to this sector gauge equivalent to general relativity is
then to square the Witten equation. This is the starting point
of Witten’s proof, which is reproduced in the next section.
If we seek to extend the positive energy proof of Witten

to the quantum theory, the first question to be confronted is
what is the appropriate way to represent the Witten spinor
and its equation in the Hilbert space?
A first thought (which was investigated in [7]) is to take

the spinor as an operator on the quantum gravity Hilbert
space. This means to solve the Witten equation as a strong
operator equation

ŴE ¼ ~Ea
EFDaξ̂

F ¼ 0; ð12Þ

which when solved expresses ξ̂F ¼ ξ̂FðÂ; ÊÞ as a (very)
nonlinear and nonlocal functional of the gravitational
operators Â and Ê. However, it turns out that because of
operator ordering issues in the proof, the spinor operator ξ̂F

would have to commute with the operators that represent
the Hamiltonian and diffeomorphism constraints and so be
what is called a Dirac observable. Given that the Witten
equation does not commute with those constraints this
seems to be too much to ask.

2If we want to preserve the precise Poisson bracket we should
take, instead of (6),

~πaA →
1

ξEξ
E
~Ea
ABξ

B;

but this runs afoul of the fact that Grassmann numbers do not
have inverses. To make sense of this we could try to extend the
Grassmann algebra to a nonassociative algebra, but this is too
much novelty for a peripheral point.
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So we try here something different, which is to put the
Witten spinor into the wave functional, so that quantum
states are functionals of AAB

a and ξE:

Φ ¼ Φ½AAB
a ; ξE�: ð13Þ

This does not change the number of degrees of freedom
because the wave functionals are subject to an additional
pair of constraints—the Witten constraint

ŴEΦ½AAB
a ; ξE� ¼ 0: ð14Þ

This can be thought of two ways. First, we are used in
theories with gauge invariance to writing quantum states on
wave functionals on configuration spaces with auxiliary
variables, which are then restricted to a dependence on the
physical degrees of freedom by constraint equations. This is
just one more instance of it.
We can also understand the quantum states of the form

Φ½AAB
a ; ξE� as a restriction to the bosonic sector of quantum

supergravity.
This however raises a difficult issue, which is that the

first class nature of the constraint algebra is lost during the
reduction from SE to WE. As just mentioned, WE fails to
Poisson commute with the usual constraints of general
relativity. This means that the others cannot be imposed as
constraints on states as is usually done in loop quantum
gravity. Instead, the positive energy proof demands a
weaker condition which is that the constraints—when
smeared with a particular lapse and shift constructed from
ξE—have vanishing expectation value.
This brings us to the statement of the main result. After

this in Sec. 2, I present Witten’s classical proof of the
positivity of the ADM energy, expressed in Ashtekar
variables [7]. In Sec. 3, I present a sketch of a translation
of the classical proof into the quantum context.

B. Statement of the main result

The main result of this paper is a set of sufficient
conditions that a quantization of general relativity must
satisfy to have an operator representing the ADM energy
whose expectation values are positive.
Consider a representation of quantum general relativity

whose states are functionals of the Ashtekar connection and
the auxiliary spinor variables ξE:

Φ ¼ ΦðAAB
a ; ξEÞ; ð15Þ

defined by the usual Ashtekar relations

~̂E
a
ABΦ½A; ξ� ¼ −ℏ

δ

δAAB
a

Φ½A; ξ�;

Âa
ABΦ½A; ξ� ¼ AAB

a Φ½A; ξ�; ð16Þ
together with operators for the spinor ξE and its conjugate
momenta ~πC

~̂πBΦ½A; ξ� ¼ −ℏ
δ

δξB
Φ½A; ξ�; ξ̂EΦ½A; ξ� ¼ ξEΦ½A; ξ�;

ð17Þ

which satisfies the following conditions:
(1) The inner product is defined by

hΦðA; ξÞjΨðA; ξÞi

¼
Z

dAdĀdξdξ̄ Φ̄ðĀ; ξ̄ÞeIðA;Ā;ξ;ξ̄ÞΨðA; ξÞ; ð18Þ

where IðA; Ā; ξ; ξ̄Þ satisfies three conditions. The
first two are reality conditions for the frame fields
and their time derivatives, while the third is a
positivity condition for a certain operator:

δeIðA;Ā;ξ;ξ̄Þ

δĀA0B0
a ðxÞ n

A0AnB
0B −

δeIðA;Ā;ξ;ξ̄Þ

δAAB
a ðxÞ ¼ 0; ð19Þ

nB
0B∇a

�
1̂

e
δ

δĀA0B0
½a ðxÞ

δ

δAAB
b� ðxÞ

eIðA;Ā;ξ;ξ̄Þ
�
¼ 0; ð20Þ

Qab
B0B ≡ nA

0A δ

δĀA0B0
ða ðxÞ

δ

δAAB
bÞ ðxÞ

eIðA;Ā;ξ;ξ̄Þ > 0: ð21Þ

Here nAA
0 ¼ naσAA

0
a is a timeline unit normal such

that nanb ¼ nanbηab ¼ −1.
(2) The quantum Witten equation holds as a constraint

on states

ŴAΦ½A; ξ� ¼ δ

δAAB
a

Daξ
BΦ½A; ξ� ¼ 0: ð22Þ

We impose the boundary condition that as we go to
infinity, the ξE approaches a constant spinor λE such
that

λ̄E
0
λE ¼ sE

0E; ð23Þ

where sA
0A ¼ saσAA

0
a is a constant future-pointing

null vector that is normalized to

sana ¼ −1: ð24Þ

(3) The Ea
AB define an invertible metric, so that 1

e is a
well-defined operator.

(4) The expectation values of the scalar and vector
quantum constraints hold, when smeared against
particular lapse and shift constructed as follows from
the Witten spinor:

hΦj
Z
Σ
ξ̄A

0
n A
A0 ĈABξBjΦi ¼ 0 ð25Þ
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in a particular ordering

ĈAB ¼ ~̂E
aA
C

~̂E
aC
D FB

abD: ð26Þ

The equivalence of these four constraints to the usual
form of the Ashtekar constraints, for nondegenerate

three geometries, was shown first by Jacobson
in [6].

The main result is then that when these conditions are
satisfied the expectation value of the ADMHamiltonian for
the null translation at infinity generated by sA

0A is positive
definite, where

hMADMi¼−
Z

dAdĀdξdξ̄
Z
∂Σ
d2σaðnDB0eIðA;Ā;ξ;ξ̄ÞÞðξ̄B0

Φ̄½Ā;ξ̄�Þ1
e

�
δ

δAD
½aAðxÞ

δ

δAAB
b� ðxÞ

DbξBΦ½A;ξ�
�
≥0: ð27Þ

II. CLASSICAL PROOF OF POSITIVE ENERGY

We first present Witten’s proof of positive ADM energy,
translated into chiral Ashtekar variables.3

We start by squaring the Witten equation

0 ¼ R ¼
Z
Σ

nA
0A

e
W̄A0WA

¼
Z
Σ

nA
0A

e
~̄E
a
A0B0D̄aξ̄

B0 ~Eb
ABDbξ

B: ð28Þ

Note that the 1
e is necessary because the Witten equation,

(9), inherits a density weight of one from that of the ~Ea
AB.

In the presence of the Gauss’s law constraint GAB
gr this is

equivalent to squaring the supersymmetry generator

0 ¼ R ≈
Z
Σ

nA
0A

e
S̄A0SA: ð29Þ

We can divide R into symmetric and antisymmetric parts:

R ¼ Rsym þ Ranti ¼ 0; ð30Þ

where

Rsym ¼
Z
Σ

nA
0A

e
~̄E
ða
A0B0D̄aξ̄

B0 ~EbÞ
ABDbξ

B

¼
Z
Σ
nB0BeqabD̄aξ̄

B0
Dbξ

B ≥ 0 ð31Þ

is positive definite.
We then turn our attention to the antisymmetric part

Ranti ¼
Z
Σ

nA
0A

e
~̄E
½a
A0B0D̄aξ̄

B0 ~Eb�
ABDbξ

B ≤ 0: ð32Þ

We note the reality conditions

nA
0

A
~̄E
a
A0B0nB

0
B ¼ ~Ea

AB ð33Þ

and

nBB0∇a½ ~E½aB0

A0 ~Eb�C
B � ¼ 0: ð34Þ

We make an integration by parts

Ranti ¼
Z
∂Σ

d2σaμa −
Z
Σ

nA
0A

e
ξ̄A0CCAξC ≤ 0; ð35Þ

where

μa ¼ nA
0A

e
ξ̄A0 ½ ~E½a ~Eb��ABDbξ

B ð36Þ

and

CCA ¼ ½ ~E½a ~Eb��ABFBC
ab ¼ 0 ð37Þ

are four equations, equivalent to the four Ashtekar con-
straints. When they are satisfied we have

−
Z
∂Σ

d2σaμa ¼ −
Z
∂Σ

d2σa
nA

0A

e
ξ̄A0 ½ ~E½a ~Eb��ABDbξ

B

≡MADM ≥ 0: ð38Þ

Also, in the presence of the constraints, we have a
positive definite expression for the null ADM mass4:

MADM ¼ Rsymm ¼
Z
Σ
nB0BeqabD̄aξ̄

B0
Dbξ

B ≥ 0: ð39Þ

Three comments are in order.
(1) The argument must be completed by a proof that

the Witten equation (9) has solutions asymptotic to
any fixed null spinor at spatial infinity. This is
supplied by Witten [2], to which I have nothing
to add.

(2) To derive the positivity of the more usual timelike
ADM energy we need two spinors ξAI , where
I ¼ 1; 2, each a solution to the Witten equation,

3This was done first in [7]. 4Jacobson has derived this expression directly [8].
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chosen so that instead of (23), we require that at
infinity ξAI approach fixed spinors λEI , such that

X
I

λ̄E
0

I λ
E
I ¼ nE

0E: ð40Þ

(3) If we now impose the standard falloff conditions
on ~Ea

AB and AAB
a then, as shown in [9], (38) is equal

to the standard ADM mass. However, it is important
and interesting to note that even when less stringent
boundary conditions are imposed (38) still holds;
only now what is proved to be positive is a highly

nonlinear expression, which we may call the gen-
eralized ADM energy.

III. QUANTUM POSITIVE ENERGY

Our aim in the following is to find conditions a
representation of quantum gravity may satisfy which are
sufficient to guarantee the positive definiteness of an
operator for the ADM mass.
We begin again by squaring the Witten equation, only

now we use the quantum version:

0 ¼ hRi ¼
Z
Σ
d3xnA

0AhW̄A0 ðxÞΦ̄ðA; ξÞj 1
e
jWAðxÞΦðA; ξÞi

¼
Z

dAdĀdξdξ̄eIðA;Ā;ξ;ξ̄Þ
Z
Σ
d3x

nA
0A

e

�
δ

δĀA0B0
a ðxÞ D̄aξ̄

B0
Φ̄½Ā; ξ̄�

��
δ

δAAB
b ðxÞDbξ

BΦ½A; ξ�
�
: ð41Þ

Again we divide into symmetric and antisymmetric parts:

hRi ¼ hRsymi þ hRantii ¼ 0: ð42Þ
Wewant to show that the symmetric part is again positive definite. To do this we integrate functionally by parts twice, and

use (19), to find

hRsymmi ¼
Z

dAdĀdξdξ̄eIðA;Ā;ξ;ξ̄Þ
Z
Σ
d3x

nA
0A

e

�
δ

δĀA0B0
ða ðxÞ D̄aξ̄

B0
Φ̄½Ā; ξ̄�

��
δ

δAAB
bÞ ðxÞ

Dbξ
BΦ½A; ξ�

�

¼
Z

dAdĀdξdξ̄
Z
Σ
d3x

nA
0A

e

�
δ

δĀA0B0
ða ðxÞ

δ

δAAB
bÞ ðxÞ

eIðA;Ā;ξ;ξ̄Þ
�
ðD̄aξ̄

B0
Φ̄½Ā; ξ̄�ÞðDbξ

BΦ½A; ξ�Þ

¼
Z

dAdĀdξdξ̄
Z
Σ
d3x

1

e
Qab

B0BðD̄aξ̄
B0
Φ̄½Ā; ξ̄�ÞðDbξ

BΦ½A; ξ�Þ ≥ 0; ð43Þ

where

Qab
B0B ≡ nA

0A δ

δĀA0B0
ða ðxÞ

δ

δAAB
bÞ ðxÞ

eIðA;Ā;ξ;ξ̄Þ: ð44Þ

We now require that Qab
B0B be a positive Hermitian matrix, which is (21). This implies that (43) is positive definite.

We then study the antisymmetric part:

hRantii ¼
Z

dAdĀdξdξ̄
Z
Σ
d3x

nA
0A

e
eIðA;Ā;ξ;ξ̄Þ

�
δ

δĀA0B0
½a ðxÞ D̄aξ̄

B0
Φ̄½Ā; ξ̄�

��
δ

δAAB
b� ðxÞ

Dbξ
BΦ½A; ξ�

�
≤ 0: ð45Þ

We then functionally integrate by parts twice, but in a different way:

hRantii ¼ −
Z

dAdĀdξdξ̄
Z
Σ
d3x

nA
0A

e

�
δ

δĀA0B0
½a ðxÞ e

IðA;Ā;ξ;ξ̄Þ
�
ðD̄aξ̄

B0
Φ̄½Ā; ξ̄�Þ

�
δ

δAAB
b� ðxÞ

Dbξ
BΦ½A; ξ�

�

¼ −
Z

dAdĀdξdξ̄
Z
Σ
d3x

1

e

�
nDB0

δ

δAD
½aAðxÞ

eIðA;Ā;ξ;ξ̄Þ
�
ðD̄aξ̄

B0
Φ̄½Ā; ξ̄�Þ

�
δ

δAAB
b� ðxÞ

Dbξ
BΦ½A; ξ�

�

¼
Z

dAdĀdξdξ̄
Z
Σ
d3x

1

e
ðnDB0eIðA;Ā;ξ;ξ̄ÞÞðD̄aξ̄

B0
Φ̄½Ā; ξ̄�Þ

�
δ

δAD
½aAðxÞ

δ

δAAB
b� ðxÞ

Dbξ
BΦ½A; ξ�

�
: ð46Þ
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We now integrate the D̄a by parts on Σ, which produces a boundary term

hRantii ¼ hRantiiboundary þ hRantiibulk: ð47Þ
We deal with the bulk first:

hRantiibulk ¼ −
Z

dAdĀdξdξ̄
Z
Σ
d3xðnDB0eIðA;Ā;ξ;ξ̄ÞÞðξ̄B0

Φ̄½Ā; ξ̄�Þ 1
e

�
δ

δAD
½aAðxÞ

δ

δAAB
b� ðxÞ

FBE
ab ξEΦ½A; ξ�

�

¼ −
Z

dAdĀdξdξ̄
Z
Σ
d3xðnDB0eIðA;Ā;ξ;ξ̄ÞÞðξ̄B0

Φ̄½Ā; ξ̄�Þ 1
e
ĈDBξ

BΦ½A; ξ� ∼ 0; ð48Þ

where we use the second reality condition (20).
Equation (48) tells us that the quantum diffeomorphism

and Hamiltonian constraints are imposed with specific
lapse and shift given by the Witten spinor, and only in
the expectation value sense:

hΦj
Z
Σ
ξ̄A

0
n A
A0 ĈABξBjΦi ¼ 0: ð49Þ

In addition, note that we find the constraints in a particular
ordering:

Ĉ E
D ¼ δ

δAD
½aAðxÞ

δ

δAAB
b� ðxÞ

FBE
ab : ð50Þ

Finally, we have

−hRantiiboundary ≡ hMADMi ≥ 0: ð51Þ

The operator is

hMADMi ¼ −
Z

dAdĀdξdξ̄
Z
∂Σ

d2σaðnDB0eIðA;Ā;ξ;ξ̄ÞÞðξ̄B0
Φ̄½Ā; ξ̄�Þ 1

e

�
δ

δAD
½aAðxÞ

δ

δAAB
b� ðxÞ

DbξBΦ½A; ξ�
�

≥ 0; ð52Þ

where we use the boundary conditions (23) and (24). This
establishes the main result outlined in the introduction.

IV. CONCLUSIONS

We conclude with some comments on future work.
(i) We so far have skirted the tricky issue of imposing

asymptotically flat boundary conditions in the
quantum theory. This is possible because even
the classical theory the proof works for a more
general class of boundary conditions, establishing
the positivity of the generalized ADM energy (38).

(ii) The above calculation establishes that a quantum
positive energy theorem may be possible using
a representation based on the Ashtekar connection.
Left open is a key question of whether this use of
the Ashtekar connection is necessary or whether a
quantum positive energy result can be achieved
for representations based on other connections,
i.e. for values of the Immirzi parameter besides
γ ¼ ι. One possible obstacle is that the Lorentzian
Hamiltonian constraint is not polynomial for other
values of γ, making the operator ordering and
regularization issues much more challenging.

(iii) Another important open question is whether there
exist inner products which satisfy the reality con-
ditions (19) and (20) and positivity condition (21).

(iv) The form of the constraints needed for the result (4)
is very weak; it may be that a stronger condition can
be imposed. However this cannot be that the CAB

annihilate the states, as those are not first class with
the Witten equation (22). Whether there is a stronger
condition consistent with (22) is unknown.

(v) The Gauss law constraint does not come into the
proof, except that the constraints found here are only
equivalent to the ADM Hamiltonian constraint and
generators of spatial diffeomorphisms in the pres-
ence of the SUð2Þ Gauss’s law constraint, (10). Thus
we have to decide how Gauss’s law is to be imposed
in the quantum theory. This is complicated by the
fact that the Gauss law (10) does not commute under
Poisson brackets with the Witten equation. Thus we
have three choices. (i) We can gauge fix and reduce,
in which case the present results will have to be
reexamined. (ii) We can impose the expectation
value of the Gauss law constraint, following (4):

h ˆDa
~E
a
ABi ¼ 0: ð53Þ
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Or (iii) we can extend the Gauss law to act on the
spinor ξE, to make it first class with the Witten
equation, ½Gextend

AB ;WE� ≈ 0, where

Gextend
AB ¼ Da

~Ea
AB þ ξðAπBÞ; ð54Þ

and then impose it on a constraint on states

GAB
extendedjΦ >¼ 0: ð55Þ

In this case we get a stronger constraint at a cost of
slightly weakening the equivalence of the Ashtekar
constraints to the ADM constraints.

(vi) This sketch of a formal proof should be strengthened
by fully regulating the operator products involved.
This can be attempted, either within the context of
the kind of point split, but SUð2Þ gauge invariant,
regularization originally used in loop quantum
gravity, as described in [10], or the more rigorous
approaches that have become standard since [11].
This will, however, require that one key issue can be
addressed:

(vii) The issue of 1
e.—Finally, we should comment on

the problem of defining the inverse metric determi-
nant operator 1

e. This is a crucial issue for loop
quantum gravity and related nonperturbative ap-
proaches whose naive ground state corresponds to
h ~Ea

ABi ≈ 0. The problem is that, as shown by [3],
there exist nonsingular but degenerate solutions to
the classical constraints of the Ashtekar formulation
which are asymptotically flat but have negative
ADM energy.
We can note that in the classical proof, the

antisymmetric part 1
e occurs in the combination

1

e
~E½aA
D

~Eb�
AB ¼ ϵabceDB

c ; ð56Þ

where eDB
c is the one form frame field. In this case in

loop quantum gravity we can use Thiemann’s trick
to write

eAB̂c ðxÞ ¼ ½ÂAB
c ðxÞ; V̂�; ð57Þ

where V̂ is the volume operator and a regularization
for the ÂAB

c ðxÞ operator can be constructed from a
limit of short holonomies, as explained in [11,12].
Using this the ADM operator can be written in

LQG as

M̂ADM ¼
Z
∂Σ

d2σaϵabc½ÂAB
c ðxÞ; V̂�AbBA; ð58Þ

and the constraint operators, in the single densitized
form, are

ˆ1

e
C C
A ¼ ϵabc½ÂB

cAðxÞ; V̂�F C
abB : ð59Þ

To establish that this form of the constraints, (59),
leads to positivity of the corresponding form of the
ADM energy, (58), we must show that they are
equivalent as operators to the forms that arise from
squaring the Witten constraint. That is, one must
show the operator identity

1̂

e

�
δ

δAD
½aAðxÞ

δ

δAAB
b� ðxÞ

�
¼ ϵabc½ÂDB

c ðxÞ; V̂�: ð60Þ

This is challenging. Moreover, I am not aware of a
similar identity which can be used to define 1

e by
itself or in combination with the symmetric product
of ~Ea

AB which occur in the operator R̂symm in (43).
This remains the chief open problem required to run
the proof in the context of loop quantum gravity.
One promising approach is to modify loop quan-

tum gravity to incorporate nondegenerate geom-
etries along the lines of [13] or [14].
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