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We study and numerically compute the scattering coefficients of shallow water waves blocked by a
stationary counterflow. When the flow is transcritical, the coefficients closely follow Hawking’s prediction
according to which black holes should emit a thermal spectrum. We study how the spectrum deviates from
thermality when reducing the maximal flow velocity, with a particular attention to subcritical flows since
these have been recently used to test Hawking’s prediction. For such flows, we show that the emission
spectrum is strongly suppressed, and that its Planckian character is completely lost. For low frequencies,
we also show that the scattering coefficients are dominated by elastic hydrodynamical channels. Our
numerical results reproduce rather well the observations made by S. Weinfurtner et al. in the Vancouver
experiment. Nevertheless, we propose a new interpretation of what has been observed, as well as new
experimental tests.
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I. INTRODUCTION

According to Unruh’s Letter [1] Experimental Black
Hole Evaporation? it should be possible to use fluids to test
the Hawking prediction [2] that black holes spontaneously
emit a steady thermal flux. This remark rests on the fact that
the wave equation governing the propagation of long wave
length density perturbations in an inhomogeneous flow has
the form of the d’Alembert equation in a curved space-time
metric. As a result, in a transonic stationary flow, i.e.,
when the velocity v of the flow crosses the speed of
low-frequency waves c, the wave equation is identical to
that of a scalar field in a black hole metric. Therefore the
coefficients governing the scattering of density perturba-
tions should show the mode amplification which is at the
root of the Hawking effect. However, this strict correspon-
dence breaks down due to the fact that the scattering
involves short wave length modes [3], the propagation of
which is dispersive and thus no longer governed by the
d’Alembert equation. To identify what could be the
consequences of such dispersive effects, Urunh [4] numeri-
cally solved a dispersive wave equation which governs the
propagation in an analogue black hole flow. When there is a
neat separation between the short dispersive length scale
and the surface gravity scale which fixes the Hawking
temperature, he found no significant deviation of the
spectral properties of the scattering coefficients. This
second work therefore indicates that one may experimen-
tally test the Hawking prediction in dispersive media, when
some conditions are met.

This analogy is not restricted to density perturbations
in fluids. In fact, surface waves propagating on top of a
water flow in a flume also constitute a nice example [5].
Following this work, several experiments have been
recently conducted to observe the conversion of shallow
water waves (i.e., long wave lengths) into deep water waves
(i.e., short wave lengths) which occurs near a blocking
point [6,7]. This process is the time reversed of the
Hawking one, and the effective space-time metric near
the blocking point is that of a white hole. To have a close
analogy with black hole physics, the background flow that
engenders this metric should be transcritical, i.e., the flow
velocity v should cross c. In the hydrodynamic language,
the Froude number F ¼ v=c should become larger than 1.
However in the experiments [6,7], the flows apparently
possessed “no phase velocity horizon,” as they were
globally subcritical. Yet, some mode conversion was
clearly observed. In addition, when measuring the relative
amplitudes of the scattered waves for different frequencies,
Weinfurtner et al. observed a “thermal law” in agreement
with Hawking’s prediction. To understand these observa-
tions, dispersion must play an important role. As a result,
one significantly distances oneself from the relativistic
settings Hawking used.
Following [4] the consequences of short distance

dispersion have received a lot of attention [8–14], and
by now there is a fair understanding of the spectral
deviations due to dispersion when the flow is significantly
transcritical. Comparatively, much less attention has been
devoted to the cases where F barely crosses 1, or does not
cross it at all. In [15], it was shown that the Planckianity of
the spectrum is progressively lost when F barely crosses 1.
WhenF no longer crosses 1, it was also found that there is a
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new critical frequency ωmin below which a new scattering
channel opens up, and above which the spectrum closely
resembles that found when F barely crossed 1. These
results have been derived with a superluminal dispersion, as
that found in atomic Bose gases, but because of the
symmetry between sub- and superluminal dispersion, see
Sec. III E in [14], they also apply to subluminal dispersion,
as can be verified [13,16].
The main objective of the present work is to complete

these analyses by focusing on the class of flows used in the
recent experiments [6,7] so as to obtain a better under-
standing of what has been observed. To this end, we first
consider monotonic flows in which F either barely crosses
1, or remains subcritical. We then study the scattering in
nonmonotonic flows which either possess a pair of black
and white horizons, or where the maximal value of F < 1 is
reached at the top of an obstacle. The last case is the closest
to those realized in [7], and our numerical results concern-
ing the scattering coefficients closely reproduce what has
been observed. However, our analysis also confirms the
aforementioned results of [13,15] that the Planckianity is
lost for these subcritical flows, whereas the authors of [7]
observed a “thermal law.” This apparent contradiction
triggered our interest and the forthcoming analysis. As
we shall see, its resolution involves hydrodynamic modes
which dominate below the critical frequency ωmin.
The effects of dispersion shall be computed in two

different manners, along the lines of [13,17]. First, we
numerically obtain the spectral properties in flows where
the spatial gradient of the water height hðxÞ is small when
compared to the dispersive length scale, i.e., ∂xh ≪ 1.
Second, by algebraic techniques, i.e., mode matching, we
compute the Bogoliubov coefficients in the steep regime
where the water depth is piecewise constant. Even though
this regime is a priori very far from the experimental
setups, we shall establish that it governs some of the
spectral properties in the zero-frequency limit of smooth
profiles. The background flows shall also be described at
two different levels. In most of this work, for simplicity and
clarity, we work with water height profiles hðxÞ chosen
from the outset. Amongst these, we shall briefly consider
profiles that are modulated by an undulation [18], i.e., a
zero-frequency mode with a large amplitude, since these
were systematically observed in [6,7]. We shall see that
the main properties of the scattering coefficients are not
significantly affected by this additional feature of the
background flow. In Appendix A, we study profiles which
result from integrating the nonlinear hydrodynamical
equations. We shall see that the resulting spectra closely
resemble those obtained by the first approach, thereby
justifying it a posteriori.
A word of caution is perhaps necessary to conclude this

Introduction. Our treatment is based on two main approx-
imations: that of an ideal and irrotational fluid, and that
based on a low-order expansion of the dispersion relation.

To estimate the errors induced by these approximations is
not an easy task, as it would require a precise description of
the background flow, including the effects of viscosity and
vorticity, and using as well the full dispersion relation,
perhaps including surface tension, see [19,20]. Yet, we
believe our description captures the essential aspects of the
scattering in the flows of [6,7]. We thus expect that its main
predictions will be qualitatively correct, in particular, the
strong suppression of the low-frequency spectrum.
The paper is organized as follows. In Sec. II, we present

the wave equation and background flows we use. We also
compute the critical frequencies which separate the various
regimes. In Sec. III, we solve the wave equation numeri-
cally for transcritical and subcritical flows, and determine
which observables are, or are not, sensitive to the fact that F
crosses one. We conclude in Sec. IV. In Appendix A we
solve the nonlinear hydrodynamic equations to relate the
shape of the free surface to that of the obstacle, before
solving the wave equation in the resulting flow.
Appendix B is devoted to the steep horizon limit.

II. GENERAL PROPERTIES AND SETTINGS

In this section, we review the key concepts that enter into
the calculation of the scattering coefficients of shallow
water waves when they are blocked by a counterflow. Since
these concepts are now well established, we shall be rather
brief. The reader is invited to consult Refs. [5,18,21] for
the derivation of the wave equation and the description of
its properties. The general properties of the scattering
coefficients of dispersive waves in transcritical flows are
explained in detail in Refs. [12–14].

A. Wave equation and dispersion relation

We consider irrotational laminar flows of an inviscid,
ideal, incompressible fluid in an elongated flume. All
dependences in the horizontal direction perpendicular to
the flow are neglected. The propagation of linear surface
waves is governed by [5,18,21]

½ð∂t þ ∂xvÞð∂t þ v∂xÞ − ig∂x tanh ð−ih∂xÞ�ϕ ¼ 0; ð1Þ

where vðx; tÞ is the horizontal component of the flow
velocity, hðx; tÞ the background fluid depth, and g the
gravitational acceleration. The field ϕ is the perturbation of
the velocity potential. It is related to the linear variation of
the water depth δh through

δhðt; xÞ ¼ −
1

g
ð∂t þ v∂xÞϕ: ð2Þ

For the sake of simplicity, in Eq. (1) we neglected the
contributions of the vertical velocity of the free surface.
This would have the effect of adding to the gravitational
acceleration g a term associated with the centrifugal
acceleration of a fluid particle at the surface [18,21]. For
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the flow of [7], we found that its maximum value is ∼0.03g.
For the flows considered in Appendix A, it is smaller than
∼0.01g. We therefore expect that neglecting this term will
not significantly affect the scattering coefficients.
We also assume that the flow is stationary, so that we can

work with (complex) stationary waves e−iωtϕωðxÞ with
fixed laboratory frequency ω. We then expand the dis-
persive term of Eq. (1) to lowest nontrivial order in h∂x,
assuming higher-order terms play no significant role in the
determination of the scattering coefficients. When this is
the case, these can be correctly obtained by solving�
ð−iωþ ∂xvÞð−iωþ v∂xÞ− g∂xh∂x −

g
3
∂xðh∂xÞ3

�
ϕω ¼ 0:

ð3Þ

Notice that the ordering of hðxÞ and ∂x has been preserved.
This is important when considering the steep regime limit
where ∂xh ≫ 1. This interesting limit, where the scattering
coefficients can be computed analytically, is considered in
Appendix B.
As we shall see, key properties of the scattering

coefficients rely on the existence of turning points. Their
location, and other properties of the geometrical optic
approximation, are governed by the dispersion relation
associated with Eq. (3):

Ω2
ω ≡ ðω − vkωÞ2 ¼ c2k2ω

�
1 −

1

3
h2k2ω

�
; ð4Þ

where c2 ¼ ghðxÞ gives the local group velocity of waves
with low wave vector kωðxÞ in the reference frame of the
fluid. Similarly, ΩωðxÞ gives the x-dependent frequency in
that comoving frame. As in [12–14], we will consider only
positive values of ω, since the potential ϕ of Eq. (1) is
invariant under complex conjugation.

B. Subcritical and transcritical flow profiles

In this paper, the sign of the flow velocity v is taken
positive, so that counterpropagating shallow water waves
are coming from the right side. In addition, v decreases in
the direction of the flow, as can be seen on both upper plots
of Fig. 1. Hence, when F ¼ v=c crosses 1, counterpropa-
gating waves are all blocked, in analogy to what happens
near a white hole horizon. The locus where F ¼ 1 is
sometimes referred to as a “phase velocity horizon,”
as in [7].
Again for the sake of simplicity, in the body of the text,

we use background profiles for the water depth hðxÞ with a
simple analytical description. In Appendix Awe verify that
our results remain valid for more complicate profiles which
obey hydrodynamical equations. To unravel the various
aspects of the scattering, we shall consider two classes of
flows. The first class contains flows with monotonic vðxÞ,

which are asymptotically constant on both sides. They shall
be parametrized by water depths of the form

hðxÞ ¼ h0 þD tanh

�
σx
D

�
: ð5Þ

The maximum slope of h is located at x ¼ 0, and given by
Max∂xh ¼ σ, irrespectively of the parameterD which fixes
the asymptotic height changeΔh ¼ 2D, and the asymptotic
values for x → �∞: h�as: ¼ h0 �D. At fixed flux J, the
profiles of v and c are respectively given by vðxÞ ¼ J=hðxÞ
and cðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

ghðxÞp
. Most of our results will be expressed

in the system of units where g ¼ J ¼ 1. Then the Froude
number is simply given by

F ¼ h−3=2: ð6Þ

In these units, a phase velocity horizon corresponds to a
point where v ¼ c ¼ h ¼ F ¼ 1. Notice also that the
surface gravity κG ¼ j∂xðc − vÞjv¼c [1,4] is here given by

κG ¼ j∂xFjF¼1: ð7Þ

The monotonic flows of Eq. (5) split into two subclasses.
For h−as: ¼ h0 −D < 1, F crosses 1 and the flow is tran-
scritical, whereas it remains globally subcritical when
h−as: > 1. To study the transition between these two cases,
we shall work with highly “asymmetric” profiles, where the
minimum value Fmin ¼ Fðx → ∞Þ is always significantly
smaller than 1, whereas the maximum value Fmax ¼ Fðx →
−∞Þ is either slightly above or below 1, see Fig. 1.
The second class contains nonmonotonic flows where

the maximal value of F is reached at x ¼ 0, and where F
is asymptotically constant on both sides. These shall be
parametrized by

hðxÞ ¼ h0 þD tanh

�
σ1
D
ðxþLÞ

�
tanh

�
σ2
D
ðx−LÞ

�
; ð8Þ

where 2L characterizes the spatial extension of the
domain where the height h is minimal. When F remains
smaller than 1, i.e., h0 −D > 1, these subcritical flows are
close to those experimentally realized in Nice [6] and
Vancouver [7].

C. Turning points and characteristics

We remind the reader why the presence of a turning point
directly affects the scattering of shallow water waves. On
the one hand, when there is a turning point in a monotonic
flow as that of Eq. (5), one of the solutions of Eq. (3)
becomes exponentially divergent behind the turning point,
in the “forbidden region.” On the other hand, scattering
coefficients (only) relate the solutions of Eq. (3) which are
asymptotically bound, i.e., whose modulus remains finite at
x → �∞ [12]. As a result, for the flows of Eq. (5), the
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number of linearly independent asymptotically bound
modes is three when there is one turning point, and either
four, or only two, when it is absent. For definiteness, in this
subsection we assume the flow is monotonic. The dis-
cussion also applies to nonmonotonic flows described by
Eq. (8) with minor differences. For instance, quantities
evaluated at x ¼ −∞ must then be evaluated where h
reaches its minimum value.
Since two waves merge at a turning point, the dispersion

relation has a double root, or equivalently the group
velocity of the corresponding classical trajectories changes
sign. Using the quartic law of Eq. (4), double roots exist for
the values of ω

ωtp ¼
c
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1 − F2Þ3ðjFj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ 8

p
Þ

ð3jFj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ 8

p
Þ3

s
; ð9Þ

where ωtp, c2 ¼ gh and F ¼ J=ðgh3Þ1=2 are functions of
x through the profile hðxÞ. We have adopted this writing
for ωtp to make clear that c=h plays the role of the high
dispersive frequency Λ of [12]. Notice also that ωtp no
longer exists as a real root when F > 1. In this paper, only
real positive frequencies will be considered.
Given ω, Eq. (9) implicitly gives the location of the

turning point xtp through

ωtpðxtpÞ ¼ ω: ð10Þ

For monotonic flows, the minimum and maximum values
of F are Fmin =max ¼ Fðx → �∞Þ. Hence, for subcritical
flows, the maximum and minimum values of ωtp respec-
tively are

ωmax ¼ ωtpðx ¼ ∞Þ; ωmin ¼ ωtpðx ¼ −∞Þ; ð11Þ

FIG. 1. Top: Flow velocity v (plain) and speed of long-wavelength waves c (dashed) as functions of x for a monotonic flow (left), and a
nonmonotonic one (right), see Eq. (5) and Eq. (8). The parameters are σ ¼ σ1 ¼ σ2 ¼ 0.06, L ¼ 5, h0 ¼ 1.3, and D ¼ 0.2, in units
g ¼ J ¼ 1. Both flows are subcritical since v < c. The transcritical cases are similar, except that v and c cross each other, once or twice.
Bottom: As functions of x, Froude number F ¼ v=c (left), and angular frequency ωtpðxÞ when the turning point is located at x, see
Eq. (9), (right) for the flow of the top-left panel. The vertical dashed line in the left plot shows the location of turning point when
ω ¼ 10−1, (for the characteristics see Fig. 2). The maximal and minimal values of ωtp indicated by dashed horizontal lines on the right
plot give the two critical frequencies of Eq. (11).
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as clearly seen in the lower right panel of Fig. 1. (We can
treat the subcritical and transcritical cases together by
setting ωmin ¼ 0 for transcritical flows.) When ωmin <
ω < ωmax, the trajectory associated with the left-moving
root k←ω is blocked at the locus given by Eq. (10), see Fig. 2,
lower left panel. (For more details about the calculation
of these trajectories which satisfy Hamilton’s equations, see
[8,11,14].) For frequencies higher than ωmax, there are only
two real roots of the dispersion relation, see Fig. 2, and thus
only two modes. This high frequency regime will no longer
be considered as it presents no relationship with the

Hawking effect. Instead the low-frequency regime 0 < ω <
ωmin is much more interesting. It should be pointed out that
this regime only exists when the flow is subcritical, as the
root of Eq. (9) is real only for F < 1. In this regime, the four
real roots kω define four trajectories which are followed by
the corresponding waves packets (in the WKB approxi-
mation), see Fig. 2, bottom right panel.
Figure 2 upper panel shows a graphical resolution of

Eq. (4) in the left asymptotic region, in a subcritical flow,
for two frequencies ω above and below ωmin. The latter is
given by the lowest horizontal tangent to the curve of ωðkÞ.
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FIG. 2. Top: Graphical resolution of Eq. (4) in the left asymptotic region, for a globally subcritical flow with Fmax ≈ 0.54. The solid
and dotted lines show the frequency ω as a function of the wave vector k, for positive and negative value of the comoving frequency Ω,
respectively. The parameters are g ¼ J ¼ 1 and h−as ¼ 1.5. Dashed lines show two values of ω below and above ωmin. Large dots show
the (real) roots kω of the dispersion relation at fixedω. Bottom: Characteristics for ωmin < ω ¼ 10−1 < ωmax (left) and ω ¼ 10−2 < ωmin
(right). The water depth is given by Eq. (5) with h0 ¼ 1.3, D ¼ 0.2, and σ ¼ 0.06. The solid line describes the trajectory of the low
momentum incoming root propagating initially against the flow from the right side. On the left panel, there is a turning point, whereas on
the right one there is none. The dashed lines indicate that these asymptotic waves are produced by the incoming mode of Eq. (15) (left)
and Eq. (13) (right), whereas the dotted lines indicate that the waves are absent.
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(For a transcritical flow, the plain and dotted curves would
be more tilted so that this horizontal tangent disappears.)
The solid lines correspond to positive values of comoving
frequency Ω of Eq. (4), and the dotted lines to negative
values. Below ωmin, the largest root kω is the only one
which lives on the negative branch. As we shall see below,
the norm of the corresponding mode ϕω has the opposite
sign as that of the three other waves. Above ωmin, only
two real roots exist. A similar plot can be drawn for the
right asymptotic region. In that case, the horizontal tangent
defines ωmax.
In the lower panels of Fig. 2, we have represented the

characteristics in the monotonic subcritical flow of Fig. 1
for ωmin < ω < ωmax (left) and 0 < ω < ωmin (right). On
the left, there are three characteristics, and hence three
linearly independent modes. Two of them are copropagat-
ing (in the lab frame) and the third one has a turning point.
On the right, there are four characteristics (and hence four
linearly independent modes) because there is no turning
point. Three of them are copropagating and the fourth one
is counterpropagating. The use of dotted and dashed lines
schematically represents the scattering process of a counter-
propagating wave packet (represented by a continuous line)
with a nearly well-defined frequency ω sent from x ¼ ∞:
the right-moving modes are initially absent (dotted) but are
populated by the scattering (dashed). When the flow is
monotonic the reflection of the wave packet (left panel) is
total, whereas it is only partial when it is nonmonotonic
as some wave can tunnel through the effective potential.
Notice that both the left and the right cases of Fig. 2 are
relevant for interpreting the observations of [6,7].

D. Scattered modes

The above geometrical optic properties are reflected
in the properties of the various modes ϕω, solutions of
Eq. (3). In this work, we shall be interested in the scattering
coefficients relating asymptotic modes, since these coef-
ficients should be used to test the Hawking prediction.
(For a recent analysis of the local properties of the modes
ϕω, we refer to [22].)
The analytical properties of the scattering coefficients

stem from the conserved scalar product [4] associated with
Eq. (1). It is given by

ðϕ1;ϕ2Þ≡ i
Z

ðϕ�
1ð∂t þ v∂xÞϕ2 − ϕ2ð∂t þ v∂xÞϕ�

1Þdx;
ð12Þ

where ϕ1 and ϕ2 are two solutions. Note that the norm
ðϕ1;ϕ1Þ is not positive definite. This important property
allows for mode amplification (sometimes also called over-
reflection [23] or super-radiance [24]) as positive-norm
modes can be amplified alongside with the appearance of
negative-norm ones while preserving the total norm. In fact,
this over-reflection is at the root of the Hawking effect.

Since the flows we consider are asymptotically con-
stant on both sides, the asymptotic solutions of Eq. (3)
are plane waves (when the root kω is real). When the
asymptotic flow is subcritical, for low frequency, the 4
wave vectors kω are real, and the corresponding waves
are, for decreasing kω,

(i) ϕ→;d
ω is dispersive1 and right moving in the labo-

ratory frame;
(ii) ϕ←

ω is hydrodynamic, and left moving;
(iii) ϕ→

ω is hydrodynamic, and right moving;
(iv) ðϕ→;d

−ω Þ� is dispersive, and right moving.2

Unlike the first three waves, the last one has a negative
norm. This is in accord with what was observed in Fig. 2
where the corresponding root was found on the negative
Ω branch. In fact it can be easily verified that the sign of
Ω and that of the scalar product match each other exactly.
As a result, when working with a positive frequency
ω ¼ i∂t, positive-norm modes describe waves carrying
positive energy in the lab frame, whereas negative norm
modes describe negative energy waves, see Ref. [14].
The latter exist only in the presence of a counterflow,
and their presence signals that the system under study is
energetically unstable. Because the scalar product
changes sign under complex conjugation, ðϕ→;d

−ω Þ� is
conventionally written as the complex conjugate of a
positive-norm one with negative frequency, in virtue of
the invariance of Eq. (3) under complex conjugation
and ω → −ω.
In addition, each of the above 4 modes possesses a well-

defined group velocity given by vgr ¼ 1=ð∂ωkωÞ. As a
result, on each side, each can be identified as an incoming
in mode (or as a reflected out mode) when vgr is pointing
towards (away from) the central region. When F < 1 on
both asymptotic sides, for 0 < ω < ωmin, this identification
applies at x → −∞, and at x → ∞. However, because the
flow is inhomogeneous, the modes mix with each other.
The four globally defined incoming in modes—defined by
the requirement that the asymptotic weights of the 3 other
incoming modes vanish—determine 4 different superposi-
tions of the four reflected asymptotic out modes. For
instance, the incoming left-moving hydrodynamical mode
is defined by the requirement that the 3 right-moving waves
at x → −∞ vanish, see Fig. 2. This mode describes the
counterflow shallow water waves that have been studied

1The corresponding k→;d
ω exists only because of the subluminal

character of the dispersion relation of Eq. (4), as can be seen in
Fig. 2, top panel. We shall call a mode dispersive when this is the
case, and hydrodynamicwhen its corresponding root still exists in
the limit where the dispersion length scale is sent to 0. Similarly,
we shall call hydrodynamic sector the set of scattering coeffi-
cients between two hydrodynamic modes, and dispersive sector
the set of coefficients involving at least a dispersive mode.

2When using the quartic dispersion relation of Eq. (4) in place
of the full one, Ω2 ¼ gk tanhðhkÞ, this root becomes left moving
for ω >

ffiffiffi
3

p
v=h. To avoid considering this spurious effect, we

restrict our analysis to frequencies smaller than
ffiffiffi
3

p
v=h.
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in [6,7]. For this reason, we shall only consider this mode
in what follows. For a more complete description of the
scattering matrix, we refer to [12].
Using the scalar product to normalize all modes, the

scattering of this mode is fully described by

ϕ←;in
ω → αωϕ

→;d;out
ω þ βωðϕ→;d;out

−ω Þ� þ ~Aωϕ
←;out
ω

þ Aωϕ
→;out
ω ; ð13Þ

where the coefficients obey

jαωj2 − jβωj2 þ jAωj2 þ j ~Aωj2 ¼ 1: ð14Þ

For higher frequencies, i.e., forωmin<ω<ωmax, or if F> 1
in the left asymptotic region, the transmitted mode ϕ←;out

ω

no longer exists in the left asymptotic (forbidden) region.
As a result, there are only three independent asymptotically
bounded modes [12]. In this case, Eq. (13) becomes

ϕ←;in
ω → αωϕ

→;d;out
ω þ βωðϕ→;d;out

−ω Þ� þ Aωϕ
→;out
ω ; ð15Þ

and conservation of the norm now implies

jαωj2 − jβωj2 þ jAωj2 ¼ 1: ð16Þ

In what follows, we shall numerically compute these
coefficients, with a particular attention to jβωj2 as this
quantity allows us to test the Hawking prediction. Indeed,
in quantum settings, the mean occupation number of
particles spontaneously emitted (i.e., emitted when the
initial state is vacuum), is given by noutω ¼ jβωj2. In the
relativistic settings used by Hawking, ignoring the gray
body factor [25,26], one finds a Planckian spectrum:
jβωj2 ¼ ðeω=TH − 1Þ−1, governed by the Hawking temper-
ature, or better frequency,3 TH ¼ κ=2π, where κ is the
surface gravity of Eq. (7).

III. NUMERICAL ANALYSIS AND
SPECTRAL PROPERTIES

Following what was done in [12,17], we wrote a
Mathematica code which solves the wave equation (3)
and identifies the full set of Bogoliubov coefficients,
namely 16 when 0 < ω < ωmin, and 9 when ωmin < ω <
ωmax.

4 As in these earlier works, the code computes (from
right to left) a set of 4 linearly independent solutions of
Eq. (3), which are plane waves at the right boundary of the
integration domain. For each of these solutions, it then uses

the asymptotic values of ϕω and its three first derivatives to
extract the decomposition of ϕω into plane waves at the left
of the integration domain. Finally, a direct identification of
the incoming and outgoing modes gives the Bogoliubov
coefficients of Eq. (13) and Eq. (15). When considering
nonmonotonic flows of Eq. (8), since the asymptotic values
of F are equal to each other and smaller than 1, the four
modes are plane waves on both asymptotic sides and
their identification is straightforward for all frequencies
0 < ω < ωmax. For monotonic flows, when there is a
turning point, i.e., for ωmin < ω < ωmax, one should work
with superpositions of solutions which do not contain the
growing mode on the left side, in order to compute the three
coefficients of Eq. (15).
In all cases we have estimated the numerical errors

by computing the “unitarity” relations of Eq. (14) and
Eq. (16). We present results where the deviations from the
relevant equation is smaller than 10−5. When the coefficient
β, defining the temperature, is smaller than 10−3, we
imposed a better accuracy, so that the estimated relative
error on β is always smaller than 10−2. In practice, for all
but a few numerical points Eq. (14) and Eq. (16) were
satisfied to a much better precision, with deviations smaller
than 10−5jβ2j. As a result, the main sources of imprecision
of our results are the approximations discussed at the end
of the Introduction, and not the numerics.

A. Transcritical flows

1. Monotonic flows

When the flow is monotonic and when F ¼ 1 is crossed,
Eq. (15) applies to all frequencies 0 < ω < ωmax, since
counterpropagating shallow water waves are blocked irre-
spectively of their frequency ω. In this case, to a good
accuracy, one expects to recover the standard results for the
emitted flux. To ease the comparison with the Hawking
Planckian prediction, we represent, on the left panel of
Fig. 3 the effective temperature defined by

jβωj2 ¼
1

eω=Tω − 1
: ð17Þ

In accordance with the results of [12,13,17], when the
maximum value of F is significantly larger than 1, we first
observe that Tω is constant in a large range of adimensional
frequencies ω=Tω, i.e., the spectrum is Planckian to a good
accuracy. Secondly, we observe that the height of the flat
plateau closely follows the Hawking prediction [1]

TH ¼ 1

2π
j∂xðv − cÞv¼cj: ð18Þ

The values of TH are represented by dashed lines. The
agreement confirms that, for low frequencies with respect
to ωmax, the effective temperature Tω only depends on the
local properties of the flow where F reaches unity. This is

3The temperature T associated to a frequency ω being
T ¼ ℏω=kB, in units ℏ ¼ kB ¼ 1, one has T ¼ ω. In the
following, the temperatures should be conceived as frequencies.

4We are grateful to J. Macher and S. Finazzi for providing
Cþþ and Mathematica codes which were an appreciated source
of inspiration. We also thank X. Busch for explaining to us how
the code written by S. Finazzi works.
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the Hawking regime [17]. A closer study reveals that the
relative deviations between limω→0Tω and TH scale as σ2,
the square of the slope of hðxÞ. This observation is
completed by Fig. 14 of Appendix B where the validity
range of the Hawking regime is established when increas-
ing the slope σ.
For all curves in Fig. 3, the range of ω is ω ∈ f0;ωmaxg.

As can be seen from Eq. (9) and Eq. (11), this range shrinks
when h0 decreases, i.e., when the minimum Froude number
increases. The opposite case where the maximal value of F
diminishes and approaches 1 from above is much more
interesting. In this limit, we clearly observe that the range
of adimensional frequencies ω=Tω of the flat plateau
shrinks as Fmax → 1. This means that the Planckianity
of the spectrum is progressively lost in this limit. We also
observe that for high frequencies close to ωmax, the
effective temperature remains approximatively independent
of the value of Fmax. (It is worth mentioning the similarity
between the present curves and those of those obtained with
a superluminal dispersion relation [15]. The origin of this
correspondence is explained in [14].) In conclusion, the
Hawking spectrum is found only if Fmax − 1 is not too
small. It would be interesting to determine with more
precision the role of Fmax − 1 > 0 in limiting the validity
domain of the Hawking prediction. Since the primary aim
of this work is to study the case Fmax < 1, we leave a
precise characterization of this domain to a future study.
Interesting results can already be found in [12,15,17].
On the right panel of Fig. 3, we plot the squared norm of

the coefficient Aω of Eq. (15) which governs the elastic
scattering between the incoming mode and the spectator
mode ϕ→;out

ω . We observe that jAωj2 ≲ e−5. This means that

(transmission) gray body factor [25] is close to 1 since
Γ2
ω ∼ 1 − jAωj2 ∼ 1. This is unlike what is found in the case

of Schwarzschild black holes, where Γ2 ∝ ω2. In brief, for
transcritical flows, it is legitimate to neglect jAωj2 as it
hardly affects the unitarity relation Eq. (16). As a result, in
this regime, the Planckianity of the spectrum can be studied
either from jβωj2, as shown in Eq. (17), or from the ratio

Rω ≡
���� βωαω

����2; ð19Þ

which gives Rω ≈ e−ω=Tω , since jαωj2 ≈ 1þ jβωj2.
Instead, when jAωj2 ≪ 1 is no longer satisfied, the

meaning of Rω is no longer clear because jαωj2 − jβωj2 ¼
1 − jAωj2 ≠ 1. On the contrary, irrespectively of the value
of jAωj2, jβωj2 of Eq. (13) [or that of Eq. (15)] always gives
nBHω , the mean number of asymptotic particles spontane-
ously emitted by the corresponding black hole flow. In fact,
as explained in [12], the emission spectrum of black holes
and white holes differ when the S-matrix mixes more than
two modes.5

2. Nonmonotonic transcritical flows,
adding a black hole horizon

We now consider profiles of the second class, see Eq. (8),
when Fmax is significantly larger than 1. In these profiles,
there is a second analogue horizon, which is that of a black
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FIG. 3 (color online). Left: Effective temperature Tω of Eq. (17) as a function of lnω for a transcritical flow of the form Eq. (5) with
fixed values of σ ¼ 0.06, andD ¼ 0.2, and 6 values of h0. For the four plain lines, from top to bottom, the values of Fmax are decreasing,
and fixed by h0 ¼ 1; 1.1; 1.15, and 1.2. The three horizontal dashed lines give the Hawking temperatures of Eq. (18) for the
corresponding flow, and TH;0 gives the reference value defined for h0 ¼ 1. In units where g ¼ J ¼ 1, one has TH;0 ≈ 0.014. For the last
flow, TH vanishes, as Fmax ¼ 1. The two dotted curves correspond to flows where the maximum Froude number is larger than in the
symmetric case h0 ¼ 1 since the values of h0 are 0.9, and 0.85. These two curves have been included to show that the spectra still follow
the thermal prediction when increasing Fmax. Right: Logarithm of the transmission coefficient jAωj2 of Eq. (15) for the same flows.

5For this reason, it would be interesting to explicitly study the
scattering of shallow water waves in black hole flows, as pointed
out by S. Robertson.
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hole since v=c increases along the direction of v when
crossing 1. We shall be rather brief and only focus on the
new aspects with respect to the former case which are
brought by the presence of this second horizon.
The first important difference stems from the fact that the

flows are now asymptotically subcritical on both sides. As a
result, the four mode mixing of Eq. (13) here applies for all
frequencies 0 < ω < ωmax. However, because the flows are
transcritical, in the WKB approximation, incoming modes
from the right side will still be reflected for all these
frequencies. As a result, we do not expect that the presence
of the extra transmitted mode ϕ←

ω will significantly modify
the scattering coefficients for not too low frequencies.
To verify this, Fig. 4 shows the effective temperature of
Eq. (17) and the sum of squared norm of the hydrodynamic
coefficients for a background water depth of the form
Eq. (8), with Fmax ≈ 1.2. On the left panel we recover an
approximately Planckian spectrum in a wide range of ω,
which is still bounded by ωmax on the right, as was found in
the former section. The novel feature concerns the low-
frequency regime. The Hawking regime is now bounded
from below by

ωc ∼
cð0Þ
hð0Þ ðFmax − 1ÞðΛdechð0ÞÞe−2κdecL; ð20Þ

where the critical inverse length is

Λdec ≡ 1

hð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðF2

max − 1Þ
q

: ð21Þ

The critical frequency ωc gives the value of ω below which
the existence of the second horizon significantly affects the

scattering. The exponential factor in Eq. (20) may be
understood as follows. The left-moving mode is exponen-
tially decaying in the interhorizon region. Therefore the
amplitude of the waves scattered on the black hole horizon
back towards the white hole horizon are exponentially
suppressed, unless the frequency is exponentially small, as
then the matching conditions of modes on the two sides of
the horizon gives an additional exponentially large factor.
[Notice also that the above formula for ωc is valid provided
Fmax is significantly larger than unity, so that the expo-
nential factor of Eq. (20) is much smaller than unity, and
ωc exponentially small. In the other limit, when Fmax

decreases and approaches 1, the range of frequencies in
which the radiation is thermal shrinks, as ωc increases.]
For 0 < ω≲ ωc, the coefficients αω and βω both
become proportional to ω1=2. In addition, the reflection
coefficient Aω vanishes like ω. So, in the limit ω → 0 we
have a total transmission in the hydrodynamic sector,
i.e., j ~Aωj → 1.
From this brief study, we learned two important things.

In the low frequency limit, the scattering displays a new
regime which, first, only involves the hydrodynamic modes,
and, second, where the effective temperature vanishes
because jβωj2 vanishes too. These two observations will
be also found below when studying subcritical flows.
However, the suppression of jβωj2 will be much more
significant, as it will apply to a much larger range of
frequencies. Indeed, when Fmax is significantly smaller
than 1, ωmin of Eq. (11), which will play the role of ωc, is of
the same order as ωmax, and is thus in general much larger
than the typical values of the gradient of v − c which fixes
the effective temperature.

15 10 5 0
ln

TH

0.2

0.4

0.6

0.8

1.0

T

TH

15 10 5 0
ln

TH

5

4

3

2

1

0

ln A2 A2

FIG. 4. Effective temperature (left) and logarithm of the squared hydrodynamic coefficients (right) as functions of the angular
frequency ω for a localized obstacle giving a transcritical flow, with Fmax ∼ 1.2. [This value has been chosen so that ωc of Eq. (20) is not
too small.] The background water depth is given by Eq. (8), with σ1 ¼ σ2 ¼ 0.03, h0 ¼ 1.0, D ¼ 0.1, and for extensions L ¼ 5 (solid),
7 (dashed), and 10 (dotted), in units where g ¼ J ¼ 1. The corresponding values of ωc are 7.0 × 10−4TH; 1.2 × 10−5TH , and
2.6 × 10−8TH respectively, where TH ≈ 1.4 × 10−2. On both panels, one clearly sees that the finite extension L of the transcritical flow
only affects the Planckian behavior of the spectrum for ultra low frequencies ω≲ ωc. In the new regime, the effective temperature
vanishes (left panel), and the hydrodynamical sector completely dominates the scattering (right).
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B. Subcritical flows

We now address the main issue of this work, namely
what are the properties of the scattering coefficients when
Fmax is lower than 1. As in the former subsection, we first
consider monotonic flows described by Eq. (5).

1. Monotonic subcritical flows

To start with, we emphasize that the main modification
introduced by considering subcritical flows concerns ωmin

of Eq. (11). As already mentioned in Sec. II C, for
0 < ω < ωmin, the scattering of incoming shallow water
waves now involves four waves as described in Eq. (13).
Instead, for ωmin < ω < ωmax, one recovers the former
situation involving only 3 outgoing modes, see Eq. (15). As
a result we expect that the scattering coefficients behave
very differently below and above ωmin.
This is exactly what can be seen in the upper right panel

of Fig. 5 where we represented the sum j ~Aωj2 þ jAωj2.
Since this quantity is equal to jαωj2 − jβωj2 − 1 in virtue

of Eq. (14), it determines the relative importance of the
dispersive and the hydrodynamic sectors. [As no counter-
propagating wave exists in the left asymptotic region
when ω > ωmin, we extended the definition of ~A by setting
~Aðω > ωminÞ ¼ 0. ~A is then continuous across ω ¼ ωmin.]
For the two subcritical profiles, we notice a sharp transition
which precisely occurs at the corresponding value of ωmin.
Above this frequency, the reflexion coefficient jAωj2
behaves essentially like for the critical and the transcritical
flows, as can also be verified by comparison with the right
panel of Fig. 3. This was expected from the fact that, above
ωmin, the characteristics of the modes possess the same
structure (given in the left panel of Fig. 2) whether Fmax is
greater or below 1. Below ωmin, j ~Aωj2 þ jAωj2 tends to 1.
Hence, the low-frequency regime is completely dominated
by the hydrodynamical sector, which moreover is purely
elastic, i.e., it involves no mode amplification. This is the
first important result of this work.
This conclusion is corroborated by the upper left panel

where we observe that the effective temperature of Eq. (17)
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FIG. 5 (color online). Top, left: Effective temperature Eq. (17) for monotonic flows of Eq. (5) with σ ¼ 0.06, D ¼ 0.2, and four
different values for Fmax, namely, 0.75 (solid) and 0.87 (dot-dashed), both subcritical flows; 1.0 critical (dashed); and 1.17 transcritical
(dotted). The temperature (frequency) TH;0 ≃ 0.014 is here used to ease the comparison with Fig. 3. In the limit ω → 0, the radical
change between sub- and transcritical flows is easily seen, as Tω goes to zero in the former cases, whereas it remains finite for the latter.
Top, right: Logarithm of the sum of the squared transmission and reflection coefficients. One clearly notices that these coefficients are
very small above ωmin, i.e., when there is a turning point, but completely dominate below ωmin. The two values of lnðωmin=TH;0Þ are 2.0
and 1.1. Bottom: Logarithm of the squared norm of the coefficients αω (left) and βω (right). The sharp transition of jαωj2 occurring at
ω ¼ ωmin is clearly visible for the two subcritical flows. For these flows, one also notices that jβωj2 remains much smaller than 1. Hence
the scattering is essentially elastic, without significant mode amplification.
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vanishes as ω → 0. In addition, we observe that it hardly
changes when passing from Fmax ¼ 1 down to 0.87 and
0.75. In all cases, it displays no flat plateau, which would
indicate a Planckian behaviour. We therefore conclude that
in these monotonic subcritical flows, the Planckianity that
was present for transcritical flows, see Fig. 3 left panel,
is completely lost. In fact the vanishing of the effective
temperature reflects something more fundamental: whereas
jβωj2 was growing as ∼TH=ω in transcritical flows, for
subcritical ones, jβωj2 remains much smaller than 1 for all
frequencies, as can be seen in the lower right panel of
Fig. 5. This key observation can be understood as follows.
For ω > ωmin, one still finds the exponential suppression
(which is typical of nonadiabatic mode mixing [27])
because ωmin is typically much larger that the surface
gravity scale, as it is proportional to the dispersive
frequency c=h, see Eq. (9). For ω < ωmin, there is another
mechanism in play: namely the incoming mode is essen-
tially transmitted as there is no turning point. As a result,
the deviations from the WKB approximation, which again
predicts βω ¼ 0, are therefore also small, hence the small-
ness of jβωj.
Interestingly, the disappearance of the turning point has

even a stronger consequence, namely both jαωj2 and jβωj2
vanish like

jβωj2 ∼ jαωj2 ∼ ω=ωb; ð22Þ
as can be seen from the two lower panels of Fig. 5. This is
our second important result. The critical frequency ωb is
found to be roughly proportional to

ωb ∝ exp

��
σ
h0
D

ðFmaxÞ1=3
�

−2
�
; ð23Þ

for large and moderate values of σ1 ≈ σ2 ¼ σ, and if
D ≪ h0. As a consequence, for ω < ωb, the effective
temperature behaves as

Tω ≈ −
ω

lnð ωωb
Þ
�
1þO

�
ω

ωb

��
: ð24Þ

We thus see that jαωj2, jβωj2, and jAωj2 þ j ~Aωj2 are all
highly sensitive to the disappearance of the turning point.
Surprisingly, the ratio of Eq. (19), which was used in [7], is
not significantly affected by this disappearance, as can be
seen in Fig. 6, left panel. In fact the behavior of Rω is rather
similar for the four flows considered in Fig. 5. In particular,
the limiting value of Rω when ω → 0 is 1 in all cases. This
requires some explanation. When ω < 0, the roles of αω
and βω are exchanged with respect to the case ω > 0,
because of the symmetry of the wave equation Eq. (3)
under ω → −ω, ∂x → −∂x, which is known as “crossing
symmetry” [28]. (This is a general property, see for instance
the scattering of light waves on a mirror following a
nonuniform trajectory, explained in Sec. 2.5.1 of [29]).
So, when ω ¼ 0 the absolute values of αω and βω must be
equal. When there is a horizon, they both diverge since
jβωj2 ∼ jαωj2 ∼ T=ω. When there is none, we numerically
observed that for ω → 0, they both vanish as jβωj2∼
jαωj2 ∼ ω=ωb. Hence in both cases lnRω is indeed linear
for small values of ω (if one assumes jβωj2=jαωj2 possess a
regular Taylor expansion). It should be noticed that Eq. (22)
is compatible with the unitarity relations of Eq. (14), or
Eq. (16), precisely because the hydrodynamic sector
dominates the scattering (jAωj2 þ j ~Aωj2 → 1) in the
small-frequency limit. In brief, there is no contradiction
between a “Boltzmanian” lnRω ∝ −ω and Eq. (22). This
offers a solution to the apparent contradiction (mentioned
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FIG. 6 (color online). Left: Logarithm of the parameter R of Eq. (19) for the monotonic flows of Fig. 5, using the conventions of Fig. 5
to designate the four cases. Notice that it is roughly linear in both the subcritical and transcritical cases. Notice also that the mean slopes
are quite similar, above and below the values of ω ¼ ωmin where the two curves corresponding to subcritical flows show a kink. Right:
Logarithm of the parameter R for the nonmonotonic flows of Eq. (8) with the same parameters as those of the monotonic ones, and with
L ¼ 4. We see that the slope of lnR remains mostly unchanged. The kinks associated with ω ¼ ωmin have now disappeared. Notice also
that the sharp peaks here are related to a different phenomenon, namely resonance effects in the cavity formed by the two would-be
horizons. The slope of lnR is so robust that only a very limited amount of information can be extracted from it.
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in the Introduction) between the observations of [7], where
lnRω ∝ −ω was observed at small ω, and the results [15]
which established that the asymptotic spectrum is non-
Planckian, as they follow Eq. (22).6

2. Nonmonotonic subcritical flows, generalities

An extra ingredient must be added to allow a clear
comparison with the observations of [7]. One should indeed
consider nonmonotonic flows since the flow that was used
had essentially the same velocities in the upstream and
downstream regions. Unlike what we found when studying
transcritical flows, for subcritical ones, we find that the
replacement of monotonic flows by the corresponding
nonmonotonic one does not significantly affect the results,
see Fig. 7. Indeed, for ω → 0, the behavior of the
Bogoliubov coefficients is not affected, as one still finds
Eq. (22), and j ~Aωj2 þ jAωj2 → 1.7 The absence of major
difference with respect to the monotonic case reflects the
fact that it is the value of ωmin that matters and not the shape
of the profile hðxÞ in the upstream region far from the
would-be white hole horizon. This can also be understood

as follows. For transcritical flows, a qualitative change of
behavior occurs as the left asymptotic region is supercritical
for a flow of the form Eq. (5), but subcritical for a flow of
the form Eq. (8). For subcritical flows instead, no such
qualitative change can possibly occur when going from
Eq. (5) to Eq. (8). In particular, a closer study reveals that
Eq. (24) and Eq. (22) are still valid for nonmonotonic
subcritical flows.
Two relatively minor differences between monotonic and

nonmonotonic flows are nevertheless worth mentioning.
First, in Fig. 7 we observe hollows in Tω, jαωj and jβωj,
which correspond to resonances. The presence of these
hollows is to be expected, as the high velocity central region
acts as a resonant cavity, see [30]. In fact, their frequency
strongly depends on L, which defines the length of the
effective cavity. In particular, they disappear when
2L≲MinðD=σ1; D=σ2Þ, as can be verified in Fig. 8. The
second difference can be seen on the right panel of Fig. 6. It
concerns the disappearance of the sharp kinks observed for
monotonic flows (see left panel), and associated with the
presence of ωmin. This disappearance can be understood
from the fact that the transmission coefficients progressively
vanish aboveωmin when the flow is nonmonotonic, whereas
they completely vanish for monotonic flows.

3. Comparison with the Vancouver experiment

Having clarified all these points, we now consider a
profile similar to the one used in [7], save for the fact that
we do not include the zero-frequency mode which modu-
lated their background flow. At the end of this section, we
shall briefly consider its impact on the scattering coef-
ficients, and show that the modifications are not significant.
Ignoring the undulation, the water depth has the form (8)

where the parameters are chosen to fit the profile of [7]
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FIG. 7 (color online). Left: Effective temperature for a nonmonotonic subcritical flow Eq. (8) (solid) with Fmax ¼ 0.87, σ1 ¼ σ2 ¼
0.06 and L ¼ 10, and for the corresponding monotonic one of Eq. (5) (dashed) which coincides with the second subcritical flow of
Fig. 5. Apart from the peaks due to resonances, the effective temperature behaves in the same manner. Right: Logarithms of the squared
scattering coefficients jAωj2 þ j ~Aωj2 (dashed), jαωj2 (solid), and jβωj2 (dot-dashed) as functions of lnω, for the same nonmonotonic
flow. At lnðωmin=TH;0Þ ≈ 1.1, both jαωj2 and jAωj2 þ j ~Aωj2 display a transition. While it was sharp in Fig. 5, the transition is now
smoothed out. Apart from this, the coefficients behave very much like those of the corresponding monotonic flow.

6A priori, Eq. (22) could have been explained by some gray
body factor Γω. Indeed, for Schwarzschild black holes in four
dimensions, for ω → 0, one gets Γω ∝ ω2 [25], which also gives
that the asymptotic coefficient scales as jβωj2 ∼ ω, without
affecting the thermality of the Hawking radiation. For analogue
white hole flows, we do not think this explanation could work
because ϕ→;d;out

−ω of Eq. (13) cannot be elastically reflected as it is
the only negative energy mode. We are grateful to W. Unruh for
interesting discussions about this issue.

7There is a small difference between monotonic and non-
monotonic flows, in that, for the latter, the reflection coefficient
Aω goes to 0 in the limit ω → 0, whereas jAω= ~Aωj is finite in the
former flows.
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using a least-square method. Using the metric system, the
optimum parameters are

h0 ≈ 0.13 m; D ≈ 0.07 m; σ1 ≈ 0.13;

σ2 ≈ 0.76; 2L ≈ 0.79 m:
ð25Þ

We did not use the exact description of the profile because
its slope is discontinuous, making the numerical integration
difficult. We believe this replacement has no significant
consequences on our main results.
Our description of the profile is plotted in the left upper

panel of Fig. 8. On the right upper one, we represent the
associated profile of the Froude number FðxÞ. In the lower
plots, we represent the effective temperature, the squared
norm of the hydrodynamic coefficients, and lnR of Eq. (19)
as functions of ω. Vertical dashed lines indicate the value
of ωmin. By making series of simulations we observed that
the values of the scattering coefficients can significantly
depend on the exact shape of the profile, so we do not
expect a good quantitative agreement. However, more

importantly, we did observe that three important features
are not sensitive to the profile shape.
First, the hydrodynamic channels always dominate the

scattering for ω < ωmin, as can be seen in the bottom right
panel. When observing the left plot of Fig. 9, left panel, we
find that it is the transmission coefficient which dominates,

j ~Aωj2 ¼
ω→0

1þO

�
ω

ωmin

�
: ð26Þ

Using the experimental data available, we estimate that
ωmin ≈ 2.7 Hz for the setup of [7],8 corresponding to a
linear frequency fmin ≈ 0.42 Hz. The second feature con-
cerns the vanishing of Tω as ω → 0, as can be seen in the
left lower panel. In fact, we found that βω and αω always
obey Eq. (22). The third feature is a consequence of
Eq. (22), and concerns the linearity of lnRω for low
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FIG. 8 (color online). Top, left: Free surface (plain) and obstacle (dashed) for a flow of the form Eq. (8) resembling the one used in [7].
We took g ¼ 9.8 m s−2 and J ¼ 0.045 m2 s−1. Top, right: Froude number as a function of x. One sees that the flow is subcritical.
Bottom, left: Effective temperature of Eq. (17) as a function of ω. Bottom, right: lnRω (plain) and logarithm of jAωj2 þ j ~Aωj2 (dotted) as
functions of ω. Vertical dashed lines indicate the value of ωmin. Forω < ωmin, we see that the effective temperature linearly vanishes, and
that the hydrodynamical coefficients dominate the scattering. We also see that lnRω is linear to a very good approximation, as was
observed in [7].

8This value is computed with the full dispersion relation
Ω2

ω ¼ gk tanh ðhkÞ, whereas in Fig. 8 ωmin follows from the
quartic law of Eq. (4). We are currently improving Eq. (3) so as to
reduce this discrepancy.
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frequency. In fact, lnRω is remarkably linear throughout
the domain ω ∈ f0;ωmaxg.
We now discuss a potentially important aspect that we

so far neglected. It concerns the zero-frequency mode with
a large amplitude that was observed in the downstream
region. To investigate its effects on the scattering, we added
various undulations to our profiles, along the lines of
Sec. IV. B. of [31]. To be able to distinguish the asymptotic
modes on the left side, the amplitude of the undulation is
exponentially suppressed at large values of x. To make the
numerical integration simple, and to incorporate the infor-
mation on the undulation we possess, its profile was taken
of the form

δhu ¼ δhu;0 cos ðkuxÞ
× ð1 − tanh ðκlðx − xlÞÞ tanh ðκrðx − xrÞÞÞ; ð27Þ

where ku is the asymptotic wave number of the zero-
frequency mode

ku ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − F2

minÞ
p

h0 þD
; ð28Þ

and where

δhu;0 ¼ 0.002 m; κl ¼ 1.0 m−1; κr ¼ 0.1 m−1;

xl ¼ 1.0 m; xr ¼ 50.0 m: ð29Þ

To illustrate the various effects introduced by undulations,
we present, in the left panel of Fig. 9, the norm of the four
coefficients of Eq. (13) for the flow of Eq. (25) without
undulation, and, in the right panel, the relative variations of

these coefficients when including the undulation para-
metrized by Eq. (27) and Eq. (29). As can be seen in
the figure, the relatives corrections are smaller that e−2 for
ω < e−2ωmin. So, the undulation does not change the
qualitative behavior of the 4 scattering coefficients, in
particular the key behaviors of Eq. (26) and Eq. (22) are
still found. Having done series of simulations with different
amplitudes for the undulation, we found the relative
deviations are linear in the amplitude. These relative
differences, evaluated for α and β in the limit ω → 0,
are of the order of 2δhu;0

h0−D
. We believe that a more systematic

study of the effects of zero-modes is beyond the scope of
this paper. In collaboration with X. Busch, we are currently
completing this analysis in a separate work.
When reporting the above estimation of ωmin, we notice

that more than half the data points shown in Fig. 5 of [7],
left panel, correspond to frequencies below ωmin, for which
the squared norm of the transmission coefficient, j ~Aωj2 is
close to 1, since there is no turning point. Hence, we
conclude that the linearity of lnRω observed in the
Vancouver experiment is probably not due to the fact that
the incoming waves were blocked.9 Together with the
absence of blocking, it would be interesting to see whether
the low-frequency behavior of Eq. (22) can be validated (or
invalidated) by the experimental data of [7], or some new
data. [The behavior of the norms of βω and αω in the left
panel of Fig. 5 of this reference indicates that Eq. (22) could
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FIG. 9. Left: Logarithms of jαωj2 (solid), j ~Aωj2 (dashed), jAωj2 (dotted), and jβωj2 (dot-dashed), as functions of ω for the flow of Fig. 8.
We see that jαωj2 becomes smaller than j ~Aωj2 for frequencies smaller than ωmin ∼ 2 Hz, when there is no turning point, exactly as was
seen in the lower right panel of Fig. 7. Right: Logarithm of the relative differences of the norm of the 4 Bogoliubov coefficients
introduced by including an undulation of the form of Eq. (27), with the parameters of Eq. (29). The rapid oscillations seen for
ln ω

ωmin
< −6 are due to numerical errors. We observe that the relative modification of the transmission coefficient ~Aω is extremely small,

whereas those of the other three coefficients remain of the order of 2δhu=ðh0 −DÞ ∼ 0.06, the relative change of the water height due to
the undulation.

9Since the transmission coefficient ~Aω cannot be neglected for
ω < ωmin, we do not think it is legitimate to use, even as an
approximation, jαωj2 − jβωj2 ¼ 1, as done between Eqs. (15) and
(16) in [32]. We are grateful to the referee to suggest us to discuss
this recent work.
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apply.] It should be stressed that Eq. (22) and Eq. (26) will
not be easily accessible when measuring the changes of the
free surface associated with the 4 outgoing waves resulting
by sending shallow water waves, see Eq. (13). Indeed, if we
denote as δhhydroω , the variation associated with the trans-
mitted wave, and δhdispω that associated with the dispersive
reflected wave of with negative kω (or positive kω), their
ratio scales as

δhhydroω

δhdispω

∼ ω0; ð30Þ

in spite of the fact that the ratio of the corresponding
coefficients diverges as j ~Aω=αωj ∼ ω−1=2, as it is implied by
Eq. (22) and Eq. (26). The origin of the additional factor of
ω1=2 comes from, first, the action of the derivative operators
in Eq. (2) which brings a factor of ω − vk ∝ ω, and, second
from the normalization factors, see for instance Eq. (B8).
There is another property which probably further compli-
cates the measurement of the transmitted wave, namely that
its wave length diverges like 1=ω: for ω ¼ ωmin ∼ 2 Hz, it
is equal to ∼5 m, and can become larger than the length of
the flume used in [7] if ω is decreased.
To conclude this section, we would like to discuss the

status of the relationship between the effective temperature
and the surface gravity, as this is a key feature of the
Hawking effect. Since the limit ω → 0 of the effective
temperature Tω of Eq. (17) vanishes, there is no unique way
to associate a well-defined temperature to the system. A
first possibility is to use the value of Tω at the plateau seen
in the bottom left panel of Fig. 8. This gives an effective
temperature of approximately 0.4 Hz. A second possibility
is to use the inverse slope of lnR as a function of ω, giving a
temperature of 0.5 Hz, which is rather close to the previous
one. (For comparison, the temperature obtained from the
inverse slope of lnR in Fig. 5 of [7] is TH ≈ 0.70 Hz. The
relative good agreement between these numbers confirms
that our numerical simulations correctly captures the key
properties of the observations made in Vancouver.) The
third possibility is to use the gradient of h to define a
pseudo-Hawking temperature as

Tpseudo-H ¼ 1

2π
max j∂xðv − cÞj: ð31Þ

If the maximum is taken over the descending slope, where
the scattering is supposed to occur, and where one would
find the white hole horizon if F crossed 1, we find
Tpseudo-H ≈ 0.15 Hz, smaller than the previous ones by a
factor 3. If the maximum is taken instead on the steeper
ascending slope, we find Tpseudo-H ≈ 0.77 Hz, significantly
larger than the previous ones. We believe this discussion
gives a fair idea of the difficulties to relate the gradient
of v − c to an effective temperature. It seems to us that it
is pointless to try to identify a precise relationship in

subcritical flows. On the contrary, when the flow is
sufficiently transcritical, the standard relationship of
Eq. (18) works very well, as can be seen in Fig. 11.

IV. CONCLUSION

In this work, we first recalled the basics elements
governing the scattering of shallow water waves; and
showed that, when the Froude number is significantly
larger than 1, in which case the analogue of a relativistic
(Killing) horizon is clearly present, the scattering coeffi-
cients quantitatively follow Hawking’s thermal prediction,
and this despite the fact that dispersion is included in the
wave equation and strongly affects the characteristics of
the waves.
Turning to subcritical flows, we explained the important

roles played by the critical frequency ωmin in governing the
behavior of the scattering coefficients. For frequencies above
ωmin, incoming counterpropagating modes are blocked, and
one essentially recovers the behaviour found for slightly
transcritical flows, in particular, the Planckianity of the
spectrum is already lost. For frequencies below ωmin, we
observed a decrease of the effective temperature, which
vanishes when ω → 0. This reflects the fact that the square
norms of both jβωj2 and jαωj2, which were the dominant
coefficients for significantly transcritical flows, now both
linearly decrease to 0 in the low-frequency limit. At the same
time, we saw that the sum of the hydrodynamic (elastic)
coefficients jAωj2 þ j ~Aωj2 tends to 1, which means that they
dominate the scattering in this low-frequency regime. We
then showed, and explained, how these facts imply that the
logarithm of Rω ¼ jβω=αωj2 is linear in ω for small ω, as if
the spectrum were still Planckian.
Besides comparing the scattering in sub- and transcritical

flows, we also identified the consequences of considering
nonmonotonic flows which are subcritical on both sides of
the obstacle. For transcritical flows, this amounts to adding
an analogue black hole horizon. The effects are very clear:
whereas the high frequency regime is hardly affected, there
is a new critical frequency ωc which governs the “tunnel-
ing” across the region where F > 1. When the latter is long
enough, ωc is very small. Below ωc a new regime is found
where jβωj2 and jαωj2 again linearly decrease to 0 as
ω → 0.
We combined these aspects by considering nonmono-

tonic subcritical flows. We found that the nonmonotonic
character of the flow does not significantly modify the
scattering coefficients. Hence the spectral properties are
similar to those found for monotonic flows. In particular for
ω < ωmin, the saturation of jAωj2 þ j ~Aωj2 → 1, the vanish-
ing jβωj2 ∼ jαωj2 ∼ ω, and the linearity of lnRω appear to
be very robust features of the scattering. Moreover, the
three features have also been found when including an
undulation with a macroscopic amplitude, and when
considering a subcritical nonmonotonic flow, solution of
the nonlinear hydrodynamical equations, see Appendix A.
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We therefore conclude that these properties should apply
to the experiment of Ref. [7]. In fact, when comparing the
observed behavior of Rω ¼ jβω=αωj2 to that predicted by
our analysis, we found a good qualitative agreement in that
both the linearity of its logarithm, and the value of the slope
are well approximated. It would therefore be interesting to
conceive new experiments to validate the other two
predictions, which, to our knowledge, have not been
reported by any experimental group, namely the saturation
of the transmission coefficient ~Aω, and the vanishing of
jβωj2 and jαωj2 for ω < ωmin.
We should also remind the reader that our predictions

have been derived using a slightly simplified version of the
wave equation derived in [18,21]. Therefore a comparison
with detailed experimental data might allow one to deter-
mine the validity range of this simplified wave equation.
Finally, in Appendix A, we considered a transcritical

nonmonotonic flowoveranobstaclewhich is a solutionof the
nonlinear hydrodynamical equations. Our aim was to show
that in this more “realistic” case the scattering coefficients
closely follow, in quantitative terms, Hawking’s prediction,
i.e., jβωj2 ∼ jαωj2 ∼ T=ω for low frequencies. This indicates
that, by a careful choice of the obstacle, one could engender
a transcritical background flow hardly contaminated by an
undulation, which could then be used to experimentally test
the thermal prediction.10 We hope that this analysis may
persuade an experimental team to pick up the gauntlet.
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APPENDIX A: LINK WITH THE NONLINEAR
HYDRODYNAMIC EQUATIONS

So far our analysis was restricted to the linear wave
equation (1) in a background flow specified from the outset
by the profile of the water depth hðxÞ. Since Eq. (1) comes
from the linearization of nonlinear hydrodynamical equa-
tions [21,34,35], it is worth verifying that our results still
apply to background flows which solve these equations. To
this end, we use the hodograph transform method described

in [21]. Given a flow with a prescribed free surface,
asymptotic water depth, and velocity, this method allows
us to find an explicit parametrization of the obstacle shape.
We shall consider two typical examples, one transcritical
and one subcritical, so as to be able to compare the resulting
scattering coefficients with those obtained in the body of
the text. We stress that these two examples may not be
suitable for an experimental realization. They were chosen
to show that the results of the main text apply when using
solutions of the hydrodynamic equations with a simple
shape of the bottom. In particular, their descending slopes
may well be too large to maintain a laminar flow. However,
the general method that we present here can be applied to
find smoother obstacles, with smaller slopes.
We remind the reader that an ideal, incompressible,

inviscid, irrotational, 2D flow may be described using the
velocity potential φ,11 defined as

∇φ ¼ ~v; ðA1Þ

and the stream function ψ

∇ψ ¼ ~ez∧~v: ðA2Þ

Here, ~ez is the unit vector in the horizontal direction
orthogonal to the mean flow velocity. In order to find a
localized obstacle shape centered close to the origin for a
flow with Fð∞Þ < 1, the free surface must have a hollow.
A particularly simple choice is

yðφÞ ¼ h0
ð1þ Ae−σ

2ðφ−φ0Þ2Þð1þ Ae−σ
2ðφþφ0Þ2Þ ; ðA3Þ

where A; σ;φ0; h0 are real numbers. The parametric rep-
resentations of the free surface and the obstacle in real
space are then obtained once the asymptotic velocity is
chosen, assuming the height of the obstacle goes to zero at
infinity, as we now briefly explain. More details can be
found in [21].
The two potentials φ;ψ can be used as coordinates. Then

the former Cartesian x and y coordinates are seen as
functions of φ and ψ . It is convenient to unite them in a
single complex-valued function X ≡ xþ iy. It can be
shown that for inviscid, irrotational flows, X satisfies the
Laplace equation

ð∂φ þ i∂ψ Þð∂φ − i∂ψÞX ¼ 0: ðA4Þ

Hence, X may be expressed as the sum of a holomorphic
function of Φ≡ φþ iψ , and an antiholomorphic function.

10Notice that a transcritical flow was clearly realized in the
settings of Ref. [33] involving a circular jump. What is unclear to
us is how to generate stationary waves in a controlled way so as to
probe the mode mixing at the sonic horizon.

11Here φ is the “full” velocity potential, whose gradient gives
the velocity of the background flow, while in the main text we
denoted ϕ the linear perturbation on this potential describing
waves, see Eq. (1).
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Performing the change of coordinates from ðx; yÞ to ðφ;ψÞ,
one finds

∂φx ¼ ∂ψy;

∂ψx ¼ −∂φy: ðA5Þ

These are just the Cauchy-Riemann conditions, showing
that X is actually a holomorphic function of Φ. The stream
function ψ being constant along the free surface (since the
latter is a streamline), an ansatz of the form Eq. (A3)
entirely defines the imaginary part of X at ψ ¼ ψs, where
ψ s is the value of ψ at the free surface. We choose the
convention that ψ ¼ 0 at the bottom. Then ψ s is equal to
the 2D conserved current J [18,21]. The real part of X at
ψ ¼ ψ s is found using the Bernouilli boundary condition,
which reads

∂φ

�
gyðφ;ψ sÞ þ

1

2ðð∂x∂φÞ2 þ ð∂y∂φÞ2Þ

�
¼ 0: ðA6Þ

This gives a first-order ordinary differential equation on
φ ↦ xðφ;ψ sÞ

∂φxðφ;ψ sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

v20 þ 2gðH0 − yðφ;ψ sÞÞ
− ð∂φyðφ;ψ sÞÞ2

s
;

ðA7Þ

where H0 is the asymptotic water depth and v0 the
asymptotic velocity, so that ℜXðφ;ψ sÞ is uniquely deter-
mined up to a constant. Changing this constant has the
effect of translating the free surface and the obstacle in x by
the same amount. The obstacle can then be parametrized by
making use of the holomorphic properties of X:

Xðφ; 0Þ ¼ Xðφ − iψ s;ψ sÞ;
xbottomðφÞ ¼ ℜXðφ; 0Þ;
ybottomðφÞ ¼ ℑXðφ; 0Þ: ðA8Þ

The first example we considered describes a nonmono-
tonic transcritical flow. To be explicit, we now express
quantities in the metric system. The flow is characterized
by A ¼ 0.12, σ ¼ 10 s m−2, φ0 ¼ 0.072 m2 s−1, and an
asymptotic velocity v0 ¼ 0.1 m s−1. The resulting water
depth and the Froude number are shown in Fig. 10. The two
small bumps at the top of the obstacle are fine-tuned to
prevent the appearance of the undulation. One verifies
that the flow is transcritical, since Fmax ≃ 1.17. The main
properties of the scattering coefficients are shown in
Fig. 11. The comparison with Fig. 4 shows a good
correspondence of the two cases. In particular, for the left
plot, we recover the extended flat plateau indicating a
Planckian spectrum, with a value of the effective temper-
ature Tω close to the Hawking frequency of Eq. (18), here
given by TH ¼ 0.143 Hz. We also observe the signature of
the high frequency cutoff ωmax of Eq. (11), and that of the
low-frequency one, ωc of Eq. (20). The approximate values
of these critical frequencies are respectively 7.4 Hz, and
5.10−6 Hz, which is very low. From the right panel, we also
verify that below ωc the scattering is dominated by the
hydrodynamic coefficients Aω and ~Aω of Eq. (13).
Our second example describes a subcritical flow. The

parameters are A ¼ 0.04, H0 ¼ 0.2 m, v0 ¼ 0.0225 ms−1,
σ ¼ 5 sm−2, andφ0 ¼ 0.01 m2 s−1. They have been chosen
to give a profile relatively close to the one used in [7], at least
for the downstreampart x > 0where the scattering andwave
blocking occur. The water depth and the Froude number are
shown in Fig. 12. The maximum Froude number for this
profile is equal to 0.68, the critical frequencyωmin ¼ 1.9 Hz,
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FIG. 10 (color online). Left: Heights of the free surface (dashed) and of the obstacle (solid) as functions of x for the supercritical flow
obtained by solving the hydrodynamical equations with the free surface specified by Eq. (A3). The units of both axes are meters. Right:
Froude number for the same flow. The maximum value of F is 1.17 and the length of the supercritical region is 0.41 meters.
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and the effective temperature of Eq. (31) is 0.21 Hz. The
profile and the Froude number are similar those of Fig. 10
as far as the downstream right side of the flow is concerned.
At this point, we consider that trying to reproduce more
precisely the profile of [7] is unjustified, as we have neither a
good enough control of the various approximationswe used,
nor enough experimental data.
The properties of the scattering coefficients of our

second flow are shown in Fig. 13. We again see a good
correspondence with those of Fig. 5 and those of Fig. 8.
Namely, first, the effective temperature goes to 0 as ω → 0,
which confirms that Planckianity is lost; and second, the
hydrodynamic elastic coefficients Aω and ~Aω dominate the
scattering for low frequencies. A few comments are in
order. First, the range of frequencies we represented is
smaller than the one in Fig. 8. The reason is that obtaining a

good numerical accuracy is more difficult in the present
case because we no longer have a closed analytical formula
for hðxÞ. Although our code can provide accurate results at
higher values of ω, this becomes time consuming. We thus
only present here results for small values of ω. For the same
reason, the deviations from Eq. (14) are larger than in the
other cases, going from 10−3jβj2 to 10−1jβj2.
From the right panel, we verify that the slope of

2πTω=κmax versus ω=ωmin is close to one. In addition,
we also computed the effective temperature Tω for a few
larger values of ω and checked that the qualitative agree-
ment with Fig. 8 remains. Hence, we expect to get a rough
plateau for Tω with a height close to the pseudo-Hawking
temperature of Eq. (31). We checked that it is indeed the
case: this plateau is at Tω ≈ 0.17 Hz while Eq. (31)
gives ∼0.21 Hz.
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FIG. 11 (color online). On the left panel, we represent the logarithm of the effective temperature as a function of lnðω=THÞ for the flow
of Fig. 10. The Hawking frequency TH is approximately 0.164 Hz. The good agreement with Hawking’s prediction is clearly visible by
the long extension of the plateau of relative height equal to 1. The plateau is bordered by the lower critical frequency ωc ≈ e−9TH of
Eq. (20) and the higher one ωmax. On the right panel, we represent the logarithm of the squared norms of the Bogoliubov coefficients
jαωj2 (dashed), jβωj2 (dot-dashed), and jAωj2 þ j ~Aωj2 for the same flow. It is clear that the hydrodynamic coefficients can be completely
neglected for all frequencies larger than ωc ≈ e−9TH , thereby confirming the Hawkingness of this regime.
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FIG. 12 (color online). Left: Free surface and obstacle for the second flow we obtained by solving the hydrodynamical equations with
a known free surface Eq. (A3). Right: Froude number for the same flow.
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APPENDIX B: ANALYTICAL CALCULATION
IN THE STEPLIKE LIMIT

In this appendix, following [13,17], we consider the limit
where the background water depth is piecewise constant,
with one single discontinuity at x ¼ 0. This limit is rather
unrealistic as in a real fluid the effects of viscosity, vorticity
and compressibility are expected to become important
when the slope of the obstacle is large [34,35]. Its interest
lies in its mathematical simplicity, allowing a straightfor-
ward calculation of the spectrum. In spite of this, interest-
ingly, one recovers the following important results of the
main text:

(i) in a transcritical flow, the effective temperature goes
to a finite constant when ω → 0;

(ii) in a subcritical flow, it goes to zero like ω
lnω;

(iii) still for Fmax < 1, the coefficients A and ~A dominate
the scattering for ω < ωmin, but become small before
α and β for ω > ωmin.

In each asymptotic region x < 0 or x > 0, the solutions
are proportional to eikωx, where kω is a root of the dispersion
relation Eq. (4). Equation (4) in general has 4 solutions in k
at fixed ω. We denote them as k1; k2; k3; k4. If they are all
real, we order them as k1 ≤ k2 ≤ k3 ≤ k4, see Fig. 2. If two
of them are real and two are complex, we call k1 ≤ k2 the
two real roots, k3 the root with a positive imaginary part,
and k4 the root with a negative imaginary part. We restrict
our attention to these two cases, i.e., to ω < ωmax,
see Eq. (11).
The modes computed in the two regions are matched at

x ¼ 0. To derive the matching conditions, it is most
convenient to use the variable ξ defined by

ξ≡
Z

x

0

dx
h

ðB1Þ

instead of x. The wave equation (3) then takes the
simpler form

�
−iωþ 1

h
∂ξ

J
h

��
−iωþ J

h2
∂ξ

�
ϕ −

g
h
∂2
ξϕ −

g
3h

∂4
ξϕ ¼ 0; ðB2Þ

where J ≡ vh. The worst singularities are now delta functions from ∂ξ acting on h. So, ϕ and its first and second derivatives
with respect to ξ are continuous across ξ ¼ 0. The discontinuity in ∂3

ξϕ is given by

½∂3
ξϕ�0

þ
0−

¼ 3i
ω

g
½v�0þ0−ϕð0Þ þ 3

�
v2

c2

�
0þ

0−
∂ξϕð0Þ: ðB3Þ

We consider modes of the form

ϕðt; xÞ ¼ e−iωt
�
L1eik1;Lx þ L2eik2;Lx þ L3eik3;Lx þ L4eik4;Lx x < 0

R1eik1;Rx þ R2eik2;Rx þ R3eik3;Rx þ R4eik4;Rx x > 0
; ðB4Þ

where a subscript L (respectively R) indicates a quantity evaluated for x < 0 (respectively x > 0). The matching conditions
at x ¼ 0 give a system of 4 linear equations on the coefficients L1, L2, L3, L4, R1, R2, R3, and R4. So, in general there are 4
linearly independent solutions.
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FIG. 13 (color online). Left: Effective temperature adimentionalized by making use of the parameter of Eq. (31) as a function of

the adimensional frequency ω=ωmin for the flow of Fig. 12. Right: lnRω (plain) and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAωj2 − j ~Aωj2 − 1

q
(dashed) for the same flow.

The square root and the factor 100 have been used so as to clearly see the linear behaviors of both quantities for small ω.
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We now compute these coefficients, then the Bogoliubov
coefficients, for white hole and subcritical flows. We
restrict our attention to the left-moving incoming mode,
with ω <

ffiffiffi
3

p
v
h in each region, so that the sign of the group

velocity computed with Eq. (4) agrees with that computed
from the full dispersion relation ðωvkÞ2 ¼ gk tanhðhkÞ. We

first assume there is a turning point, i.e., ωmin < ω < ωmax.
The left-moving in mode satisfies

ϕin;v∶ L1 ¼ L2 ¼ L4 ¼ 0: ðB5Þ

We find

8>>>>>>>><
>>>>>>>>:

R1 ¼ ðhRk2;R−hRk3;RÞðhRk4;R−hRk2;RÞþðhLk3;L−hRk4;RÞðhLk3;L−hRk3;RÞL3

ðhRk3;R−hRk1;RÞðhRk4;R−hRk1;RÞ R2

R3 ¼ ðhRk2;R−hRk1;RÞðhRk4;R−hRk2;RÞþðhLk3;L−hRk4;RÞðhLk3;L−hRk1;RÞL3

ðhRk1;R−hRk3;RÞðhRk4;R−hRk3;RÞ R2

R4 ¼ ðhRk2;R−hRk1;RÞðhRk3;R−hRk2;RÞþðhLk3;L−hRk1;RÞðhLk3;L−hRk3;RÞL3

ðhRk4;R−hRk1;RÞðhRk4;R−hRk3;RÞ R2

L3 ¼ ðhRk2;R−hRk1;RÞðhRk2;R−hRk3;RÞðhRk2;R−hRk4;RÞ
ðhLk3;L−hRk1;RÞðhLk3;L−hRk3;RÞðhLk3;L−hRk4;RÞ−3½v2c2 �

0þ
0−

hLk3;Lþ3ωg½v�0
þ
0−
R2

: ðB6Þ

When the flow is transcritical, ωmin ¼ 0 and the limit
ω → 0 can be taken. In this limit, all coefficients remain
finite. We denote as φin;v the normalized in mode, and
φout;u;1, φout;u;3, and φout;u;4 the three out modes. The
numeral denotes the wave whose coefficient is unity for
the corresponding naively normalized mode. In agreement
with Eq. (15), we define the Bogoliubov coefficients as

φin;v ¼ αωφout;u;1 þ βωφout;u;4 þ Aωφout;u;3: ðB7Þ

Then,

αω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� ðω − kR;1Þvg;RðkR;1Þ
ðω − kR;2Þvg;RðkR;2Þ

����
s

R1;

βω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� ðω − kR;4Þvg;RðkR;4Þ
ðω − kR;2Þvg;RðkR;2Þ

����
s

R4;

Aω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� ðω − kR;3Þvg;RðkR;3Þ
ðω − kR;2Þvg;RðkR;2Þ

����
s

R3; ðB8Þ

where vg denotes the corresponding group velocity. Note in
particular that α and β diverge likeω−1=2 in the limitω → 0.
In the transcritical case where ωmin ¼ 0 the ω → 0 limit of
the effective temperature of Eq. (17) is

Tstep
ω¼0 ¼

ffiffiffi
3

p ðc2R − v2RÞ3=2ðv2L − c2LÞhR
ðv2Lc2Rc2L

− vRcR þ vLðcR − vRÞÞ2ðcR þ vRÞ2hL

×

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2L − v2L

hL

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2R − v2R

hR

s ����
2

: ðB9Þ

We now turn to subcritical flows. In this case, there is no
turning point for ω < ωmin. As a result, the left-moving in
mode is defined by

ϕin;v∶ L1 ¼ L3 ¼ L4 ¼ 0: ðB10Þ

We find that Eq. (B6) is modified only through the
replacements of L3 by L2 and k3;L by k2;L. We define the
Bogoliubov coefficients as

φin;v ¼ Aωφout;u;3 þ ~Aωφout;v þ αωφout;u;1 þ βωφout;u;4:

ðB11Þ

Taking the normalization into account, ω → 0, the effective
temperature behaves as

Tstep
ω ¼ −

ω

lnð ωωb
Þ
�
1þO

�
ω

ωb

��
; ðB12Þ

where

0 1 2 3 4
D

0.02

0.04

0.06

0.08

0.10

T 0

FIG. 14 (color online). Limit ω → 0 of the effective temper-
ature (solid), Hawking temperature (dashed), and steplike result
of Eq. (B9) (dotted) as functions of σ, for g ¼ J ¼ 1, h0 ¼ 1, and
D ¼ 0.2. The dot-dashed line shows the prediction Eq. (B15).
Note the very good agreement between the exact numerical
calculation and Eq. (B15).
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ωb ¼
��

hL
vL − cL

−
hR

vR þ cR

�
cR

cR þ cL
þ hRcR
c2R − v2R

�
−2

×

ffiffiffi
3

p
hR

ðc2R − v2RÞ1=2
: ðB13Þ

The limiting values of A and ~A for ω → 0 are

A →
ω→0

cR − cL
cR þ cL

; ~A →
ω→0

2
ffiffiffiffiffiffiffiffiffiffi
cRcL

p
cR þ cL

: ðB14Þ

As found for smooth flows in the body of the text, the
hydrodynamical sectors dominate the scattering as jAωj2 þ
jAωj2 → 1 for ω → 0, while αω and βω both go to zero like
ω1=2. The only important difference is that for a steplike
discontinuity ~Aω does not vanish at ω ¼ ωmin, even though
it still vanishes above ωmin.

To complete the analysis, we studied the transition between
theHawking regimewhen the surface gravity is small enough
in units of the dispersive scale, and the steplike regime studied
above. Althoughwework in a slightly different case since the
ordering of hðxÞ and ∂x in the dispersive term of the wave
equation is different from that of our Eq. (3), we found a very
good agreement with the formula given in [16]:

Tω¼0 ≈ TH tanh

�
Tstep
ω¼0

TH

�
; ðB15Þ

where Tω¼0 is the zero-frequency limit of the temperature of
Eq. (17) numerically evaluated in the smooth flow, TH is the
corresponding Hawking temperature, and Tstep

ω¼0 the zero-
frequency limit of the temperature for the corresponding
steplike profile, given by Eq. (B9). The agreement is illus-
trated in Fig. 14.
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