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To find more deliberate fðR; TÞ cosmological solutions, we take our previous paper further by studying
some new aspects of the considered models via investigation of some new cosmological parameters/
quantities to attain the most acceptable cosmological results. Our investigations are performed by applying
the dynamical system approach. We obtain the cosmological parameters/quantities in terms of some
defined dimensionless parameters that are used in constructing the dynamical equations of motion. The
investigated parameters/quantities are the evolution of the Hubble parameter and its inverse, the “weight
function”; the ratio of the matter density to the dark energy density and its time variation; the deceleration;
the jerk and the snap parameters; and the equation-of-state parameter of the dark energy. We numerically
examine these quantities for two general models Rþ αR−n þ ffiffiffiffiffiffiffi

−T
p

and R log ½αR�q þ ffiffiffiffiffiffiffi
−T

p
. All

considered models have some inconsistent quantities (with respect to the available observational data),
except the model with n ¼ −0.9, which has more consistent quantities than the other ones. By considering
the ratio of the matter density to the dark energy density, we find that the coincidence problem does not
refer to a unique cosmological event; rather, this coincidence also occurred in the early Universe. We also
present the cosmological solutions for an interesting model Rþ c1

ffiffiffiffiffiffiffi
−T

p
in the nonflat Friedmann–

Lemaître–Robertson–Walker metric. We show that this model has an attractor solution for the late times,
though with wðDEÞ ¼ −1=2. This model indicates that the spatial curvature density parameter gets
negligible values until the present era, in which it acquires the values of the order 10−4 or 10−3. As the
second part of this work, we consider the weak-field limit of fðR; TÞ gravity models outside a spherical
mass immersed in the cosmological fluid. We have found that the corresponding field equations depend on
the both background values of the Ricci scalar and the background cosmological fluid density. As a result,
we attain the parametrized post-Newtonian parameter for fðR; TÞ gravity and show that this theory can
admit the experimentally acceptable values of this parameter. As a sample, we present the post-Newtonian
gamma parameter for general minimal power law models, in particular, the model Rþ c1

ffiffiffiffiffiffiffi
−T

p
.
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I. INTRODUCTION

Up to the present observational data, the Universe has
undergone an accelerated expansion phase [1–3], the
explanation of which demands a theoretical paradigm
based on an ultimate theory. Until now, many authors have
presented various theories that are either new ones or
those that are only modified/generalized versions of the
previous theories. For example, one of the new theories is
the string theory that introduces some field theoretical
version of general relativity (GR) based on a new funda-
mental representation of matter called “strings” [4,5]. Other
theories of this type are loop quantum gravity/cosmology
[6–8], theories based on the Ads/CFT correspondence
[9,10], and the holographic gravity/cosmology [11,12].
In addition, there are higher-order gravities including the
special case fðRÞ gravity [13–19]; the induced gravity
[20,21]; the scalar-tensor theories with the special case of
Brans–Dicke theory [22–28]; higher-dimensional theories,
e.g., the Kaluza–Klein theories [29]; and the braneworld

scenarios [30]. Also, there are theories that introduce
some modifications in the matter component [31,32] or
change the geometrical structure, e.g., the noncommutative
theories [33–38].
Most of these theories can be sorted in terms of two

general points of view related to the origin of the observed
accelerated expansion. On one hand, in some theories, this
phenomenon is explained by the impacts of a geometrical
modification such as theories that take the dimension of
space-time more than 4, theories that add some invariant
geometrical scalars to the action [e.g., fðRÞ gravity], and
theories that extract some idea from quantum mechanics
(e.g., the noncommutative cosmological theories). And in
some theories, the inhomogeneity of space-time is respon-
sible for this phenomenon [39,40]. On the other hand, in
some theories, some unknown fluid components are intro-
duced to explain this problem. These unknown components
are called “dark energy” [14,41–44], which has a contri-
bution about 69% of the total matter density [45] that
accelerates the observed expansion of the Universe. There
is also another exotic fluid called “dark matter” [46–50]
that forms about 26% of the total matter density [45] and is
responsible for clustering of the galaxy structures. These
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two puzzles are the main shortcomings of GR, for they are
not predicted in this theory. Actually, these two contem-
porary observational evidences have challenged our under-
standings about the Universe.
There is a concordance model, namely, the well-known

ΛCDM theory [51], which takes the Einstein–Hilbert
action as the geometrical sector and the dark energy and
dark matter (in addition to the usual baryonic matter) as the
matter sectors. This theory fits the present observational
results; however, it has some difficulties. In this theory, a
cosmological constant plays the role of dark energy;
however, if this constant is pertained to the vacuum energy,
its problem will appear. This problem, which is related to
the noncomparability of the value of the dark energy
density with the field theoretical vacuum energy, is called
the “cosmological constant problem” [52–55]. There has
been some impetus to tackle this problem in some theories,
e.g., the dynamical dark energy models [56,57].
One of the developments of fðRÞ gravity is the idea

introduced in Ref. [58] that incorporates the matter
Lagrangian density together with an arbitrary function
of the Ricci scalar as an explicit nonminimal coupling.
They have concluded that such a combination leads to an
extra force. This theory was progressed in Refs. [59–63]
and in Ref. [64], which considers more complete forms. In
recent years, a new theory was developed in Ref. [65],
named fðR; TÞ gravity, that can also be considered as a
generalization of fðRÞ gravity. In this theory, an arbitrary
function of the Ricci scalar and the trace of the energy-
momentum tensor is introduced instead of an arbitrary
function of only the Ricci scalar. The main justifications
for employing the trace of the energy-momentum tensor
may be the existence of some exotic matters or the
conformal anomaly (coming from the quantum effects).1

The a priori appearance of the matter in an unusual
coupling with the curvature may also have some relations
with the issues such as geometrical curvature induction of
matter, a geometrical description of forces, and a geo-
metrical origin for the matter content of the Universe.2

Since the introduction of this theory, its numerous aspects
have been investigated, such as thermodynamics proper-
ties [69–72], energy conditions [73–75], cosmological
solutions based on a homogeneous and isotropic space-
time through a phase-space analysis [76], anisotropic
cosmology [77–79], a wormhole solution [80], a cosmo-
logical solution via a reconstruction program [81,82], a
cosmological solution via an auxiliary scalar field [83],
the study of scalar perturbations [84], and some other
aspects [85–87]. Since for the ultrarelativistic fluids the
trace of the energy-momentum tensor vanishes, these
components of matter do not contribute in the function
of fðR; TÞ. To solve this lack, a generalization of this

theory has also been established [74,88,89], in which a
new invariant, i.e., RαβTαβ, has been included.
In our previous paper [76], we worked on the cosmo-

logical solution of fðR; TÞ gravity in a flat homogeneous
and isotropic background for a perfect fluid with zero
equation-of-state parameter via a phase-space analysis.
We investigated those functions of fðR; TÞ that can be
decomposed in terms of a minimal and/or a nonminimal
combination of an arbitrary function of the Ricci scalar,
gðRÞ, and an arbitrary function of the trace of the energy-
momentum tensor, hðTÞ. Actually, the functions gðRÞþ
hðTÞ, gðRÞhðTÞ, and gðRÞð1þ hðTÞÞ were studied. We
found that the theories of the second type cannot have a
consistent cosmological solution. The investigation was
based on the study of some cosmological quantities,
including the density parameters (for the radiation, dust,
and dark energy), the effective equation-of-state parameter,
and the scale factor for the minimal case of the theory. The
corresponding diagrams of all these quantities show, more
or less, acceptable behaviors; hence, one cannot simply
decide which one of these models is the best one.
Therefore, we should go through one more step and inspect
these models more accurately. Thus, in this work, we
extend the previous investigations further to consider more
cosmological issues in the minimal case. In this respect, in
Sec. II, we briefly present the field equations of the theory
and the related definitions (as some of them were intro-
duced in our previous paper). Then, we report concisely the
previous results in order to reach a suitable connection to
the issue. To check the consistency of a theory with the
observational data, all of the engaged cosmological quan-
tities should be considered. For this purpose, in Sec. III, we
probe some new cosmological quantities including: the
evolution of the Hubble parameter and its inverse (which
can be used as a loose estimation of the age or the size of
the Universe), “weight function” g0ðRÞ ¼ dgðRÞ=dR, the
ratio of the matter density to the dark energy density rðmDÞ
(hereafter, we call it the “coincidence parameter”) and its
time variation, the deceleration q, the jerk j, and the snap s
parameters, and the dark energy equation-of-state param-
eter wðDEÞ. All these parameters/quantities are obtained in
terms of those dimensionless variables defined to reformu-
late the equation of motions via the dynamical system
procedure. One will see that in fðR; TÞ gravity, similar to
fðRÞ gravity, some cosmological fluid densities are
weighted by the function FðRÞ, which implies that it is
important to explore the behavior of this function. This
function must not become negative, and, in the matter-
dominated era, it must be FðRÞ ∼ 1 in order to give GR as a
limiting solution. There is also a well-known dilemma
called “the coincidence problem.” This problem deals with
why the matter and the dark energy densities are of the
same order in the present era. We do not solve this problem,
but we reach at the result that this coincidence is not a
unique cosmological event and it had also occurred in the

1See, e.g., Refs. [66,67].
2See, e.g., Refs. [67,68] and references therein.
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early stages of the evolution of the Universe. Through the
investigations, we present a number of diagrams drawn
numerically. In Sec. IV, we probe a more plausible and
simple model, namely, fðR; TÞ ¼ Rþ c1

ffiffiffiffiffiffiffi
−T

p
, in a nonflat

background space-time.3 This interesting model has some
similarity to the models with a time-dependent cosmologi-
cal constant. One can interpret the term

ffiffiffiffiffiffiffi
−T

p
as a

cosmological constant depending on the matter that implic-
itly depends on time. In the scaler-tensor models, like the
dynamical dark energy and the quintessence models
[90,91], in order to have the late-time acceleration of the
Universe, extra components for matter are introduced.
However, the model Rþ c1

ffiffiffiffiffiffiffi
−T

p
does not contain any

extra component for matter, and, on the contrary, it provides
the late-time acceleration through the interaction of the
normal matter with the curvature. In Sec. V, we obtain the
weak-field limit of fðR; TÞ gravity outside a spherical body
that is immersed in cosmological fluid. We show that the
cosmological fluid density plays an important role in this
theory. The parametrized post-Newtonian (PPN) gamma
parameter of this theory is explicitly affected by the
cosmological fluid density. We show that this parameter
can admit the experimentally accepted values for fðR; TÞ
gravity. As an example, we obtain the PPN parameter of the
models cRRn þ cTTm. Finally, in Sec. VI, we summarize
the results.

II. FIELD EQUATIONS AND SOME PRIMARY
CONSEQUENCES OF COSMOLOGICAL

SOLUTIONS OF f ðR;TÞ= gðRÞ+hðTÞ GRAVITY

In this section, we briefly present the field equations of
the minimal case fðR; TÞ ¼ gðRÞ þ hðTÞ gravity and also
the dynamical system structure of these equations, as
introduced in Ref. [76]. We do not demonstrate the details,
although we mention the necessary information that makes
us capable enough to proceed further.
fðR; TÞ gravity is introduced by the action

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
1

16πG
fðR; TðmÞÞ þ LðtotalÞ

�
; ð2:1Þ

where we have defined the Lagrangian of the total matter as

LðtotalÞ ≡ LðmÞ þ LðradÞ; ð2:2Þ

and R, TðmÞ ≡ gμνTðmÞ
μν , LðmÞ, and LðradÞ are the Ricci scalar,

the trace of the energy-momentum tensor of dustlike
matter, and the Lagrangians of the dustlike matter and
radiation, respectively. The superscript m stands for the
dustlike matter, g is the determinant of the metric, and we
set c ¼ 1. The trace of the radiation energy-momentum
tensor does not play any role in the function of fðR; TðmÞÞ,

for TðradÞ ¼ 0; henceforth, we drop the superscript m from
the trace TðmÞ. The field equations are obtained as

FðR; TÞRμν −
1

2
fðR; TÞgμν þ ðgμν□ − ▿μ▿νÞFðR; TÞ

¼ ð8πGþ F ðR; TÞÞTðmÞ
μν þ 8πGTðradÞ

μν ; ð2:3Þ

where, for convenience, we have defined the following
functions for the derivatives with respect to the trace T and
the Ricci scalar R. That is,

F ðR; TÞ≡ ∂fðR; TÞ
∂T ¼ h0ðTÞ and

FðR; TÞ≡ ∂fðR; TÞ
∂R ¼ g0ðRÞ; ð2:4Þ

where the second equalities are for the considered minimal
case and the prime denotes the ordinary derivative with
respect to the argument. Contracting Eq. (2.3) gives

FðR; TÞRþ 3□FðR; TÞ − 2fðR; TÞ ¼ ð8πGþ F ðR; TÞÞT;
ð2:5Þ

where we have used

gαβ
δTðmÞ

αβ

δgμν
¼ −2TðmÞ

μν ð2:6Þ

and the energy–momentum tensor is defined as

TðtotalÞ
μν ¼ −

2ffiffiffiffiffiffi−gp δ½ ffiffiffiffiffiffi−gp ðLðtotalÞÞ�
δgμν

: ð2:7Þ

Assuming that the total matter Lagrangian depends only on
the metric, the energy-momentum tensor reads

TðtotalÞ
μν ¼ gμνLðtotalÞ − 2

∂LðtotalÞ

∂gμν : ð2:8Þ

We assume a perfect fluid and a spatially nonflat
Friedmann–Lemaître–Robertson–Walker (FLRW) metric

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − kr2
þ r2dΩ2

�
; ð2:9Þ

where aðtÞ is the scale factor. To introduce the dark energy
via the effect of the extra term appearing from gravity
modification, we rewrite Eq. (2.3) as the one that appears in
GR, i.e.,

Gμν ¼
8πG

FðR; TÞ ðT
ðtotalÞ
μν þ TðeffÞ

μν Þ; ð2:10Þ

where3This model was not considered in our previous paper [76].
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TðeffÞ
μν ≡ 1

8πG

�
1

2
ðfðR; TÞ − FðR; TÞRÞgμν

þ ð▿μ▿ν − gμν□ÞFðR; TÞ þ F ðR; TÞTðmÞ
μν

�
:

ð2:11Þ

In Ref. [76], we illustrated that the Bianchi identity and
the energy conservation law for the dustlike matter and
radiation independently lead to the constrain equation

3

2
HðtÞF ðR; TÞ ¼ _F ðR; TÞ; ð2:12Þ

which enforces us to choose a special form of function
fðR; TÞ. In Eq. (2.12), the dot denotes the derivative with
respect to the cosmic time t. Equations (2.3) and (2.5), by
assuming metric (2.9), give

3H2FðR; TÞ þ 1

2
ðfðR; TÞ − FðR; TÞRÞ þ 3 _FðR; TÞH

þ 3
kFðR; TÞ

a2
¼ ð8πGþ F ðR; TÞÞρðmÞ þ 8πGρðradÞ

ð2:13Þ

as the Friedmann-like equation and

2FðR; TÞ _H þ F̈ðR; TÞ − _FðR; TÞH − 2
kFðR; TÞ

a2

¼ −ð8πGþ F ðR; TÞÞρðmÞ −
32

3
πGρðradÞ ð2:14Þ

as the Raychaudhuri-like equation.
The structure of phase space of the field equations in

the minimal case is simplified by defining a few
variables and parameters. These variables are generally
defined as

x1 ≡ −
_F

HF
; ð2:15Þ

x2 ≡ −
g

6H2F
; ð2:16Þ

x3 ≡ R
6H2

¼
_H
H2

þ k
H2a2

þ 2; ð2:17Þ

x4 ≡ −
h

3H2F
; ð2:18Þ

x5 ≡ −
TF 0

3H2F
; ð2:19Þ

ΩðradÞ ≡ 8πGρðradÞ

3H2F
; ð2:20Þ

ΩðmÞ ≡ 8πGρðmÞ

3H2F
; ð2:21Þ

ΩðkÞ ≡ −
k

H2a2
; ð2:22Þ

and the parameters are

m≡ RF0

F
; ð2:23Þ

r≡ −
RF
g

¼ x3
x2

; ð2:24Þ

n≡ TF 0

F
; ð2:25Þ

s≡ TF
h

¼ x5
x4

; ð2:26Þ

where R¼6ð _Hþ2H2þk=a2Þ for metric (2.9). In general,
we have m ¼ mðrÞ and n ¼ nðsÞ, and gðRÞ ≠ constant
and hðTÞ ≠ constant. Note that it is interesting that the
spatial curvature density parameter ΩðkÞ does not weight
with the function F as the other density parameters do.
To relate the discussion of the dark energy to fðR; TÞ

modified gravity, we redefine Eqs. (2.13) and (2.14) as

3H2F ¼ 8πGðρðmÞ þ ρðradÞ þ ρðkÞ þ ρðDEÞÞ ð2:27Þ

and

−2F _H ¼ 8πGðρðmÞ þ ð4=3ÞρðradÞ
þ ð2=3ÞρðkÞ þ ρðDEÞ þ pðDEÞÞ; ð2:28Þ

where ρðkÞ ≡ −3kF=ð8πGa2Þ, the density and the pressure
of the dark energy are defined as

8πGρðDEÞ ≡ FρðmÞ − 3 _FðR; TÞH

−
1

2
ðfðR; TÞ − FðR; TÞRÞ; ð2:29Þ

and

8πGpðDEÞ ≡ F̈ðR; TÞ þ 2 _FðR; TÞH

þ 1

2
ðfðR; TÞ − FðR; TÞRÞ: ð2:30Þ

For the equation-of-state parameter of the dark energy, as
usual, we define wðDEÞ ≡ pðDEÞ=ρðDEÞ.
By definitions (2.29) and (2.30), the continuity equation

for the dark energy is guarantied, i.e.,

_ρðDEÞ þ 3Hð1þ wðDEÞÞρðDEÞ ¼ 0: ð2:31Þ
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Now, starting from the definition wðDEÞ and replacing
ρðDEÞ and pðDEÞ from Eqs. (2.27) and (2.28) and then
using the definition of the effective equation of state as
wðeffÞ ≡ −1 − 2 _H=3H2, the form

wðeffÞ ¼ ΩðDEÞwðDEÞ þ 1

3
ðΩðradÞ − ΩðkÞÞ ð2:32Þ

is obtained, where we have defined ΩðDEÞ≡
8πGρðDEÞ=3H2F. Finally, by definition (2.17), we obtain

wðeffÞ ¼ 1

3
ð1 − 2x3 − 2ΩðkÞÞ; ð2:33Þ

and by applying the conservation of the energy-momentum
tensor and Eq. (2.33), for any perfect fluid, we get

_ρðtÞ þ 2ð2 − x3 − ΩðkÞÞHðtÞρðtÞ ¼ 0: ð2:34Þ

The effect of constraint equation (2.12) on the minimal
combination fðR; TÞ ¼ gðRÞ þ hðTÞ restricts its form to a
particular one, namely,

fðR; TÞ ¼ gðRÞ þ c1
ffiffiffiffiffiffiffi
−T

p
þ c2; ð2:35Þ

where c1 and c2 are the integration constants. The con-
servation of the energy-momentum tensor also leads to the
case in which the variable x5 is a function of x4, namely,
x5 ¼ x4=2, which in turn gives s ¼ −n ¼ 1=2. These facts
simplify the later manipulations.
In the following, to avoid any complexity of the

equations, we discard the spatial curvature density; how-
ever, we will resume it again in Sec. IV. Thus, we only
present the evolutionary equations of variables x1 to x4 and
ΩðradÞ and concisely discuss the cosmological results. After
some manipulations on the field equations (2.13) and
(2.14), we obtain the following equations for the minimal
case:

1þ g
6H2g0

þ h
6H2g0

−
R

6H2
þ

_g0

Hg0

¼ 8πGρðmÞ

3H2g0
þ h0ρðmÞ

3H2g0
þ 8πGρðradÞ

3H2g0
ð2:36Þ

and

2
_H
H2

þ g̈0

H2g0
−

_g0

Hg0
¼ −

8πGρðmÞ

H2g0
−
h0ρðmÞ

H2g0
−
32πGρðradÞ

3H2g0
:

ð2:37Þ

Equation (2.36) gives the following constraint between the
matter and radiation density parameters and the variables x1
to x4, namely,

ΩðmÞ ¼ 1 − ΩðradÞ − x1 − x2 − x3 − x4: ð2:38Þ

Also, by Eq. (2.38), we can define the density parameter for
the dark energy as

ΩðDEÞ ≡ x1 þ x2 þ x3 þ x4; ð2:39Þ

hence, constraint (2.38) reads

ΩðDEÞ þΩðmÞ þ ΩðradÞ ¼ 1: ð2:40Þ
Now, for the autonomous equations of motions, we

obtain

dx1
dN

¼ −1þ x1ðx1 − x3Þ − 3x2 − x3 −
3

2
x4 þ ΩðradÞ;

ð2:41Þ
dx2
dN

¼ x1x3
m

þ x2ð4þ x1 − 2x3Þ; ð2:42Þ

dx3
dN

¼ −
x1x3
m

þ 2x3ð2 − x3Þ; ð2:43Þ

dx4
dN

¼ x4

�
5

2
þ x1 − 2x3

�
; ð2:44Þ

dΩðradÞ

dN
¼ ΩðradÞðx1 − 2x3Þ; ð2:45Þ

where N ¼ ln a is used. This system of equations admits
ten fixed points including the following ones:

(i) Two points that have the characteristic of a
curvature-dominated point and can lead to a stable
acceleration-dominated Universe either in the non-
phantom regime of

m0 < −1; 0 < m < 1; −1 < wðeffÞ < −
1

2
;�

m ≠
1

2
; wðeffÞ ≠ −

2

3

�
; ð2:46Þ

m0 > −1; m < −
1

2
ð1þ

ffiffiffi
3

p
Þ;

−1 < wðeffÞ < −
1

3
ð2:47Þ

or in the phantom regime of

m0 > −1; m > 1; −1.07 < wðeffÞ < −1;

ð2:48Þ

m0 > −1; −
1

2
< m < 0; wðeffÞ < −7.60:

ð2:49Þ
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(ii) One saddle matter-dominated era point that exists,
provided that m → 0þ.

(iii) One stable de Sitter point that exists for 0 < m < 1.
Based on the existence of these fixed points, there are six

classes of the cosmological solutions that pass a long-
enough matter-dominated era followed by an accelerated
expansion. In four classes, the Universe approaches a state
with a phantom or nonphantom dark energy, and in the
other two classes, the Universe approaches a de Sitter point.
The rest of the fixed points are not physically interested.
For more details of this classification, one can refer to
Ref. [76]. Also, the main features of the solutions are as
follows:

(i) An interesting feature in these solutions is the
appearance of a solution with a transient period of
acceleration with wðeffÞ ¼ −1=2 followed by a de
Sitter acceleration as the final attractor; see the
diagram for wðeffÞ in Fig. 1. With different initial
values, one can obtain diagrams with a short-enough
transient era to reach a state with wðeffÞ ¼ −1 in
order to match the present observations. For exam-
ple, this feature appears in the model with
gðRÞ ¼ Rþ αR0.9; see Fig. 4.

(ii) All the models considered in Ref. [76] show a satisfy-
ing sequence of the radiation-matter-acceleration
era, similar to the one in Fig. 4.

The above features, more or less, appeared in all the
models already considered in Ref. [76], which indicates
that one should investigate further some other cosmological
aspects of these models to determine the more compatible
ones to the observational data. In this respect, in the
following section, we numerically discuss the coincidence

problem and some other cosmological parameters for only
two more interesting models of Ref. [76] case by case since
(based on our checks) the other models show the same
properties.

III. NEW ASPECTS OF COSMOLOGICAL
SOLUTIONS OF f ðR;TÞ= gðRÞ+hðTÞ GRAVITY

As emphasized in the Introduction, an acceptable theory
must contain the well-behaved cosmological parameters/
quantities that match the available observational data.
Otherwise, theories with inconsistent parameters/quantities
will be mostly ruled out. In this section, we discuss some
new cosmological parameters/quantities for two of the
theories introduced in our previous work [76]; the other
theories considered in Ref. [76] have similar properties,
and thus to avoid repetitious results and mathematics, we
do not investigate these theories.
The values of energy densities of the matter and dark

energy components are, up to the cosmological observa-
tions, of the same order in the present epoch. This evidence
has given rise to a famous dilemma called the coincidence
problem. This problem deals with a question, that is, why
the ratio of the matter density to the dark energy density is
of the same order at the present era. In addition to the
coincidence problem, we present some results on the
Hubble parameter, the weight function F, the deceleration
parameter, the jerk, and the snap. The importance of the
function F first is that it does not attain negative values, for
the definitions of the density parameters (2.20) and (2.21)
are weighted by this function. Actually, negative values of
this function can comprise the consequence of repulsive
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FIG. 1 (color online). Cosmological solutions of fðR; TÞ ¼ R log ðαRÞ þ ffiffiffiffiffiffiffi
−T

p
gravity. The different cosmological parameters consist

of the dark energy equation of state; the effective equation of state, Fðx2; x3Þ; the ratio of the matter density to the dark energy density
and its first derivative; and the Hubble parameter and its inverse. The initial values x1 ¼ 10−7, x2 ¼ −10−6, x3 ¼ 1.0058 × 10−6,
x4 ¼ 0.3 × 10−14, and x5 ¼ 0.9999 correspond to z ≈ 1.78 × 107. We used α ¼ 1.95 × 1092 in some plots. The diagrams are drawn to be
consistent with the present value of ΩðmÞ

0 ≈ 0.3, ΩðradÞ
0 ≈ 10−4 and H0 ≃ 67.3 km=ðMpc:sÞ. As it is obvious, the diagram for Fðx2; x3Þ

has not a suitable range of value to indicate a matter-dominated era for which F ≈ 1. The diagram of rðmDÞ shows that the value of 3=7
appears twice in the evolution of the cosmos, and its ratio is about −0.6 at the present era. The matter dominates in the redshift z ∼ 33,
and from the diagram for H−1, we find that in this epoch the relative size of the Universe is about 9.4 × 10−3.
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gravity. Second, we must have FðRÞ ∼ 1 in order to get GR
as a limiting solution.
Regarding the coincidence problem, we define a coinci-

dence parameter as the ratio of the matter energy density to
the dark energy density, namely,

rðmDÞ ≡ ρðmÞ

ρðDEÞ
¼ ΩðmÞ

ΩðDEÞ : ð3:1Þ

Using Eqs. (2.38) and (2.39), definition (3.1) can be
rewritten as

rðmDÞ ¼ 1 −ΩðradÞ − x1 − x2 − x3 − x4
x1 þ x2 þ x3 þ x4

: ð3:2Þ

Differentiating it with respect to N gives

drðmDÞ

dN
¼ 3rðmDÞwðDEÞ: ð3:3Þ

Also, from Eq. (2.32), one can obtain

wðDEÞ ¼ 1 − 2x3 −ΩðradÞ −ΩðkÞ

3ðx1 þ x2 þ x3 þ x4Þ
: ð3:4Þ

Hence, one can obviously have relation (3.3) in terms of the
dimensional variables.
On the other hand, for the Hubble parameter, we can also

obtain an equation in terms of the dimensionless variables.
Let us rewrite definition (2.17) as

H ¼
ffiffiffiffiffiffiffi
R
6x3

s
ð3:5Þ

and from definition (2.24) define R as a function of r, i.e.,

R ¼ QðrÞ ¼ Q

�
x3
x2

�
; ð3:6Þ

where, in general, QðrÞ is obtained by solving Eq. (2.24)
for a given function gðRÞ. Thus, by relations (3.5) and (3.6),
the Hubble parameter can, in principle, be rewritten in
terms of the dimensionless variables, namely,

Hðx2; x3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Qðx3x2Þ
6x3

s
: ð3:7Þ

Also, the function F ¼ g0ðRÞ can be cast in the form of
Fðx2; x3Þ by employing relation (3.6).
Now, the other cosmological parameters, namely, the

deceleration parameter, the jerk, and the snap, are usually
defined via the expansion of an analytical scale factor
around its present value aðt0Þ≡ a0, i.e.,

aðtÞ
a0

¼ 1þH0ðt − t0Þ −
1

2
q0H2

0ðt − t0Þ2 þ
1

6
j0H3

0ðt − t0Þ3

þ 1

24
s0H4

0ðt − t0Þ4 þO½ðt − t0Þ5�; ð3:8Þ

where these dimensionless parameters are defined as

qðtÞ≡ −
ä
a
H−2 ð3:9Þ

for the deceleration parameter,

jðtÞ≡ a
:::

a
H−3 ð3:10Þ

for the jerk parameter, and

sðtÞ≡ a
::::

a
H−4 ð3:11Þ

for the snap parameter. From definition (3.9) and the
definition for the effective equation of state wðeffÞ, the
deceleration parameter is

q ¼ −
�
1þ

_H
H2

�
¼ 1

2
½1þ 3wðeffÞ�: ð3:12Þ

However, one can also rewrite it in terms of the defined
dimensionless variable as

q ¼ 1 − x3: ð3:13Þ

Using Eqs. (3.9), (3.10), and (3.12), the jerk is

j ¼ qð1þ 2qÞ − dq
dN

ð3:14Þ

or, in terms of the dimensionless variables (2.15), (2.17),
and (2.23), is

j ¼ −
x1x3
m

− x3 þ 3: ð3:15Þ

Similar calculations can be performed for the snap param-
eter, namely,

s ¼ −jð2þ 3qÞ þ dj
dN

; ð3:16Þ

and then

s ¼ x1x3
m2

�
x1 þ

dm
dN

�

þ 1

m

�
x3

�
1 − x1ðx1 − 2Þ þ 3x2 þ x3 þ

3

2
x4 −ΩðradÞ

��
− x23 þ 10x3 − 15: ð3:17Þ
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It is interesting to note that, except the deceleration
parameter, both the jerk and the snap parameters
explicitly depend on the parameter m and therefore to
the chosen model. By using the value of wðeffÞ for
different cosmological eras and the above equations, the
values of the corresponding parameters are shown in
Table I.
By choosing suitable initial values and parameters, we

will investigate the above results for the following two
theories in the subsequent subsections.

A. f ðR;TÞ ¼ Rp½logðαRÞ�q þ ffiffiffiffiffiffiffi
−T

p
, q ≠ 0, α > 0

This Lagrangian, for p ¼ 1 and q ¼ 1, leads to a model
with

Fðx2; x3Þ ¼
x3

x2 þ x3
and Hðx2; x3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ½−ð x2

x2þx3
Þ�

6αx3

s

ð3:18Þ

and, for p ¼ 1 and q ¼ −1, to

Fðx2; x3Þ ¼ −
x3
x22

ðx2 þ x3Þ and

Hðx2; x3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expð x2

x2þx3
Þ

6αx3

s
: ð3:19Þ

In Fig. 1, we present the related diagrams for the case
p ¼ 1 and q ¼ 1. When α ¼ 1.95 × 1092, the diagrams for
the Hubble parameter and its inverse are also presented. For
q ¼ −1 with α ¼ 5.7 × 10−61, we have drawn the diagrams
in Fig. 2. Note that, in both cases, α has extraordinary large
and small values (in the dimension of length squared),
which reminds us of some kind of fine-tuning problem. In
the model with q ¼ 1, the Universe passes a transient
period of accelerated expansion with wðeffÞ ¼ −1=2 and
then experiences a stable de Sitter era with wðeffÞ ¼ −1,
though the model with q ¼ −1 accepts an accelerated
expansion with wðeffÞ ¼ −1=2 in the late times. The
diagram of dark energy for both models exhibits a singular
point that is a known behavior in fðRÞ gravities. A caution
is needed for the function FðRÞ that appears in the
denominator of ΩðmÞ and ΩðradÞ. First, this function must
be a positive value, and second, it should be of the order of
1 to be consistent with the matter era solution for which
gðRÞ ∼ R. It means that one should recover the matter era
solution for which FðRÞ ¼ 1. The model with q ¼ 1 gets
positive values in all times, though the attained values are
far from 1. The other model gives negative values, which is
not an interesting result. For the coincidence parameter
rðmDÞ and its first derivative, the diagrams are drawn in
Fig. 1. An interesting feature is that this ratio has a peak,
which means the dark energy density parameter increases
after the domination period of matter, and this ratio gets the
value rðmDÞ ≃ 3=7, twice in the history of cosmology. The
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FIG. 2 (color online). Cosmological solutions of fðR; TÞ ¼ R= log ðαRÞ þ ffiffiffiffiffiffiffi
−T

p
gravity. The initial values are x1 ¼ 10−9,

x2 ¼ −10−3, x3 ¼ 1.006 × 10−3, x4 ¼ 2.3 × 10−16, and x5 ¼ 0.9999, corresponding to z ≈ 1.03 × 108. We used α ¼ 5.7 × 1061 in
some plots. The numerical data are matched to the present values of ΩðmÞ

0 ≈ 0.3, ΩðradÞ
0 ≈ 10−4 andH0 ≃ 67.3 km=ðMpc:sÞ. In this case,

the values of Fðx2; x3Þ are negative, which is not accepted. The matter-dominated era happens in the redshift z ∼ 60, and the relative size
of the Universe in this era is about 4.1 × 10−3.

TABLE I. The values of the deceleration, jerk, and snap
cosmological parameters.

Cosmological
eras

Deceleration
parameter q

Jerk
parameter j

Snap
parameter s

Radiation
domination

1 3 −15

Matter
domination

1
2

1 − 7
2

De Sitter
domination

−1 1 1
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first one occurs in the outset of deceleration period (which
means before this time, the dark energy density parameter
has been dominated over the matter density parameter),
when the matter density exceeds the dark energy density.

The other one happens in the outset of acceleration when
the dark energy density exceeds the matter density. In this
case, we have drðmDÞ=dN ≃ −0.6 in the present era, which
shows rðmDÞ increases up to zero. The Hubble diagram and
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FIG. 3 (color online). Cosmological solutions of fðR; TÞ ¼ Rþ αR1.01 þ ffiffiffiffiffiffiffi
−T

p
gravity. In this case, the initial values x1 ¼ 10−8,

x2 ¼ −10−5, x3 ¼ 1.0049 × 10−5, x4 ¼ 10−15, and x5 ¼ 0.9999 correspond to z ≈ 3.6 × 107. We have used α ¼ 1.43 in some plots. In
this theory, we reach at the same results as the previous two theories in Sec. III A, except the result of the function F, which is more
reasonable in this theory. The matter-dominated era for the theory with n ¼ −1.01 occurs in z ∼ 43 with the relative size of the Universe
in this era about 6 × 10−3.
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FIG. 4 (color online). Cosmological solutions of fðR; TÞ ¼ Rþ αR0.9 þ ffiffiffiffiffiffiffi
−T

p
gravity. For this theory, we have chosen the initial

values x1 ¼ 10−6, x2 ¼ −10−3, x3 ¼ 1.0001 × 10−3, x4 ¼ 0.45 × 10−15, and x5 ¼ 0.999 that correspond to z ≈ 2.6 × 108 with
α ¼ 4.06 × 10−5. The initial values are chosen in a way that the matter era occurs in the redshift of about zm ≃ 1100, which
corresponds to the last scattering surface. With these initial values, the radiation-matter equality takes place at z≃ 105, which is far from
the given results in the literature. Note that it is possible to choose some other initial values to solve this inconsistency; however, one
should be careful about the other cosmological quantities, such as the value of the function F. The above diagrams for the deceleration,
jerk, and snap parameters show a consistent sequence for different cosmological eras. However, their present values do not match the
present observational data. For this theory, the relative size of the Universe in this era is about 1.2 × 10−5.
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the Hubble radius are also presented in Fig. 1. The resulted
Universe is small until the acceleration era. In the theory
with q ¼ 1, the matter domination takes place in the
redshift z ∼ 33 and the relative size of the Universe4 in
this epoch, with respect to its present value, is about
9.4 × 10−3, which are fully inconsistent with the available
data [92]. For the theory with q ¼ −1, the corresponding
values are z ∼ 60 and 4.1 × 10−3. Note that different initial
values may improve these values.

B. f ðR;TÞ ¼ Rþ αR−n þ ffiffiffiffiffiffiffi
−T

p
, n ≠ 0

In this case, from definitions (2.23) and (2.24), we have

m ¼ −n
x3 þ x2

x3
;

dm
dN

¼ x1

�
1 −

nx2
x3

�
; ð3:20Þ

Fðx2; x3Þ ¼ ð1þ nÞ x3
x3 − nx2

and

Hðx2; x3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ x2þx3
αðnx2−x3Þ�

−1
1þn

6x3

s
; ð3:21Þ

where r ≠ n. As we have indicated before, for −
ffiffiffiffiffiffijnjp

<
ri < −1 with n → −1−, the effective equation-of-state
parameter has the value −0.5 (i.e., the related fixed point
in the phase space is stable), and otherwise it gets −1. This
means that it is important to choose an appropriate initial
value for ri for consistency with the observations. Here, the
behavior of the coincidence parameter, its derivative, and
the dark energy equation-of-state parameter, for the model
with n ¼ −1.01, are shown in Fig. 3. On the other hand, for
the model with n ¼ −0.9, we can set the initial values in a
way that the pick of the matter density diagram occurs in
the redshift about z≃ 1100. The price for this consistency
is that the matter-dominated era lasts for a long time. The
relative size of the Universe in this era is about 1.2 × 10−5,
which is a more consistent value [92]. The related diagram
for this model is drawn in Fig. 4. It is obvious that Fðx2; x3Þ
has approximately the value around 1 in the deep matter

and radiation eras (i.e., F≃ 0.97), which means gðRÞ ∼ R
in such times. Again, the value rðmDÞ ≃ 3=7 appears twice
with drðmDÞ=dN ≃ −0.6. We have also plotted the related
diagrams of the decelerated, the jerk, and the snap
parameters in Fig. 4. These diagrams show a consistence
sequence for different cosmological eras; however, their
present values q0 ≃ −0.04, j0 ≃ 0.22, and s0 ≃ −0.76 do
not match the present observational data. The matter-
dominated era for the theory with n ¼ −1.01 occurs in
the redshift z ∼ 43 with the relative size of about 6 × 10−3.
We have summarized the discussed features of these four
models in Table II, where the values of the deceleration,
jerk, and snap parameters for the first three models are also
presented.

IV. COSMOLOGICAL SOLUTION OF
MODEL f ðR;TÞ=R+ c1

ffiffiffiffiffiffiffi
−T

p

In this section, we investigate the cosmological proper-
ties of theory fðR; TÞ ¼ Rþ c1

ffiffiffiffiffiffiffi
−T

p
. This theory is similar

to theories with the dynamical cosmological constant.
However, in contrast to the most of them, this theory does
not include any scalar field as the matter field, which
motivates one to extract the cosmological solutions of this
theory. As in this case, we have mðrÞ ¼ 0, and the
formalism presented in the first section does not work;
hence, we should obtain the dynamical system equations
independently. To complete the discussion, we include the
spatial curvature term to investigate whether fðR; TÞ
gravity can select a particular sign for the curvature
constant k. From Eqs. (2.13) and (2.14) for gðRÞ ¼ R,
one obtains

1þ c1
h

6H2
þ k
a2H2

¼ 8πGρðmÞ

3H2
þ c1

h0ρðmÞ

3H2
þ 8πGρðradÞ

3H2

ð4:1Þ

and

2 _H
H2

−
2k

a2H2
¼ −

8πGρðmÞ

H2
− c1

h0ρðmÞ

H2
−
32πGρðradÞ

3H2
; ð4:2Þ

where k is normalized to þ1, 0, and −1 for a closed, flat,
and open Universe, respectively. Note that the field

TABLE II. Different features of fðR; TÞ cosmological models.

fðR; TÞ model wðDEÞ
l

a H−1
0

b FðmÞc ðdrdNðmDÞÞ0 α zðmÞ q0 j0 s0

R log ðαRÞ þ ffiffiffiffiffiffiffi
−T

p
−1 9.3 × 10−3 138 −0.64 1.95 × 1092 32.6 −0.027 0.21 −0.76

R= log ðαRÞ þ ffiffiffiffiffiffiffi
−T

p
− 1

2
4.1 × 10−3 −0.005 −0.58 5.7 × 10−61 58.7 −0.251 −0.12 0.18

Rþ αR1.01 þ ffiffiffiffiffiffiffi
−T

p
− 1

2
5.9 × 10−3 1.66 −0.43 1.371 43.5 −0.016 0.23 −0.80

Rþ αR0.9 þ ffiffiffiffiffiffiffi
−T

p
−1 1.2 × 10−5 0.97 −0.68 0.646 × 10−4 1104 −0.038 0.22 −0.76

a“l” denotes the late-time values.
b“0” denotes the present values.
cThe superscript m indicates the value of parameter in the matter-dominated era.

4By the relative size of the Universe, we mean the ratio
cH−1ðzmÞ=cH−1ðz0Þ in a loose estimation, where zm is the
redshift in which the matter dominates and z0 determines its
present value.
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equations (4.1) and (4.2) do not contain the variables x1, x2,
and x5, and therefore the only contained variables are x3,
x4, ΩðkÞ, ΩðradÞ, and ΩðDEÞ. Equation (4.1) gives

ΩðmÞ þ ΩðkÞ þΩðradÞ þ c1ΩðDEÞ ¼ 1; ð4:3Þ

where from Eq. (2.39), and the definitions x1 and x2, in this
case, we have ΩðDEÞ ¼ x4. Therefore, we incorporate four
fluid densities, namely, the matter, spatial curvature,
radiation, and dark energy ones.
On the other hand, by using Eqs. (2.17) and (4.2), we

reach at the following constraint:

x3 ¼
1

2
−
ΩðkÞ

2
−
ΩðradÞ

2
þ 3c1ΩðDEÞ

4
: ð4:4Þ

Thus, these two constraints, Eqs. (4.3) and (4.4), eliminate
the two variables x3 andΩðmÞ, and only three dimensionless
density parameters, ΩðkÞ, ΩðradÞ, and ΩðDEÞ, remain as the
independent variables. For the effective equation-of-state
parameter, we obtain

wðeffÞ ¼ 1

3
ðΩðradÞ −ΩðkÞÞ − c1

ΩðDEÞ

2
: ð4:5Þ

Hence, we have a three-variable phase space with the
following equations of motion:

dΩðkÞ

dN
¼ ΩðkÞ

�
1þ ΩðradÞ −ΩðkÞ − c1

3ΩðDEÞ

2

�
; ð4:6Þ

dΩðradÞ

dN
¼ ΩðradÞ

�
−1þ ΩðradÞ −ΩðkÞ − c1

3ΩðDEÞ

2

�
; ð4:7Þ

dΩðDEÞ

dN
¼ ΩðDEÞ

�
3

2
þ ΩðradÞ −ΩðkÞ − c1

3ΩðDEÞ

2

�
: ð4:8Þ

In Table III, we have shown the fixed points and their
stability properties. There are four fixed points comprised
of the point PðDEÞ that determines an acceleration-
expansion-dominated era, the point PðkÞ that refers to an
era in which the spatial curvature density is dominated over
the other densities, the point PðradÞ that indicates a radia-
tion-dominated era, and, finally, the point PðmÞ that points
to a matter-dominated era. It is clear that only the dark
energy fixed point is stable, for the appearance of negative
eigenvalues. It means that the dark-energy-dominated era is
an everlasting era. Nevertheless, this fixed point corre-
sponds to wðeffÞ ¼ −1=2, which is not an observational
consistent value. The saddle fixed point PðkÞ indicates
ΩðkÞ ¼ 1, which refers to an open Universe. There is no
solution with ΩðkÞ ¼ −1 as a closed Universe.
As Table III shows, the dark energy density parameter

depends on the coupling constant c1, and hence it is
constrained to have positive values. However, it does not
affect the stability properties of the fixed points and the
value of the equation-of-state parameter. In Fig. 5, we have
depicted the density parameters for an open Universe.
These diagrams show that for large values of c1 the dark
energy density parameter tends to small values, which
means that the late-time era is effectively dominated by
dustlike matter. In such situations, the magnitude of the
spatial curvature density decreases to smaller values. On
the other hand, for 0 < c1 < 1, the pressureless matter
density gets negative values, which is not physically
justified. Also in these cases, the magnitude of the spatial
curvature density increases to larger values. We have
checked that the results for a closed Universe are the same
as the ones for an open Universe. Nevertheless, to have a
dominant dark energy era with ΩðDEÞ ≃ 1, the preferred
value for the coupling constant is c1 ≃ 1 (in our assumed
units), and we will adopt this value in the rest of this work.

TABLE III. The fixed points solutions of fðR; TÞ ¼
Rþ c1

ffiffiffiffiffiffiffi
−T

p
gravity radiation.

Fixed
point

Coordinates
ðΩðkÞ;ΩðradÞ;ΩðDEÞÞ Eigenvalues ΩðmÞ wðeffÞ

PðDEÞ ð0; 0; 1
c1
Þ ð− 5

2
;− 3

2
;− 1

2
Þ 0 − 1

2

PðkÞ (1, 0, 0) ð−2;−1; 1
2
Þ 0 − 1

3

PðradÞ (0, 1, 0) (5, 2, 1) 0 1
3

PðmÞ (0, 0, 0) ð3
2
;−1; 1Þ 1 0

rad
m

DE

1000 k

5 0 5 10 15
0.2
0.0
0.2
0.4
0.6
0.8
1.0

log z 1

c1 0.1

rad
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c1 10

FIG. 5 (color online). The effects of coupling constant c1 on the fluid density parameters in fðR; TÞ ¼ Rþ c1
ffiffiffiffiffiffiffi
−T

p
gravity for an open

Universe. The radiation density parameter is not affected by this constant. The larger (smaller) values of c1 leads to small (larger) values
of the dark energy and the spatial curvature densities.
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Thus, the terms R and
ffiffiffiffiffiffiffi
−T

p
are placed of the same order of

magnitude in the Lagrangian (again in our assumed units).
Also, we have checked that the minimal models
fðR; TÞ ¼ gðRÞ þ hðTÞ, discussed in Sec. II, show similar
behaviors.
We have drawn the diagrams for the density components

and the dark energy equation of state for the both positive
and negative initial values of ΩðkÞ in Fig. 6. As is obvious,
for the both initial values, the amplitude of ΩðkÞ is not far
from the observational data; i.e., the diagrams also indicate
that for an open Universe we have ΩðkÞ ≃ 10−3 and for a
closed one ΩðkÞ ≃ 10−4. In Fig. 6, the diagrams show that
ΩðkÞ, in the matter-dominated era, is small and the curvature
domination occurs in the late times and large scales. The
other diagrams illustrate the evolution of the equation-of-
state parameter for the dark energy, both in an open and a
closed Universe. For an open (closed) Universe, the
corresponding curve has an increasing (decreasing) feature
to the value wðeffÞ ¼ −1=2. This contrast gives us an oppor-
tunity to match it with the observations. Irrespective of
the nonconsistent value wðeffÞ ¼ −1=2, the increasing

(decreasing) feature can be a distinguishable criteria. If
the evolution of wðeffÞ in different cosmological eras can be
investigated from the observational data, then the increas-
ing (decreasing) feature will rule out any inconsistent
cosmological model. In Fig. 7, we have presented a
parametric plot in ðΩðkÞ;ΩðradÞ;ΩðDEÞÞ coordinates for the
left diagram and in ðΩðkÞ;ΩðradÞ;ΩðmÞÞ coordinates for the
right one, both in an open Universe. Both diagrams show an
acceptable evolution of the density parameters. The left
figure illustrates thatΩðkÞ has a peak whenΩðDEÞ ≃ 0.7, and
the right figure indicates that it happens when ΩðmÞ ≃ 0.3.
Also, in Fig. 8, we have depicted a phase portrait of the
solutions in the surface ΩðkÞ ¼ 0. In this plot, for some
initial values, we have a few trajectories that, after leaving
the radiation fixed point, approach the matter fixed point
and finally are attracted to the dark energy fixed point.
Among the trajectories, there are ones that directly connect
the early era (corresponding to the radiation fixed point) to
the late-time era (corresponding to the dark energy fixed
point) without passing the matter era (corresponding to the
matter fixed point). Some trajectories connect the matter era

radmDE
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FIG. 6 (color online). Cosmological solutions of fðR; TÞ ¼ Rþ c1
ffiffiffiffiffiffiffi
−T

p
gravity with c1 ¼ 1. These diagrams accept the initial values

ΩðradÞ ¼ 0.9999, ΩðDEÞ ¼ 10−15, and ΩðkÞ ¼ 10−15 for an open Universe and the same values, but with ΩðkÞ ¼ −10−15, for a closed
Universe, corresponding to z ≈ 3.6 × 107. The diagrams show ΩðkÞ

0 ¼ 10−3 for the open Universe and ΩðkÞ
0 ¼ −10−4 for the closed

Universe. The dark energy curve has an increasing behavior up to the value wðeffÞ ¼ −1=2 for the open Universe, and it has a decreasing
behavior down to the value wðeffÞ ¼ −1=2 for the closed Universe.
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FIG. 7 (color online). Cosmological solutions of fðR; TÞ ¼ Rþ c1
ffiffiffiffiffiffiffi
−T

p
gravity for k ¼ −1. The left parametric plot is in terms of

ΩðkÞ,ΩðradÞ, andΩðDEÞ, and the right one is in terms ofΩðkÞ,ΩðradÞ, andΩðmÞ coordinates. The peaks of the curves occur atΩðDEÞ ≃ 0.7 in
the left and at ΩðmÞ ≃ 0.3 in the right diagrams, respectively.
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to the accelerated expansion era without starting from the
radiation era, etc. Note that the negative valued regions are
not related to our solutions.

V. WEAK-FIELD LIMIT OF f ðR;TÞ
GRAVITY MODELS

In this section, we consider the weak-field limit of
fðR; TÞ gravity.5 To perform this task, we implicitly assume
those models that admit Taylor series expansion around the
background values of the Ricci scalar and the trace of the
energy-momentum tensor. In addition, we work on a
pressureless matter, where in this case, the magnitude of
the trace is the same as the mass density of matter. To
consider the weak-field limit of fðR; TÞ gravity, we first
linearize the field equation (2.3) (which we preferably
rewrite as

FðR; TÞRμν −
1

2
fðR; TÞgμν þ ðgμν□ − ▿μ▿νÞFðR; TÞ

¼ ð8πGþ F ðR; TÞÞTμν; ð5:1Þ

where Tμν generally depends on the spatial coordinates and
time). In comparison, in fðRÞ gravity, only the matter
density perturbation sources the perturbation of the Ricci
scalar, but in fðR; TÞ gravity, the perturbation of the trace of
the energy-momentum tensor also sources the perturbation

of the curvature of space-time. Here, we investigate the
space-time metric outside a spherical body and then
determine the PPN gamma parameter to confront the
fðR; TÞ models with the observational data. We should
remind the reader that, in the literature, the PPN parameter
of fðRÞ gravity, without resorting to the scalar-tensor
equivalence, has been obtained to be γðfðRÞÞ ¼ 1=2 [94];
nevertheless, in this theory, using a scalar-tensor represen-
tation, one can still acquire an observational consistent
value,6 which is supposed to be γðobsÞ ¼ 1þ ð2.1� 2.3Þ ×
10−5 [95,96].
Now, we suppose a background space-time that is

usually assumed to be the isotropic and homogeneous
one. This space-time admits a background spatially uni-

form energy-momentum tensor7 TðbÞ
μν . For the background

space-time with a background energy-momentum tensor

TðbÞ
μν , we have

FðbÞðtÞRðbÞ
μν ðtÞ − 1

2
fðbÞðtÞgðbÞμν ðtÞ þ ðgðbÞμν ðtÞ□ − ▿μ▿νÞFðbÞðtÞ

¼ ð8πGþ F ðbÞðtÞÞTðbÞ
μν ðtÞ; ð5:2Þ

where FðbÞ ≡ ∂f=∂RjðRðbÞ;TðbÞÞ, fðbÞ ≡ fðRðbÞ; TðbÞÞ, and

F ðbÞ ≡ ∂f=∂TjðRðbÞ;TðbÞÞ. The superscript b denotes the
background quantities, and we have dropped the argument
ðR; TÞ. By the argument t, we have indicated that all the
background quantities depend only on the cosmic time.
Using the trace of Eq. (5.1), one can determine the
evolution of time-dependent scalar curvature RðbÞðtÞ as

FðbÞðtÞRðbÞðtÞ þ 3□FðbÞðtÞ − 2fðbÞðtÞ
¼ ð8πGþ F ðbÞðtÞÞTðbÞðtÞ: ð5:3Þ

To linearize the field equation (5.1) and its trace
equation, we perturb the Ricci scalar, the Ricci tensor,
the energy-momentum tensor, and its trace as the sum of a
time-dependent spatially homogeneous background com-
ponent and a time-independent source component, namely,

Rðt; rÞ ¼ RðbÞðtÞ þ RðsÞðrÞ; ð5:4Þ

Rμνðt; rÞ ¼ RðbÞ
μν ðtÞ þ RðsÞ

μν ðrÞ; ð5:5Þ

Tμνðt; rÞ ¼ TðbÞ
μν ðtÞ þ TðsÞ

μν ðrÞ; ð5:6Þ

Tðt; rÞ ¼ TðbÞðtÞ þ TðsÞðrÞ: ð5:7Þ

Dark Energy

Radiation

Matter

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

rad

D
E

FIG. 8 (color online). A phase portrait for the special case k ¼ 0
is drawn. There is an acceptable trajectory that connects the
radiation era to the matter era then to the dark-energy-dominated
era as the final attractor. The other trajectories do not contain any
proper cosmological sequence.

5The Newtonian limit of fðR; TÞ gravity has also been
considered in Ref. [65] via another approach (wherein the authors
have assumed that the matter component is not conserved) and
hence have obtained a different result for the weak-field limit of
fðR; TÞ gravity. Incidentally, a modified version of their work is
presented in Ref. [93].

6We have provided a very concise discussion on the corre-
sponding issue of this scalar-tensor representation in the follow-
ing part (just before considering the General Minimal Power Law
Case).

7As the radiation matter does not have any effect on the solar
system experiments, it has not been included in this section.
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The background metric is taken to be the FLRW metric
(2.9) with k ¼ 0, and its spherically symmetric linearized
form reads

ds2 ¼ −ð1þ 2ΨðrÞÞdt2 þ a2ðtÞ½ð1þ 2ΦðrÞÞdr2 þ r2dΩ2�;
ð5:8Þ

where ΨðrÞ and ΦðrÞ are the metric perturbations. To
proceed, we use the Taylor expansion of the functions
fðR; TÞ, FðR; TÞ, and F ðR; TÞ around the background
quantities RðbÞ and TðbÞ. Further, we neglect the nonlinear
terms in the expansions, assuming that the zeroth and the
first terms dominate these terms. Therefore, the first-order
version of the trace of equation (5.1) is obtained as

∇2RðsÞ −m2
fðR;TÞR

ðsÞ ¼ S; ð5:9Þ

where we have defined a mass parameter,

m2
fðR;TÞ ≡

1

3

�
FðbÞ

FðbÞ
R

þ F ðbÞ
R

FðbÞ
R

TðbÞ − RðbÞ þ 3

FðbÞ
R

d2FðbÞ
R

dt2

�
;

ð5:10Þ
a source parameter

S ≡ 1

3FðbÞ
R

��
8πGþ 3F ðbÞ þ F ðbÞ

T TðbÞ

− FðbÞ
T RðbÞ − 3

d2FðbÞ
T

dt2

�
TðsÞ − 3FðbÞ

T ∇2TðsÞ
�
; ð5:11Þ

and we have used □ΞðbÞðtÞ ¼ −d2ΞðbÞðtÞ=dt2 and
□ΞðsÞðrÞ ¼ ∇2ΞðsÞðrÞ for any arbitrary function Ξ. Also,
we have defined FR ≡ ∂F=∂R, FT ≡ ∂F=∂T, FR≡∂F=∂R, and FT ≡ ∂F=∂T, and in obtaining Eq. (5.9),
we have neglected all the second-order terms like
FðbÞ
T TðsÞRðsÞ. It is obvious that the mass parameter (5.10)

varies in time; however, its variation is negligible with
respect to the cosmological time-scale variations that are of
the order of the current Hubble time. Hence, we takem2

fðR;TÞ
to be a time-independent parameter. Since the time scale of
the solar system experiments is negligible compared to the
cosmological time scale, one can discard the time derivative
of all the quantities and therefore can use the present value
of the background quantities for the solar system applica-
tions. On the other hand, H2 is of the order of the inverse
squared age of the Universe, and hence it is negligible at
the present era, similarly for the quantities RðbÞ ∼H2,
d2 lnðFðbÞ

R Þ=dt2 ∼H2 [94]. We also set the present value
of the scale factor as 1. Therefore, the mass parameter
(5.10) and the source expression (5.11) can be written as

m2
fðR;TÞ ≃

1

3

�
FðbÞ

FðbÞ
R

þ F ðbÞ
R

FðbÞ
R

TðbÞ
�

ð5:12Þ

and

S ≃ 1

3FðbÞ
R

½ð8πGþ 3F ðbÞ þ F ðbÞ
T TðbÞÞTðsÞ − 3FðbÞ

T ∇2TðsÞ�:

ð5:13Þ

Thestudyof theGreen functions forEq. (5.9) shows that in
the limit jm2

fðR;TÞjr2 ≪ 1 these functions approximately take
the form −1=ð4πrÞ, which is the Green function for the
Laplaceequation [94].Hence, in this limit, the second term in
Eq. (5.9) may be neglected, and then the corresponding
differential equation for RðsÞ takes the following form:

∇2RðsÞ ≃ S: ð5:14Þ

In this case, the exterior solution of Eq. (5.14) for a spherical
bodywithmassM, radiusℜ, andmass density ρðsÞðrÞ can be
obtained as

RðsÞ ≃ 2GðeffÞM

3FðbÞ
R r

þ FðbÞ
T MðsurÞðℜÞ

FðbÞ
R r

; ð5:15Þ

where we have assumed that all the perturbations vanish at
long distances. In solution (5.15),we have defined a quantity
that has the dimension of mass per area of body surface, i.e.,

MðsurÞðrÞ≡ 4πr2
dρðsÞðrÞ

dr
: ð5:16Þ

This term comes from∇2TðsÞ, which is a new one in fðR; TÞ
gravity with respect to the fðRÞ gravity worked in Ref. [94].
Also, in solution (5.15), we have defined an effective
gravitational constant GðeffÞ as

GðeffÞ ≡Gþ 1

8π
½3F ðbÞ þ F ðbÞ

T TðbÞ�: ð5:17Þ

Note that the condition jm2
fðR;TÞjr2 ≪ 1 leads to

����FðbÞ

FðbÞ
R

þ F ðbÞ
R

FðbÞ
R

TðbÞ
����r2 ¼

����FðbÞ

FðbÞ
R

�
1þ F ðbÞ

R

FðbÞ T
ðbÞ
�����r2; ð5:18Þ

where, provided that8 jðF ðbÞ
R =FðbÞÞTðbÞj ≪ 1, the corre-

sponding condition for fðRÞ gravity [94] is recovered, i.e.,

����FðbÞ

FðbÞ
R

����r2 ≪ 1: ð5:19Þ

Now, let us obtain the metric perturbations ΨðrÞ and
ΦðrÞ by using solution (5.15). For this purpose, the first-
order Taylor expansion of the field equation (5.1) yields

8This term vanishes for the minimal models; however, one
must check it for nonminimal fðR; TÞ models.
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FðbÞRðsÞν
μ þ

�
FðbÞ
R RðbÞν

μ −
1

2
δνμFðbÞ þ δνμF

ðbÞ
R □ − FðbÞ

R ∇μ∇ν − F ðbÞ
R TðbÞν

μ þ δνμ□FðbÞ
R −∇μ∇νFðbÞ

R

�
RðsÞ

¼ ð8πGþ F ðbÞÞTðsÞν
μ þ

�
F ðbÞ

T TðbÞν
μ − FðbÞ

T RðbÞν
μ þ 1

2
δνμF ðbÞ − δνμF

ðbÞ
T □þ FðbÞ

T ∇μ∇ν − δνμ□FðbÞ
T þ∇μ∇νFðbÞ

T

�
TðsÞ;

ð5:20Þ

of which the tt, rr, and θθ equations, for a pressureless fluid, are approximated to give

FðbÞ∇2Ψþ
�
1

2
FðbÞ − F ðbÞ

R ρðbÞ
�
RðsÞ − FðbÞ

R ∇2RðsÞ ¼
�
8πGðeffÞ −

3

2
F ðbÞ þ FðbÞ

T ∇2

�
ρðsÞ; ð5:21Þ

FðbÞ
�
−Ψ00 þ 2

r
Φ0
�
−
1

2
FðbÞRðsÞ þ 2

r
FðbÞ
R R0ðsÞ ¼ −

1

2
F ðbÞρðsÞ þ 2

r
FðbÞ
T ρ0ðsÞ; ð5:22Þ

FðbÞ
�
1

r
Φ0 −

1

r
Ψ0 þ 2

r2
Φ

�
−
1

2
FðbÞRðsÞ þ 1

r
FðbÞ
R R0ðsÞ þ FðbÞ

R R00ðsÞ ¼ −
1

2
F ðbÞρðsÞ þ 1

r
FðbÞ
T ρ0ðsÞ þ FðbÞ

T ρ00ðsÞ; ð5:23Þ

where the prime indicates differentiation with respect to r. By considering solution (5.15), one does expect that ΨðrÞ and
ΦðrÞ will have similar functionality to r, which implies that the terms RðsÞΨ and RðsÞΦ are of second-order, and hence we
have neglected them in obtaining the filed equations (5.21)–(5.23). Therefore, the most general form of the potential ΨðrÞ,
outside the body, using Eqs. (5.14), (5.15), and (5.21), can be obtained as

ΨðrÞ ¼ −
4GðeffÞM
3FðbÞr

þ 3F ðbÞM
8πFðbÞr

−
�
GðeffÞM

3FðbÞ
R

þ FðbÞ
T MðsurÞðℜÞ

2FðbÞ
R

��
1

2
−
F ðbÞ

R TðbÞ

FðbÞ

�
r −

C1Ψ

r
þ C2Ψ; ð5:24Þ

where C1Ψ and C2Ψ are the integral constants and we have
assumed FðbÞ ≠ 0. One can set C2Ψ ¼ 0 as usually done in
the Newtonian limit. In addition, the term containing C1Ψ
leads to singularity in the origin, and hence one can discard
it [94,97,98]. Also, for the cases in which the condition
jðF ðbÞ

R =FðbÞÞTðbÞj ≪ 1 holds, we rewrite ΨðrÞ as

ΨðrÞ≃ −
4GðeffÞM
3FðbÞr

þ 3F ðbÞM
8πFðbÞr

−
GðeffÞM

6FðbÞ
R

r

þ FðbÞ
T MðsurÞðℜÞ

4FðbÞ
R

r: ð5:25Þ

We can further simplify solution (5.25) by comparing the
third and fourth terms with respect to the first term, i.e.,

���� GðeffÞMr=6FðbÞ
R

4GðeffÞM=3FðbÞr

���� ¼
���� FðbÞ

8FðbÞ
R

����r2 ≪ 1 ð5:26Þ

and

����F
ðbÞ
T MðsurÞðℜÞr=4FðbÞ

R

4GðeffÞM=3FðbÞr

���� ¼
����BFðbÞ

FðbÞ
R

����r2; ð5:27Þ

where we have defined

B≡MðsurÞðℜÞ
M

3FðbÞ
T

16GðeffÞ : ð5:28Þ

In definition (5.28), the value of the first fraction is of the
order of themagnitude of a surfacemass per the totalmass of
the body,which is usually less than 1. Thus, if 3FðbÞ

T =16GðeffÞ
doesnotget infinite or largevalues, onecanneglect the fourth
term in solution (5.25).9 Note that the fourth term in solution
(5.25) already vanishes for minimal models, for which
FT ¼ 0. Finally, the form of the potential Ψ reads

ΨðrÞ≃ −
4GðeffÞM
3FðbÞr

þ 3F ðbÞM
8πFðbÞr

¼ −
�
4

3
Gþ 1

8π
ðF ðbÞ þ 4F ðbÞ

T TðbÞÞ
�

M

FðbÞr
: ð5:29Þ

Comparing ΨðrÞ with the Newtonian potential,
−GðNÞM=r, gives

G ¼ 3

4
FðbÞGðNÞ −

1

8π

�
3

4
F ðbÞ þ F ðbÞ

T TðbÞ
�
; ð5:30Þ

which shows that the deviation from the corresponding result
offðRÞ gravity [94] is the appearance of the second and third

9In fact, one must ensure that this term is negligible for models
under consideration by exact inspection; however, we omit this
term for simplification purposes.
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terms that depend on the background matter density.
Nevertheless, the appearance of the trace-dependent terms
is not a new result. Actually, it is reminiscent of the Palatini
formulation offðRÞ gravity theories,wherein the trace of the
corresponding field equations reads [99]

RFðRÞ − 2fðRÞ ¼ 8πGT;

whereR is the metric-independent Ricci scalar. This equation
for a well-defined function of fðRÞ provides an algebraic
equation for the Ricci scalar, and therefore one can conclude
that R ¼ RðTÞ and F ¼ FðTÞ. This dependence has some
interesting results in the solar system applications. In the
weak-field limit of the Palatini formulation of these theories,
for a pressureless fluid, one obtains [99]

gtt ¼ −
1

φðTÞ
�
1 −

2GMðrÞ
r

�
e2ðψðrÞ−ψ0Þ;

whereMðrÞ andψðrÞ are some functions of the radius r,ψ0 is
a constant, and φðTÞ≡ Fð0Þ=FðTÞ. As is obvious, gtt has
been modified by a trace-dependent coefficient as our
result (5.29).
In our case, the potential ΦðrÞ is also attained from

Eq. (5.22), by using solutions (5.15) and (5.29) outside the
spherical body, i.e.,

ΦðrÞ≃ 2GðeffÞM
3FðbÞr

−
3F ðbÞM
8πFðbÞr

¼
�
2

3
Gþ 1

8π

�
−F ðbÞ þ 2

3
F ðbÞ

T TðbÞ
��

M

FðbÞr
: ð5:31Þ

One can easily check that solutions (5.29) and (5.31) satisfy
Eq. (5.23) outside the body. Hence, in fðR; TÞ gravity, the
PPN gamma parameter, which is related to the potential Φ
via Φ ¼ γGðNÞM=r [100], is obtained to be

γðfðR;TÞÞ ¼ 1

2
−

3F ðbÞ

16πGðNÞFðbÞ : ð5:32Þ

That is, in fðR; TÞ gravity, we generally have a running
PPN parameter that depends on both the background matter

density and the Ricci scalar. Thus, fðR; TÞ gravity may has
some chances to be made consistent with the solar system
experiments by constructing some plausible models.
In Eq. (5.32), by setting F ðbÞ ¼ 0, one recovers the

corresponding result obtained for fðRÞ gravity as in
Ref. [94]. However, in the literature [101,102], it has been
indicated that applying a scalar-tensor representation for
fðRÞ gravity leads to a significant effect in its corresponding
PPN parameter. Actually, the corresponding result γðfðRÞÞ ¼
1=2 of Ref. [94] is valid when the condition jm2

fðRÞjr2 ≪ 1 is

held. This condition, in a scalar-tensor representation of
fðRÞ gravity, denotes a light scalar field (i.e., jm2

fðRÞj ≪ 1)

with long interaction ranges. On the other hand, one can
obtain γðfðRÞÞ ≃ 1 by setting the condition jm2

fðRÞjr2 ≫ 1,

which is translated to as the appearanceof aheavy scalar field
(i.e., jm2

fðRÞj ≫ 1) with short interaction ranges. Therefore,

dependingon themassof the scalar degreeof freedomrelated
to the curvature (which is model dependent), one can get the
desired result for this parameter; that is, thePPNparameter in
fðRÞ gravity is not also constrained to the value 1=2.
In the following, we consider the γðfðR;TÞÞ parameter for

general minimal10 power law fðR; TÞ models.

A. General minimal power law
case f ðR;TÞ ¼ cRRn þ cTTm

These models have

F ¼ ncRRn−1; FR ¼ nðn − 1ÞcRRn−2;

F ¼ mcTTm−1; FT ¼ mðm − 1ÞcTTm−2;

FT ¼ 0; FR ¼ 0; ð5:33Þ

where cR and cT are two coupling constants. The potential
Ψ, for these models, is

ΨðrÞ ¼ −4GM
3ncRRðbÞðn−1Þr

þ cT
mð1 − 4mÞTðbÞðm−1Þ

24πncRRðbÞðn−1Þ ; ð5:34Þ

which, by comparing it with the Newtonian potential, we
reach at the following result:

G ¼
(
n−1cRRðbÞð1−nÞð3

4
GðNÞ þ cT

8πmð1
4
−mÞρðbÞðm-1ÞÞ; for oddm

n−1cRRðbÞð1−nÞð3
4
GðNÞ − cT

8πmð1
4
−mÞρðbÞðm-1ÞÞ; for evenm ≠ 0:

ð5:35Þ

For positive values of cT andm, the former cases can lead toG < GðNÞ, while the latter ones can lead toG > GðNÞ. The PPN
gamma parameter for these models becomes

γ ¼
(

1
2
− ð3cTmρðbÞðm-1ÞÞ=ð16πnGðNÞcRRðbÞðn−1ÞÞ; for oddm

1
2
þ ð3cTmρðbÞðm-1ÞÞ=ð16πnGðNÞcRRðbÞðn−1ÞÞ; for evenm ≠ 0:

ð5:36Þ

10We temporarily relax the constraint relation (2.12).
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where n ≠ 0. Therefore, for positive values of cT,m, and n,
only for evenm, there is a possibility to obtain γðfðR;TÞÞ ≳ 1.
Note that, for consistency with the solar system experi-
ments, one must get the PPN parameter of the observations,
i.e., γðobsÞ ¼ 1þ ð2.1� 2.3Þ × 10−5 [95,96].
As a special case, the model fðR; TÞ ¼ Rþ c1

ffiffiffiffiffiffiffi
−T

p
has

FðbÞ ¼ 1, FðbÞ
R ¼ 0, F ðbÞ ¼ −c1=ð2

ffiffiffiffiffiffiffi
ρðbÞ

p
Þ, and TðbÞF ðbÞ

T ¼
−F ðbÞ=2. Therefore, in this case, the field equations
become

∇2Ψþ 1

2
RðsÞ ¼ ð8πGþ F ðbÞÞρðsÞ; ð5:37Þ

−Ψ00 þ 2

r
Φ0 −

1

2
RðsÞ ¼ −

1

2
F ðbÞρðsÞ; ð5:38Þ

1

r
Φ0 −

1

r
Ψ0 þ 2

r2
Φ −

1

2
RðsÞ ¼ −

1

2
F ðbÞρðsÞ; ð5:39Þ

with the solutions

Ψ ¼ −Φ ¼ −
ð32πG − c1ρðbÞ−1=2ÞM

32πr
; ð5:40Þ

which holds outside the spherical body. Here, one can
recover the GR solution by setting c1 ¼ 0. Also, we have

G ¼ GðNÞ þ c1
32π

ffiffiffiffiffiffiffi
ρðbÞ

p ; ð5:41Þ

and as a result,Ψ ¼ −Φ ¼ −GðNÞM=r, which yields γ ¼ 1.

VI. CONCLUSIONS

We have extended the cosmological solutions of fðR; TÞ
gravities in a homogeneous and isotropic FLRW space-
time. We consider the minimal theories of type gðRÞ þ
hðTÞ that primarily were studied in our work [76]; however,
the results indicate that they deserve more consideration.
Our studies are based on the phase-space analysis (the
dynamical system approach) via defining some dimension-
less variables and parameters. By respecting the conserva-
tion of the energy-momentum tensor, we have shown that
the functionality of hðTÞ, in the minimal models, must be
hðTÞ ¼ c1

ffiffiffiffiffiffiffi
−T

p
. In the previous work, we obtained the

results for the density parameters, the effective equation of
state, and the scale factor. We found that there can be a
consistent cosmological sequence including radiation,
matter, and acceleration expansion eras.
In this work, to check some other cosmological aspects

of these theories, we have considered a few more cosmo-
logical parameters written in terms of the dimensionless
variables that are suitable in the dynamical system pro-
cedure. These parameters/quantities are the equation of
state of the dark energy, the Hubble parameter and its
inverse, the coincidence parameter and its variation with

respect to the time, the weight function, the deceleration,
and the jerk and the snap parameters. We have presented the
corresponding equations of these quantities in terms of the
defined dimensionless variables and then have considered
them numerically. In particular, we have investigated two
general theories of type Rþ αR−n þ ffiffiffiffiffiffiffi

−T
p

, especially for
n ¼ −0.9 and n ¼ −1.01, and R½log ðαRÞ�q þ ffiffiffiffiffiffiffi

−T
p

, espe-
cially for q ¼ 1 and q ¼ −1. The Hubble parameter and its
inverse have shown similar features for these four models.
Based on the chosen initial values for each theory, from
their numerical diagrams, we have found that the former
theory with n ¼ −0.9 respects the available observational
data. The diagram of H−1 for this theory indicates that the
ratio of the size of the Universe in the matter-dominated era
with respect to the present era is about 10−6, which is an
acceptable value. This ratio for the rest of these models is
about 10−3, which is far from its expected value. The
numerical plots for the coincidence parameter reveal that
the matter and the dark energy densities have become of the
same order twice, in the early and late times, and hence this
coincidence is not a unique event. Also, they show that
there is a peak in the plots, which means that the dark
energy density has never been zero. The diagrams of
drðmDÞ=dN illustrate that the coincidence parameter
increases up to zero in the late times, and its rate is about
−0.6 at the present. Furthermore, the diagrams of the
coincidence parameter and its rate function indicate that, in
the early times, the matter density had been smaller than the
dark energy density, and then it grew over the dark energy
density, and today the dark energy density is larger than
it again.
All the density parameters (except the spatial curvature

density) are affected by the weight function, and hence it is
wise to know its behavior. In this respect, it must satisfy the
following conditions:

(i) If this function gets negative values, the correspond-
ing density parameters will become negative, that is,
of less physical interest.

(ii) In the deep matter era, GR should be a limiting
solution, i.e., when gðRÞ ∼ R, then FðRÞ ∼ 1 in
those times.

We have found that, for the theory Rþ αR0.9 þ ffiffiffiffiffiffiffi
−T

p
, these

two conditions are hold; however, for the other theories, it
has negative values or has values far from 1. We have also
drawn the related diagrams of the deceleration, jerk, and
snap parameters for this model (the other models have
diagrams of the same features). We have obtained that
they show a good cosmological sequence during their
evolutions with the present values q0 ≃ −0.04, j0 ≃ 0.22,
and s0 ≃ −0.76.
For all the considered cosmological quantities, we have

chosen the maximum-consistent value of the model param-
eter, namely, α, that is, the theory R log ðαRÞ þ ffiffiffiffiffiffiffi

−T
p

with α¼ 1.95× 1092, the theory R=logðαRÞþ ffiffiffiffiffiffiffi
−T

p
with

α ¼ 5.7 × 10−61, the theory Rþ αR1.01 þ ffiffiffiffiffiffiffi
−T

p
with
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α ¼ 1.371, and the theory Rþ αR0.9 þ ffiffiffiffiffiffiffi
−T

p
with α ¼

6.46 × 10−5. It is obvious that, for the first two cases, some
kind of fine-tuning problem appears. Note that all the
mentioned results have been achieved by applying some
specific initial values, and thus further inspection via the
initial values may improve the results.
In the second part of this work, we have considered

the more plausible and simple model Rþ c1
ffiffiffiffiffiffiffi
−T

p
in a

nonflat geometrical background to aim at the point of
whether or not fðR; TÞ gravity can specify a particular
sign for the spatial curvature parameter. This model has
the specific parameter mðrÞ ¼ 0, which indicates that the
formalism presented in the first part of the work cannot
be applied here. Hence, the dynamical system equations
have been achieved independently for this model. In this
respect, the dynamical system approach shows that there
is no fixed point solution denoting a closed Universe.
We have plotted the diagrams of the radiation, matter,
dark energy, and spatial curvature density parameters.
The diagrams illustrate that the spatial curvature density
parameter has approximately a vanishing value and then
it increases up to the present value ΩðkÞ ∝ 10−3. In spite
of the lack of a fixed point denoting a closed Universe,
we have set some initial values to get this kind of
solution, for which we have found that it gives the value
ΩðkÞ ∝ −10−4 at the present.
Furthermore, this simple theory has four fixed points,

three of which are the saddle points in a three-
dimensional coordinate system. One of the fixed point
denotes the radiation-dominated era, another one specifies
the matter-dominated era, the third one indicates an era
with the maximum spatial curvature density, and, finally,
the last one is a stable fixed point that determines the
dark-energy-dominated era with wðDEÞ ¼ −1=2. For an
arbitrary value of c1, the density parameter of the dark
energy admits ΩðDEÞ ¼ 1=c1 as a critical value, which
shows the best value for c1 is approximately 1.
Therefore, the terms R and

ffiffiffiffiffiffiffi
−T

p
appear of the same

order of magnitude in the Lagrangian (in our assumed
unit). Schematically, we have demonstrated that greater
values for c1 lead to a relatively nondominant late-time
dark energy era, and smaller values lead to negative
matter density in the late times. Also, we have depicted
the diagrams for the dark energy equation of state for a
closed and an open Universe. Irrespective of their late-
time values, these two diagrams have different features.
The curve of dark energy equation of state has either an
increasing behavior toward the value wðDEÞ ¼ −1=2 for
an open Universe or has a decreasing behavior toward the

value wðDEÞ ¼ −1=2 for a closed Universe. This opposi-
tional behavior can, in principle, be a distinguishable
criterion. If the evolution of wðeffÞ, in different cosmo-
logical eras, can be investigated from the observational
data, then this increasing (decreasing) feature will rule
out the inconsistent cosmological model.
We conclude that the theory Rþ αR0.9 þ ffiffiffiffiffiffiffi

−T
p

relatively
passes more criteria than the other considered theories, and
it deserves more accurate investigations. The investigations
have been dependent on the initial values, and hence more
accurate investigations demand precise initial values.
However, in this work, we have investigated those
fðR; TÞ gravity theories that are formed via the correspond-
ing fðRÞ gravity ones just by adding a simple

ffiffiffiffiffiffiffi
−T

p
term;

nevertheless, this extra term leads to some interesting
features. And yet, more interesting models in fðR; TÞ
gravity may be found within the nonminimal cases.
In the last part of this work, we have presented the

weak-field limit of fðR; TÞ gravity outside a spherical
body immersed into the background cosmological fluid
for an isotropic and homogeneous background space-
time. Here, we have considered a pressureless matter. In
this case, the Taylor expansion of all the functions are
performed about the current background value of the
Ricci scalar and the cosmological mass density. We have
found that, in spite of the results of fðRÞ gravity, the
field equations depend on the value of the mass density
of the cosmological matter. Actually, in this analysis, the
background cosmological fluid plays an important role.
The derivations show that the mass parameter explicitly
depends on the cosmological fluid density, and therefore
it can achieve small or large values depending on the
considered model. As a result, we have obtained the
PPN gamma parameter for fðR; TÞ gravity, and thereby
we have shown that this parameter depends on the
cosmological matter density, too. Then, we conclude
that one has some chances to construct fðR; TÞ gravity
models consistent with the solar system experiments. As
a special case, we have gained the PPN parameter for
general minimal power law models and have shown that
these models can accept admissible value of the PPN
parameter. And, finally, we have obtained that the PPN
gamma parameter for the model Rþ c1

ffiffiffiffiffiffiffi
−T

p
is

exactly 1.
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