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We examine the observational viability of a class of fðRÞ gravity cosmological models. Particular
attention is devoted to constraints from the recent observational determination of the redshift of the
cosmological deceleration-acceleration transition. Making use of the fact that the Ricci scalar is a function
of redshift z in these models, R ¼ RðzÞ, and so is fðzÞ, we use cosmography to relate a fðzÞ test function
evaluated at higher z to late-time cosmographic bounds. First, we consider a model-independent procedure
to build up a numerical fðzÞ by requiring that at z ¼ 0 the corresponding cosmological model reduces to
standard ΛCDM.We then infer late-time observational constraints on fðzÞ in terms of bounds on the Taylor
expansion cosmographic coefficients. In doing so we parametrize possible departures from the standard
ΛCDM model in terms of a two-parameter logarithmic correction. The physical meaning of the two
parameters is also discussed in terms of the post-Newtonian approximation. Second, we provide numerical
estimates of the cosmographic series terms by using type Ia supernova apparent magnitude data and Hubble
parameter measurements. Finally, we use these estimates to bound the two parameters of the logarithmic
correction. We find that the deceleration parameter in our model changes sign at a redshift consistent with
what is observed.
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I. INTRODUCTION

The inclusion of a cosmological constant Λ in Einstein’s
equations is arguably the simplest way to produce accel-
erated cosmological expansion. The corresponding cosmo-
logical model, namely the ΛCDM model [1], predicts a
currently accelerating cosmological expansion and is in
fairly good agreement with current observations [2].1

However, the ΛCDM model has some puzzling features
[4]. The first puzzle is that both matter and Λ energy
densities are comparable in order of magnitude today. The
second puzzle is the huge difference between the observed
Λ and the corresponding quantum field theory naively
computed value. Perhaps these puzzles mean that the
standard ΛCDM model is only a limiting case of a more
complete, and less puzzling, cosmological model. In such a
model the role played by Λ in the ΛCDM model might be
generalized to another, more complex but still unknown,
substance, often dubbed (dynamical) dark energy [5].
The cosmological constant can be considered to be a

fluid with equation of state pΛ ¼ −ρΛ relating the

time-independent energy density ρΛ and pressure pΛ. A
fluid with equation of state pX ¼ ωXρX relating the X-fluid
energy density ρX and pressure pX is a very simple (but
incomplete [6]) model of dynamical dark-energy density.
The ϕCDM model [7], where dynamical dark-energy
density is modeled by a scalar field ϕ with potential energy
density VðϕÞ, is a complete and consistent model. Many
models have followed this one during the last quarter
century, and an evolving dark-energy fluid may be respon-
sible for the late-time acceleration, if the corresponding
equation-of-state parameter ω is within the interval
−1 < ω≃−0.75, for redshift z ≪ 1 [8]. However, none
of them has managed to satisfactorily clarify the physical
origin of dark energy; thus, a definite explanation of the
accelerated cosmological expansion remains elusive.
A major shortcoming of the dark-energy paradigm is the

lack of more fundamental first principles (less phenomeno-
logical) motivation for dark energy [9]. Another possibility is
to, instead, ascribe the observed accelerating cosmological
expansion to modified gravity, a generalization of general
relativity [10]. This is the underlying philosophy of modified
theories of gravity, which extend general relativity by adding
further curvature invariants to the Einstein-Hilbert action
[11]. Many discussed extensions of standard cosmology
arise when the Ricci scalar is replaced by an analytic
function of curvature, fðRÞ [12]. Here the action is

1In this model, the current cosmological energy budget is
dominated by Λ, with cold dark matter (CDM) in second place,
and baryons a distant third. The ΛCDM model assumes the
simplest form of CDM, which might be in conflict with some
observations on structure formation [3].
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A ¼
Z

d4x
ffiffiffiffiffiffi−gp ½fðRÞ þ Lm�; ð1Þ

where Lm is the matter Lagrangian, involving generally both
baryons and cold dark matter, and g is the determinant of the
metric tensor. By varying the action with respect to the
metric tensor gμν, one infers the field equations

Rμνf0ðRÞ − 1

2
fðRÞgμν − ð∇μ∇ν − gμν∇α∇αÞf0ðRÞ

¼ 8πTμν: ð2Þ

Here a prime denotes a derivative with respect to R, Rμν is
the Ricci tensor, Tμν is the standard energy-momentum
tensor, and we have set the Newtonian gravitational constant
and the speed of light to unity G ¼ c ¼ 1. Dark energy can
therefore be considered to be a geometrical fluid that adds to
the conventional stress-energy tensor, if one want to interpret
this equation in the context of general relativity [13]. In
doing so, the task of determining the dark-energy equation of
state is replaced by trying to understand which fðRÞ better
fits current data. It has been argued that viable candidates of
fðRÞ are those that reduce to the ΛCDM model at z ≪ 1
[14]. This guarantees fairly good agreement with present
observations, permitting us to ease the experimental prob-
lems associated with wrong choices of fðRÞ.
In the ΛCDM model, and in dynamical dark-energy

models, the dark-energy density has only recently come
to dominate the cosmological energy budget and thus
accelerate the cosmological expansion. Previously, dark
matter dominated, resulting in decelerating cosmological
expansion. Recent cosmological measurements have led to
the first believable estimate of the decelerating-accelerating
transition redshift zda [15] of order 0.75. Thus, there is now
some observational support for the dark-energy idea at
redshifts approaching unity. Therefore it is of interest to
see whether such data are also consistent with fðRÞ gravity
models. In this work we determine observationally viable
fðRÞ models by assuming the cosmological principle and
using cosmography to constrain parameters [16]. From the
Taylor series expansion of the scale factor aðtÞ, cosmogra-
phy can be used to numerically bound late-time measurable
quantities, e.g., the acceleration parameter, the jerk param-
eter, the snap, and so forth [17]. Possible departures from the
standard ΛCDMmodel could be determined through the use
of cosmography, which represents a tool to pick the most
viable class of fðRÞ models [18]. To this end, cosmography
allows us to relate the expanded quantities of interest, i.e., the
Hubble rate, luminosity distances, magnitudes, and so forth,
in terms of observables [19]. In this paper, we show that a
particular Hubble rate, derived from a viable class of fðRÞ
models, predicts a transition from decelerated to accelerated
cosmological expansion at a transition redshift which is
in fairly good agreement with the cosmographic series.
This is an extension of the standard ΛCDM model with a

logarithmic term that mimics the effect of the dark energy as
a smoothly varying function of the redshift z. The corre-
sponding acceleration parameter changes sign around
z ∼ 0.75, in agreement with the recent measurement [15].
We also rewrite fðRÞ as a function of z, as a series in the
scale factor, i.e., a≡ ð1þ zÞ−1. This allows us to describe
the curvature dark-energy fluid in terms of the more practical
redshift variable. In turn, we determine observational bounds
on the cosmographic series and on the expanded fðRÞ, by
combining the most recent Union 2.1 supernova apparent
magnitude compilation [20] and Hubble rate measurements
in the interval z ∈ ½0; 2.8� [15,21], through the use of
Monte Carlo analyses using the Metropolis algorithm [22].
We obtain our fits by using ROOT [23] and BAT [24].
Our paper is structured as follows: In Sec. II we set the

initial conditions on cosmological observables, through the
use of cosmography. These initial conditions are useful when
determining constraints on fðzÞ at low redshift. In Sec. III
we relate these initial conditions to the modified Friedmann
equations. In Sec. IV we describe the corresponding cos-
mological model, inferred from numerically solving the
modified Friedmann equations, with the numerical bounds
inferred from cosmography. Furthermore, we describe the
obtained transition redshift, and we discuss the numerical
results by comparing our model to ΛCDM. In Sec. V model
parameters are computed by using supernovae apparent
magnitude and Hubble parameter measurements. In
Sec. VI we provide a physical interpretation of the free
parameters of the model, relating them to derivatives of the
Ricci scalar at the present time. Finally, Sec. VII is devoted
to our conclusions.

II. COSMOGRAPHY AND FðRÞ GRAVITY

In this section we relate fðRÞ gravity to the cosmo-
graphic series of observables [25]. Cosmography provides
a way of determining constraints on fðRÞ and its deriv-
atives at small redshift by using the fact that the Ricci scalar
is a function of the redshift z. In doing so one obtains the
corresponding fðzÞ function in terms of the cosmographic
series. This procedure allows for an evaluation of the fðzÞ
derivatives at z ¼ 0 through observational bounds and
constitutes a scheme where general relativity represents a
limiting case of a more general theory [26]. Higher order
curvature terms are therefore reinterpreted as a curvature
dark-energy fluid, responsible for possible departures from
the standard ΛCDM model.
We start by expanding the scale factor aðtÞ in a Taylor

series around the present time t0,

aðtÞ − 1 ¼
X∞
k¼1

1

k!
dka
dtk

����
t¼t0

ðt − t0Þk: ð3Þ

The leading cosmographic series terms—the Hubble,
deceleration, and jerk parameters—are
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HðtÞ ¼ 1

a
da
dt

; ð4aÞ

qðtÞ ¼ − 1

aH2

d2a
dt2

; ð4bÞ

jðtÞ ¼ 1

aH3

d3a
dt3

: ð4cÞ

We can use such quantities to study the kinematics of the
universe [27], without postulating a cosmological model. In
this sense, cosmography is a model-independent technique
that may be able to establish whether a given cosmological
model is favored or not with respect to other cosmological
models.
On the other hand, this kinematical cosmographic series

approach has more parameters that must be constrained by
data than do the simplest cosmological models. To simplify
the problem, we assume that space curvature is zero.2 We
also assume the validity of the cosmological principle.
These few assumptions simplify the problem and allow us
to use kinematical cosmography as a model-independent
tool to determine which of the various fðRÞ models are
compatible with current observations. With more and
better-quality near-future data [30], it should be possible
to also constrain space curvature.
The cosmographic series terms we include in our

analyses are the Hubble rate H, the acceleration parameter
q, and the variation of acceleration j. Although additional
coefficients may be added in the cosmographic analysis, the
amount and the quality of current data requires that we limit
ourselves to these three terms. These terms are sufficient
to allow us to determine how the Universe is currently
speeding up and how the acceleration varies as the universe
expands. The physical meaning of each term is as follows.
The Hubble rate is the first derivative with respect to the
cosmic time of the logarithm of the scale factor a. The
acceleration parameter q indicates how much the universe
is currently accelerating. Taking space curvature to vanish,
a currently accelerating Universe has −1 ≤ q0 ≤ 0 (where
q0 is the value of q at the present time), the limit q0 ¼ −1
represents a perfect de Sitter universe totally dominated
by a cosmological constant, and qðzdaÞ ¼ 0 corresponds to
the transition redshift between accelerating and decelerat-
ing expansion zda [31,32]. In turn, its variation j should be
positive today, so that q changes sign as the universe
expands. For the ΛCDM model, the jerk parameter j0 ¼ 1
at all times [33].

Expanding the luminosity distance3 dL in a Taylor series
in redshift z,

dL ¼
X∞
n¼1

1

n!
dndL
dzn

����
z¼0

zn; ð5Þ

and truncating to second order in z, yields

dL ≈
z
H0

�
1þ z

2
ð1 − q0Þ þ

z2

6
ð3q20 þ q0 − j0 − 1Þ

�
: ð6Þ

This provides a way to compare dL to the observable
cosmographic series. Indeed, one can fit the luminosity
distance to cosmological data and determine bounds on the
cosmographic series, without postulating a cosmological
model to define dL.
Measuring the cosmographic parameters through the use

of Eq. (6) has the disadvantage that the coefficients depend
on combinations of H0, q0 and j0. Indeed, we measure the
ratios ð1 − q0Þ=H0 and ð3q20 þ q0 − j0 − 1Þ=H0, and not
H0, q0 and j0 independently. As a consequence of this,
the cosmographic coefficients degenerate and the corre-
sponding errors can be large. The degeneracy can be
alleviated by first measuring H0 alone. One technique
we adopt in this work consists of fitting z ≤ 0.36 data by
assuming the first-order luminosity distance term dL ¼
z=H0. We then perform numerical fits using Eq. (6) with
the obtainedH0 and determine the corresponding q0 and j0.
This prescription may alleviate, in principle, the degeneracy
of q0 and j0 in terms of H0. In the following sections, we
perform a number of cosmological tests, allowing all the
parameters to vary freely, by fixing H0 using Planck data,
and by fixing H0 through the technique discussed above.
By using the definition of redshift in terms of the scale

factor, we have

d logð1þ zÞ
dt

¼ −HðzÞ; ð7Þ

and we can rewrite the Ricci scalar R as a function of z,

R ¼ 6H½ð1þ zÞHz − 2H�; ð8Þ

where Hz is the derivative of H with respect to z. It is
straightforward to express the present epoch values ofR and
its derivatives in terms of H0 and derivatives. We have

R0 ¼ 6H0ðHz0 − 2H0Þ; ð9aÞ

Rz0 ¼ 6H2
z0 −H0ð3Hz0 −H2z0Þ; ð9bÞ

whereHz0 andH2z0 are the first and second zderivatives ofH
evaluated at the present time. Since

2In the ΛCDM model, where the dark-energy density is
time independent, cosmic microwave background anisotropy
measurements indicate the spatial curvature is at most very
small [28]. However, if the dark-energy density varies with
time, the observational bounds on space curvature are not so
restrictive [29].

3The luminosity distance dL ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=ð4πlÞp

, where L is the
absolute luminosity and l the apparent luminosity of the source.
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q ¼ − 1

H2

dH
dt

− 1; ð10aÞ

j ¼ 1

H3

d2H
dt2

− 3q − 2; ð10bÞ

we have

dH
dt

¼ −H2ð1þ qÞ; ð11aÞ

d2H
dt2

¼ H3ðjþ 3qþ 2Þ: ð11bÞ

Using Eq. (7), we can rewrite Eqs. (11) in terms of the
cosmographic series terms only, obtaining

Hz0 ¼ H0ð1þ q0Þ; ð12aÞ

H2z0 ¼ H0ðj0 − q20Þ: ð12bÞ

Then, using Eqs. (9) and (12), we can express R and its
derivatives as functions ofH0, q0, and j0. This represents the
first prescription for rewriting thefðzÞderivatives in terms of
cosmographic parameters.

III. MODIFIED FRIEDMANN EQUATIONS
IN FðRÞ GRAVITY

We now discuss how the cosmological Friedmann
equations for general relativity are modified in fðRÞ
gravity and how these modifications can be viewed as
“dark-energy” contributions to the Friedmann equations of
general relativity. In addition, we describe how the deriv-
atives of fðzÞ can be related to the cosmographic series.
In the case of pressureless matter (pm ¼ 0), the modified

Friedmann equations in fðRÞ gravity are

H2 ¼ 1

3

�
ρcurv þ

ρm
f0ðRÞ

�
; ð13aÞ

2 _H þ 3H2 ¼ −pcurv; ð13bÞ

with nonrelativistic matter density ρm ∝ a−3. Here the
overdot denotes a time derivative and the prime represents
a derivative with respect to the curvature R. The curvature
corrections can be used to describe a dark-energy fluid,
responsible for the current cosmological acceleration.
These are the energy density

ρcurv ¼
1

f0ðRÞ
�
1

2
½fðRÞ −Rf0ðRÞ� − 3H _Rf00ðRÞ

�
;

ð14Þ

and the pressure obeying the equation of state pcurv ¼
ωcurvρcurv with equation-of-state parameter

ωcurv ¼ −1þ R̈f00ðRÞ þ _R½ _Rf000ðRÞ −Hf00ðRÞ�
½fðRÞ −Rf0ðRÞ�=2 − 3H _Rf00ðRÞ : ð15Þ

It is convenient for our purposes to work in terms of
fðzÞ, i.e., fðRÞ as a function of redshift z. Since
R ¼ RðzÞ, we have

f0ðRÞ ¼ R−1
z fz; ð16aÞ

f00ðRÞ ¼ðf2zRz − fzR2zÞR−3
z ; ð16bÞ

f000ðRÞ ¼ f3z
R3

z
− fzR3z þ 3f2zR2z

R4
z

þ 3fzR2
2z

R5
z

; ð16cÞ

which relate fðRÞ to fðzÞ and derivatives. To evaluate the
derivatives of fðRÞ in terms of the Hubble rate, we make
use of the following identities:

_R ¼ − ð1þ zÞHRz; ð17aÞ

R̈ ¼ð1þ zÞH½HRz þ ð1þ zÞðHzRz þHR2zÞ�: ð17bÞ

We consider fðRÞ gravity models which are consistent
with the Solar System tests [34]. Thus the gravitational
constant does not depart from its observed value. Keeping
in mind such prescriptions, we fix the initial conditions on
fðzÞ and its derivatives, by relating fðzÞ and f0ðzÞ to the
cosmographic series through

f0 ¼ 2H2
0ðq0 − 2Þ; ð18aÞ

fz0 ¼ 6H2
0ðj0 − q0 − 2Þ: ð18bÞ

These relations will be useful for cosmographic tests
once suitable priors are fixed. Next we discuss how to
achieve a deceleration-acceleration transition in the context
of fðRÞ gravity.

IV. FðRÞ GRAVITY AND THE COSMOLOGICAL
DECELERATION-ACCELERATION TRANSITION

Ideally, we would like to integrate the modified
Friedmann equations (13) while taking into account
Eqs. (12) and (18). However, we cannot solve Eqs. (13)
along with Eqs. (14) and (15) directly, due to their
complexity. We therefore assume a parametrized cosmo-
logical model, which can depart from ΛCDM at both low
and high redshift. In particular, we find that a useful ansatz
is a logarithmic correction associated with the dark-energy
term,

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ logðαþ βzÞ

q
; ð19Þ

where α and β are constants. In order to get H ¼ H0 at
z ¼ 0, we require α ¼ expð1 −ΩmÞ, and to account for
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Eqs. (18) we assume β ∈ ½0.01; 0.1�. In doing so, we fix
both α and β in terms of mass and cosmographic coef-
ficients. This prescription allows us to numerically recon-
struct fðzÞ in terms of cosmological data. Moreover, we
will see later that these requirements for α and β are
compatible within 1σ errors with our observational results.
The ansatz for an fðzÞ which results in the above HðzÞ

expression is

fðzÞ ¼ ~f0 þ
1

1þ z
þ ~f1ð1þ zÞσ1 þ ~f2ð1þ zÞσ2 : ð20Þ

This reproduces fairly well the numerical Friedmann
equations up to z ≤ 2 and permits us to quantify the effects
of fðRÞ gravity on H. We find a good agreement, with
negligible departures from z ≪ 1 to z ∼ 2, for the parameter
values ~f0 ∼ −10, ~f1 ∼ 7, ~f2 ∼ −3.7, σ1 ¼ 1 and σ2 ¼ 2.
These results are consistent with the cosmographic ranges
of f0 and fz0.
As discussed above, in general relativistic dark-energy

cosmological models, the universe switches from an earlier
matter-dominated decelerating cosmological expansion
to a later dark-energy-dominated accelerating cosmological
expansion. Recently improved cosmological data have
now allowed for the first believable estimate of this
deceleration-acceleration transition redshift zda [15] (for
more recent developments see Ref. [35]). We can test
models by comparing theoretical predictions of the
deceleration-acceleration transition redshift with observa-
tional data. The transition redshift, whose expression is
formally given by

zda ¼
�
1

H
dH
dz

�−1����
z¼zda

− 1; ð21Þ

can be obtained by assuming q ¼ 0, corresponding
to ä ¼ 0.
In the ΛCDM model the acceleration parameter is

qΛ ¼ 3Ωmð1þ zÞ3
2þ 2Ωmz½3þ zð3þ zÞ� ; ð22Þ

and the corresponding transition redshift is

zda;Λ ¼
�
2
ð1 −ΩmÞ

Ωm

�
1=3 − 1: ð23Þ

In the model we study,

qfðRÞ ¼−1þð1þ zÞ½3Ωmð1þ zÞ2þ β=ðαþ βzÞ�
2½Ωmð1þ zÞ3þ lnðαþ βzÞ� ; ð24Þ

and, in a first-order approximation around z ¼ 0, the
transition redshift is

zda;fðRÞ

¼ β expðΩm − 1Þ − 2þ 3Ωm

½3þ 2β expðΩm − 1Þ�½β expðΩm − 1Þ − 2þ 3Ωm�
:

ð25Þ

In the following section we observationally constrain
zda;fðRÞ and compare its value with that from Eq. (23)).

V. OBSERVATIONAL CONSTRAINTS ON
CURVATURE DARK-ENERGY

PARAMETRIZATION

In this section we use observational data to constrain
the curvature dark-energy parametrization discussed in the
previous section. The observational data we use are type Ia
supernova (SNIa) apparent magnitude versus redshift
measurements and measurements of the Hubble parameter
as a function of redshift. These data are shown in Fig. 1.
The SNIa data we use are from the Union 2.1 compi-

lation [20] of 580 supernovae up to redshift z ¼ 1.414; in
our analyses here we account for only statistical uncer-
tainties. In order to get SNIa data cosmological constraints
we adopt the Monte Carlo technique based on the
Metropolis algorithm [22], which reduces dependence on
initial statistics. The likelihood function

LðpÞ ∝ exp ½−χ2ðpÞ=2� ð26Þ
is maximized, and χ2 is therefore minimized. Here the free
parameters are p ¼ ðH0; q0; j0Þ and ðH0;Ωm; α; βÞ for the
cosmographic parametrization and for the curvature dark-
energy model, respectively. The χ2 function is

χ2SNðpÞ ¼
X580
k¼1

½μthD;kðpÞ − μobsD;k�2
σ2k

; ð27Þ

where the apparent magnitude

μD:k ¼ 25þ 5log10

�
dL;k

1 Mpc

�
ð28Þ

for the kth supernova. For cosmographic fits we use the
expanded version of dL, whereas for fitting our model we
employ H of Eq. (19).
The second data set we use includes measurements of the

Hubble parameter as a function of redshift z,HðzÞ [21]. For
our analyses we use the 28 HðzÞ measurements given in
Table 1 of Ref. [15], with the highest redshift measurement
at z ¼ 2.3. In this case

χ2HðpÞ ¼
X28
l¼1

ðHth;lðpÞ −Hobs;lÞ2
σ2H;lðpÞ

: ð29Þ

In order to get interesting results, we make a number of
assumptions. First, we assume space curvature vanishes
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(ΩK ¼ 0) and ignore radiation. We also assume top hat
priors for the parameters, listed in Table I. These are
flat priors, nonzero inside and vanishing outside the
listed range.
In order to determine more restrictive constraints on

the cosmographic parametrization, in this case we also
perform analyses with a fixed value of H0. More precisely,
the first value we use was determined from the Planck
data [28], i.e., H0 ¼ 67.11 km s−1Mpc−1. The second H0

value we use is that derived by fitting the low redshift,
z ≤ 0.36, Union 2.1 supernova apparent magnitude data to
the first-order luminosity distance, dL ¼ z=H0, resulting in

H0 ¼ 69.96þ1.12−1.16 km s−1 Mpc−1. Both these values are con-
sistent with other recent estimates. For instance, from a
median statistics analysis of 553 H0 measurements,
Ref. [36] (for related work and results, see Refs. [37,38])
finds H0 ¼ 68� 2.8 km s−1Mpc−1. In our analysis we
ignore the small uncertainties in H0.
To derive constraints on the parameters of our model,

standard procedures with no priors were used. In particular,
we consider three tests. The first uses supernovae, the
second is with HðzÞ measurements, and the third combines
supernovae measurements with HðzÞ data (by minimiz-
ing χ2tot ¼ χ2SN þ χ2H).
Supposing the validity of the null hypothesis for each fit,

we report the corresponding p values—the probability that
a result obtained by a single fit is observed—representing a

FIG. 1 (color online). Observational data with 1σ error bars and
model predictions. The top panel shows SNIa apparent magni-
tude data, and the bottom showsHðzÞ data (in the bottom panelH
is given in units of km s−1 Mpc−1). The red lines represent the
best-fit [from the joint SNIa andHðzÞ analysis] model prediction;
the width represents the 1σ uncertainty.

TABLE I. Priors imposed for the initial conditions on fðzÞ
parameters. The numerical values for f0 and fz0 are in units of
H0 ¼ 100 km s−1 Mpc−1.

Cosmological priors

0.5 < h < 0.9
0.001 < Ωmh2 < 0.09

−6 < f0 < −1
−3 < fz0 < 0
−4 < q0 < −0.1
−5 < j0 < 5

FIG. 2 (color online). Two-dimensional marginalized constraint
contour plots and one-dimensional marginalized probability
density distribution functions for parameters of the cosmographic
series computed using the Metropolis algorithm and Union 2.1
SNIa data. The above contours correspond to allowing all
cosmographic parameters to vary. H0 values are in the units of
km s−1 Mpc−1.
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qualitative measure of the likelihood for a certain outcome.
Our results were obtained by using the publicly available
code ROOT [23] and the Bayesian toolkit BAT [24].
Figures 2 and 3 show the resulting two-dimensional

constraint contours and corresponding one-dimensional
probability density distribution function for the model
parameters. In the contour plots, different colors indicate
the 68%, 95% and 99% confidence level regions. From
these figures we see that the cosmological parameters of the
cosmographic parametrization and of the model we con-
sider are quite tightly constrained by the 68% confidence
level contours.
We summarize our numerical results in Tables II and III.

Our outcomes seem to favor values of the Hubble constant
consistent with other estimates [36–38]. The Planck priors
on H0 lead to rather low p values (low goodness of fit),

whereas our prior on H0, derived from fitting supernovae
in the redshift range z ∈ ½0; 0.36�, leads to higher p,
statistically favored, best fits.
Our numerical outcomes show that smaller Hubble

parameters lead to badly constrained cosmographic coef-
ficients. In particular, neither the acceleration nor jerk
parameters rely on expected confidence intervals. This
result is not due to numerical convergence issues, but more
likely it is a consequence of two independent causes. The
first concerns the problem of degeneracy between H0 and
the other cosmographic terms. Indeed, any cosmographic
series degenerates with the Hubble rate today, as one can
notice by looking at Eq. (6). Thus, a low estimate of H0

may negatively influence the whole cosmographic analysis,
as also confirmed in [39]. In our work, this issue has been
alleviated by using the first-order expansion dL ∼ z=H0,
for fixing the Hubble rate today. The second problem is
possibly related to the small number of measurements of
the HðzÞ data set, which does not permit one to definitively
fix accurate bounds on the cosmographic parameters today.
This problem hardly affects our numerical analysis, esti-
mating numerical bounds outer than expected best-fit
values. Such numerical intervals are ruled out by compar-
ing the corresponding p values to those inferred from the
other analyses. Hence, the reconstruction of our fðRÞ
solution would not be affected by badly constrained
cosmographic results. For the sake of completeness, a
feasible landscape to alleviate such problems is to fix H0

through combined sets of independent data. In doing so,
one may quantify any numerical departures on the cosmo-
graphic series. This will be the object of future works to
determine cosmographic fðRÞ reconstructions.
In addition, we find that the inferred limits on f0 and

fz0, used in Sec. II for numerically solving the modified
Friedmann equations, are compatible to our experimental
results. In Table III we also list constraints on α and β which
are in agreement with theoretical predictions. In Fig. 5 we
plot the acceleration parameter q using the best-fit param-
eter value reported in the fourth column of Table III. The
acceleration parameter changes sign at a transition redshift
around zda ∼ 0.8. This is in agreement with the transition
redshift measured in Ref. [15].

FIG. 3 (color online). Two-dimensional marginalized constraint
contour plots and one-dimensional marginalized probability
density distribution functions for the cosmographic parameters
computed using the Metropolis algorithm and HðzÞ data. The
above contours correspond to allowing all cosmographic param-
eters to vary. H0 values are in the units of km s−1 Mpc−1.

TABLE II. Best-fit value and 1σ error bars for each parameter of the cosmographic parametrization. We perform a no-prior fit, in
which all the cosmographic series is free to vary, a fit with H0 fixed to the Planck value, and a fit with H0 fixed by using the first-order
luminosity distance dL ¼ z=H0 with the Union 2.1 SNIa data for z ≤ 0.36, for the SNIa data in the second to fourth columns, and for
the HðzÞ data in the last three columns. H0 values are in units of km s−1 Mpc−1.

Fit SNIa, free SNIa, Planck H0 SNIa, our H0 HðzÞ, free HðzÞ, Planck H0 HðzÞ, our H0

p value 0.6899 0.2381 0.6896 0.0691 0.0268 0.1206

H0 69.97þ0.42
−0.41 67.11 fixed 69.96 fixed 66.38þ2.36

−1.04 67.11 fixed 69.96 fixed

q0 −0.5422þ0.0718
−0.0826 −0.0732þ0.0538

−0.0529 −0.5319þ0.0520
−0.0465 −2.9412þ0.0922

−0.0426 −6.8930þ0.1628
−0.0749 −2.9213þ0.2688

−0.2589

j0 0.5768þ0.4478
−0.3528 −0.8957þ0.1948

−0.1828 0.5112þ0.2831
−0.3035 −0.955þ0.228

−0.175 0.1249þ1.6899
−0.8318 −3.9040þ3.4030

−2.2510
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In order to infer numerical values for the transition
redshift, we use Eq. (25)) and the estimated value of Ωm
and β. The obtained transition redshifts are listed in the last
line of Table III. These are in the range zda ∈ ½0.57; 0.97�.
We determine errors on zda by standard logarithmic error
propagation. These results are not incompatible with the
observed value [15].
These results on zda are also compatible with the ΛCDM

model prediction, i.e., Eq. (23)), which leads to a transition
redshift within the interval zda;Λ ∈ ½0.67; 1�. In addition,
we conclude that our transition redshifts are compatible
with the priors of Table I. Future and more accurate zda
measurements will improve the accuracy and will permit us
to better distinguish any significant deviation from the
ΛCDM model.

VI. A POSSIBLE PHYSICAL INTERPRETATION
OF CURVATURE DARK ENERGY

In Sec. IV we showed that extensions of Einstein’s
gravity, in particular, fðRÞ gravity, may lead to logarithmic
corrections to the conventional Hubble parameter and,
in particular, a dark-energy term of the form ΩDE ¼
lnðαþ βzÞ. Here we discuss the physical meaning of such
a correction, interpreting α and β, i.e., the free parameters
which enter Eq. (19), in terms of fðRÞ.
To this end we first note that one can expand fðRÞ in

terms of the Ricci scalar evaluated at the present epoch,R0.
This expansion turns out to be compatible with current
cosmographic requirements, as shown in Secs. II and III.
We also assume that the gravitational constant G is time
independent now. In addition, at R ¼ R0 the second
derivative of fðRÞ should be negligibly small, so that
the Solar System constraints are satisfied (see for example
[40]). Thus, in the Taylor expansion of fðRÞ,

TABLE III. Best-fit value and 1σ error bars for each parameter
of our model. We perform a fit by using SNIa data with no priors
imposed a priori (column two), using HðzÞ data only (column
three), and by using the combined SNIa and HðzÞ data together
(column four). For these three fits, the parameters H0, Ωm, α and
β are free to vary. The transition redshifts have been evaluated by
means of Eq. (25), and errors are estimated through standard
logarithmic propagation. In doing so, we used the estimated
values of Ωm and β along with the condition α ¼ expð1 − ΩmÞ.
H0 values are in units of km s−1 Mpc−1.

Fit SNIa, free HðzÞ, free Combined

p value 0.6919 0.9604 0.6885

H0 68.07þ3.33
−2.20 68.49þ3.39

−2.50 67.94þ2.20
−1.82

Ωm 0.2142þ0.0386
−0.0413 0.2718þ0.0335

−0.0326 0.2316þ0.0391
−0.0391

α 2.3011þ0.1648
−0.1690 1.9660þ0.2307

−0.1991 2.339þ0.1879
−0.1853

β 0.7599þ0.6429
−0.4712 0.2846þ0.7734

−0.5372 0.6101þ0.4388
−0.4351

zda 0.8596þ0.2886
−0.2722 0.6320þ0.1605

−0.1403 0.7679þ0.1831
−0.1829

FIG. 4 (color online). Two-dimensional marginalized constraint
contour plots and one-dimensional marginalized probability
density distribution functions for free parameters H0, Ωm, α
and β of our model computed using the Metropolis algorithm.
The three sets of panels, from top to bottom, correspond to the
results using (1) the Union 2.1 SNIa data (top panels); (2) the
HðzÞ measurement compilation (middle panels); and (3) a
combined analysis using both the Union 2.1 SNIa data and
the HðzÞ measurement compilations (bottom panels). H0 values
are in the units of km s−1 Mpc−1.
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fðRÞ ¼ fðR0Þ þ f0ðR0ÞðR −R0Þ

þ 1

2
f00ðR0ÞðR −R0Þ2

þ 1

6
f000ðR0ÞðR −R0Þ3 þ � � � ; ð30Þ

the above-mentioned constraints require

f0ðR0Þ ¼ 1; ð31aÞ

f00ðR0Þ ¼ 0; ð31bÞ

allowing for the observational viability of the model at the
present epoch. Using [41]

f000ðRÞ ¼ f3z
R3

z
− fzR3z þ 3f2zR2z

R4
z

þ 3fzR2
2z

R5
z

; ð32Þ

with

R3z0

6
¼ 3H2

2z0 þHz0ð−3H2z0 þ 4H3z0Þ
þH0ð−H3z0 þH4z0Þ; ð33Þ

and Eq. (14), ρcurv0 ¼ ½fðR0Þ −R0�=2, we have

f0 ¼ 6H2
0ð1 −ΩmÞ þR0: ð34Þ

As a consequence of the aforementioned constraints,
using Eq. (32) we can express α and β in terms of f0 and
f0000 , showing that these two parameters depend on fðRÞ and
its derivatives with respect to R, around R ¼ R0. One
relation between α and β in terms of f0 is

β ¼ αΩm
f0 − 3H2

0ð1 − 2ΩmÞ
3H2

0

þ logα
f0 þ 6H2

0ð1þ ΩmÞ
3H2

0

:

ð35Þ

Analogously, one may infer another relation between α
and β in terms of the third derivatives, by using Eq. (32),
α ¼ αðf0; f000ðR0ÞÞ; the explicit form is not important for
our purposes. Since the physical significance of the leading
term in the Taylor expansion of fðRÞ is well established
[42], the above relations allow for an understanding of the
physical significance of α and β.
For our purposes, the zero-order f0 term corresponds to

an initial value cosmological constant (1 −Ωm). This
means that the coincidence problem can be reinterpreted
in fðRÞ gravity as the choice of initial conditions for the
corresponding curvature dark-energy term. Moreover, by
taking into account the parametrized post-Newtonian
(PPN) approximation, up to the second order in fðRÞ,
and considering the first two parameters of the Eddington
parametrization, βðPPNÞ and γðPPNÞ, we can write [43]

βPPNR − 1 ¼ f0ðRÞf00ðRÞ
8f0ðRÞ þ 12f00ðRÞ2

dγPPNR

dR
ð36Þ

and

γPPNR − 1 ¼ − f00ðRÞ2
f0ðRÞ þ 2f00ðRÞ2 : ð37Þ

Solar System constraints on βPPN and γPPN are not violated
because we assume f00ðR0Þ ¼ 0, and so general relativity,
i.e., βðPPNÞ ¼ γðPPNÞ ¼ 1, is locally valid.
As a consequence, it seems that gravitational corrections

due to fðRÞ gravity become significant at the third order of
the expansion. In other words, curvature dark energy,
inferred from fðRÞ and compatible with current cosmo-
graphic bounds, gives contributions at the third order of
fðRÞ expansions. Rephrasing this, the corresponding
cosmological model reduces to ΛCDM when corrections
only up to second order are included.

VII. CONCLUSION

We have numerically analyzed a class of fðRÞ gravity
models which reduce to ΛCDM at z≃ 0. Deviations
emerge at third order in the fðRÞ Taylor expansion. As
present epoch constraints we adopt the cosmographic
series, i.e., the series of measurable coefficients derived
by expanding the luminosity distance and comparing it
with data. We therefore inferred cosmographic bounds on
the test function fðzÞ which reproduces the observed low
redshift cosmological behavior.
Since cosmography allows for a determination of model-

independent constraints on fðzÞ and derivatives, we used a
Taylor expansion of fðzÞ in terms of aðtÞ ¼ 1=ð1þ zÞ,

0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.4

0.3

0.2

0.1

0.0

0.1

z

q z

FIG. 5 (color online). Acceleration parameter as a function of
redshift, Eq. (24), for our model, using best-fit parameter values
from the combined SNIa and HðzÞ data analysis reported in the
last column of Table III. The acceleration parameter changes sign
at a transition redshift zda ∼ 0.8. More accurate results for the
transition redshift are reported in Table III.
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which fairly well approximates the Friedmann equations in
the range z ≤ 2. We found good agreement, with small
departures at z ≪ 1 and z ∼ 2, for the range of parameters
~f0 ∼ −10, ~f1 ∼ 7, ~f2 ∼ −3.7, σ1 ¼ 1 and σ2 ¼ 2, which
are compatible with the initial conditions defined by
cosmography.
Such departures lead to possible logarithmic corrections

of the conventional Hubble rate, showing an evolving dark-
energy term that is different from the cosmological con-
stant. We demonstrated that this model has a transition
redshift in a range compatible with measurements [15].
To this end, cosmological constraints on the model were
determined using a Monte Carlo approach based on the
Metropolis algorithm. Our model passes all the cosmo-
logical tests, showing that the obtained curvature dark
energy is compatible with observations. We implemented
different priors on the fitting parameters, and in particular,
we fixed H0 to the Planck value first and then to a
numerical value obtained by fitting the first-order lumi-
nosity distance dL to the supernova data in the interval
z ∈ ½0; 0.36�. In general, results seem to indicate slightly
less negative acceleration parameters with nonconclusive

results on the variation of acceleration, namely, the jerk
parameter.
Using these results we provided a self-consistent

explanation of the free parameters of the model, showing
that they could be related to the terms of the Taylor series
of fðRÞ. In doing so, by comparing our results with PPN
approximations, we found that α and β could be related to
third-order PPN parameters. Future investigations will be
devoted to better constraining the logarithmic correction
due to fðRÞ.
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