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We study the dynamics and escape of charged particles initially orbiting a weakly magnetized Kerr black
hole after they get kicked in the direction normal to the orbit. The case of neutral particles is analyzed first
and the escape conditions are given analytically. A general analysis of charged particles innermost stable
circular orbits is performed numerically. We then study the charged particles three-dimensional motion and
give an effective condition for their escape. We also discuss how the black hole’s rotation affects the escape
of charged particles and the chaoticness in their dynamics.
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I. INTRODUCTION

The dynamics of bipolar jets observed near astrophysical
black holes and active galactic nuclei in particular, remains
a mystery. There have been several jet launching and
collimation mechanisms proposed, which involve magnetic
fields as an essential ingredient. Nowadays, the problem is
most commonly approached via the advanced computer
simulations of the gravitohydromagnetics of plasma accret-
ing into rotating black holes. (See, e.g., Refs. [1,2] and the
references therein.) It is unknown whether the jets are
powered by the accretion disk or the rotational energy of
the black hole. Recent observations concluded that the
power of the jets is proportional to the black hole’s spin,
in agreement with the mechanism proposed by Blandford
and Znajek [3,4]. This conclusion is congruent with that
of computer simulations of the gravitohydromagnetics
(see, e.g., Refs. [5–7]). It should be noted, however, that
a pervious observation found no evidence for black hole
rotation powering the jets in x-ray binaries [8].
A numerical evidence for a generalized Blandford-

Znajek process in which the orbital rotational energy of
a black hole binary is tapped was given in Ref. [9].
Moreover, it was found in Ref. [10] that both the rotational
and translational (with respect to a stationary electromag-
netic magnetic field) energies of black hole(s) can boost the
jet power.
Magnetic fields can be present in the vicinity of a black

hole, mainly due to the accreting plasma around it as
discussed in Refs. [1,2]. Moreover, astrophysical black
holes are speculated to be rapidly rotating. Even slowly
rotating black holes can be spun up by matter accretion
[11,12]. The spin angular momentum of a black hole of
massM is thought to be limited by J ¼ 0.998M2 due to the
counteracting torque resulting from the absorption of the
radiation from the accretion disk [13]. Recent observations

found that astrophysical black holes are indeed rapidly
rotating [14–17].
In this paper we consider a simplified and yet interesting

model that can shed light on the high energy emissions
associated with astrophysical black holes. The system we
study consists of a charged particle in a circular orbit around a
rotatingblackhole immersed in auniformweakaxisymmetric
magnetic field. The field is weak in the sense that its back-
reaction on the spacetime is negligible. The field is either
aligned or oppositely aligned with the black hole’s spin.
We then give the particle a kick off the orbit and observe

how its dynamics evolves and whether it escapes or ends up
captured by the black hole. In real situations the kick could
be given for example by another particle or photon. The
problem in the background of a Schwarzschild black hole
was studied in Ref. [18].
The inclusion of the magnetic field breaks down the

constant of motion associated with the Kerr spacetime’s
hidden symmetry, the Carter constant. Consequently, the
equations of motion are rendered nonintegrable in general.
They remain integrable in the equatorial submanifold, how-
ever. The main effect of the magnetic field on the charged
particles’ circular orbits is bringing their innermost stable
circular orbits (ISCOs) closer to the black hole. Additionally,
negatively “superbound” stable circular orbits can exist if the
magnetic force is large enough (see below).
Numerical integration is required for studying the

dynamics outside the equatorial submanifold. Depending
on the initial conditions and the parameters of the system,
the motion can be chaotic. The chaotic motion of charged
particles near a Kerr black hole immersed in a weak
magnetic field was studied in Refs. [19,20] for a uniform
axisymmetric field and in Refs. [21,22] for a dipole field.
Similar studies in the background of a Schwarzschild black
hole were conducted. In fact, there are several cases in
general relativity where chaotic particle dynamics was
encountered even in the absence of magnetic fields. (See
the references in Ref. [18].)*ama3@ualberta.ca
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In this paper we study charged particles escape from a
weakly magnetized rotating black hole. The simpler case of
neutral particles is tackled first. The effect of the black
hole’s rotation on charged particles escape and chaoticness
in their dynamics is investigated as well. The paper is
organized as follows: In Sec. II we analyze the case of
neutral particles. We review particle dynamics and circular
orbits in Kerr geometry and then give the escape conditions
analytically. In Sec. III we treat the charged particles case.
We introduce the magnetization of rotating black holes,
describe circular orbits and the ISCOs, and then analyze
charge particles dynamics and give the conditions for their
escape. The relationship between chaoticness and rotation
is investigated afterward. We give a general discussion and
conclusion in Sec. IV. We use the sign conventions adopted
in Ref. [23] and geometrical units where c ¼ G ¼ 1.

II. ESCAPE VELOCITY OF A
NEUTRAL PARTICLE

A. Circular orbits

The spacetime geometry around a rotating black hole is
described by the Kerr metric. For a black hole of mass M
and spin angular momentum J ¼ aM the Kerr metric in
Boyer-Linquist coordinates reads [24]

ds2 ¼ − Σ
Δ
A
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ A
Σ

�
dϕ −

2aMr
A

dt

�
2

sin2 θ; ð1Þ

where

Σ ¼ r2 þ a2cos2θ;

Δ ¼ r2 þ a2 − 2Mr;

A ¼ ðr2 þ a2Þ2 − a2Δsin2θ; ð2Þ

and a, with −M ≤ a ≤ M, is the rotation parameter.
The Kerr spacetime admits two commuting Killing

vectors

ξμðtÞ ¼ δμt ; ξμðϕÞ ¼ δμϕ; ð3Þ

and a Killing tensor

Kμν ¼ ΔkðμlνÞ þ r2gμν; ð4Þ

where

lμ ¼ 1

Δ
½ðr2 þ a2Þδμt þ Δδμr þ aδμϕ�; ð5Þ

kμ ¼ 1

Δ
½ðr2 þ a2Þδμt − Δδμr þ aδμϕ�: ð6Þ

Consider a particle in the Kerr spacetime moving with four-
velocity uμ. The three Killing symmetries are associated
with three constants of the particle’s motion

−E ¼ pμξ
μ
ðtÞ=m; ð7Þ

L ¼ pμξ
μ
ðϕÞ=m; ð8Þ

K ¼ uμuνKμν − ðL − aEÞ2; ð9Þ

where pμ ¼ muμ is the particle’s four-momentum. E and L
are the specific energy and azimuthal angular momentum,
respectively, and K is the Carter constant.1 Using
these three constants of motion along with the normaliza-
tion uμuμ ¼ −1 we reduce the equations of motion to
quadratures:

_t ¼ E þ 2Mr½ðr2 þ a2ÞE − aL�
ΔΣ

; ð10Þ

_ϕ ¼ L
Σsin2θ

þ að2MrE − aLÞ
ΔΣ

; ð11Þ

Σ2 _r2 ¼ ½ðr2 þ a2ÞE − aL�2
− Δ½r2 þKþ ðL − aEÞ2�; ð12Þ

Σ2 _θ2 ¼ Kþ ðL − aEÞ2 − a2cos2θ

−
�
aE sin θ −

L
sin θ

�
2

; ð13Þ

where the overdot denotes the derivative with respect to the
proper time. The dynamics is invariant under reflection
with respect to the equatorial plane

θ → π − θ; _θ → −_θ: ð14Þ

It is also invariant under the transformations

ϕ→ −ϕ; _ϕ→ − _ϕ; L→ −L; a→ −a: ð15Þ

There are two dynamically distinct modes of motion,
depending on whether the black hole’s spin and particle’s
azimuthal angular momentum are aligned (aL > 0) or
oppositely aligned (aL < 0). Without loss of generality,
Lwill be kept positive while a can take both signs. We refer
to orbits with a > 0 as prograde and orbits with a < 0 as
retrograde.

1The second term on the right-hand side of Eq. (9) does not
appear in the standard definition of the Carter constant. We chose
our definition for convenience.
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Let us define RðrÞ to be the right-hand side of Eq. (12):

RðrÞ ≔ ½ðr2 þ a2ÞE − aL�2
− Δ½r2 þKþ ðL − aEÞ2�: ð16Þ

RðrÞ is positive semidefinite; it vanishes at the radial
turning points only. Equatorial circular orbits exist where
RðrÞ and its first derivative R0ðrÞ vanish when
θ ¼ π

2
;K ¼ 0. We used the notation ð Þ0 ¼ ∂rð Þ. These

two conditions yield

½ðr2 þ a2ÞE − aL�2 − Δ½r2 þ ðL − aEÞ2� ¼ 0; ð17Þ

2rE½ðr2 þ a2ÞE − aL� − 2rΔ

− 2ðr −MÞ½r2 þ ðL − aEÞ2� ¼ 0. ð18Þ

We will use ro, Eo and Lo to denote quantities correspond-
ing to circular orbits from here on. Solving these equations
for Eo and Lo one obtains

Eo ¼
aM1=2 þ r1=2o ðro − 2MÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aM1=2r3=2o þ r2oðro − 3MÞ

q ; ð19Þ

Lo ¼
M1=2ða2 þ r2oÞ − 2aMr1=2offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aM1=2r3=2o þ r2oðro − 3MÞ

q : ð20Þ

The radius of the last circular orbit rlc is given by

rlc ¼
½M þM1=3ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −M2

p
− aÞ2=3�2

M1=3ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −M2

p
− aÞ2=3

: ð21Þ

Equation (19) reveals that Eo is positive for all
circular orbits. A circular orbit is the ISCO when R00ðroÞ
vanishes, or

ð6r2o þ a2ÞðE2
o − 1Þ þ 6Mro − L2

o ¼ 0: ð22Þ

Plugging the Eo and Lo expressions above in this condition
yields

rmsðrms − 6MÞ þ 8a
ffiffiffiffiffiffiffiffiffiffiffi
Mrms

p
− 3a2 ¼ 0: ð23Þ

We used rms (for marginally stable) to denote the ISCO’s
radius. The Eo and Lo expressions reduce for the ISCO to

L2
ms ¼

2

3

M
rms

ð3r2ms − a2Þ; E2
ms ¼ 1 −

2

3

M
rms

: ð24Þ

Figure 1 shows how rms changes with a. The ISCO radius
lies in the interval ½M; 9M�.

B. Conditions for escape from a circular orbit

1. Three-dimensional motion

A particle at a stable circular orbit of radius ro has the
four-velocity

~uμ ¼ ð−Eo; 0; 0;LoÞ: ð25Þ
To reduce the complexity of the problem we will consider
a kick that gives the particle polar velocity vk ¼ −ro _θk
without changing Lo. The kick therefore changes the
particle’s four-velocity to

uμ ¼ ð−E; 0; r3o _θk;LoÞ: ð26Þ
The space of initial conditions of the problem is therefore
two dimensional: fro; _θkg. The symmetry transformations
(14) make it enough to take vk to be positive or negative
without loss of generality. We can express the dependence of
E and K on _θk using Eqs. (12) and (13). The expressions are

E ¼ 1

r3o þ a2ðro þ 2MÞ
h
2aLoM þ Δ1=2

o

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðrþ 2MÞðr3o _θ2k þ roÞ þ r2oðr4o _θ2k þ r2o þ L2

oÞ
q i

;

ð27Þ
K ¼ r4o _θ

2
k; ð28Þ

where Δo ¼ Δjr¼ro . The root for E corresponding to future-
directed four-velocity was selected.
To study the particle’s behavior after the kick, it is more

appropriate to recast Eq. (12) as

Σ2 _r2 ¼ r½r3 þ a2ðrþ 2MÞ�ðE − VþÞðE − V−Þ; ð29Þ
where

V�ðrÞ ¼
1

r3 þ a2ðrþ 2MÞ ½2aLM � Δ1=2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðrþ 2MÞðK=rþ rÞ þ r2ðKþ r2 þ L2Þ

q
�:

ð30Þ

2 4 6 8
1.0

0.5

0.0

0.5

1.0

rms M

a
M

FIG. 1. The dependence of the radius of the last stable circular
orbit rms on the black hole’s rotation parameter a.
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Again VþðrÞ will be considered for future-directed four-
velocity vector. In order to determine the escape conditions
we need to inspect VþðrÞ to figure out how the particle
moves after getting kicked.

2. Escape conditions

Far away from the black hole, VþðrÞ becomes unity.
Trivially, the particle must be energetically unbound
(E ≥ 1) to be able to escape. The value of _θk at which
the particle becomes energetically unbound is designated as
_θE¼1. We use Eqs. (27) and (28) to express it as

j_θE¼1j ¼
�
2M½ðLo − aÞ2 þ r2o� − L2

oro
Δr3o

�
1=2

: ð31Þ

We will assume that the trivial condition j_θkj ≥ j_θE¼1j is
always satisfied. When j_θkj ≪ j_θE¼1j, the particle oscillates
slightly around the initial orbit.
The energetic freedom is not sufficient for the particle

to escape when a > 0, in general. Depending on the black
hole’s parameters and particle’s initial conditions, the
particle may accelerate both away or toward the black
hole. VþðrÞ has only one maximum. The particle will
therefore experience only one radial turning point. Hence,
the sign of the radial acceleration just after the kick ̈rðroÞ
determines whether the particle escapes or gets captured.
Using Eq. (29) we write an expression for ̈rðrÞ as

̈rðrÞ ¼ −
r3 þ a2ðrþ 2MÞ

2r3
½E − V−ðrÞ�V 0þðrÞ: ð32Þ

Therefore, ̈rðroÞ ∝ −V 0þðroÞ since E > V−ðroÞ. Figure 2
shows an example of capture and another of escape.
Careful analysis of V 0þðroÞ reveals that there are three

distinct regions in which the kicked particle accelerates in a
specific way. The three regions are as follows:

(i) Escape region: For any _θk value ̈rðroÞ > 0 in this
region. The acceleration is proportional to j_θkj. The

escape region is given by r > resc, where resc is
given by the equation

ðresc − 3MÞr2esc þ a2ðresc þMÞ ¼ 0: ð33Þ

The ISCO is located in this region when a ≲ 0.853M.
(ii) Capture region: In this region ̈rðroÞ < 0 for any _θk.

The stronger the kick, the faster the capture is. This
region lies between rcap and the black hole’s event
horizon, where rcap is given by the equation

M1=2ðar2cap þ a3Þ þ ðrcap − 3MÞr5=2cap

þ a2ðrcap −MÞr1=2cap ¼ 0: ð34Þ

The orbit at ro ¼ M (when a ¼ M), where Eq. (27)
reduces to E ¼ 1=

ffiffiffi
3

p
for any _θk, is an exception.

The ISCO is located in the capture region for
M ≥ a≳ 0.952M.

(iii) The critical escape region: The particle acceleration
is more involved in this region because its direction
depends on j_θkj value. In particular, ̈rðroÞ > 0 if j_θkj
is below some critical value j_θcj. When j_θkj > j_θcj,
the acceleration becomes inwards. For orbits with
j_θE¼1j > j_θcj, the particle can never escape. The
critical escape region lies between the escape and
capture regions. The critical kick angular velocity _θc
is determined by

V 0þðro; _θcÞ ¼ 0; rcap < ro < resc: ð35Þ

In Fig. 3 we plot j_θcj and j_θE¼1j vs ro for a ¼ 0.95M.
We see that j_θcj vanishes at rcap ≈ 1.92M and
approaches infinity as ro approaches resc ≈ 2.49M.
Figure 4 shows how the initial orbit radius ro at
which j_θcj ¼ j_θE¼1j changes with a. It is always
greater than rcap.

Figure 5 shows the three regions along with the ISCO’s
radius and how they change with a. Incorporating all of the
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r M

VV

(a) (b)

FIG. 2. VþðrÞ for a particle before (dashed line) and after (solid line) getting kicked with _θk ¼ _θE¼1. (a) The particle kicked from the
circular orbit at ro ¼ 3M accelerates away. (b) The particle kicked from the circular orbit at ro ¼ 3=2M accelerates toward the black
hole. In both cases a ¼ M.
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restrictions above, a particle in a circular orbit around a
Kerr black hole kicked in the direction normal to the orbit
can escape in the following two cases:
(1) Its initial orbit is in the escape region, ro ≥ resc.
(2) Its initial orbit is in the critical escape region,

rcap < ro < resc, where it is possible to have

j_θE¼1j ≤ j_θkj < j_θcj.

III. ESCAPE VELOCITY OF A CHARGED
PARTICLE

A. Weakly magnetized Kerr black holes

We follow the magnetization procedure introduced by
Wald [25]. In a Ricci flat spacetime, a Killing vector ξμ

obeys the equation

ξμ;ν
;ν ¼ 0: ð36Þ

This is identical to the source-free Maxwell equations for a
four-potential Aμ in the Lorentz gauge (Aμ

;μ ¼ 0),

Aμ
;ν
;ν ¼ 0: ð37Þ

Therefore, any linear combination of the Killing vectors the
spacetime admits will serve as a solution to the Maxwell
equations.
For the Kerr metric the choice

Aμ ¼ B
2
ξμðϕÞ ð38Þ

corresponds to an axisymmetric magnetic field that has
strength B asymptotically [25–27]. It is this potential that
will be used in this work.
The dynamics of a charged particle of massm and charge

q in an electromagnetic field in curved spacetime is
governed by the equation

muν∇νuμ ¼ qFμ
ρuρ; ð39Þ

where Fμ
ν is the electromagnetic field tensor given by

Fμν ¼ Aν;μ − Aμ;ν: ð40Þ

In the frame of an observer with four-velocity uμ, the
electric and magnetic fields are, respectively,

Eμ ¼ Fμνuν; ð41Þ

Bμ ¼ −
1

2

εμνλσffiffiffiffiffiffi−gp Fλσuν; ð42Þ

where g ¼ detðgμνÞ and ε0123 ¼ þ1.
The generalized four-momentum of the particle is

Pμ ¼ muμ þ qAμ: ð43Þ

The weak field approximation breaks down when the
magnetic field creates curvature comparable to that made
by the black hole’s mass, or

B2 ∼M−2: ð44Þ

In conventional units, the Wald approximation fails when

B ∼
k1=2c3

G3=2M
; ð45Þ

where k is the Coulomb constant. For a solar mass black
hole one gets B ∼ 1019 Gauss. The typical magnetic field

2.0 2.1 2.2 2.3 2.4 2.5
0

1

2

3

4

ro M

M
c,

M
1

FIG. 3. j_θcj (solid) and j_θE¼1j (dashed) vs ro for a ¼ 0.95M.
j_θcj vanishes at rcap and approaches infinity as ro approaches resc.
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FIG. 4. The radius of the initial orbit ro at which j_θcj ¼ j_θE¼1j
(solid) as a function of a. The dashed curve is rcap.
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FIG. 5. The dependence of resc, rcap and rms (dashed) on a. The
escape region is to the right of resc, the capture region is to the left
of rcap, while the critical escape region is the one in between. The
dotted line is rlc.
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strength near a black hole’s horizon has been estimated to
be ∼108 G (10−15 meter−1) for stellar mass black holes and
∼104 G (10−19 meter−1) for supermassive black holes
[28,29]. These estimates validate ignoring corrections to
the metric due to the presence of the magnetic field. Despite
that B is “tiny” its effect on the dynamics is significant
since q=m ¼ 2.04 × 1021ð1.11 × 1018Þ for electrons (pro-
tons). For electrons (protons) near a typical stellar mass
black hole qB=m ∼ 107ð103Þ meter−1 and near a typical
supermassive black hole qB=m ∼ 103ð10−1Þ meter−1.

B. Circular orbits

The introduction of the magnetic field breaks down the
Carter constant. It can be easily checked that

_K ≠ 0: ð46Þ

The particle’s energy and azimuthal angular momentum are
constants of motion since the Lie derivatives of the
electromagnetic potential (38) with respect to the Killing
vectors vanish

LξνðtÞ
Aμ ¼ LξνðϕÞ

Aμ ¼ 0: ð47Þ

The specific energy E and azimuthal angular momentum L
are

−E ¼ Pμξ
μ
ðtÞ=m

¼
�
2Mr
Σ

− 1

�
_t −

2aMr
Σ

ðbþ _ϕÞsin2θ; ð48Þ

L ¼ Pμξ
μ
ðϕÞ=m

¼
�
−
2aMr
Σ

_tþ A
Σ
ðbþ _ϕÞ

�
sin2θ; ð49Þ

where b ¼ qB=2m. Using these constants of motion and
the normalization condition uμuμ ¼ −1 we write

_t ¼ E þ 2Mr½ðr2 þ a2ÞE − aL�
ΔΣ

; ð50Þ

_ϕ ¼ L
Σsin2θ

þ að2MrE − aLÞ
ΔΣ

− b ð51Þ

Σ2ð_r2 þ Δ_θ2Þ ¼ AE2 − 4aMELr − ΔΣð1 − 2bLÞ

þ L2ð2Mr − ΣÞ
sin2θ

− b2AΔsin2θ: ð52Þ

The r and θ components of the dynamical equation (39) are
written in the Appendix below.

Equations (50)–(52), (A1), and (A2) are invariant under
reflection with respect to the equatorial plane (14). They are
also invariant under the symmetry transformations

ϕ → −ϕ; _ϕ → − _ϕ; L → −L;

a → −a; b → −b: ð53Þ

There are four dynamically distinct modes of motion. They
are determined by the four combinations of the signs of bL
and aL. As before, we fix L to be positive. We just alter
the signs of a and b to consider the four cases. We refer
to the b > 0motion as anti-Larmor and to the b < 0motion
as Larmor. For circular orbits, the radial acceleration
of the particle f1 ¼ q

m ðF1
0_tþ F1

3
_ϕÞ is positive for the

anti-Larmor motion and negative for the Larmor motion.
Equation (52) simplifies in the equatorial plane to

r3 _r2 ¼ ðE2 − b2ΔÞ½rðr2 þ a2Þ þ 2Ma2�
− 4aMEL − rΔð1 − 2bLÞ − L2ðr − 2MÞ: ð54Þ

Let us define the positive semidefinite function RðrÞ to be
the right-hand side of Eq. (54):

RðrÞ ≔ ðE2 − b2ΔÞ½rðr2 þ a2Þ þ 2Ma2�
− 4aMEL − rΔð1 − 2bLÞ − L2ðr − 2MÞ: ð55Þ

Then using the circular orbit conditions RðrÞ ¼ 0 and
R0ðrÞ ¼ 0 one obtains, respectively,

ðE2 − b2ΔÞ½rðr2 þ a2Þ þ 2Ma2� − 4aMEL

− rΔð1 − 2bLÞ − L2ðr − 2MÞ ¼ 0; ð56Þ

and

2b2ðr −MÞ½rðr2 þ a2Þ þ 2Ma2�
þ ð1 − 2bLÞ½2rðr −MÞ þ Δ�
þ L2 − ðE2 − b2ΔÞð3r2 þ a2Þ ¼ 0: ð57Þ

The extra condition for the ISCOs R00ðrÞ ¼ 0 gives

ð2bL − 1Þð3r − 2MÞ þ 3E2r

− 2b2r½rð5r − 6MÞ þ 3a2� ¼ 0: ð58Þ

It is very difficult to solve Eqs. (56) and (57) to obtain
analytic expressions for Eo and Lo. Instead, we solve these
equations numerically. We also require that _t > 0 to
exclude past-directed solutions.
It is interesting to see how the ISCO radius depends on a

for selected values of the magnetic parameter b. Knowing
the dependence of the ISCO radius on a is essential for
measuring the spin of astrophysical black holes [14]. The
a–rms curves for selected b values are shown in Fig. 6.
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When b ¼ 0, Fig. 1 is reproduced. In both Larmor and
anti-Larmor motions rms gets closer to the black hole as jbj
increases. It converges to an asymptotic value as jbj
becomes large. The shift in rms is more evident in the
anti-Larmor motion. The value of rms is different from the
asymptotic values by less than 0.1% when 5.8 × 103M−1

< b < −0.82M−1. For retrograde motion rms is always
outside the static limit. Figures 7 and 8 show Lms and Ems
corresponding to the ISCOs shown in Fig. 6. It is interest-
ing that negative energy stable circular orbits can exist in
the retrograde anti-Larmor motion. The possibility for the
existence of negative energy states due to magnetic fields
was pointed out in Ref. [30] and further explored in
Ref. [31]. The related energy-emission processes were
discussed in Refs. [32,33]. At a ¼ −M, Ems becomes zero
when b ¼ bc, where Mbc is the positive real root of

45056x12 − 52224x10 þ 3072x8

− 3776x6 þ 4656x4 − 1320x2 ¼ 25: ð59Þ

Numerically, x ≈ 1.0534. As b increases further Ems
becomes negative for a larger interval of a > −M.
Asymptotically, Ems becomes negative for all retrograde
anti-Larmor orbits and approaches a minimum of
2ð1 − ffiffiffi

2
p ÞMb at a ¼ −M where rms ¼ ð1þ ffiffiffi

2
p ÞM. This

immense binding energy is intriguing. A charged particle of

mass mq and b ≫ M−1 ending up in this “superbound”
state can give off energy

E ¼ mqEms ¼ ð
ffiffiffi
2

p
− 1ÞqBM: ð60Þ

For typical stellar mass and supermassive black holes of
masses MSt and MSu, respectively, this amounts to

E ¼ 1.832 × 106
�
MSt

M⊙

�
GeV; ð61Þ

E ¼ 1.832 × 102
�
MSu

M⊙

�
GeV; ð62Þ

whereM⊙ is the solar mass. For a supermassive black hole
of mass M ¼ 109.5M⊙, Eq. (62) gives E ∼ 100 Joules.
It should be noted that the correspondence between rms

and a is one to one in all cases, after past-directed orbits are
excluded. The equation for rms given in Ref. [27] yields
future-directed solutions only when b < bc.

C. Three-dimensional motion and conditions for escape
from a circular orbit

It does not seem possible to determine the escape
conditions analytically since the equations of motion are
nonintegrable in general. Equations (A1) and (A2) were

Mb 106 Mb 1 Mb 0.1

1 2 3

(a) (b)

4 5
1.0

0.5

0.0

0.5

1.0

rms M

a
M Mb 0.1Mb 1

Mb 106

1 2 3 4 5 6
1.0

0.5

0.0

0.5

1.0

rms M

a
M

FIG. 6. The ISCO’s radius rms dependence on a for different values of the magnetic parameter b for (a) anti-Larmor motion and
(b) Larmor motion.
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FIG. 7. The ISCO’s azimuthal angular momentum Lms dependence on a for different values of the magnetic parameter b for
(a) anti-Larmor motion and (b) Larmor motion.
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solved numerically using the built-in MATHEMATICA 7.0
function NDSOLVE. We used the constant of motion E as a
gauge of error in the numerical solver. The deviation in E is
∼10−6 or less. Sometimes the error grows to ∼10−3 when
the integration time is very long. We can increase the
accuracy of the solver to achieve much better accuracy.
This is not a problem when few trajectories are plotted, but
it is very time consuming when the basins of attraction are
generated (see below). That is because in generating them
the equations of motions are integrated ∼106 times and we
are concerned about the final state of the particle which is
practically not modified by increasing the accuracy.
The numerical integration reveals that the escape and

capture regions are more involved than those in the neutral
particle case. In Fig. 9 the trajectories of a charged particle
kicked up to three different energies E ¼ 1.0890,

E ¼ 1.0893, and E ¼ 1.0900 are shown. In this section
we use E to quantify the kick instead of _θk, for convenience.
The two are related by Eq. (52). The particle in each case
ends up following a completely different trajectory despite
the tiny difference between the energies. This extreme
sensitivity to initial conditions is a characteristic of non-
integrable and chaotic systems. To obtain a comprehensive
view of the problem we need to identify which initial
conditions lead to escape and which lead to capture.
In general the particle is fated to be captured by the black

hole, escape it up (down) and approach z ¼ ∞ (z ¼ −∞)
asymptotically, or end up in an orbit “metastable” within
the computation time. Keeping the possible metastable
orbits aside, the system therefore has three attractors. We
need to use a method well suited for analyzing noncompact
chaotic scattering systems.
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FIG. 8. The ISCO’s energy Ems dependence on a for different values of the magnetic parameter b for (a) anti-Larmor motion and
(b) Larmor motion.

(a) (b) (c)

FIG. 9 (color online). The trajectories of a charged particle initially at ro ¼ 4M kicked to three different energies (a) E ¼ 1.0890
(b) E ¼ 1.0893 (c) E ¼ 1.0900. In all cases a ¼ 0.5M and b ¼ 0.1M−1. The particle is scattered to a different final state in every case.
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An attractor of a dynamical system is a subset of the set
of all possible states of the system which an orbit with
certain initial conditions approaches asymptotically. The
set of initial conditions which leads to an attractor is its
basin of attraction.
The boundary between different basins of attraction in

the space of initial conditions is a simple smooth curve
(surface) in case of regular systems. In chaotic systems
the basin boundary is a fractal boundary. A fractal is a
geometrical object that has fractal dimension Df larger
than its topological dimension. A characteristic of fractals
is the appearance of self-similar patterns persistent at any
magnification.
Let us see how the basin of attraction plot looks like for a

neutral particle first. We use the following color notation
for all basins of attraction in this paper: (1) green for escape
to z → þ∞, (2) yellow for escape to z → −∞, (3) red for
capture, and (4) blue for metastable orbits. On the gray
scale, the four colors have the darkness order yellow, green,
red, and blue.
Figure 10 shows the basin of attraction plot for a neutral

particle generated numerically with initial values of
ro ∈ ½rlc; rlc þ 6M� plotted horizontally and initial values
of E ∈ ½1.0; 2.0� plotted vertically. The resolution of the
plot is 600 × 600. We tackled the a ¼ 0.999M case, where
rlc ¼ 1.052M, because the structure of the basin of attrac-
tion plot in this case is the richest. The basin boundaries are
regular lines as they should be for a regular system. The
structure of the escape and capture attractors is in accord
with that described analytically in Sec. II. The red color
approaches resc as E becomes very large. The particle is
backscattered near resc and at low energies, where it barely
makes it to escape.
Now we return to charged particles. Figure 11 shows

the basin of attraction plots for anti-Larmor motion
(b ¼ 0.1M−1) with initial values of ro ∈ ½rms; rms þ 6M�
plotted horizontally and initial values of E ∈ ½1.0; 2.0�

plotted vertically. Figure 12 shows the Larmor motion
(b ¼ −0.1M−1) basin of attraction plots but with initial
values of E ∈ ½1.0; 3.0� since Eo is usually considerably
larger than 1. The white regions in the figures represent the
energetically forbidden orbits. The value of jbj considered
here may be small compared to typical astrophysical
values. Nonetheless, we find it appropriate to demonstrate
the various aspects of the problem. The spin parameter a
was taken at selected values between −1 and 1.
The state of the particle is considered an escape if it

reaches z ¼ 200M. At this distance the gravitational
potential can be well approximated by the Newtonian value
of −M=r ≈ −M=z. In cases for which _z2 < 2M=z the
particle will return back and all three outcome are possible.
This is the case with about 1% of escape cases, especially
when E is just above 1. The maximum integration time was
105M for the anti-Larmor case and 2 × 104M for the
Larmor case. We chose the latter due to the existence of
metastable orbits. The resolution of the plots in these
figures is 800 × 800.
The similarity between Figs. 10 and 11(f) is striking. The

main effect of the magnetic field is to distort the basin
boundaries from regular lines to fractals.
Let us discuss the general structure of the basin of

attraction plots and formulate the escape condition for
charged particles. The main parts in the basin of attraction
plots can be identified as follows:

(i) Escape region: The particle here escapes directly in
the direction of the kick. This region is the upper
right large green area in the figures. It gets reduced
from left as a increases. We use the boundary of this
region to define an effective escape energy Eesc. The
effective escape energy curve can be fitted with a
tiny relative error to a function of the form

Eesc ¼ 1þ aþ bro þ cr2o
dþ ero þ fr2o

; ð63Þ

where a; b;… and f are fitting parameters.
(ii) Capture region: This is the red nearly rectangular

area in the left side of the plots when a ¼ 0.999M.
The particle is always captured in this region for any
energy. It is the proximity of ro to the horizon that
makes the particle always accelerate inwardly no
matter how energetic the kick is. Therefore this
region shows up only when a is close to M.
Increasing b for anti-Larmor motion would also
lead to the emergence of this region because rms
would become closer to the horizon [see Fig. 6(a)].

(iii) Fractal region: The escape region is bounded by a
diffuse region of fine threads that demonstrate a
repetitive pattern of red, green, and yellow colors.
These threads get finer as they get closer to the
escape region. We refer to this region as the fractal
region. The particle’s trajectory in it can cross the
equatorial plane several times. The fractal structure

resc

M

rcap

M

1 2 3 4 5 6 7
1.0

1.2

1.4

1.6

1.8

2.0

ro M

FIG. 10 (color online). The basin of attraction plot for a neutral
particle when a ¼ 0.999M. resc and rcap are shown as well.
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is persistent at any magnification level. This fact
confirms that the system is chaotic. The vertical
branch of the fractal becomes smaller as a decreases.
The red color ceases to exist near the end of the
horizontal tail of the fractal. This effect becomes
more noticeable as a increases until the red color
completely disappears from the lower half of the
fractal structure when a ¼ 0.999M.

(iv) Metastability region: It is represented by the blue
strip in the Larmor motion plots. We expect that the
left boundary of this region becomes smooth if the
numerical integrator is run for longer time. However,
increasing the integration time will increase the
computation time immensely without modifying
significantly the quantity we want to measure,
namely, Df. (See below.)

(v) Backscattering region: It is the yellow isle located
between the capture region and the upper branch of
the fractal region. In the backscattering region the
particle escapes in the direction opposite to the kick.
Like the capture region, the backscattering region
appears when ro is close to the horizon.

D. Rotation and chaoticness

It is interesting to see how the black hole’s spin a affects
the chaoticness in the dynamics. We will use the fractal
dimension Df of the basin boundary as a measure of
chaoticness. The fractal dimension Df can be measured
using the box-counting dimension Db which is given in a
two-dimensional space of initial conditions by

Db ¼ lim
ϵ→0

�
lnNðϵÞ
ln 1=ϵ

�
; 1 ≤ Db < 2; ð64Þ

where NðϵÞ is the number of squares of side length ϵ that
are needed to cover the basin boundary [34]. The box-
counting dimension is related to the uncertainty exponent
α≡ 2 −Db, which gives the probability ρ that a measure-
ment of uncertainty ϵ will fail to determine the final state of
an orbit [34]

ρðϵÞ ∼ ϵα: ð65Þ
It should be mentioned that Df cannot be used to make a
general conclusion for the whole system since basin of
attraction plots are produced for specific sets of initial
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FIG. 11 (color online). The basin of attraction plots for a charged particle with b ¼ 0.1M−1. (a) a ¼ −0.999M; (b) a ¼ − 0.6M;
(c) a ¼ 0; (d) a ¼ 0.6M; (e) a ¼ 0.8M; and (f) a ¼ 0.999M.
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conditions. Moreover, rms and, to a lesser extent Eo, depend
on a. Thismakes choosing consistent sets of initial conditions
for different values of a tricky.We preferred to take the sets of
initial conditions identical to those of the basin of attraction
plots in Figs. 11 and 12, in which the dependence of rms on a
is taken into account. We kept the sets of E unchanged for
simplicity. The dependence ofDb ona is shown in Fig. 13 for
(a) anti-Larmor motion and (b) Larmor motion.

For Larmor retrograde motion Db is nearly constant
while it is linearly increasing, within error, for the remain-
ing cases. It is not surprising that Db increases with a since
the “gravitational field” gets more intense as rms gets closer
to the horizon. As mentioned above, the Db–a relation
depends on the set of initial conditions chosen. For
example, Db becomes inversely proportional to a if ro ∈
½4M; 10M� is chosen instead.
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FIG. 12 (color online). The basin of attraction plots for a charged particle with b ¼ −0.1M−1. (a) a ¼ −0.999M; (b) a ¼ − 0.6M;
(c) a ¼ 0; (d) a ¼ 0.6M; (e) a ¼ 0.8M; and (f) a ¼ 0.999M.
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FIG. 13. The box-counting dimension Db of the basin of attraction plots of (a) Fig. 11 and (b) Fig. 12 vs a.
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IV. SUMMARY

We have studied the escape of neutral and charged
particles kicked from circular orbits around a weakly
magnetized rotating black hole. It was found that the
escape of a neutral particle depends mainly on the prox-
imity of its initial orbit to the black hole. If the particle’s
orbit is very close to the horizon it always gets captured.
If the orbit is far enough from the horizon then it always
escapes if it is made energetically free. When the orbit lies
between these escape and capture regions, the particle can
escape if it can be made energetically free and outwardly
accelerating.
The problem is more involved for charged particles. The

dynamics becomes chaotic. The final fate of a charged
particle was also found to depend mainly on the initial
orbit’s radius. The escape and capture regions are not as
lucid as in the case of a neutral particle, however. The
chaoticness in the dynamics manifests itself in the boun-
daries between different regions of capture and escape in
the space of initial conditions.
There does not seem to be an explicit general relation-

ship between the black hole’s rotation and the chaoticness

in the dynamics. Instead, a restricted relationship can be
given for specific sets of initial conditions. Nonetheless, the
dynamics appears to be more chaotic near the black hole’s
horizon where the gravitational field is stronger.
To see how our results impact the total jet power we need

to look at the accretion disk as whole. We have found that
both the black hole spin and magnetic field can make the
accretion disk closer to the horizon and the inner orbits are
generally less likely to contribute to the jets. The depend-
ence of the jet power on the spin can therefore vary
depending of the characteristics of the accretion disk.
It would be interesting to see how the problem develops

when further sophistications are involved. Namely, when
more realistic magnetic fields, more general initial orbits,
and more general kicks with physical kicking mechanisms
are used. While these modifications may enrich the
problem, we argue that its main features are robust.

APPENDIX: r AND θ COMPONENTS OF THE
DYNAMICAL EQUATION

In this appendix we write the r and θ components of the
dynamical equation (39). They respectfully read

̈r ¼ MΔð2r2 − ΣÞ
Σ3

ð2asin2θ_t _ϕ−_t2Þ þ rΔ
Σ

_θ2 −
�
r
Σ
−
Δ;r

2Δ

�
_r2 −

Σ;θ

Σ
_r _θ−

Δð2rA − ΣA;rÞsin2θ
2Σ3

_ϕ2

þ 2b

�
aMΔð2r2 − ΣÞsin2θ

Σ3
_t −

Δð2rA − ΣA;rÞsin2θ
2Σ3

_ϕ

�
; ðA1Þ

θ̈ ¼ −
2r
Σ
_r _θ−

MrΣ;θ

Σ3
_t2 −

Σ;θ

2Σ
_θ2 þ Σ;θ

2ΔΣ
_r2 −

2aMrð2Σ cos θ − Σ;θ sin θÞ sin θ
Σ3

_t _ϕ

−
½AðΣ;θ sin θ − 2Σ cos θÞ − ΣA;θ sin θ� sin θ

2Σ3
_ϕ2

− 2b

�
aMrð2Σ cos θ − Σ;θ sin θÞ sin θ

Σ3
_tþ ½AðΣ;θ sin θ − 2Σ cos θÞ − ΣA;θ sin θ� sin θ

2Σ3
_ϕ

�
; ðA2Þ

where _t and _ϕ are eliminated using the expression for L and the normalization condition uμuνgμν ¼ −1.
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