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We show that theories having second-order field equations in the context of higher-dimensional
modified gravity are not restricted to the family of Lovelock Lagrangians, but can also be obtained
if no a priori assumption on the relation between the metric and affine structures of space-time is made
(the Palatini approach). We illustrate this fact by considering the case of Palatini fðRÞ gravities in five
dimensions. Our results provide an alternative avenue to explore new domains of the AdS/CFT
correspondence without resorting to ad hoc quasitopological constructions.
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I. INTRODUCTION

It is usually stated that in five dimensions only the Gauss-
Bonnet (GB) theory provides second-order field equations.
This is due to the fact that the coefficients of the higher-
order curvature invariants R2, RμνRμν, and RαβγδRαβγδ

summing up the GB Lagrangian correspond to specific
choices that remove the undesired fourth-order terms.
Having second-order field equations in a theory of gravity
is essential in order to obtain exact solutions and get rid of
troubles with ghostlike instabilities. In particular, paging
through the literature, one finds a large number of black hole
solutions in different GB scenarios [1]. More curvature
invariant terms can be added to the GB action, leading to the
general family of Lovelock Lagrangians [2], for which
black hole solutions have been found in some particular
cases [3]. In this family, the cosmological constant term and
the Einstein-Hilbert Lagrangian of general relativity (GR)
represent the zeroth-order and first-order terms, respec-
tively, GB theory the second order, and so on. However, in
five (or six) dimensions, the extra terms beyond the GB
combination turn out to be a topological invariant and
therefore do not contribute to the field equations.
The quasitopological approach [4] takes another route to

this problem by adding a set of new curvature-cubed terms
to the Einstein-Hilbert action in five dimensions in such
a way that, though the field equations are of third order,
their linearized counterpart describing gravitons pro-
pagating in an anti–de Sitter background are second order
(so the resulting theory could be ghost free). Besides its
unnaturalness, this approach is troubled by the great
difficulty of obtaining exact solutions.

The interest in having more terms added to the action, as
in the Lovelock and quasitopological gravities, can be
traced back to the fact that, via the anti–de Sitter/conformal
field theory (AdS/CFT) correspondence, new couplings in
the gravitational action may broaden the class of dual CFTs
that one can study using holographic methods [5]. These
new terms also arise in the quantization of fields in curved
space-time [6] and in approaches to quantum gravity [7].
Here we note that the reason why GB (and Lovelock)

gravity provides second-order field equations is the fact that
it actually belongs to the class of Palatini theories [8]. These
theories are constructed removing any a priori relation of
the connection with respect to the metric. Indeed, as metric
and connection carry a very different geometrical meaning,
the former defining the measurements of lengths, areas,
volumes, etc., and the latter being related to the existence of
properties remaining invariant under affine transformations
(such as parallelism), they are conceptually different and
unrelated a priori (see [9] for a pedagogical discussion).
The connection is usually taken to be metric compatible
due to the fact that the Palatini approach for GR (and, more
generally, for the Lovelock family) gives an additional
equation for the connection whose solution is precisely the
Levi-Civita one. Over the debate of using the minimum
number of geometrical entities (the metric approach) or the
minimum number of a priori hypotheses (the Palatini
approach), the former has been traditionally favored.
Indeed, the coincidence of the metric and Palatini formu-
lation of GR, which is due to the particular functional form
of the Einstein-Hilbert action, has led most researchers in
the field to implicitly assume that the connection must
always be compatible with the metric gμν. This is, however,
not necessarily true for nonlinear extensions of GR.
In general, the mathematical and physical structures of

metric-affine (or Palatini) theories largely differ from their
metric counterparts [10]. Now, a nice feature of Palatini
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gravities is that, for a large family of functional forms in the
action, the metric field equations remain second order, as in
GR. The connection turns out to be a constrained object
that can be solved in terms of the metric and the matter
fields. This opens the door to new scenarios where the
physics of second-order modified gravity theories can
be explored, without unnecessary constraints on the coef-
ficients of the theory and/or ad hoc constructions. In
particular, theories including higher-order curvature invar-
iants do not need to be constrained to have the same form as
the GB/Lovelock one, which provides new avenues for
studying exact solutions of gravity theories in the context of
higher dimensions and broadens the possibilities of the
AdS/CFT route. Note that due to the fact that the GB
combination is a topological invariant in four dimensions
whose variation does not provide modified dynamics as
compared to GR, the natural framework for the comparison
between solutions of metric and Palatini approaches is that
of five (and six) dimensions.
In a series of papers [11] we have developed tools to

solve Palatini field equations in four dimensions coupled to
several kinds of matter and worked out exact solutions.
Since the variational principle provides two sets of equa-
tions, the strategy to solve them consists of identifying a
new rank-two tensor hμν as the metric for which the
independent connection Γλ

μν becomes the Levi-Civita
one. In terms of hμν the field equations are second order
and, since hμν is algebraically related (via the matter
sources) to the metric gμν appearing in the definition of
the action, the field equations for gμν are second order as
well. The nontrivial role played by the matter sources
becomes a distinctive feature of Palatini theories, giving
rise to new effects such as the existence of wormhole
geometries [11], which can be supported even by elemen-
tary electric fields. In this work we shall consider the
simplest scenario of Palatini gravity in extra dimensions,
namely, five-dimensional fðRÞ theories (see [12] and [13]
for recent reviews) and explicitly show that the field
equations remain second order. Moreover, analytical sol-
utions are obtained using electrovacuum fields. Discussion
on the extension of this approach to the case of more
general actions for the gravitational field is also provided.

II. THEORY AND SECOND-ORDER FIELD
EQUATIONS

We consider the action of fðRÞ gravity, defined as
follows:

S ¼ 1

2κ2

Z
dnx

ffiffiffiffiffiffi−gp
fðRÞ þ Smðgμν;ψmÞ; ð1Þ

where n is the number of space-time dimensions, κ2 is the
n-dimensional Newton’s constant in some appropriate
system of units, g is the determinant of the space-time
metric gμν, fðRÞ is a given function of the curvature scalar

R ¼ gμνRμνðΓÞ, Γ≡ Γλ
μν is the independent connection, Sm

is the matter action, and ψm denotes collectively the matter
fields. As we are working in the Palatini formalism, metric
and connection are independent entities and, therefore, the
variational principle must be applied to both of them.
For simplicity, we assume vanishing torsion Γλ

½μν� ¼ 0
(see [14] for a discussion of the role of torsion in these
theories). Under these conditions, the variation of the action
(1) gives

δS ¼ 1

2κ2

Z
dnx

ffiffiffiffiffiffi−gp ��
fRRμν − 1

2
fgμν

�
δgμν

þ fRgμνδRμνðΓÞ
�
þ δSm; ð2Þ

where we have used the shorthand notation fR ≡ df=dR.
Let us take care first of the connection piece. It can be
rewritten, using δRμν ¼ ∇λδΓλ

νμ − ∇νδΓλ
λμ, as

δΓS ¼ 1

2κ2

Z
dnx

ffiffiffiffiffiffi−gp
fRgμνð∇λδΓλ

νμ − ∇νΓλ
λμÞ: ð3Þ

Integrating by parts we express (3) as

δΓS¼
1

2κ2

Z
dnx

ffiffiffiffiffiffi−gp �
−∇λð

ffiffiffiffiffiffi−gp
fRgμνÞ

þ1

2
δνλ∇ρð

ffiffiffiffiffiffi−gp
fRgμρÞþ

1

2
δμλ∇ρð

ffiffiffiffiffiffi−gp
fRgνρÞ

�
δΓλ

νμ; ð4Þ

where a total derivative (boundary) term has been
discarded. This variation must satisfy δΓS ¼ 0. Noting
that the contraction of the indices λ and ν leads to
ð1 − nÞ∇ρð ffiffiffiffiffiffi−gp

fRgμρÞ ¼ 0, we conclude that the variation
of the connection leads to

∇λð
ffiffiffiffiffiffi−gp

fRgμνÞ ¼ 0: ð5Þ

On the other hand, since the energy-momentum tensor of

the matter is obtained as Tμν ¼ − 2ffiffiffiffi−gp δð ffiffiffiffi−gp
LmÞ

δgμν (note that the

matter Lagrangian, Lm, depends on the metric only), the
field equations for gμν can be immediately obtained from
the corresponding piece in (2) as

fRRμν − f
2
gμν ¼ κ2Tμν: ð6Þ

Note that, in general, a symmetric metric has NðN þ 1Þ=2
independent components, whereas a symmetric connection
has N2ðN þ 1Þ=2 components. It is easy to see that Eq. (5)
represents a total of N2ðN þ 1Þ=2 equations, whereas (6)
represents NðN þ 1Þ=2 equations. Thus, there are enough
equations to determine all the a priori independent func-
tions. Therefore, our unknowns so far are the NðN þ 1Þ=2
metric components and the N2ðN þ 1Þ=2 components of
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the independent (symmetric) connection. For nonsymmet-
ric connections, the number of independent connection
coefficients increases up to N3. In that case, one can verify
that the missing N2ðN − 1Þ=2 equations are of the form (5)
but with gμν replaced by an antisymmetric tensor and with a
nonvanishing right-hand side directly related to the torsion
degrees of freedom (see [14] for details).
It is important to note that the assumption of independ-

ence between metric and connection has been crucial to
obtain Eqs. (6) and (5). Had we followed the traditional
approach of imposing that Γλ

μν is a priori the Levi-Civita
connection of gμν, then we should have replaced δΓλ

νμ

in (4) by

δΓλ
νμ ¼

gλρ

2
½∇μδgρν þ∇νδgρμ − ∇ρδgμν�: ð7Þ

In the usual metric approach, these terms must be integrated
by parts and added to (2) in order to get the complete
variation of the metric. As a result, one would have
obtained a modification of (6) of the form

fRRμν − f
2
gμν − ∇μ∇νfR þ gμν□fR ¼ κ2Tμν; ð8Þ

which contains higher-order derivatives of the metric
through the terms ∇μ∇νfR and □fR stemming from the
integration by parts of δΓλ

νμ ∼ gλρ∇μδgρν. The independence
between metric and connection is thus the key to avoiding
these higher-order derivative terms in the field equations (6)
and (5). For a comparison of the dynamics of fðRÞ theories
in both their metric and Palatini formulations, see [15].
To solve the system of Eqs. (6) and (5) we take advantage

of the fact that the connection equation (5) can be formally
written as

∇λð
ffiffiffiffiffiffiffi−hp

hμνÞ ¼ 0; ð9Þ

where hμν is a symmetric rank-two tensor. Comparison
between (5) and (9) leads to the relation

hμν ¼ f
2

n−2
R gμν; hμν ¼ f

2
2−n
R gμν; ð10Þ

between hμν and gμν, which means that they are related by a
conformal transformation. Equation (9) now admits a
simple interpretation. In the case of GR, where fR ¼ 1,
Eq. (9) implies that the connection can be written as the
Christoffel symbols of the metric; i.e., it is the Levi-Civita
connection of gμν (for details, see Sec. 21.2 of [16]). In the
general case in which fR ≠ 1, Eq. (9) implies that the
independent connection can be written as the Levi-Civita
connection of the auxiliary metric hμν, which is confor-
mally related with gμν via Eq. (10). Therefore, for an
arbitrary fðRÞ function, Eq. (9) yields

Γα
μν ¼

hαβ

2
½∂μhβν þ ∂νhβμ − ∂βhμν�: ð11Þ

On the other hand, contracting in Eq. (6) with the metric gμν

it follows that

RfR − n
2
f ¼ κ2T; ð12Þ

where T ≡ Tμ
μ is the trace of the energy-momentum tensor.

This is an algebraic equation whose formal solution R ¼
RðTÞ generalizes the GR relation R ¼ −κ2T to the case of a
nonlinear fðRÞ Lagrangian. The conformal factor relating
gμν and hμν is thus a function of the matter, fR ¼ fRðR½T�Þ,
which becomes a constant when T ¼ 0 (vacuum or trace-
less sources). Through a constant rescaling of the metric,
one can then have gμν ¼ hμν when T ¼ 0. It is also easy
to see that in vacuum the field equations (6) recover the
GR dynamics with an effective cosmological con-
stant, Gμν ¼ −Λeffgμν, where Λeff ≡ ðn − 2Þðf=4fRÞjT¼0

depends on the specific form of the Lagrangian density
chosen. This is a manifestation of the observed universality
of Einstein’s field equations in vacuum for Palatini theories
[17] and implies that these theories do not propagate extra
degrees of freedom. Therefore, in order to obtain modified
dynamics, matter sources with T ≠ 0 must be considered
regardless of the number of space-time dimensions.
Having this in mind, we now contract (6) with hμν, using

RμνðΓÞ ¼ RμνðhÞ, and arrange terms to obtain

Rμ
νðhÞ ¼ 1

f
2

n−2
R

�
f
2
δνμ þ κ2Tμ

ν

�
; ð13Þ

which is a set of second-order Einstein-like field equations
for hμν. Note that since R ¼ RðTÞ, the f and fR terms on
the right-hand side of (13) are functions of the matter. As
hμν is algebraically related to gμν via the matter sources,
the field equations for the latter are second order as well,
which is in agreement with our initial claim regarding the
absence of higher-order field equations in Palatini fðRÞ
gravity in any dimension. Once a given matter-energy
source is specified, the field equations (13), together with
Eqs. (10) and (12), provide a complete solution.
A comment on the degree of differentiability of the

matter fields is now in order. In fact, since the conformal
factor that relates the physical and auxiliary geometries
depends on the matter fields, in order to have a smooth gμν
geometry the function fRðR½T�Þmust have, at least, smooth
derivatives up to second order in the space-time coordi-
nates. It is thus reasonable to wonder if higher-order
derivatives of the matter fields might appear in these
theories. Through a Hamiltonian analysis, it was found
in [18] that, in general, the field equations do involve
higher-order spatial derivatives of the matter fields, though
time derivatives remain second order at most. Therefore,
the Cauchy problem in these theories is as well formulated
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as in GR. The well posedness depends on the particular
matter fields considered and it has been shown to be well
posed for a number of reasonable sources [19].

A. Electrovacuum fields

As we have discussed, in order to excite the dynamics of
Palatini fðRÞ gravity, one needs a matter-energy source
with nonvanishing trace. A simple scenario is to consider
the case of electromagnetic fields. In this sense, note that in
four dimensions the Maxwell stress-energy tensor satisfies
T ¼ 0, which forces the consideration of nonlinear theories
of electrodynamics [20] in order to achieve modifications
as compared to GR. For higher dimensions, however, the
Maxwell field satisfies T ≠ 0 and does provide modified
dynamics on its own. The action of Maxwell electrody-
namics is given by

Sm ¼ − 1

16π

Z
dnx

ffiffiffiffiffiffi−gp
FμνFμν; ð14Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength tensor of the
vector potential Aμ. Let us now assume a static, spherically
symmetric line element

ds2 ¼ gttdt2 þ grrdr2 − r2dΩ2
n−2; ð15Þ

where dΩ2
n−2 ¼ dθ21 þ

P
n−1
i¼2

Q
i−2
j¼1 sin

2 θjdθ2i is the metric
on the unit (n − 2) sphere. In this line element, from the
Maxwell field equations, ∇μFμν ¼ 0, one finds that the
unique nonvanishing component of a spherically symmet-
ric, electrically charged field reads Ftr ¼ q

rðn−2Þ ffiffiffiffiffiffiffiffiffiffi−gttgrrp , where

q is an integration constant identified as the electric charge.
Remarkably, the invariant

X ¼ − 1

2
FμνFμν ¼ q2

r2ðn−2Þ
ð16Þ

does not depend explicitly on the gtt and grr components of
the metric, which simplifies the calculations. This allows us
to write the energy-momentum tensor of the electromag-
netic field for these solutions as

Tμ
ν ¼ − 1

4π

�
Fμ

αFα
ν − 1

4
δνμFαβFαβ

�

¼ X
4π

 −Î2×2 0̂ðn−2Þ×2
0̂2×ðn−2Þ Îðn−2Þ×ðn−2Þ

!
; ð17Þ

where Îa×b and 0̂a×b are the a × b dimensional identity and
zero matrices, respectively. From (17) we explicitly read

the nonvanishing trace T ¼ ðn−4Þq2
4πr2ðn−2Þ for n ≠ 4.

B. Computation of the five-dimensional
geometrical objects

To solve the field equations (13) we must compute the
objects appearing on the left-hand side. As later we shall
focus on the properties of five-dimensional solutions, let us
propose the following ansatz for the metric hμν:

d~s2 ¼ −AðxÞe2ξðxÞdt2 þ 1

AðxÞ dx
2

þ ~r2ðxÞðdθ2 þ sin2θdϕ2 þ sin2θsin2ϕdα2Þ; ð18Þ

where ~r2ðxÞ is, in general, a function of the coordinate x.
For the problem at hand, however, the choice ~rðxÞ ¼ x
turns out to be a consistent one. Assuming this simplifi-
cation, the computation of the metric components Rμ

νðhÞ
[we use the XACT package of Mathematica [21] and
Eq. (11)] leads to

Rt
t ¼ − 1

2x
½3Axð1þ xξxÞ þ xAxx

þ 2Að3ξx þ xðξ2x þ ξxxÞÞ�; ð19Þ

Rx
x ¼ −

1

2x
½3Axð1þ xξxÞ þ xAxx

þ 2Axðξ2x þ ξxxÞÞ�; ð20Þ

Rθ
θ ¼ Rθ

θ ¼ Rα
α ¼ 1

x2
½2ð1 − AÞ − xAx − Axξx�: ð21Þ

Using the symmetry of the matter-energy source,
Tt

t ¼ Tx
x, from (13) it follows that ξx ¼ 0. Therefore,

we may set ξ ¼ 0 by a redefinition of the time coordinate
without loss of generality. On the other hand, the compo-
nent (21) is appropriately written using a suitable mass
ansatz in five dimensions, A ¼ 1 − 2MðxÞ=x2, in terms of
which (21) reads

Rθ
θðhÞ ¼ 2Mx=x3; ð22Þ

which provides a solution once the corresponding compo-
nent of the right-hand side of (13) is given, for which
the gravity Lagrangian fðRÞ must be specified. In the
following section we shall consider two examples.

III. SOME MODELS

For the sake of simplicity, in this work we shall restrict
ourselves to the study of polynomial models of the form

fðRÞ ¼ Rþ αRd; ð23Þ

where d is a constant and α a parameter. From the trace
equation (12) we obtain the relation R ¼ RðTÞ as
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R

�
2 − n
2

�
þ αRd

�
2d − n

2

�
¼ κ2T; ð24Þ

whose explicit resolution must be done case by case.

A. f ðRÞ ¼ Rþ αR2

A natural choice is that of a quadratic Lagrangian,
namely, d ¼ 2. For dimensional consistency, α has dimen-
sions of length squared. In this case the equation for the
trace (12) is solved as

αR ¼ − ðn − 2Þ
2ðn − 4Þ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8ðn − 4Þκ2αT

ðn − 2Þ2

s �
; ð25Þ

which indicates that R is negative if α > 0 and positive if
α < 0. Note that the term under the square root might
become negative if r becomes smaller than

r2ðn−2Þα ¼ 8αðn−4Þκ2q2
ðn−2Þ2 . However, one can see that rα is smaller

than the point rc where fR vanishes, which occurs at

r2ðn−2Þc ¼ 8ακ2q2

n , where αR ¼ −1=2. As in other cases
already studied in four dimensions [11], the point where
fR ¼ 0 sets the location of a minimum in the function
r2ðxÞ, which prevents the square root in (25) from becom-
ing complex. Such a minimum signals the existence of a
wormhole throat. Determining the behavior of the metric
functions at the minimum rc of the radial coordinate is,
consequently, a key aspect in the characterization of
solutions in these theories. In order to find the explicit
relation between the function r2ðxÞ and the coordinate x, let
us write the line element for the metric gμν as

ds2 ¼ −BðxÞdt2 þ CðxÞdx2 þ r2ðxÞdΩ2
n−3: ð26Þ

It is important to remember that the line elements for gμν in
(26) and hμν in (18) are conformally related according to

(10). This means that r2ðxÞ ¼ f
2

2−n
R x2. Therefore, computing

fR and using Eq. (25) we find

x2 ¼ r2
�ðn − 2Þ
ðn − 4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
rα
r

�
2ðn−2Þ

s
− 2

ðn − 4Þ
� 2

n−2
: ð27Þ

Though the resolution of the field equations for this
problem is certainly possible, the nonlinearity of the
equation (25) that determines the new objects appearing
on the right-hand side of the field equations (13) prevents
us from getting a simple analytical solution. This example
was taken here to stress the relevance of the relation
between the two spheres of the geometries gμν.
However, as the aim of this paper is to illustrate the
Palatini method in higher dimensions, we shall now choose
an analytically tractable model.

B. f ðRÞ ¼ Rþ βjRjn=2
The reason to consider this model (where β is a

parameter) is its technical simplicity: the trace equation
is solved as

R ¼ 2

ð2 − nÞ κ
2T; ð28Þ

which coincides with the GR expression and does not
depend on the β parameter. The linearity of the Ricci scalar
in the trace provides a simple expression of the fðRÞ
Lagrangian in terms of the matter sources as

fðRÞ ¼ 2κ2T
ð2 − nÞ

�
1þ β

���� 2κ2T2 − n

����
n−2
2

�
: ð29Þ

To obtain analytical solutions we shall focus on the n ¼ 5
dimensional case, for which we have T ¼ q2=ð4πr6Þ and
R ¼ − 2

3

r4q
r6
, where we have defined the charge scale

r4q ≡ κ2q2=ð4πÞ. These expressions and that of the
energy-momentum tensor of the electromagnetic field in
(17) allow us to compute the right-hand side of the field
equations (13). Therefore, using (22) we obtain

Rθ
θ ¼ 2Mx

x3
¼ r4q

f5=3R r6

�
1þ 1

3

�
1þ β

�
2

3

�
5=2 r6q

r9

��
: ð30Þ

To integrate this equation we need the relation x ¼ rf1=3R
between the spherical sectors of the line elements of hμν
and gμν, as follows from (10). It is easy to see that this
implies dx=dr ¼ f1=3R ½1þ r

3
fRR
fR

Rr�, where the explicit
expression for Rr follows from (28). With this we can
finally write

Mr ¼
r3

2f1=3R

�
1þ r

3

fRR
fR

Rr

��
r4q
r6

þ fðRÞ
2

�
: ð31Þ

The explicit expressions for fðrÞ and fRðrÞ follow immedi-
ately as

fðrÞ ¼ − 2

3

r4q
r6

�
1 − 2~β

5

r6q
r9

�
; fR ¼ 1 − ~β

r6q
r9

; ð32Þ

where we have defined a new parameter ~β ¼ 5βð2=3Þ3=2=2.
Note that, on dimensional grounds, ~β represents a cubic
length. If we interpret the nonlinear curvature corrections as
having a quantum-gravitational origin, then ~β ∼ l3P, where

lP is the Planck length. Using the fact that fRRRr ¼ 9~β
r6q
r10

and defining a new scale r9c ≡ ~βr6q, we can finally write
Eq. (31) for our theory as
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Mr ¼
r4q
3r3

½1þ 2ðrcr Þ9�½1þ 1
5
ðrcr Þ9�

½1 − ðrcr Þ9�4=3
: ð33Þ

Since for zero charge we have M ¼ M0 ¼ constant, this
expression can be more conveniently written in terms of a
function GðzÞ defined as

MðzÞ
M0

¼ 1þ δ1GðzÞ; ð34Þ

where we have introduced the new variable z ¼ r=rc and

the constant δ1 ≡ r4q
3M0r2c

. The function GðzÞ satisfies

Gz ¼
1

z3
½1þ 2

z9�½1þ 1
5z9�

ð1 − 1
z9Þ4=3

ð35Þ

and contains the electromagnetic contribution. This func-
tion admits an immediate integration as

GðzÞ ¼ ϵþ 1 − 25z9 − 30z9ð1 − z9Þ1=32F1ð19 ; 13 ; 109 ; z9Þ
20z8ðz9 − 1Þ1=3 ;

ð36Þ
where 2F1 is a hypergeometric function and ϵ ¼
3ð−1Þ2=9Γð2

9
ÞΓð10

9
Þ=ð2Γð1

3
ÞÞ is a constant needed to recover

the right five-dimensional GR behavior at z ≫ 1. Indeed, a
series expansion in this region gives

GðzÞ ≈ − 1

2z2
− 53

165z11
þO

�
1

z

�
13

; ð37Þ

where the leading-order term displays the expected GR
behavior and the corrections are largely suppressed as
1=z9 ¼ ~βr6q=r9 ≪ 1 for any r > lP ∼ ~β1=3.
We expect the effects of the correcting term in the

Lagrangian to produce deviations from the five-dimen-
sional GR solutions around the region z ¼ 1 (see Fig. 1).
Expanding (36) in this region, we obtain

GðzÞ ≈ − 2
ffiffiffi
33

p

5
ffiffiffiffiffiffiffiffiffiffiffi
z − 13

p

þ 3ð−1Þ2=9Γð2
9
ÞΓð7

9
Þ − 2

ffiffiffiffiffiffi−13
p ffiffiffi

3
p

πΓð10
9
Þ

2Γð1
3
ÞΓð7

9
Þ

−
�

1

20 32=3
− πffiffiffi

36
p

Γð1
3
ÞΓð5

3
Þ

�
ðz − 1Þ2=3

þOðz − 1Þ1; ð38Þ

where Γ½a� is Euler’s gamma function. This expansion
reveals that GðzÞ is (slowly) divergent around z ¼ 1. To
determine the impact of this divergence on the geometry,
we note that the physical metric component in the line
element (26) is completely determined via the conformal
transformation (10) as

BðzÞ ¼ 1

f2=3R

�
1 − 2MðzÞ

r2cz2f
2=3
R

�
: ð39Þ

Expanding in series around z ¼ 1 this function behaves as

B ≈
4M0δ1

45ð3Þ1=3r2cðz − 1Þ5=3 −
2M0ðδ1 þ C1Þ

932=3r2cðz − 1Þ4=3

þ 90
ffiffiffi
3

p
r2c þ C2M0δ2

27035=6r2cðz − 1Þ2=3 þOðz − 1Þ1=3; ð40Þ

where C1 and C2 are two constants whose explicit form is
too large and of no particular interest for our purposes. The
leading term in this expansion diverges as 1=ðz − 1Þ5=3.
This allows us to compute the behavior of the curvature
invariants at z ¼ 1; in particular, the Kretschmann behaves
there as

RαβγδRαβγδ ≃ 1024δ21M
2
0

656132=3r8cðz − 1Þ22=3 þO
�

1

ðz − 1Þ20=3
�
;

ð41Þ

which is thus divergent, regardless of the specific value of
the constant δ1.
We would like to point out that the presence of a

curvature divergence at x ¼ 0, where the minimum value
z ¼ 1 is reached (see Fig. 2), is not an obstacle for the
existence of a wormhole (in fact, the geometry does not
dictate the topology of a space). Our theory is defined by a
gravity action coupled to a sourceless electric field and the
resulting dynamics forces the radial function r2ðxÞ to have a
minimum at x ¼ 0 (r ¼ rc or z ¼ 1). The nonzero electric
flux through the x ¼ 0 surface allows us to define the
electric charge q that characterizes our solutions in purely

0.5 1.0 1.5 2.0 2.5 3.0
z
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0.8
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0.2

G z

FIG. 1 (color online). Behavior of the function GðzÞ (solid line)
in Eq. (36), as compared to the GR case (dashed line). Far from
the center, z ≫ 1, the solution quickly converges to that of GR,
GðzÞ ¼ −1=ð2z2Þ, but in the other region of interest it under-
goes relevant modifications as a core of nonvanishing radius
z ¼ 1 arises. At this core, curvature invariants diverge [see
Eq. (41) below].
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topological terms [22]. Therefore, rather than being gen-
erated by a pointlike source, the charge of our solutions is a
topological property, which allows us to interpret these
solutions as geons in Wheeler’s sense [23]. We note that
similar solutions—but with completely smooth curvature
scalars—have been found in four-dimensional Palatini
theories [11,24,25]. Moreover, it has been recently shown
that wormhole solutions of this kind can be dynamically
generated out of Minkowski space by means of an ingoing
stream of charged null particles [26].
Though different aspects, such as the classification of the

solutions in terms of their horizons or their thermodynam-
ical aspects, could certainly be studied, we shall not keep
going with the geometric analysis of these solutions as this
model was introduced as an example that illustrates the
analytical tractability of the second-order equations of
Palatini fðRÞ theories in five dimensions. The important
point of bringing up this example is to show that the Palatini
approach provides a new framework to consistently study
extensions of GRwith new curvature couplings and second-
order equations in arbitrary dimensions. Perturbations of
these solutions will be considered elsewhere.

IV. SUMMARY AND OUTLOOK

It is widely known that in the standard metric (or
Riemannian) approach, the addition in the action of
higher-curvature terms with arbitrary coefficients in d ≥
4 dimensions breaks the second-order character of the field
equations. The metric-affine or Palatini formulation, how-
ever, naturally avoids this shortcoming in a large family of
models. In this paper we have illustrated this fact with the
particular case of fðRÞ theories, though this procedure can
be easily extended to theories containing powers of the
Ricci tensor (and possibly the Kretschmann as well), which
would extend the scope of these methods.
The second-order character of the Palatini field equations

makes it possible to obtain exact solutions regardless of the
dimension. We have explicitly illustrated this idea by using

the fact that, though the independent connection is not
metric compatible, it is compatible with a new metric, hμν,
algebraically related to the metric gμν via the (trace of the)
energy-momentum tensor of the matter. The field equations
in terms of hμν can be cast in Einstein-like form, which
simplifies their analysis and resolution. This procedure
provides a full solution for a given matter-energy source. It
is worth mentioning that in theories beyond fðRÞ the
algebraic relation between hμν and gμν transcends the
conformal case, but its determination is, in principle,
possible in many cases of interest [12,27].
We have studied a scenario in which an electromagnetic

(Maxwell) field in n > 4 dimensions sources a family of
polynomial fðRÞ theories. Unlike in the n ¼ 4 case, where
the Maxwell stress-energy tensor is traceless, in n ¼ 5 the
trace of the electromagnetic field is nonvanishing, which
allows us to probe the modified gravitational dynamics. We
have successfully obtained exact solutions to the field
equations of the model fðRÞ ¼ Rþ βjRj5=2, which was
chosen by its analytical tractability, and have studied how
the region close to r ¼ 0 is modified by the new high-energy
dynamics. The main novelty is the fact that these solutions
do not extend all the way down to r ¼ 0 but, instead, a
sphere of minimum area arises as a consequence of the new
dynamics and the conformal relation between the 2-spheres
of the hμν and gμν geometries. The existence of this core,
which is a manifestation of the existence of a wormhole,
seems to be a generic prediction of Palatini theories sourced
by electrovacuum fields, as it has been found to arise in the
context of a four-dimensional fðRÞ coupled to Born-Infeld
electrodynamics [20], and also in quadratic gravity [11] and
Born-Infeld-like gravity [24]. In the present case, curvature
invariants for the particular model considered diverge at the
core in all cases, a situation similar to that found in the four-
dimensional fðRÞ context [20] but which can be cured in
other extensions beyond the fðRÞ scenario [11,24,25].
The important lesson that follows from our discussion is

that a foundational aspect of gravity—namely, whether the
underlying structure of space-time is Riemannian or not—
has a great influence on both the mathematical and physical
aspects of the corresponding theory. The Palatini approach
to fðRÞ gravities shows that one can add to the action as
many new couplings in the gravitational field as desired
without spoiling the second-order character of the field
equations. One may wonder whether the addition of other
curvature invariants such as RμνRμν or RαβγδRαβγδ keeps the
second-order character. We have already checked that this
is so in the case of four-dimensional Born-Infeld [24,28]
and quadratic gravity [11,25], which contain nontrivial
corrections on the Ricci-squared invariant.
We stress that the vacuum field equations of Palatini fðRÞ

(and further extensions) boil down to those of GR plus a
cosmological constant. Alternatively a cosmological con-
stant term can be directly added to the action in a standard
way, or generated through nonlinear corrections in the

10 5 5 10
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10
z x

FIG. 2 (color online). Representation of the radial function
z ¼ zðxÞ. Note the rapid transition from linearity as x → 0 is
approached. The surface x ¼ 0 represents a minimum of the area
function r2ðxÞ ¼ r2cz2ðxÞ and can be interpreted as the throat of a
wormhole.
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electromagnetic field [25], neither of these ways spoiling the
second-order character of the field equations. In summary,
the Palatini approach provides an interesting framework to
explore newdomains of theAdS/CFT correspondence and to
potentially broaden the class of CFTs that can be studied
using holographic methods. A better understanding of the
theory of quantized fields in these backgrounds is, however,
necessary to fully understand how this correspondence
manifests itself in such scenarios. These are aspects to be
explored elsewhere.
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