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We present a derivation of the Ponzano-Regge model from a one-dimensional spinor action. The
construction starts from the first-order Palatini formalism in three dimensions. We introduce a simplicial
decomposition of the three-dimensional manifold and study the discretized action in the spinorial
representation of loop gravity. A one-dimensional refinement limit along the edges of the discretization
brings us back to a continuum formulation. The three-dimensional action turns into a line integral over the
one-skeleton of the simplicial manifold. All fields are continuous but have support only along the one-
dimensional edges. We define the path integral and remove the redundant integrals over the local gauge orbits
through the usual Faddeev-Popov procedure. The resulting state sum model reproduces the Ponzano-Regge
amplitudes.
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I. INTRODUCTION

Three-dimensional gravity is topological, there are no
propagating degrees of freedom, and yet it is rich enough to
make its quantization an intriguing problem [1–4]. Solving
this problem is an important consistency check for any
approach that aims at quantum gravity in the real world.
This article provides such a consistency check for

the spinorial representation of loop gravity, recently devel-
oped by Freidel, Speziale, and collaborators [5–15]. The
spinorial framework sits halfway in between the most
familiar connection representation [16–19], and the dual
Baratin-Oriti momentum representation [20,21]. The
spinors simplify the kinematical structure of the theory.
Can they also teach us something about the dynamics?
Here, we study this question only for the case of Euclidean
gravity in three dimensions, and find a neat derivation of
the Ponzano-Regge model [3] from a one-dimensional
spinor action.
The article develops two results. Section III gives the

classical part. We discretize the first-order Palatini action
SM over a simplicial decomposition of the underlying
manifold. A one-dimensional refinement limit brings us
back to a continuum formulation. The resulting action is a
line integral over the edges of the simplicial decomposition
(Fig. 1). We can rearrange this action so as to get a sum
over the elementary spin-foam faces f, each of which
contributes as follows:

SM ¼
X

f∶ faces

Sf; with Sf ¼ −iℏ
Z
∂f
ðhzjDjzi − hwjdjwi

− iφdtðhzjzi − hwjwiÞÞ:

The action SM depends on two spinors for each face, but is
also a functional of an SUð2Þ connection A hiding in the
covariant differential Djzi ¼ djzi þ Ajzi of the spinor (and
φ is a Lagrange multiplier, while t parametrizes the boundary
of f). All fields are continuous, but are supported only along
the one-dimensional edges of the discretization. Next, we
study the local gauge symmetries of the theory and derive the
equations of motion from the principle of least action. The
resulting theory is a version of first order Regge calculus,
with spinors as the fundamental configuration variables.
Section IV develops the second result and defines the

transition amplitudes as a path integral over the spinorial
variables,

ZPR ¼
Z

Dgf ½z; w;…�
Y

f∶ faces

e
i
ℏSf :

The integration measure includes a gauge fixing condition
together with the corresponding Faddeev-Popov determi-
nant. This removes the divergent integrals over the orbits of
the local gauge symmetries. We evaluate the integral for a
generic simplicial decomposition and establish the equiv-
alence with the Ponzano-Regge spin-foam model. This is
our final result. It proves that the Ponzano-Regge spin-foam
model can be derived from a one-dimensional spinorial field
theory over the1 of the simplicial manifold.

II. EUCLIDEAN GRAVITY IN
THREE DIMENSIONS

The entire section is a review, needed to make the article
logically self-contained. Section II A introduces the most
basic mathematical structures underlying three-dimensional
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1More precisely: The one-skeleton of the dual complex. This is
the system of edges glued among the bounding vertices. See
Fig. 1 for an illustration.
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Euclidean gravity. Section II B gives the phase space for
the discretized theory [22]. The concluding Sec. II C
studies the spinorial representation of loop gravity as
developed by Freidel, Speziale, and collaborators [5–14].
References [1,23–26] give further background material.

A. First-order action and symplectic structure

We are using first-order variables. The action for
Euclidean gravity on a three-dimensional manifold M thus
becomes

SM½e; A� ¼
ℏ
2lP

Z
M
ϵijkei∧Fjk; ð1Þ

where lP and ℏ are the Planck length and Planck’s constant,
respectively, the flat Euclidean metric δij moves all internal
R3 indices i; j; k;…, and ϵijk is the Levi-Cività tensor in
internal space. The action is a functional both of the soð3Þ
connection Ai

jμ and the cotriad eiμ. The cotriad is an
orthonormal frame, and it diagonalizes the Euclidean line
element gμν ¼ δijeiμejν. The soð3Þ connection Ai

j defines
the curvature two-form Fi

j ¼ dAi
j þ Ai

k∧Ak
j. We can

equally well work with an suð2Þ connection instead.
The isomorphism between soð3Þ and suð2Þ is given by
Ai

j ¼ ϵikjAk↦A ¼ Ak ⊗ τk, where τk is a basis in suð2Þ
such that ½τi; τj� ¼ ϵij

kτk. If σi are the Pauli matrices, a
possible choice is τi ¼ ð2iÞ−1σi. The action variation gives
the equations of motion, namely,

the torsionless condition : Ti
μν ¼ 2D½μeiν� ¼ 0; ð2aÞ

and the flatness constraint : Fi
μν ¼ 0; ð2bÞ

where D ¼ dþ ½A; ·� is the exterior covariant derivative,
and ½μ � � �� denotes antisymmetrization of all intermediate
indices. The unique solution of the torsionless condition
Dei ¼ 0 determines the SUð2Þ connection as a functional
of the triad: The SUð2Þ connection Ai

μ turns into the Levi-
Cività spin connection Γi

μ½e�. The equation Fi
μν ¼ 0, on

the other hand, tells us that the curvature of the connection
vanishes, and hence the metric gμν ¼ eiμeiν is locally flat.
We want to eventually quantize the theory, so let us

briefly recapitulate those aspects of its Hamiltonian for-
mulation that will become important for us. We start with
a 2þ 1 split of the three-dimensional manifold M and
foliate M ≃ Σ ×R into t ¼ const equal “time” slices
Σt ≃ Σ × ftg. The 2þ 1 decomposition requires a time-
flow vector field2 tμ ∈ TM, transversal to the t ¼ const
hypersurfaces: tμ∂μt ¼ 1. Once we have chosen such a
vector field, we can define the spatial and “temporal”
components of the configuration variables,

Ni ≔ tμeiμ; ϕi ≔ tμAi
μ;

eia ≔ ½em�
t ei�a; Ai

a ≔ ½em�
t Ai�a: ð3Þ

We are working with Euclidean geometries; therefore
this time function has no physical meaning whatsoever.
Moreover, emt∶ Σ → Σt; x↦ðx; tÞ ∈ M is the canonical
embedding of Σ into M, and em�

t is the corresponding
pullback: eia and Ai

a are fields intrinsically defined on Σ,
they are the pullback of the three-dimensional fields eiμ and
Ai

μ to the t ¼ const slice. We also define the velocity _Ai
a ¼

½em�
t ðLtAiÞ�a of the connection as the pullback of the Lie

derivative LtAi
μ. If we now also introduce the covariant

derivative Da with respect to Ai
a on Σ, and call Fi

ab ¼
½em�

t Fi�ab ¼ ½Da;Db�i its curvature, then we can write
down the action3 in the following canonical form:

S½e; A� ¼ ℏ
lP

Z
1

0

dt
Z
Σ
~ηab

�
eiað _Ai

b −Dbϕ
iÞ − 1

2
NiFi

ab

�
:

ð4Þ
Here ~ηab is the Levi-Cività density; its inverse (a density of
weight minus one) is η

~
ab (and η

~
ab ~η

bc ¼ δbaÞ. Looking at the
first term in the action, we can identify the symplectic
structure; the only nonvanishing Poisson brackets are

feiaðxÞ; Aj
bðyÞg ¼ lP

ℏ
δijη

~
ab
~δΣðx; yÞ; ð5Þ

FIG. 1. A tetrahedron consists of four triangles glued together.
Each tetrahedron contains its own dual, the vertex, a point inside.
Three sides bound a triangle, and we call them the bones of the
triangulation. Each bone belongs to many tetrahedra (vertices),
but a triangle can be in only two of them. The surface dual to a
bone is a face, and it touches all adjacent tetrahedra. An edge, the
dual of a triangle, connects two vertices. A wedge is a “small”
triangular part of a face: Two of its corners belong to an edge,
and the third lies on the bone dual to the face. From the two-
dimensional perspective of e.g. the boundary of a tetrahedron, a
link is the dual of a bone. A wedge is thus bounded by two links
and a short segment of an edge.

2μ; ν; ρ;… (a; b; c;…) are abstract indices in TM (TΣ).
3To evaluate the integral we need to speak about orientation.

Assume that M is orientable, and so is Σt: If ðt; X; YÞ are
positively oriented vector fields in M, we choose the orientation
in Σt such that the duple ðX; YÞ has positive orientation.
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where ~δΣðx; yÞ is the Dirac distribution on the two-
dimensional t ¼ const slice Σ, a scalar density of weight one.
The canonical coordinates in the phase space of the

theory are thus an suð2Þ-valued one-form eia and an SUð2Þ
connection Ai

a. These are the spatial projections of the
configuration variables ei and Ai in the action (1). The
temporal components Ni and ϕi play a different role; they
appear as Lagrange multipliers and impose the constraints
of the theory, which are nothing but the equations of motion
(2) pulled back to the spatial slice.

B. Holonomy-flux variables

In loop gravity [18,19,25,26] we work on a truncated
phase space of smeared variables. We can think of this
truncation as the result of a discretization: All fields are
discretized over the elementary building blocks of a
triangulation4 of the three-dimensional manifold [22,28].
We thus introduce a simplicial decomposition of M,

which consists of tetrahedra T glued along their bounding
triangles τ ⊂ ∂T (see Fig. 1 for an illustration). Each
triangle bounds two tetrahedra and is itself bounded
by three sides, which we call the bones b ⊂ ∂τ of the
triangulation. It is also important to know about the dual
picture: Each tetrahedron is dual to a vertex (a point
v ∈ M), while each triangle is dual to an edge e (a one-
dimensional line). Edges close to form two-dimensional
surfaces. These are the faces f, each of which is dual to a
bone. We can then use the three-dimensional discretization
ofM to triangulate a two-dimensional hypersurface Σ ⊂ M.
This time, the elementary building blocks are just triangles
glued along their bounding sides. From this two-
dimensional perspective, every triangle is dual to a node
(a point in Σ), and every bone b; b0;… is dual to a link
γ; γ0;… (a path in Σ). At each node three links meet, and
every link connects two adjacent nodes.
The elementary building blocks of the triangulation

are oriented: Each face f carries an orientation, but the
orientation of its bounding edges e is independent and may
not match the induced orientation of ∂f. Furthermore,
every bone has an orientation such that it is positively
oriented relative5 to its dual face f. There are also the
oppositely oriented elements; we denote them f−1, b−1 and
so on. Consider now a two-dimensional oriented hyper-
surface Σ ⊂ M formed by glueing together adjacent tri-
angles. We have already introduced the links γ; γ0;… ⊂ Σ,
each of which is dual (from the two-dimensional perspec-
tive of Σ) to a bone b; b0;… ⊂ Σ, and we now give them an
orientation and demand that the duple ð_γ; _bÞ of correspond-
ing tangent vectors be positively oriented in Σ.

Next, we introduce the smearing. We take the oriented
bones b; b0;… and their dual in Σ (the links γ; γ0;…), and
smear the elementary phase space variables eia and Ai

a
over these lower dimensional structures. The connection
defines the parallel propagator between any two nodes as
the path-ordered exponential,

holonomy : h½b� ¼ Pexp

�
−
Z
γ
A

�
∈ SUð2Þ; ð6Þ

where b is the bone dual to the link γ. This gives the
smearing of the connection. For the triad the situation is a
little more complicated. The triad is a one-form, and we
can smear it over the bones of the triangulation. The naive
definition li½b� ¼ R

b e
i breaks, however, SUð2Þ gauge

invariance, because it does not make sense to add internal
vectors that belong to different points in b ⊂ Σ. The
solution is to introduce additional holonomies hδðx→γð0ÞÞ ∈
SUð2Þ that transport any internal vector in x ∈ b into the
frame at the initial point of γ,

flux : l½b� ¼
Z
b
eiðxÞhδðx→γð0ÞÞτih−1δðx→γð0ÞÞ ∈ suð2Þ: ð7Þ

The underlying path δðx → γð0ÞÞ starts at x ∈ b, follows
the bone to the intersection point b∩γ, where it then leaves
b, and goes along γ−1 until it reaches the source γð0Þ.
Let us also mention the oppositely oriented elements.

Changing the orientation amounts to replacing the loop
variables according to the following scheme:

h½b−1� ¼ h½b�−1;
l
~
½b� ≔ l½b−1�≡ li½b−1�τi ¼ −h½b�l½b�h½b�−1: ð8Þ

The commutation relations of the continuum theory (5)
induce commutation relations for holonomies and fluxes,

fhAB½b�; hCD½b0�g ¼ 0; ð9aÞ

fli½b�; hAB½b0�g ¼ þlP

ℏ
δbb0hAC½b�τCBi; ð9bÞ

fli½b�;lj½b0�g ¼ þlP

ℏ
δbb0ϵij

mlm½b�: ð9cÞ

Variables belonging to different links commute, and
the algebra closes. The resulting phase space is nothing
but the cotangent bundle T�SUð2ÞL equipped with its
natural symplectic structure (L counts the number of links
in the triangulation).

C. Spinors for loop gravity

Before we continue our review and speak about loop
gravity in the spinorial representation [5,6], let us first fix
some conventions. We will mostly use an index notation

4In principle we do not have to stick to triangulations; the
kinematics of loop gravity allows arbitrary polytopes [27].

5If Z is a tangent vector in b, and ðX; YÞ ∈ TM × TM is a
positively oriented duple in f, then the triple ðZ; X; YÞ shall be
positively oriented in M.
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and denote the spinors as elements zA; wA;…, of C2 with
A ∈ f0; 1g labeling their “up” and “down” components.
There is also the complex conjugate vector space C̄2,
and an overbar decorates the corresponding indices:
z̄Ā ∈ C̄2. Spinors carry a natural action of SUð2Þ, and
the group acts through its fundamental matrix representa-
tion: SUð2Þ∋U∶zA↦ðUzÞA ¼ UA

BzB. Elements of SUð2Þ
are both unimodular and Hermitian, thus implying that
both the antisymmetric ϵ tensor and the Hermitian metric
δAĀ commute with the group action. We can thus invariantly
move the spinor indices according to the following
scheme6:

½zj ¼ zA ¼ ϵBAzB; jzi ¼ zA ¼ ϵABzB;

jz� ¼ zA† ¼ δAĀz̄Ā; hzj ¼ z†A ¼ δAĀz̄
Ā; ð10Þ

and hzjzi ¼ ½zjz� ¼ ∥z∥2 ¼ δAĀz
Az̄Ā denotes the corre-

sponding SUð2Þ norm. Notice also that the intertwin-
ing maps (10) generalize naturally to any higher rank
spinor TABC���.
We now use these SUð2Þ spinors to parametrize

both holonomy and flux. The flux l½b� is an element
of suð2Þ, it defines an anti-Hermitian 2 × 2 matrix
l½b� ¼ lA

B½b� ¼ li½b�τABi, and thus it as two orthogonal
eigenspinors jzi ¼ zA and jz� ¼ zA† . Their normalization is
free, and we can conveniently choose it to measure the
metrical length of b in units of the Planck length lP,

l½b� ¼ þlP

4i
ðjzihzj − jz�½zjÞ; lAB½b� ¼ þlP

2i
zðAz

†
BÞ;

ð11Þ

where ðA � � �Þ denotes symmetrization of all intermediate
indices. Normalized like this, the spinors are unique up to
an overall Uð1Þ transformation zA↦eiΩzA. They belong to
the SUð2Þ frame at the initial point. In the frame at the final
point (8) we can find another pair of diagonalizing spinors,

l
~
½b� ¼ −

lP

4i
ðjz

~
ihz

~
j − jz

~
�½z
~
jÞ; l

~
AB½b� ¼ −

lP

2i
z
~
ðAz

~

†
BÞ:

ð12Þ

The holonomymaps the flux l½b� at the initial point into the
flux l

~
½b� at the final point, Eq. (8) gives the precise relation.

The spinors are unique up to an overall phase, and therefore
Eq. (8) translates into the following condition:

∃Φ ∈ R∶z
~

A ¼ eiΦhAB½b�zB: ð13Þ

There is thus an SUð2Þ transformation that maps one spinor
into the other, hence

C ¼ ∥z
~
∥2 − ∥z∥2 ¼ 0: ð14Þ

This constraint imposes that the length of the bone is the
same from whatever side we look at it, we call it the length
matching constraint. We can now invert Eq. (13) thus
providing a parametrization of the holonomy in terms of
the spinors,

h ¼
e−iΦjz

~
ihzj þ eiΦjz

~
�½zj

∥z
~
∥∥z∥

≡ hAB ¼
e−iΦz

~

Az†B þ e−iΦz
~

A
†
zB

∥z∥∥z
~
∥

:

ð15Þ
So far we have just described a way to parametrize both
holonomy and flux by a pair of spinors, but the spinorial
formalism extends further. It can also capture the Poisson
algebra of T�SUð2Þ. The symplectic structure for two pairs
of harmonic oscillators

fz†A; zBg ¼ i
ℏ
δBA; fz

~

†
A
; z
~

Bg ¼ −
i
ℏ
δBA; ð16Þ

induce commutation relations for holonomies (15) and
fluxes (11),

fhAB; hCDg ¼ þ 2

ℏlP
∥z∥−4∥z

~
∥−2CϵAClBD

−
2

ℏlP
∥z
~
∥−4∥z∥−2CεBDl

~

AC; ð17aÞ

fli; hABg ¼ þlP

ℏ
hACτCBi; ð17bÞ

fli;ljg ¼ þlP

ℏ
ϵij

mlm: ð17cÞ

On the constraint hypersurface C ¼ 0 of the length match-
ing constraint (14), these commutation relations reduce
to the symplectic structure of T�SUð2Þ, as given in (9). The
Hamiltonian vector field XC ¼ fC; ·g generates a flow
inside the constraint hypersurface that leaves both holon-
omy (6) and flux (7) unchanged,

expðφℏXCÞzA ¼ e−iφzA; expðφℏXCÞz
~

A ¼ e−iφz
~

A:

ð18Þ
Performing a symplectic quotient, thus projecting the
orbits generated by C into a point, we arrive at almost all
of the original phase space, exempt only of the submanifold
To ≔ fðh; XÞ ∈ SUð2Þ × suð2Þ≃ T�SUð2ÞjX ¼ 0g of
vanishing flux, where we reach a coordinate singularity.
In other words ðC2 × C2Þ==C ¼ T�SUð2Þ − To.

6We give the only nonvanishing components of the invariant
tensors: δ00̄ ¼ 1 ¼ δ11̄ and ϵ01 ¼ 1 ¼ −ϵ10; the inverse of the ϵ
tensor is defined implicitly: ϵBCϵAC ¼ ϵA

B ¼ δBA.
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III. A SPINORIAL ACTION FOR
DISCRETIZED GRAVITY

A. Discretization and partial continuum limit

The last section studied the kinematical structure of
three-dimensional Euclidean gravity on a simplicial lattice.
Now, we introduce the dynamics of the theory as derived
from an action variation. This action is the key novelty of
the paper and is based on what has been developed for the
(3þ 1)-dimensional case in [13]. The derivation starts from
a simplicial discretization of the action (1), but eventually
yields again a continuum theory. This is possible through a
partial continuum limit. The resulting action is a one-
dimensional integral over the edges of the discretization.
The three-dimensional action integral thus turns into a sum
over one-dimensional line integrals.
We start with the discretization of the action (1) over

the simplicial complex. This can be done with remarkable
ease [18] and yields a sum over wedges,

SM½e; A� ¼ −
ℏ
lP

Z
M
ei∧Fi ≈ −

ℏ
lP

X
w∶ wedges

Z
bw

ei

Z
w
Fi:

ð19Þ
Here, we have split every spin-foam face f into a sum over
wedges, f ¼ ∪N

i¼1wi. Figure 1 gives an illustration of the
geometry: A wedge w [29] is a triangular surface lying
inside a spin-foam face f, two of its corners rest on an edge,
and the third belongs to the bone bw dual to w. Both bw and
w carry an orientation that agrees with the orientation ofM:
If the pair of tangent vectors ðX; YÞ is positively oriented in
w, and Z is positively oriented in bw, the triple ðX; Y; ZÞ is
positively oriented inM. The sum goes over only one of the
two possible orientations of bw.
The main idea of this section is to study a limiting

process where the number of wedges goes to infinity. The
result will turn the sum into an integral and give us a
continuous action on each spin-foam face. For the moment
let us study only one particular wedge wo appearing in this
sum. We then take the SUð2Þ holonomy-flux variables and
use them to parametrize the discretized action. For the flux
the situation is immediate, and looking back7 at (7) we
trivially have Z

bwo

e ¼ l½bwo
�: ð20Þ

For the second piece, the curvature term
R
wo
F in the

action, we use the holonomy as an approximation. Consider
first the differential of the holonomy under variations of
the underlying path. Let γε∶ ½0; 1� → M; s↦γεðsÞ be an ε-
parameter family of paths. Taking derivatives with respect

to s and ε we obtain the tangent vectors δγεðsÞ ¼ d
dε γεðsÞ ∈

TγεðsÞM and γ0εðsÞ ¼ d
ds γεðsÞ ∈ TγεðsÞM. Simplifying our

notation we write δγ ≡ δγε¼0 and equally for all other
quantities at ε ¼ 0. We can then find the variation of the
holonomy directly from its defining differential equation,

d
ds

hγεðsÞ ¼ −AγεðsÞðγ0εÞhγεðsÞ: ð21Þ

This works as follows: We just take the differential of
(21) with respect to ε, multiply everything by h−1γεðsÞ, and
integrate the resulting equation from s ¼ 0 to s ¼ 1. A
partial integration eventually yields the desired variation of
the holonomy,

d
dε

����
ε¼0

hγεð1Þ ¼ −Aγð1ÞðδγÞhγð1Þ þ hγð1ÞAγð0ÞðδγÞ

þ
Z

1

0

dshγð1Þh−1γðsÞFγðsÞðγ0; δγÞhγðsÞ: ð22Þ

Consider now the boundary ∂f of the underlying spin-
foam face. This is a one-dimensional loop α∶ ½0; 1� →
M; t↦αðtÞ, parametrized by some t ∈ ½0; 1�. The boundary
of the wedge touches this loop in a small segment αðto; to þ
ΔtÞ ⊂ ∂wo corresponding to some interval ½to; to þ Δt� in t.
Two more sides bound the wedge wo, these are the half
links γto and γtoþΔt: The path γt ⊂ f connects the point αðtÞ
on the boundary of f with the bone dual to the face: γtð0Þ ¼
αðtÞ and γtð1Þ ¼ bwo

∩f. Figures 1 and 2 should further
clarify the situation.
Next, we take the holonomy hγt ¼ Pexpð− R

γt
AÞ along

the connecting link and study its velocity as we move
forward in t. This gives the infinitesimal change of hγt
under a variation γt → γt þ εδγt of the underlying path—a
derivative just as in (22). The variation of the path vanishes
at t ¼ 1, because all paths meet at the center of the spin-
foam face: ∀t; t0 ∈ ½0; 1�∶ γtð1Þ ¼ γt0 ð1Þ; thus d

dt γtð1Þ ¼ 0,
and hence

d
dt
hγtð1Þ − hγtð1ÞAγtð0Þ

�
d
dt
γt

�

¼
Z

1

0

dshγtð1Þh
−1
γtðsÞFγtðsÞ

�
d
ds

γtðsÞ;
d
dt
γtðsÞ

�
hγtðsÞ: ð23Þ

We can now use this equation to write the smeared
curvature tensor as the covariant time derivative of the
link holonomy,

h−1γtð1Þ
D
dt
hγtð1Þ ≡ h−1γtð1Þ

�
d
dt
hγtð1Þ − hγtð1ÞAαðtÞð _αÞ

�

¼
Z

1

0

dsh−1γtðsÞFγtðsÞ

�
d
ds

γtðsÞ;
d
dt
γtðsÞ

�
hγtðsÞ: ð24Þ

Let us now isolate the contribution Swo
to the discretized

action (19) coming from the wedge wo. Inserting our

7Equation (7) contains additional holonomies, and here we
have dropped them to keep our formulas simple; adding them
would not affect our final result.
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curvature formula (24) into the discretized action (19) we
find that each wedge adds the term

Swo
≈ −

2ℏΔt
lP

lAB½bwo
�
�
h−1γto ð1Þ

D
dt
hγto ð1Þ

�
AB ð25Þ

to the total action (19). This approximation improves as the
wedge shrinks to a line, where it becomes exact. For the
flux lAB½bwo

�, we can now find a diagonalizing spinor zA

just as in Eq. (11) above. Since this spinor belongs to the
frame at t ¼ to, it is better to write zA ¼ zAðtoÞ, and we get

lAB½bwo
� ¼ lP

2i
zðAðtoÞz†BÞðtoÞ: ð26Þ

We can repeat this construction for all other values of t, thus
obtaining a map zA∶ ½0; 1� → C2; t↦zAðtÞ. For each value
of t, the spinor is unique up to an overall phase. We can
always choose this phase such that the spinor zAðtÞ is
continuous in t. It should also respect the periodicity of the
underlying loop α, and hence zAð0Þ¼! zAð1Þ.
We now turn to the link holonomy hγt connecting αðtÞ

with the center of the spin-foam face f. We introduce an
additional spinorial field wA∶ ½0; 1� → C2; t↦wAðtÞ in the
frame at the center bwo

∩f of the face and use the pair
ðzA; wAÞ of spinors to parametrize the connecting holon-
omy. Going back to (15) we get the precise relation

½hγtð1Þ�AB ¼ wAðtÞz†BðtÞ þ wA
† ðtÞzBðtÞ

∥wðtÞ∥∥zðtÞ∥ : ð27Þ

Just as zAðtÞ also wAðtÞ shall be both continuous and
periodic in t: wAð0Þ ¼ wAð1Þ. Compared to (15) we have
ignored the possibility of a relative phase Φ between zA

and wA. Setting Φ ¼ 0 does not affect our final result. The
spinors zA and wA are not independent, and once again we
must respect the length matching constraint (14),

C ¼ ∥w∥2 − ∥z∥2¼! 0: ð28Þ
There is a subtlety with the covariant time derivative

of these spinors: zAðtÞ belongs to the frame at αðtÞ, while
wAðtÞ is a spinor living at the center of the spin-foam
face. The tangent vector d

dt γtðsÞ vanishes at s ¼ 1 because
γtðs ¼ 1Þ is the same for all values of t—this is just a point
in the center of the spin-foam face. On the other hand,
γtð0Þ ¼ αðtÞ, and hence

D
dt
zAðtÞ ¼ _zAðtÞ þ Ai

μðαðtÞÞ _αμðtÞτABizBðtÞ;

but
D
dt
wAðtÞ ¼ _wAðtÞ: ð29Þ

Once again αðtÞ denotes the loop bounding the spin-foam
face f, _αμðtÞ is its tangent vector, while Ai

μ are the SUð2Þ
connection components with respect to the canonical
generators fτigi¼1;2;3 of suð2Þ (2iτi are the usual Pauli
matrices).
Inserting the velocities (29) together with Eqs. (27)

and (26) into our expression for the wedge action (25)
we eventually get

Swo
¼ iℏΔt

2

�
∥z∥2

∥w∥2
w†
A _w

A −
∥z∥2

∥w∥2
wA _wA

†

þ zA
D
dt
zA† − z†A

D
dt
zA
�����

t¼to

: ð30Þ

Let us now repeat this construction for all wedges wi
appearing in the decomposition of the spin-foam face
f ¼ ∪N

i¼1wi. The discretization should be uniform in t:
We can always choose the t coordinate such that the ith
wedge wi intersects the boundary ∂f in the t interval
½i−1N ; i

N�. The difference Δt thus represents the fraction N−1.
Sending N → ∞ leads us to an integral over the entire spin-
foam face,

Sf ¼
iℏ
2

Z
1

0

dt

�
∥z∥2

∥w∥2
w†
A _w

A −
∥z∥2

∥w∥2
wA _wA

†

þ zA
D
dt
zA† − z†A

D
dt
zA
�
: ð31Þ

Functional variations of the spinors must respect the length
matching constraint (28). We can account for this C ¼ 0
constraint by introducing a Lagrange multiplier φ and
adding the term φC to the action. Notice now that on the

FIG. 2. Going from t to tþ Δt we can probe an infinitesimal
wedge, the boundary of which has two parts. The first part
belongs to the edge and has a tangent vector _α. The second part
(the triangular line in the picture) is a link inside the face and
splits into two halves. Its “upper” part we call γtþΔt, while the
lower half is γt, and putting them together determines zAðtþ ΔtÞ:
The spinor zAðtþ ΔtÞ is the parallel transport of zAðtÞ along the
connecting link γ−1tþΔt∘γt modulo an overall phase Φðtþ ΔtÞ.
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constraint hypersurface C ¼ 0, the variation of the fraction
∥z∥2=∥w∥2 turns into the variation of the constraint itself,

δ

�
∥z∥2

∥w∥2

�����
C¼0

¼ −
δC
∥z∥2

: ð32Þ

Therefore, variations of ∥z∥2=∥w∥2 just shift the value of
the Lagrange multiplier φ. In other words, we can ignore
these two fractions and work with a simplified action
instead,

Sf½z; w;φ; A� ¼
iℏ
2

Z
1

0

dt

�
w†
A _w

A − wA _wA
† þ zA

D
dt
zA† − z†A

D
dt
zA þ 2iφð∥z∥2 − ∥w∥2Þ

�

¼ −iℏ
Z

1

0

dt
�
z†A

D
dt
zA − w†

A _w
A − iφð∥z∥2 − ∥w∥2Þ

�
: ð33Þ

The last step involved a partial integration, which, thanks to
the periodicity of the spinors, does not yield any additional
boundary terms.
Each spin-foam face contributes through Eq. (33) to the

total action (19). Equation (33) is a functional that depends
on three elements: the spinors zA and wA, the gauge
connection A, and a Uð1Þ angle φ. Let us now repeat
the construction for the entire simplicial decomposition. We
thus have spinor fields zAf∶ ∂f → C2, wA

f∶ ∂f → C2, and a
Uð1Þ angle φf∶ ∂f → R attached to each face f. The
SUð2Þ connection AeðtÞ ¼ AμðeðtÞÞ_eμðtÞ ∈ suð2Þ belongs
to the edges e of the discretization, where _eðtÞ ∈ TeðtÞM
denotes the corresponding tangent vector. The boundary
conditions are such that all spinors are continuous once we
go around the spin-foam face (the angle φf must only be
periodic modulo 2π). We thus get the following action for
the discretized manifold M,

SM½zf1 ; zf2 ;…;wf1 ;wf2 ;…;φf1 ;φf2 ;…;Ae1 ;Ae2 ;…�
≡SM½z;w;φ;A�

¼−iℏ
X
f

I
∂f
ðz†fADzAf −w†

fAdw
A
f

− dtiφfð∥zf∥2−∥wf∥2ÞÞ

¼−iℏ
X
f

I
∂f
ðhzfjDjzfi− hwfjdjwfi

− dtiφfð∥zf∥2−∥wf∥2ÞÞ: ð34Þ

The action does not care about the value of the connection
in the “bulk”; it only probes the connection along the edges
through the covariant t derivative,

D
dt
zAðtÞ ¼ _zAðtÞ þ Ai

eðtÞτABizBðtÞ; with

Ai
eðtÞ ¼ Ai

μðeðtÞÞ_eμðtÞ;
ð35Þ

where t parametrizes the edge e, and _eμðtÞ denotes its
tangent vector.

B. Equations of motion and gauge symmetries

Now that we have a continuous action (34) for the
discretized manifold we have to find its extremum, identify
the equations of motion, and compare their solutions
with those (2) of the continuum theory. All fields in the
action (34)—the spinors, the gauge connection Ai, and the
Lagrange multipliers φ—have support only on the one-
dimensional edges of the discretization. The resulting
equations of motion are therefore all local in t. This is a
huge simplification compared to other discretization
schemes, where one has to deal with difference equations
instead (see for instance [30–32]). Here, all fields are
continuous along the edges of the discretization.
Our analysis of the action variation splits into four steps:

First of all, we give the evolution equations along the edges
of the discretization, we then study the constraint equations,
and eventually we speak about the canonical formalism and
the gauge symmetries of the theory.
(i) Evolution equations. We start with the evolution

equations for the spinors. The spinor fields zAf and wA
f only

appear in the corresponding face action Sf½zf; wf;φf; A�.
Its action variation yields the evolution equations,

D
dt
zA ¼ iφzA; and

d
dt
wA ¼ iφwA; ð36Þ

where we have dropped the face label zAf ≡ zA for sim-
plicity. We can immediately integrate these equations. The
holonomy parallel transports the z spinors up to an overall
phase, and this phase also turns the w spinors around,

zAðtÞ ¼ eiΦðtÞUA
BðtÞzBð0Þ; wAðtÞ ¼ eiΦðtÞwAð0Þ: ð37Þ

We have introduced some new elements here: UðtÞ is the
SUð2Þ holonomy around the boundary of the spin-foam
face, from t0 ¼ 0 to t1 ¼ t, while the integral over the
Lagrange multiplier φ gives the overall angle ΦðtÞ,

UA
BðtÞ ¼ Pexp

�
−
Z

t

0

dsAμðαðsÞÞ _αμðsÞ
�

A

B
;

and ΦðtÞ ¼
Z

t

0

dsφðsÞ: ð38Þ
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Furthermore, α∶ ½0; 1� → M bounds the spin-foam face f,
and the orientation of α agrees with the induced orientation
of ∂f.
Let us now see what happens once we go around

the spin-foam face and close αðtÞ, hence forming a loop.
The wA spinors are periodic in t, and looking back at (37)
and (38), we see this immediately implies that

∀f∶∃nf ∈ Z∶
Z
∂f
dtφf ¼ 2πnf: ð39Þ

This, together with the periodic boundary conditions for the
zA spinors, gives us an eigenvalue equation for the SUð2Þ
holonomy around the bounding loop

zAð0Þ ¼ UA
Bð1ÞzBð0Þ: ð40Þ

Having one twice degenerate eigenvalue, this SUð2Þ
element can only be the identity: Uð1Þ ¼ 1. This must
be true for all spin-foam faces appearing in the simplicial
complex; hence

∀f∶hAB½∂f� ≔ Pexp

�
−
I
∂f
A

�
A

B
¼ δAB: ð41Þ

This is the discrete analogue of the flatness condition
Fi

μν ¼ 0, i.e. Eq. (2b), because the holonomy well approx-
imates the curvature in the spin-foam face f: hðABÞ½∂f�≈

R
f F

AB. We have thus recovered already one-half of the
equations of motion (2) of the continuum theory. What
about the other half, that is the vanishing of torsion
D½μeiν� ¼ 0 as implied by Eq. (2a)? In the continuum,
the vanishing of torsion follows from the connection
variation. The same happens in the discrete: The variation
of the spinor action (34) with respect to the SUð2Þ
connection AeðtÞ on the edges e will give us the discrete
version of the torsionless condition. This is the Gauß law,
which brings us to the next step of our analysis:
(ii) Constraint equations. We now study the constraint

equations of the theory, and we start with the Gauß law. We
obtain it from the variation of the action (34) with respect to
the gauge potential Ai

eðtÞ on the edges [as defined in (35) as
the SUð2Þ connection contracted with the tangent vector
_eμ]. This gauge potential only appears in the covariant
derivative D of the z spinors into the direction of the edge.
Every edge bounds three faces f, each of which carries its
own zf spinor. There are thus three such differentials
D=dtzAf for each value of t. Since we also have the
wf spinors, there are altogether six spinors per edge.
To keep our notation simple, let us only study one edge
e in the triangulation and call the corresponding spinors
ðzAf ; wA

f Þf¼1;2;3, where f ¼ 1; 2; 3 label the three adjacent
faces. The edge e thus contributes to the full action (34) for
the discretized manifold M through the expression

Se½z; w;φ; Ae� ¼ −iℏ
X3
f¼1

Z
t1

to

dt

�
z†fA

d
dt
zAf þ z†fAτ

A
BizBfA

i
eðtÞ − w†

fA
d
dt
wA
f − iφfð∥zf∥ − ∥wf∥2Þ

�

≡ −iℏ
X3
f¼1

Z
t1

to

dt
��

zf

���� ddt
����zf

�
þ hzfjτijzfiAi

eðtÞ −
�
wf

���� ddt
����wf

�
− iφfð∥zf∥ − ∥wf∥2Þ

�
; ð42Þ

which we shall call the edge action. Note that an implicit
assumption is hiding here: There are three spin-foam faces
meeting at the edge e (again we refer to Fig. 1 for an
illustration), and each of them carries an orientation. These
orientations may not match the orientation of the edge e,
while in Eq. (42) we have implicitly assumed so. If the
orientations did not match, relative sign factors would be
necessary. We could then, however, always absorb those
factors of �1 into a redefinition of the spinors: The
replacement zA → zA† would bring us back to (42), modified
only by a boundary term that is irrelevant for the following
argument.
Variation of (42) with respect to the connection Ai

e gives
us a constraint: The three internal vectors li½b�, defined as
in (26), must close to form a triangle,

Gi ≔
ℏ
lP

X3
f¼1

li½bf�t ¼ iℏ
X3
f¼1

τABiz
†
fAðtÞzfBðtÞ ¼ 0: ð43Þ

The vanishing of Gi has a clean geometric interpretation.
It gives us a discretization of the torsionless equation
D½μeiν� ¼ 0, i.e. Eq. (2), smeared over the triangle dual
to the edge. Indeed, there is the non-Abelian version of
Stoke’s theorem, and it tells us that for any triangle τ
the fluxes through its bounding sides sum up to zero:R
τ T

i ¼ R
τDei ¼ R

∂τ ei ¼
P

b⊂∂T
R
b e

i ¼P
b⊂∂Tli½b�. This

series of equations is true only in a small neighborhood,
where we can map the internal suð2Þ index i into a
common frame, reached by a family of holonomies just
as in Eq. (7). The geometric interpretation of (43) is
immediate, for the vector li½b�t ∈ R3 represents the bone
b in the internal frame at the point eðtÞ of the edge.
The three bounding sides close to form a triangle, but this

is not any triangle: it is the triangle dual to the edge mapped
into the local frame of reference. As we go along the edge
and move forward in t, this triangle preserves its shape,
and the evolution equations (42) for the spinors zAf ðtÞ just
rigidly turn it around.
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There is one more constraint to be studied. The variation
of the Lagrange multiplier φ yields the length matching
condition (28). Once again its geometrical meaning is
immediate. The constraint C ¼ 0 tells us that the w spinors
and z spinors describe the very same geometrical object, the
triad smeared over the bounding bones, evaluated just in
two different frames, one at the center of the spinfoam face
and the other attached to its boundary. There is a unique
SUð2Þ element (27) that maps one of these spinors into
the other, and it gives us the parallel transport from the
boundary of the spin-foam face toward its center.
(iii) Canonical formalism. Looking at the edge action,

we can immediately read off the symplectic structure. The
elementary Poisson brackets are

fz†fA; zBf0 g ¼ þ i
ℏ
δff0δ

B
A; fw†

fA; w
B
f0 g ¼ −

i
ℏ
δff0δ

B
A;

ð44Þ

while all mutual Poisson brackets between the w and z
spinors vanish. Notice that this agrees with our conventions
from our introductory section II C. Equation (16) intro-
duced the spinorial Poisson brackets essentially by hand,
and here they naturally fall out of the formalism.
The evolution equations (36) are generated by a

Hamiltonian. This t-dependent Hamiltonian is a sum over
both Gauß’s law and the triple of length matching
constraints,

Ht ¼ −iℏ
X3
f¼1

½AeðtÞiτABiz†fAzfB þ iφfð∥zf∥2 − ∥wf∥2Þ�:

ð45Þ
That the Hamiltonian is a sum over constraints, and hence
vanishes, should not surprise us. Indeed, the action is a
prototypical example of timeless systems [19], invariant
under reparametrizations in t. We are thus dealing with
a general covariant system, systems for which the
Hamiltonian always turns into a sum over constraints.
Although the Hamiltonian vanishes, this does not

mean that the evolution equations are totally trivial. If
F∶ ðC2 × C2Þ3 → C; ðzAf ; wA

f Þf¼1;2;3↦F½ðzAf ; wA
f Þf¼1;2;3� is

a function on the phase space of an edge, the Hamilton
equations imply, in fact,

d
dt
Ft ¼ fH;Fgt ¼ XH½F�t ≠

in general
0: ð46Þ

The action (42) describes 12 harmonic oscillators
coupled by six first-class constraints. The first three
of them (43) impose the vanishing of the total “angular
momentum” of the system, and the other three— these
are the length matching conditions (28) on the faces—
require that the spinors have equal “energy”: Cf ¼
∥zf∥2 − ∥wf∥2 ¼ 0. This “energy condition” resonates

with recent developments of Frodden, Ghosh, and Perez
[33] and Bianchi [34], who argued that in four dimensions
the horizon area measures the local energy of a stationary
observer at a short distance from the horizon. In three
dimensions area becomes length, and indeed the length
L½b� ¼ lP∥w∥2 of the bones b linearly appear in our edge
Hamiltonian (45). At the moment, this analogy is very
vague and deserves a more profound investigation.
(iv) Gauge symmetries. What are the gauge symmetries

of the system? First of all, there is the one-dimensional
diffeomorphism invariance of the action. Replacing the t
coordinate by ~tðtÞ leaves the action invariant, provided we
also change the Lagrange multipliers appropriately,

~Ai
eð~tÞ ¼

dt
d~t
Ai
eðtÞ; and ~φð~tÞ ¼ dt

d~t
φðtÞ: ð47Þ

This gives us the first gauge symmetry. Then, there are
those symmetries that are generated by the Hamiltonian
vector field of the constraints of the system: In fact,
the length matching constraint generates Uð1Þ gauge
transformations,

~zAðtÞ ¼ e−iλðtÞzAðtÞ ¼ expðλðtÞℏXCÞzAjt; ð48aÞ

~wAðtÞ ¼ e−iλðtÞwAðtÞ ¼ expðλðtÞℏXCÞwAjt; ð48bÞ

where XC ¼ fC; ·g is the Hamiltonian vector field of the
constraint. These generators transform each ðz; wÞ pair of
spinors independently, so we rather have an Uð1Þ3 sym-
metry per edge. Equations (48) alone would not preserve
the Lagrangian (42). The Uð1Þ gauge symmetry also shifts
the Lagrange multipliers, which transform as Uð1Þ gauge
potentials,

~φfðtÞ ¼ φfðtÞ þ _λfðtÞ: ð49Þ

The internal SUð2Þ invariance gives us another local
gauge symmetry. The Gauß constraint Gi generates, in
fact, local SUð2Þ gauge transformations gðtÞ ∈ SUð2Þ and
rigidly moves the spinors around,

~zAf ðtÞ ¼ expð−ΛiðtÞXGi
ÞzAf jt ¼ g−1ðtÞABzBf ðtÞ;

with gðtÞ ¼ expðΛiτiÞ: ð50Þ

Just as for the Uð1Þ symmetry, we also have to change the
gauge potential to keep the action invariant. The gauge
potential Ai

eðtÞ defines a SUð2Þ connection on a line, and
hence transforms inhomgenously under SUð2Þ,

~AeðtÞ¼ðρΛAÞeðtÞ≔g−1ðtÞ d
dt
gðtÞþg−1ðtÞAeðtÞgðtÞ: ð51Þ

The local SUð2Þ transformations (50), together with (51),
clearly preserve the Lagrangian (42). In summary, the
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action (42) has three local gauge symmetries: First of all,
there is the reparametrization invariance in t, next there
are Uð1Þ phase transformations for each individual pair
of ðzf; wfÞ spinors, and then there are also SUð2Þ trans-
formations for the triple of spinors ðzfÞf¼1;2;3 on an edge.
These SUð2Þ rotations move the dual triangle in internal
space, but preserve its overall shape.

IV. PATH-INTEGRAL QUANTIZATION

We are now ready to study the resulting quantum theory
and define the vacuum to vacuum amplitude hΩjΩi ¼ ZM
for the discretized manifold M as the path integral over
the exponential of the spinorial action (34), and hence study
the following expression:

ZM¼
Z

all spinorsbe
periodic in∂f

Y
f∶ faces

D½zf�D½wf�D½φf�Δψ
FP½φf�δðψ ½φf�Þ

×
Y

e∶edges
D½Ae�ΔΨ

FP½Ae�δðΨ½Ae�Þe
i
ℏSM ½z;w;φ;A�: ð52Þ

The underlying manifold M shall be closed, and the
amplitude ZM is therefore a pure number, not depending
on any boundary data. Insertions of gauge invariant
observables give the n-point functions of the theory. All
fields are supported only on the one-dimensional edges
of the discretization, and fulfill periodic boundary con-
ditions once we go around a spin-foam face. Furthermore,Q

fD½zf� with D½z� ¼ Q
t
d4zðtÞ
π2

denotes the flat integration
measure in the infinite dimensional space of spinor-valued
functions over the edges of the discretization.8 The spino-
rial action SM (34) has local Uð1Þ and SUð2Þ gauge
symmetries (48)–(51) on the edges. This necessitates a
gauge fixing, for we cannot integrate over the gauge orbits,
because this generically yields an infinity. We thus take the
integral only over a gauge fixing surface, which intersects
every gauge orbit exactly once. The gauge fixing functions
Ψ½A� and ψ ½φ� define such a gauge section, while the
corresponding Faddeev-Popov determinants, ΔΨ

FP½A� and
Δψ

FP½φ�, are needed to end up with a gauge invariant
integration measure. This also guarantees the invariance
of the resulting amplitude under small deformations of the
gauge fixing surface.

A. Step 0: Bargmann’s quantization of the
harmonic oscillator.

Before we go on and actually calculate this integral, let
us first study the kinematical structure of the resulting

quantum theory, its Hilbert space, and the operators
[6,11]. We start from the space of analytic functions
H ∈ f∶ C2 → C; z↦fðzÞ, which carry a natural represen-
tation of the classical commutation relations fz†A; zBg ¼
i
ℏ δ

B
A. Following Bargmann’s analytic quantization of the

harmonic oscillator, the zA spinor acts by multiplication,
while z†A turns into a derivative,

ðẑAfÞðzÞ ¼ zAfðzÞ; ðẑ†AfÞðzÞ ¼
∂
∂zA fðzÞ: ð53Þ

The reality conditions z̄Ā ¼ δAĀz†A uniquely determine the
inner product as the Gaußian integral,

hf; f0i ¼ 1

π2

Z
C2

d4ze−δAĀz
Az̄ĀfðzÞf0ðzÞ; ð54Þ

where d4z ¼ − 1
4
dz0dz̄0̄dz1dz̄1̄ is the flat integration

measure, and both f and f0 are analytic in C2. A short
moment of reflection reveals the Gaußian measure ∝
d4z expð−∥z∥2Þ truly respects the reality conditions:
∀f; f0 ∈ H∶ hf; ẑAf0i ¼ h ˆ̄zĀf; f0i. Next, we need a com-
plete orthonormal basis. A convenient choice is given by
the following family of polynomials:

hzjj; mi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðj −mÞ!ðjþmÞ!p ðz0Þj−mðz1Þjþm; and

hj; mjj0; m0i ¼ δjj0δmm0 : ð55Þ

Then there are the operators. The quantization of the
fluxes (7) yields the generators of angular momentum,

Li ¼ iτABi ẑAẑ
†
B ¼ −lP

−1l̂i; ð56Þ

which satisfy the usual commutation relations ½Li; Lj� ¼
iϵijmLm of suð2Þ. Another important operator is the
spinor’s norm. Any homogenous function diagonalizes
this operator, choosing a normal ordering we find, in fact,

∶∥ẑ∥2∶ ¼ 1

2
ðẑAẑ†A þ ẑ†Aẑ

AÞ ¼ zA
∂
∂zA þ 1;

thus ∶∥ẑ∥2∶jj; mi ¼ ð2jþ 1Þjj; mi: ð57Þ

This gives us the spectrum of the length operator:
Classically, each bone has a physical length given by
L½b� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
li½b�li½b�

p
, but now the z spinors parametrize the

fluxes (11), and their squared norm measures the length
of b. Choosing a normal ordering and looking back at (57),
we thus get the spectrum of the length operator

specðL̂Þ ¼
	
lP

�
jþ 1

2

�

2j∈N0

: ð58Þ
8Equally for D½Ae� and D½φf�: They are formal Lebesgue

measures in the space of suð2Þ-valued functions Ae∶ e → suð2Þ
and real-valued functions φf∶ ∂f → R, respectively.
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B. Step 1: Integration over the spinors

The integral over the spinors factorizes into a product
over the individual spin-foam faces. We take the contri-
bution from a single face, integrate over the spinors, and are
hence left with a functional that we just call Zf½φ; A�. This
functional can depend only on the SUð2Þ connection on the
edges, and the Lagrange multiplier φ imposing the length
matching condition; all other variables have been integrated
out,

Zf½A;φ�≔
Z

zAð0Þ¼zAð1Þ
wAð0Þ¼wAð1Þ

D½z�D½w�e
R
∂f dtðz

†
A
D
dtz

A−w†
A
d
dtw

A−iφð∥z∥2−∥w∥2ÞÞ
:

ð59Þ
If we now want to recover the path integral for the full
discretized manifold, we just take the product over all face
amplitudes (59) and integrate over all remaining configu-
ration variables,

ZM ¼
Z Y

f∶ faces

D½φf�Δψ
FP½φf�δðψ ½φf�Þ

×
Y

e∶ edges

D½Ae�ΔΨ
FP½Ae�δðΨ½Ae�ÞZf½φf; A�: ð60Þ

The Lagrangian (33) for the face action Sf½z; w;φ; A� is
quadratic in the spinors. This considerably simplifies the
evaluation of the path integral Zf½φ; A�. We only have to
calculate an infinite product of Gaußian integrals. This
eventually yields a trace over the underlying Hilbert space,

Zf½A;φ� ¼ TrH⊗H

�
Pexp

�
−
Z
∂f
dtðAiðtÞτABiẑAẑ†B

þ iφðtÞð∶∥ẑ∥2∶ − ∶∥ŵ∥2∶ÞÞ
��

: ð61Þ

The trace goes over an orthonormal basis in the Hilbert
space H ⊗ H∋fðz; wÞ of analytic functions in the z and w
spinors, square integrable with respect to the inner product

(54). In terms of the spin ðj; mÞ-basis (55) this trace turns
into an infinite sum,

Zf½A;φ� ¼
X∞
2j¼0

Xj

m¼−j

X∞
2l¼0

ð2lþ 1Þhj; mjPexp

×

�
i
Z
∂f
dtAiðtÞLi

�
jj; mie−i

R
∂f dtφðtÞð2j−2lÞ:

ð62Þ

C. Step 2: Integration over the Uð1Þ gauge potential

The next step is to perform the integrals over the gauge
potentials. Let us first do the integral over φ. This requires a
gauge fixing, and we choose the following:

ψ ½φ�ðtÞ ¼ d
dt
φðtÞ ¼ 0: ð63Þ

The variation δλ ¼ d
dε jε¼0 of the gauge fixing condition (63)

under an infinitesimal Uð1Þ gauge transformation φελ ¼
φþ ε_λ determines the Faddeev-Popov determinant Δψ

FP½φ�
as the functional determinant of the following differential
operator m̂:

m̂½λ� ≔ d
dε

����
ε¼0

ψ ½φελ�ðtÞ ¼
d2

dt2
λðtÞ: ð64Þ

The eigenvectors of m̂ are clearly independent of φ, and
so is the Faddeev-Popov determinant Δψ

FP½φ�, which can
therefore only affect the overall normalization of the
measure. The gauge potential φ determines a Uð1Þ angle,
periodic in 2π. We require that the integration measure is
normalized, which in turn implies Δψ

FP½φ� ¼ ð2πÞ−1 once
we restrict the integral over just one period of φ. The
resulting integral gives the Dirac distribution9 of the
holonomy around the spin-foam face,

Zf½A� ¼
Z

D½φ�Δψ
FP½φ�δðψ ½φ�ÞZf½A;φ�

¼ 1

2π

X∞
2l¼0

X∞
2j¼0

Xj

m¼−j

Z
2π

0

dφe−φð2j−2lÞð2lþ 1Þhj; mjPexp
�
i
Z
∂f
dtAiðtÞLi

�
jj; mi

¼
X∞
2j¼0

Xj

m¼−j
ð2jþ 1Þhj; mjPexp

�
i
Z
∂f
dtAiðtÞLi

�
jj; mi ¼ δSUð2Þ

�
Pexp

�
−
Z
∂f

dtAiðtÞτi
��

; ð65Þ

where the last equality follows from the Peter-Weyl theorem.

D. Step 3: Integral over the SUð2Þ gauge potential on the edges

We are now left to perform the integral over the SUð2Þ connection. Our strategy is to solve this path integral on each edge
separately. The calculation can be seen as a one-dimensional analogue of what has been found in [35,36]. In fact, Bianchi’s

9The Dirac distribution evaluates any f∶ SUð2Þ → C at the identity 1:
R
SUð2Þ dμHaarðUÞfðUÞδSUð2ÞðUÞ ¼ fð1Þ, where dμHaarðUÞ is

the normalized Haar measure on the group.
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conjecture [35] of equivalence between the Ashtekar-
Lewandowski measure [16,18] on a fixed graph and the
canonical measure in the moduli space of flat connections
was one of the key motivating ideas behind this work.
Simplifying our notation, let us first parametrize each

edge e; e0;…, by a t coordinate running from 0 to 1. Every
edge carries its own SUð2Þ gauge potential AeðtÞ ¼
AμðeðtÞÞ_eμðtÞ, defined as in (35). We now choose our
gauge condition and require that for every edge e the gauge
potential be constant in t,

∀e∶ Ψi½Ae�ðtÞ ¼
d
dt
Ai
eðtÞ ¼ 0: ð66Þ

Notice that this is only a partial gauge fixing.10 For a single
edge e, residual gauge transformations can shift the
connection Ae ≡ A to any other constant value ~A. The
proof is immediate; consider the gauge element,

gðtÞ ¼ e−Atgoe
~At; go ∈ SUð2Þ; and A; ~A ∈ suð2Þ:

ð67Þ

The gauge transformed connection yields the suð2Þ
element ~A, which is again constant in t,

~A ¼ g−1ðtÞ_gðtÞ þ g−1ðtÞAgðtÞ: ð68Þ
A typical gauge invariant observable is the Wilson loop—
the trace of the holonomy around the boundary of the spin-
foam face. If the gauge condition (66) holds on all edges,
we have, in fact,

Tr

�
Pexp

�
−
Z
∂f

A

��
¼ Tr

�
P
Y

e∈∂f
e−Ae

�
; ð69Þ

where P
Q

denotes the path ordered product.11

We can impose the gauge fixing condition (66) globally,
on each individual edge of the discretization. This can be
seen as follows. Start with some generic gauge potential,
not subject to (66). We now need a gauge transformation
gðtÞ mapping AiðtÞ into an element ~Ai of the constraint
hypersurface: Ψi½ ~A�ðtÞ ¼ d

dt
~AiðtÞ ¼ 0. We compute the

parallel transport UðtÞ ¼ Pexpð− R
t
0 dtAðtÞÞ along the

edge, and define the SUð2Þ angle ϕi as the logarithm of
the holonomy along the entire edge: Uð1Þ ¼ expð−ϕiτiÞ.
The gauge transformation

gðtÞ ¼ UðtÞetϕiτi ð70Þ
fulfills our requirement, for it turns the connection into a
constant suð2Þ element,

~AðtÞ ¼ g−1ðtÞ_gðtÞ þ g−1ðtÞAðtÞgðtÞ ¼ ϕiτi: ð71Þ

This enables us to solve Ψi½A� ¼ 0 all along the edge. In
fact, we can achieve (66) on all edges e; e0;…, at the same
time, simply because the gauge transformation (70) van-
ishes at the edge’s source and target points: gð0Þ ¼
gð1Þ ¼ 1.
The residual gauge transformations (67) preserve the

gauge fixing condition Ψi½A� ¼ 0. The Faddeev-Popov
procedure does not remove these “horizontal” transforma-
tions, it only deals with transversal gauge transformations
that take us out of the gauge fixing surface. Transversal
gauge transformations vanish at the two boundary points
t ¼ 0; 1 of the edge eðtÞ, but not in between. We can now
split any gauge element ΛiðtÞ∶ ½0; 1�↦suð2Þ into its
horizontal and transversal components: ΛiðtÞ ¼ Λi

∥ðtÞ þ
Λi⊥ðtÞ, where Λi

∥ðtÞ maps the gauge fixing surface into
itself (67), while Λi⊥ðtÞ deforms it nontrivially.
Since any transversal gauge element ΛiðtÞ⊥ ≡ ΛiðtÞ

vanishes at the boundary, it implicitly defines a periodic
function Λiðtþ nÞ ¼ ΛiðtÞ on the real line. We can thus
introduce Fourier modes e2πint and write

ΛiðtÞ ¼
X∞
n¼1

Λi
ne2πint þ c:c:; Λið0Þ ¼ 0; Λi

n ∈ C3;

ð72Þ
where c.c. denotes the complex conjugate of all preceding
terms. Notice the absence of the n ¼ 0 mode, which would
generate residual gauge transformations preserving the
gauge fixing surface Ψi½A� ¼ 0 (66). We exclude this
constant gauge element because only the transversal modes
that map the gauge fixed connection out of the constraint
hypersurface Ψi½A� ¼ 0 can contribute to the Faddeev-
Popov determinant.
We now need the Faddeev-Popov operator M̂.

Infinitesimal gauge transformations (51) of the gauge
fixing condition (66) define this operator as

M̂i
jΛjðtÞ ¼ d

dε

����
ε¼0

ðρεΛAÞiðtÞ

¼ d2

dt2
ΛiðtÞ þ ϵijkAj d

dt
ΛkðtÞ: ð73Þ

Its eigenvalues determine the Faddeev-Popov determinant
in the space of transversal gauge elements (72). Let us do

10A complete gauge fixing condition is inconvenient, because
it would depend on the topological details of how the edges
bound another. The gauge fixing (66), on the other hand, is more
general. We can simultaneously impose it on every single edge,
no matter how the edges glue together. The proof follows in a
minute.

11Let ∂f consist of edges ei∶½0; 1� → ∂M. Their orientation
agrees with the induced orientation of ∂f, and they also are
already appropriately ordered: ∀i∶ eiþ1ð0Þ ¼ eið1Þ, eNþ1 ≡ e1.
We can now define the path ordered product simply as
P
Q

N
i¼1 Uei ≔ UeNUeN−1

� � �Ue1 , where each edge carries the
holonomy e−Aei ¼ Uei ∈ SUð2Þ.
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the calculation for only one direction of Ai. Setting, without
loss of generality, Ai ¼ Aδi3, we are thus led to the
following eigenvalue equation:

0
BBB@

d2

dt2 Λ
1 − A d

dtΛ
2 ¼ EΛ1

d2

dt2 Λ
2 þ A d

dtΛ
1 ¼ EΛ2

d2

dt2 Λ
3 ¼ EΛ3

1
CCCA: ð74Þ

The eigenvectors are ΛðnÞ
� and ΛðnÞ

z with corresponding

eigenvalues EðnÞ
� and EðnÞ

z , respectively,

ΛðnÞ
� ðtÞ ¼ 1ffiffiffi

2
p

0
B@

1

�i

0

1
CAe2πint; with :

EðnÞ
� ¼ −ð2πnÞ2

�
1∓ A

2πn

�
; n ∈ Z − f0g; ð75Þ

ΛðnÞ
z ðtÞ ¼

0
B@

0

0

1

1
CAe2πint; with :

EðnÞ
z ¼ −ð2πnÞ2; n ∈ Z − f0g: ð76Þ

Only transversal gauge transformations can contribute to
the Faddeev-Popov determinant, and therefore the n ¼ 0
modes do not appear in this list. The functional determinant
of M̂ is the product over all eigenvalues. This badly
diverges, but we can easily remove this infinity by looking
at a regularized expression,

ΔΨ
FP½A� ≔

det M̂jA
det M̂jA¼0

¼
Y

n∈Z−f0g

�
1 −

jAj
2πn

�
2

¼ 4sin2ðjAj
2
Þ

jAj2 :

ð77Þ

The square sinc function combines with the flat integration
measure d3A to the Haar measure of SUð2Þ. Taking the
parametrization U ¼ expð−AiτiÞ ofU ∈ SUð2Þ and setting
jAj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δijAiAj

q
we find, in fact,

d3A
4sin2ðjAj

2
Þ

jAj2 ¼ 4

3
TrðU−1dU∧U−1dU∧U−1dUÞjU¼expð−AiτiÞ

¼ 32π2dμHaarðUÞ: ð78Þ

Our gauge condition (66) has thus turned the functional
integral into an ordinary integral over the group. Absorbing
the overall normalization 32π2 into the definition of the
flat integration measure D½A� ∝ Q

t∈½0;1�d3AðtÞ we get the
following rule:

Z
D½A�ΔΨ

FP½A�δðΨ½A�Þf
�
Pexpð−

Z
e
AÞ

�

¼
Z
SUð2Þ

dμHaarðUÞfðUÞ; ð79Þ

where f∶SUð2Þ → C denotes some integrable function on
the group.
We arrive at our final result once we repeat the

calculation for all edges in the discretization. Combining
the integration formula (79) with our final expression (79)
for the face amplitude Zf½A�, we see that the path integral
ZM over the spinorial action (52) eventually assumes a very
neat form,

ZM ¼
Y

e∶ edges

Z
SUð2Þ

dμHaarðUeÞ
Y

f∶ faces

δSUð2Þ

�
P
Y

e∈∂f
Ue

�
;

ð80Þ
where P

Q
again denotes the path ordered product (see

footnote 11). Equation (80) reproduces the Ponzano-Regge
model for the simplicial manifold M. This is our final
result. It proves the equivalence between our one-
dimensional spinorial path integral (52) and the discrete
spin-foam approach [3,24,37].

V. CONCLUSION

A. Summary

This article developed two results: First of all, we wrote
the discretized Palatini action as a one-dimensional line
integral. We then took that action and used it to define
the path integral. The resulting amplitudes reproduced the
Ponzano-Regge model.
Section III gave the first result. To discretize the first-

order action, we introduced a simplicial decomposition of
the three-dimensional manifold. The equations of motion
for a discretized field theory normally give a tangled system
of difference equations. This would make it hard to speak
about the symplectic structure, the Hamiltonian, the time
evolution, and the constraint equations of the theory— all
of which are crucial elements for the quantization pro-
gram.12 Our partial continuum limit circumvents these
difficulties. On each spin-foam face we performed a
continuum limit in the t variable parametrizing the boun-
dary of the spin-foam face. The resulting action (34) is a
one-dimensional line integral over the one-skeleton of the
underlying simplicial manifold. The action is a functional
of the loop gravity spinors [5], but depends also on
connection variables. There is a SUð2Þ connection on each
edge, and a Uð1Þ connection φ for each spin-foam face.
All fields are continuous, but have support only on the

12Despite this difficulty, Hoehn and Dittrich [30–32] have
recently achieved impressive progress toward this goal.
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one-dimensional edges of the simplicial complex. The
action variation gave us the equations of motion, and we
proved agreement with the continuum theory: The Gauß
law (43) is the discrete analogue of the torsionless
equation (2a), while the evolution equations (36) imply
that the loop holonomy transports the spinors into them-
selves (41). This represents the flatness constraint (2b) in
the discrete theory. We closed the classical part with two
more comments: First of all, the equations of motion (36)
admit a Hamiltonian formulation (46). Then we also
discussed the local gauge symmetries of the theory. The
action has a diffeomorphism symmetry, since it does not
depend on the actual parametrization of the edges, but there
is also a Uð1Þ symmetry for each face, and an internal
SUð2Þ gauge symmetry.
This was our first complex of results. The second part

considered the quantization of the theory, as developed in
Sec. IV. We started with a short review showing how to
recover the loop gravity Hilbert space from the spinorial
representation [6]. The remaining part developed the path
integral for the simplicial manifold. The integral over the
spinors is easy to solve: The action (33) is quadratic in the
spinors, and the path integral reduces to an infinte product of
Gaußian integrals. Then there are the local gauge sym-
metries. We removed the redundant integrals according to
the usual Faddeev-Popov procedure. The result reduced the
functional integral to an ordinary integral, with the emer-
gence of the canonical Haar measure of SUð2Þ. Our final
expression (80) agrees with the Ponzano-Regge state sum
model [3,24,37–39] of three-dimensional quantum gravity.

B. Prospects of the formalism

Our analysis encourages further questions: What is the
physical interpretation of the Uð1Þ winding number nf as
defined in (39)? Does the edge Hamiltonian (45) introduce
a local notion of energy? Is there a way to add a
cosmological constant to the spinorial action (along the

lines of e.g. [40–42])? Can we generalize the formalism
to the Lorentzian signature, thus replacing SUð2Þ by
SUð1; 1Þ? Can we use the one-dimensional action to bring
causal sets [43] and spin foams closer together, an idea first
studied in [44,45]?
The most important question is, however, rather simple:

What does all this machinery actually tell us for the four-
dimensional Lorentzian case? So far, we only have a partial
answer: In 3+1 dimensions there is a spinorial (or rather
twistorial) formulation of SLð2;CÞ BF theory [13]. Once
again the action is a one-dimensional integral over the
edges of the discretization. This action defines a topological
theory. Additional constraints break the topological sym-
metries and bring us back to general relativity [46,47]. How
these simplicity constraints translate into conditions on
the spinors has been shown in [10,12]. These results can
lead us to a version of first-order Regge calculus in four
spacetime dimensions with spinors as the fundamental
configuration variables. Generalizing our derivation of
the Ponzano-Regge model to the four-dimensional case
would then give us a neat definition of the transition
amplitudes: We would start with the one-dimensional
spinorial path integral for SLð2;CÞ BF theory, add the
simplicity constraints, and evaluate the integral for a given
simplicial manifold. My hope is that this will improve our
understanding of the mathematical structure of loop quan-
tum gravity, its causal structure, and the continuum limit of
the theory.
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