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I show that radiative space-times are not asymptotically flat; rather, the radiation field gives rise
to holonomy at null infinity. (This was noted earlier, by Bramson.) This means that when
gravitational radiation is present, asymptotically covariantly constant vector fields do not exist.
On the other hand, according to the Bondi-Sachs construction, a weaker class of asymptotically
constant vectors does exist. Reconciling these concepts leads to a measure of the scattering of
matter by gravitational waves, that is, bulk exchanges of energy-momentum between the waves
and matter. Because these bulk effects are potentially larger than the tidal ones which have
usually been studied, they may affect the waves’ propagation more significantly, and the question
of matter’s transparency to gravitational radiation should be revisited. While in many cases
there is reason to think the waves will be only slightly affected, some situations are identified
in which the energy-momentum exchanges can be substantial enough that a closer investigation
should be made. In particular, the work here suggests that gravitational waves produced when
relativistic jets are formed might be substantially affected by passing through an inhomogeneous
medium.
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I. INTRODUCTION

The aim of this paper is to present limited but
clean results on the interaction of gravitational waves
with matter. I shall explain how waves exchange
energy-momentum with small amounts of matter in
the waves’ radiation zone. (Throughout this paper,
“matter” means anything with stress-energy; in par-
ticular, it includes electromagnetic radiation. I con-
sider only outgoing radiation; of course, one could
time-reverse the treatment to obtain results for incom-
ing waves.)
Here the radiation zone of an isolated source will be

a (usually finite, large) regime around it in which
certain elements of the space-time geometry can be
well approximated by the leading terms in the
Bondi-Sachs asymptotic expansions [1,2]. In particular
the system need not be ideally isolated, that is,
the Bondi-Sachs geometry need not approximate the
physical geometry indefinitely far out. When the
waves leave this zone (because they begin to en-
counter curvature from other sources), other physics
takes over.
Of course, it is well known that waves’ tidal effects

can alter the energy-momentum of one small body
relative to another nearby; here, however, the project
is to understand how each body’s local energy-momentum
contributes to the system’s total. Thus we are interested
in bulk energy-momentum exchanges between matter

and radiation; tidal effects will be the differentials of
these.1

The premise will be that the Bondi-Sachs formalism
gives a convincing treatment of the total energy-
momentum PBondi-Sachs

a of systems which are idealized
as perfectly isolated (that idealization being reflected
in that PBondi-Sachs

a is defined strictly at null infinity).
The aim is to extend this construction inwards, to
finite points in the radiation zone. In this sense the
work here is a step towards treating energy-momentum
quasilocally.
Another way of viewing this is as a search for a

(limited) general-relativistic analog of potential energy—
we seek a way of relating the energy-momenta of
localized objects in the radiation zone (which take values
in the cotangent bundle) to the energy-momentum of the
entire system (which exists in a sort of “cotangent space
at infinity”).
We do not know enough to solve such problems

from first principles, or even to be confident that
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1A word about the analogy with electromagnetism is in
order. When we think of electromagnetic waves encountering
matter, we usually have in mind matter which is (macroscop-
ically) neutral. Then the main macroscopic effects come
from its polarizability, which is analogous to a tidal distortion
in gravity. But the parallel with macroscopically neutral
matter is not the correct one, since mass, the relativistic
analog of charge, comes with only one sign. It would be
better to think of electromagnetic waves encountering distri-
butions of charge.
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they have solutions.2 Here the idea is not to guess at an
overarching formalism, but to use the special properties of
the radiation zone to guide us to a physically plausible
approximate treatment.
We will see that this zone has a distinctive geometry

which codes at once the gravitational radiation and the
difficulties in relating local to global measures of energy-
momentum. Examining the Bondi-Sachs construction with
this understanding will give a way to resolve those
difficulties, and so to treat energy-momentum in the
radiation zone.
This approximate treatment is useful: it clarifies con-

ceptual points about the physical interpretation of the
radiation zone and gives computations of scattering. The
core of the physics is the nonlocality of the total, general-
relativistic, energy-momentum. This is on one hand closely
connected with an (unsubtle) scaling property implied by
Sachs peeling, and on the other with the (arguably subtle)
fine gauge control provided by the Bondi-Sachs approach.
I began by characterizing the present results as limited;

this is because the treatment requires the matter perturb
the radiation-zone geometry only slightly. This will mean
that, while interesting effects will be uncovered, they will
generally be fractionally small where the treatment is
valid. The question of whether they can be more substantial
when the hypotheses here are relaxed will have to be
answered by other means. What the approach here does do
is to identify potentially interesting cases of energy-
momentum exchange.

A. Main results

The main new formulas describe how local measures of
energy-momentum in the radiation zone are related to the
total energy-momentum. For example, the contribution of a
test particle of mass μ freely falling along a geodesic γ to
the total energy-momentum will change as the particle
encounters radiation, the rate of change along the trajectory
being denoted

_γbDbðμ_γaÞ ¼ μðκ0lb − σ0mbÞðlamc −malcÞ_γb _γc
þ conjugate; ð1Þ

where the spin coefficients σ0, κ0 code the radiation, and the
Bondi-Sachs tetrad vectors la, ma its outward-propagating
transverse character. Integrating (in a suitable sense) this
will give us a measure of the scattering the particle suffers
owing to radiation.
The Bondi coordinates are ðu; r; θ;ϕÞ, where u is the

Bondi retarded time (one can think of the u ¼ constant
hypersurfaces as the outgoing wavefronts; they are null and

la ¼ ∇au), the coordinate r is an affine parameter along the
null geodesics generating those fronts, and θ, ϕ are angles.
In the asymptotic regime, one has σ0 ∼ N=r, κ0 ∼ ~ðN=r,
where ~ð is a certain angular derivative, and N ¼ Nðu; θ;ϕÞ,
the Bondi news, is essentially a potential for the radiative
components of the curvature. Thus contributions to scatter-
ing from high-frequency wave packets in the news will tend
to average out. More precisely, this suppression will occur
if neither the value of r, nor the dilation _γa∇au of the Bondi
retarded time relative to the particle’s proper time, nor the
angular dependence of the news, is significant on the
portion of the particle’s worldline extending over a period
of oscillation. To avoid such cancellations, the particle must
pass through an angle on the sphere of directions outwards
from the source over which significant contributions from
the news can accumulate. This means either sources with
very strong angular dependences, or particles moving
rapidly enough past them that they subtend a significant
angle over a period of oscillation. Note that for low-enough
frequency components, and in particular sources with
“memory,” the cancellation mechanism does not apply.
More generally, for any distribution of matter in the

radiation zone, we find that the rate of conversion of
material contributions to the total energy-momentum to
gravitational-wave contributions, per unit time per unit
volume, is

dPd

dτ
¼ Tabðσ0ma − κ0laÞðldmb −mdlbÞ þ conjugate; ð2Þ

where Tab is the stress-energy. (It should be emphasized
that this does not mean that matter is created or destroyed;
what is changing is the matter’s contribution to the total
energy-momentum of the system, just as a mass in a
Newtonian potential contributes differently to the total
energy, depending on its position.) That this depends only
on the stress-energy and not on other characteristics of the
matter can be viewed as a compatibility of the approach
here with the weak equivalence principle.3

For general distributions of matter, there are more
possibilities for energy-momentum exchange than for
freely falling test masses. Most importantly, the stress-
energy tensor of the matter may have significant local time-
dependence and there is the possibility of resonant beating
against the gravitational waves to drive intervals of secular
exchange. (The possibility of electromagnetic and

2The twistorial approach suggests that the quasilocal kinematic
quantities will not generically be energy-momentum and rela-
tivistic angular momentum, derived from the Poincaré group, but
quantities modeled on de Sitter or anti–de Sitter symmetries.

3Contrast this with the usual view of tidal effects, where for
instance the local energy-exchange between two masses on a
spring and gravitational waves depends on the stiffness of the
spring, not just its mass. To reconcile these views, note that the
relative difference in energy between two superficially similar
springs of different stiffnesses is only a tiny fraction of the
springs’ rest-energies. Here, in considering bulk effects, it is
the springs’ relativistic energy-momenta which we track, and we
see how small a fraction of this tidal effects are.
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gravitational waves beating against each other was sug-
gested long ago, by Gertsenshtein [3]. However, the setup
here is much more general and the effects here are different
from his.)
Closely related to this is the question of what sorts of

redirection and absorption of gravitational-wave energy-
momentum are possible by matter. (Note that this is not
quite the same as redirecting or absorbing the waves; also
because bulk rather than tidal effects are concerned it
differs from earlier investigations, for example that of
Press [4].) This issue is complicated by the nonlocality
of the energy-momentum, but we do find that there are
some circumstances in which nearly local statements are
possible and matter can alter the energy-momentum by
terms proportional to the waves’ outgoing null covector la.
Another possibility for effects which are not suppressed

by averaging occurs with “memory,” in this case a net
difference in Bondi shear between two nonradiating
regimes. Substantial differences in shear are expected in
particular for relativistic jets. We find that such radiation
passing through nonrelativistic matter may lose momen-
tum, perhaps enough to significantly degrade the waves.
This could affect their detectability; compare Ref. [5].

B. Implications for propagation

Verifying that energy-momentum can be exchanged
between matter and radiation is gratifying but unsurprising.
It does, however, raise important questions about propa-
gation: for these exchanges should cause backreactions
on the waves, and this calls us to reexamine the common
claim that passage through matter does not alter the waves
(except for background-curvature effects, or in extraordi-
nary circumstances). Ultimately, detailed gravitational-
wave astronomy, measuring many parameters of sources,
will require better than percent-accuracy knowledge of
certain features of the waveforms [6]; for this, even
relatively small effects need to be seriously considered.
The usual arguments that matter is transparent to

gravitational waves depend in part on estimates about
how energy can be exchanged, but those estimates have
been based on an implicit assumption that one need only
consider tidal effects [7,8]. As those are only the differ-
entials of whatever bulk effects are present, the question of
transparency needs to be reconsidered.
Unfortunately, the techniques here track energy-

momenta, and not waveforms, so they do not give direct
information about propagation. However, because the
emitted energy-momentum is quadratic in the radiation,
it is reasonable to suppose that the orders of magnitude of
the fractional changes in waveform and the waves’ energy-
momentum, due to intervening matter, are the same. Now,
because the basic assumption here is that the geometry of
the radiation zone is well approximated by the Bondi-Sachs
asymptotics, which treat vacuum space-times (or, at most,
those with an electromagnetic radiation field), any

backreaction effects should be small. But there is no
general reason to think that these effects are limited in
principle to be well below the percent level.
As pointed out earlier, in many cases the waves will

oscillate much more rapidly than the stress-energy changes,
and for these the net energy-momentum exchange will tend
to be suppressed. While we do not understand just how this
averaging should affect the waves, it does seem plausible
that in these cases there will be a significant suppression of
backreaction effects. Recall, though, that in some important
cases (as with jets) there may be effects which are not
suppressed by averaging.
The question of just which degrees of freedom of the

signals could be affected by backreaction is critical; it could
well be that in many cases the effects of encounters with
matter could easily be separated. This would open the
possibility of extracting more information from gravita-
tional waves. We need careful analyses of propagation to
investigate and clarify this matter.
I have so far described what will be done; I now sketch

how it will be done.

C. The main ideas

The main ideas of this paper turn on formalizing the idea
of a radiation zone and on its nonlocal geometry. The
approach of Bondi and Sachs is used very strongly. While
this certainly overlaps with the less formal notion of a
radiation zone based on treating waves as perturbations of a
background, the fine gauge control of the Bondi-Sachs
approach is essential.

1. The radiation zone and radiation dominance

It is probably fair to say that Bondi’s approach was
aimed at finding a suitable, fully covariant, characterization
of the radiation zone of a system idealized as perfectly
isolated. He was led, by previous investigations, to hypoth-
esize that in this regime the geometry should admit a
certain asymptotic coordinate system ðu; r; θ;ϕÞ (with u a
“retarded time,” the u ¼ constant hypersurfaces being null
and opening outwards, the “radial” coordinate r being an
affine parameter up the null generators of these hyper-
surfaces,4 and ðθ;ϕÞ angular variables on the sphere), with
respect to which the metric would have a certain asymptotic
expansion as r → ∞. Penrose then showed that these
conditions could be recast as the existence of a conformal
boundary; this led to an elegant formalism and also shifted
the focus of work from the radiation zone to null infinity
itself, for much could be said about the limiting forms of
quantities there.

4Actually, Bondi used a luminosity distance, not an affine
parameter, but affine parameters are simpler for most purposes
and have been used in most subsequent work. Also Bondi
assumed axisymmetry; the generic case was treated by Sachs.
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Our view will be closer to Bondi’s original one, however.
We shall say a physical system admits a radiation zone if it
has a region in which the geometry is well approximated by
the leading terms in the Bondi asymptotic expansion. (We
need no physical hypotheses on the rest of the system or the
Universe, although we may, as a mathematical conven-
ience, imagine embedding the zone in an auxiliary space-
time extending to null infinity.) This parallels the notion of
a radiation zone in special-relativistic electromagnetism, as
a regime in which the field is well approximated by its
radiative term.
While this definition is natural, it has an important novel

feature. It does not restrict the radiation field to be weak;
it does mean that any matter present should perturb the
geometry of the radiation zone only slightly. This is the
most important restriction on the approach here. Notice that
it is opposite in spirit to the usual assumption that the
radiation field only perturbs the matter infinitesimally.
We may call this the radiation-dominated regime, and

contrast it with the more usual matter-dominated one. It
would evidently be a natural limit to consider, if only for
conceptual reasons. One might wonder, in fact, if it is only
of academic interest, since gravitational waves are gen-
erally very weak—but the coupling of matter to curvature is
also weak, being mediated by the gravitational constant G.
So just when does radiation dominance apply?
To answer this, we must specify which elements of the

physical regime’s geometry must be well modeled by the
Bondi-Sachs asymptotics.
However, because we do not have a fundamental under-

standing of quasilocal kinematics, we have no way of
knowing all the geometric structures which might turn out
to be relevant. What we can do is point to the minimal set
of elements of the geometry which are involved in our
construction. We shall find that there are plausible sit-
uations in which radiation dominance, in this sense, holds.
Finally, a comment on invariance is in order. Let us start

with a parallel case, an electromagnetic radiation zone in
special relativity. In such a zone, the field appears to good
approximation to be radiative—that is, to be outgoing
transverse waves. This zone will certainly not be Poincaré-
invariant. For one thing, translations will move one out of
the zone. But also, even locally, large enough boosts will
destroy the approximation that the waves are transverse—
nontransverse terms, which are small in the frame of the
radiation zone, will not be small in other frames. (The zone
does have an approximate invariance for “small enough”
translations or Lorentz motions.) The usefulness of a
radiation zone is not that it is invariant, but just the
opposite, that it gives a distinguished frame rendering
the field simple.
Parallel comments apply to the gravitational case, where

the relevant asymptotic symmetries form the Bondi-
Metzner-Sachs (BMS) group. Any structure which is
universal to isolated radiating space-times will be BMS

invariant, but specific radiation zones will not be. The
construction here relies in particular on identifying the
outgoing direction in which the waves propagate. This is
subject to an ambiguity, which is the same as the approxi-
mate symmetry group, and varies inversely with the extent
of the radiation zone. (Note that in practical cases this
ambiguity is of the order of the angle subtended by the
source as viewed from the inner points in the zone.)

2. Nonlocality and scattering

The core issues can be brought out by considering a
prototypical problem: Suppose a test particle falls freely
through the radiation zone. Its energy-momentum then
remains, in its own frame, unchanged. So how, or in what
sense, can one say it has been scattered?
Historically (up to around 1957 [9]), concerns like this

were used to argue that gravitational radiation had no
physical significance. The response was to look to tidal
effects of the waves, as in principle (and now, we hope, in
practice) local observable properties. That did help con-
vince workers of the waves’ physical reality, which was a
critical advance. But from the point of view of the
scattering problem, it represented a retreat, for tidal effects
are only the differentials of whatever bulk scattering is
present. It is the bulk effects which we want to analyze.
The local energy-momentum of a test particle (or other

localized material body) at an event q in the radiation zone
takes its value in the cotangent space T�

q, so if we wish to
compare the energy–momenta of such particles, we need a
way of identifying the cotangent spaces—in mathematical
terms, a parallelism of the cotangent bundle of the
radiation zone.
One’s first thought might be to try to use parallel

propagation (over paths restricted to the zone) to define
a parallelism, at least in a limiting sense for distant enough
events. However, this fails. Sachs peeling implies that
precisely when gravitational radiation is present, there are
holonomic obstructions which persist even in the limit of
more and more distant paths. An equivalent statement is
that when gravitational radiation is present, asymptotically
covariantly constant vector and covector fields do not
exist.5 In this sense, radiative space-times are not asymp-
totically flat.
What, then, can we do to find a parallelism? We shall

look to the construction of the Bondi-Sachs energy-
momentum PBondi-Sachs

a for a guide. This energy-momentum
takes values in a certain asymptotic covector space T�.
Roughly speaking, this space can be given as follows6:
(1) Start with smooth covector fields ξa on the

Bondi chart.

5Essentially this observationwasmade earlier, byBramson [10].
6The construction is more easily done in spinor terms, and

these are used in the body of the paper, but for conceptual reasons
it is sketched here with covectors.
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(2) Discard certain components (with respect to the
Bondi chart) of the fields.

(3) Impose certain differential equations, derived from
but weaker than the covariant-constancy conditions,
on the remaining components.

(4) Look for asymptotic solutions as r → ∞.
The result is the space T�. The most important nonlocal
aspect of the construction is that the differential equations
imposed are elliptic in the angular variables ðθ;ϕÞ, so that
the four-dimensional solution-space arises from requiring
regularity over the sphere of directions; locally, the system
of equations is underdetermined.
We will extend this construction so that it provides a

well-defined four-dimensional family of covector fields
in the radiation zone. Two changes are necessary: the
(discarded) components of ξa are recovered from certain
components of the covariant-constancy equations, and a
further differential equation, propagating the fields parallel
along the outgoing Bondi null congruence, is imposed.
The result of this construction is a four-dimensional

space T�
asymptotic of covector fields which we take, by

definition, to be asymptotically constant, although they
will not be asymptotically covariantly constant. These
define the parallelism.
It is precisely the deviation of the asymptotically con-

stant covector fields from asymptotic covariant constancy
which is responsible for, and codes, the exchange of
energy-momentum between matter and the gravitational
radiation field. For instance, a test particle’s energy-
momentum Pa at a particular event q may be identified
with the asymptotically constant covector field ξa with
ξaðqÞ ¼ Pa. As the particle falls through the radiation zone,
however, one will not be able to maintain this equation with
a single asymptotically constant covector field ξa, for the
particle’s equation of motion is local, but the fields ξa are
determined nonlocally. Just this gives the change in the
particle’s contribution to the total energy-momentum, as an
element of T�

asymptotic, as the particle moves.

3. Limitations

I have sketched the underlying ideas of the analysis, and
shown how this calls for a reexamination of gravitational-
wave propagation. This was in part because the techniques
here give us no direct information about waveforms.
However, there was also another limitation, whose force
is important to understand, which is due to the approach
and ultimately the lack of a general, quasilocal, kinematics.
The basic logical architecture of this approach is:
(1) We defined a radiation zone as a regime in which

certain elements of the space-time geometry were
well modeled by their leading Bondi-Sachs expan-
sions. In this regime, a consistent treatment of
energy-momentum was possible—again, to leading
order in the expansions. The plausiblity of this
treatment rests on the existence of a radiation zone

in the sense defined, because it is in this zone that the
construction of the asymptotic covectors precisely
compensates for the holonomic obstructions caused
by Sachs peeling of the radiation field.

(2) While usually the Bondi-Sachs analysis has been
applied to space-times which are vacuum, or have
only electromagnetic stress-energy, in the asymp-
totic regime, here the whole point of the program is
to consider what might happen for different sorts of
matter in the radiation zone. At the same time, the
main assumption is that certain elements of the
geometry cannot deviate too much from those of
the vacuum case.

So by its nature, the approach here cannot describe any
large relative changes in gravitational radiation or its
energy-momentum due to matter. As soon as such changes
cause substantial changes in the relevant elements of the
asymptotic geometry, the treatment has no clear justifica-
tion. It is not clear whether these limitations are only
features of the arguments used here, or are really absolute
physical restrictions. This applies in particular to the
questions of how strongly the propagation of gravitational
waves, or the energy-momentum they carry, may be
affected by matter.

D. Comparison with earlier work

This paper is most naturally viewed as taking up lines
of thought which were interrupted some time ago. Most
directly, these are the study of radiation zones in the form
initiated by Bondi, and the problems of energy-momentum
transfer which were part of the debate on the significance
of gravitational waves [9]. As discussed above, historical
accidents turned research in different directions, focusing
attention on null infinity rather than the radiation zone, and
on tidal effects rather than bulk scattering.
The interaction of gravitational waves with matter has

received almost no direct attention within the Bondi-Sachs
framework (although the analysis of the local energetics of
tidal effects was a key step in Bondi’s work). These
interactions have received some consideration within lin-
earized-perturbation frameworks. There are two standard
reviews touching on this, by Thorne [7] and by Grishchuk
and Polnarev [11]. I will comment on those; for further
work, see the references in those, and also in Ref. [8].
Thorne discusses the absorption or dispersion of waves,

with the assumption that those processes are due to tidal
effects, and concludes that in real astrophysical situations
they are totally negligible. By contrast, Grishchuk and
Polnarev discuss some processes which could, in principle,
include bulk effects: (a) an Einstein-Maxwell system, and
(b) a gas of particles described by a Boltzmann equation.
However, the particular configurations they investigated do
not show the effects that are found here. That is because
their analyses were done in local coordinates, in terms of
weak-field plane waves, and so the nonlocal effects, and the
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transit of the matter across the sphere of directions out-
wards from the source, do not appear. Also, none of these
works considered the radiation-dominated regime.
Finally, there has been much work on the scattering of

light and radio signals, in the geometric-optics limit, by
gravitational waves. However, on one hand, this has very
largely dealt with coordinate, rather than invariant, com-
putations of scattering; and, on the other, the intended
applications of this to look for gravitational-wave modu-
lations of signals from astrophysical sources are only
sensitive to differential effects (one must compare two
signals, neighboring in time or space) [12].

E. Organization

Section II reviews the Bondi-Sachs asymptotics which
will be used. Section III establishes the key relation
between gravitational radiation and asymptotic holonomy.
In Sec. IV the equations governing the asymptotically
constant fields are derived; these are used to get the basic
formulas for energy-momentum exchanges in Sec. V.
Section VI goes over the relation to linearized theory,
which involves a fine point. Section VII discusses the
response of test particles, giving in particular general
formulas for scattering of them in the case of linearized
quadrupolar waves. I pointed out above that in many cases
the waves’ high frequencies (compared to the matter’s
dynamical time-scales) leads to an averaging-out of energy-
momentum transfers; however, Sec. VIII discusses three
classes of cases in which nonzero average effects are
possible. The final section contains a brief summary and
discussion.

Notation and conventions

The notation and conventions are those of Penrose and
Rindler [13], except where explicitly indicated. These books
also serve as a reference for all material not otherwise
explained, including the spin-coefficient calculus in the
formgiven byGeroch,Held and Penrose [14,15]. Themetric
signature is þ − −−, and the curvature tensors satisfy
½∇a;∇b�vd ¼ Rabc

dvc and Rac ¼ Rabc
b. The speed of light

c is often suppressed. Einstein’s equation (without cosmo-
logical constant) is Rac − ð1=2ÞRgac ¼ −8πðG=c2ÞTac. A
familiaritywith two-component spinors is assumed for some
of the derivations (the treatment without them is signifi-
cantly more labored), but the main results are given in
tensor form.

II. PRELIMINARIES

We recall here the main elements of the Bondi-Sachs
asymptotics and their expression in terms of Newman-
Penrose spin coefficients. The main point which will be
used explicitly is the Sachs peeling property. However,
because the nonlocality of the gauge plays such an

important implicit role, we also review how this arises.
The reader familiar with these points can skip this section.
All of this material can be found in Ref. [13], and no

proofs are given.
Asymptotic hypotheses. We may say that a space-time

admits Bondi-Sachs-Penrose asymptotics if (a) the space-
time ðM; gabÞ embeds as the interior of a manifold with
boundary M̂ ¼ M∪Iþ, where Iþ ¼ ∂M̂, (b) there is a non-
negative function Ω∶M̂ → R of class C3 with Ω vanishing
precisely on Iþ but ∇̂aΩ nowhere zero on Iþ, (c) the
rescaled metric ĝab ¼ Ω2gab is Lorentzian and C3 on M̂,
(d) all matter fields vanish at Iþ (that is, the stress-energy
Tab has a well-defined limit of zero at Iþ) and the
cosmological constant λ ¼ 0, (e) each point on the boun-
dary Iþ is a future (but not a past) end-point of null
geodesics in ðM; gabÞ, and (f) the boundary Iþ is a ĝab-null
hypersurface diffeomorphic to S2 × R, and the R factors
can be taken to be ĝab-null generators.
A few comments are in order. First, the assumption that

the cosmological constant is zero means that cosmological
effects are not important over the scale of the isolated
system we are modeling; it is not a cosmological hypoth-
esis. Second, the assumptions are not all independent; they
have been included for convenience. Third, these assump-
tions are very nearly those of weak future asymptotic
simplicity, but for reasons explained elsewhere [16] I prefer
not to rely on some of the hypotheses of that concept.
Bondi coordinates and nonlocality. With these assump-

tions, we may introduce a Bondi coordinate system
ðu; r; θ;φÞ in a neighborhood of Iþ. Here u is a null
coordinate, the Bondi retarded time, with the u ¼ constant
hypersurfaces meeting Iþ transversely. Since u is null,
these hypersurfaces are ruled by null geodesics with
parallel-transported null tangent la ¼ ∇au; this defines
the outgoing null congruence associated with the Bondi
system. We take r to be an affine parameter along the
geodesics of this congruence, normalized by la∇ar ¼ 1.
The zero of r may be set by a natural device; see, e.g., [13].
We may take Ω ¼ 1=r. The regularity of the rescaled
metric, and the hypotheses on the curvature, at Iþ then
imply certain asymptotic expansions in r.
The angular coordinates ðθ;φÞ label the generators of

Iþ, and these extend to coordinates on space-time by
mapping a point in space-time to the ðθ;φÞ values of the
end-point of the member of the outgoing congruence
through the point. However, at this point we know only
that the r ¼ constant, u ¼ constant surfaces are diffeomor-
phic to spheres, so the angular coordinates are as yet
determined only up to a diffeomorphism of S2. It is in
restricting this freedom that the nonlocal gauge choice,
which is ultimately responsible for the definition of the
asymptotically constant vectors, enters.
One can show that the metrics on the u ¼ constant,

r ¼ constant surfaces have a well-defined u-independent
conformal structure as r → ∞. (One shows that with the
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asymptotic hypotheses, the shear up the generators of Iþ
vanishes.) These surfaces must then, up to a conformal
factor, approach ordinary metric spheres (or, more properly,
spheres with the negatives of the ordinary metric). The
conformal factor Ω2 ¼ r−2 gives a well-defined metric on
the surfaces (by (c)), so we must be able to choose
coordinates ðθ;φÞ such that Ω2gab, when restricted to
vectors tangent to these surfaces, approaches −ðdθ2 þ
sin2 θdφ2Þ. The construction of these coordinates—
equivalent to finding a complex stereographic coordinate
on the sphere—implicitly involves the solution of an
elliptic partial differential equation on the sphere. This is
a nonlocal problem. Indeed, the nonlocality ismuch stronger
than, for example, that involved in Newtonian potentials, for
here the sphere represents the family of all asymptotic null
directions. In other words, this nonlocality does not fall off
with distance from the source; it reflects the problem of
correlating (even asymptotically distant) frames at different
angles around the source. In this sense it is scale free.
If the conformal structure and orientation of a sphere are

known, then the structure present is that of a Riemann
sphere, and the symmetries are the fractional linear trans-
formations SLð2;CÞ=f�Ig. This group is of course iso-
morphic to the proper orthochronous Lorentz group, and
the sphere has naturally the structure of the light rays
through an event in Minkowski space. The choices of unit
sphere metrics on it compatible with this structure are in
one-to-one correspondence with the choices of a unit
timelike vector in Minkowski space, which would allow
the identification of the set of light-rays with a unit sphere
at time coordinate unity. Applying this now to the u ¼
constant spheres at Iþ, we see that the choice of unit sphere
metric can be thought of as a choice of asymptotic time
direction. In fact, it turns out that there is a well-defined
way of comparing these directions at different u values, and
in a Bondi system we restrict the allowable choices of u so
that these time directions are all the same. Once the choice
of time-direction has been made, there remains an SOð3Þ
freedom in the choice of θ and φ.
The null tetrad. We now introduce a null tetrad la, ma,

m̄a, na compatible with the Bondi system. We keep la the
parallel-transported null vector along the outgoing con-
gruence, and we require ma and na to be transported
parallel along la. We also require na to have a well-defined
limit at Iþ where it becomes tangent to the null generators
of Iþ, and normalized so that na∇au ¼ 1. (In fact, for the
standard null tetrad, we require slightly more, namely that
~lb ~∇bna vanish at Iþ, where ~la ¼ Ω−2la off Iþ and ~la is
defined by continuity on Iþ.) Then ma will lie tangent to
the u ¼ constant hypersurfaces. We will also use an
associated spinor dyad oA, ιA, so lAA

0 ¼oAoA
0
, mAA0 ¼oAιA

0
,

na ¼ ιAιA
0
. We shall not need a definite choice of phase for

ma—such a choice would conventionally be associated
with a particular choice of ðθ;φÞ.

Asymptotic expansions. The spin-coefficient equations
can be integrated inwards along the congruence defined
by la to get asymptotic expansions for the tetrad, the spin
coefficients, and the curvature components.
The null tetrad vectors have the coordinate forms

la ¼ ∂r ð3Þ

ma ¼ ðr
ffiffiffi
2

p
Þ−1ð∂θ þ i csc θ∂ϕÞ

þ ðOðr−2Þ terms in ∂θ; ∂φÞ þ ω∂r ð4Þ

na ¼ ∂u þ U∂r þ Xθ∂θ þ Xφ∂φ ð5Þ

where ω, U, Xθ, Xφ are functions with the asymptotic
properties

ω¼Oðr−1Þ; U¼−1=2þOðr−1Þ; Xθ; Xφ¼Oðr−3Þ
ð6Þ

along the outgoing null congruence. Here the symbol OðgÞ
means a term whose magnitude is bounded by an
r-independent multiple of jgj as r → ∞. These expansions
hold uniformly in the angular directions and locally
uniformly in u. (Again, near any given space-time point
one can use the freedom in choosing ðθ;ϕÞ to avoid
coordinate singularities.)
We note for later use that the tangents to a u ¼

constant, r ¼ constant surface are ma − ωla, m̄a − ω̄la.
These are evidently normalized (and differ from ma, m̄a

only by a null rotation). Thus the surface area element
is ð2iÞ−1ðma − ωlaÞ ∧ ðm̄b − ω̄lb).
Sachs peeling. The Weyl tensor is Cabcd ¼

ΨABCDϵA0B0ϵC0D0 þ Ψ̄A0B0C0D0ϵABϵCD, and its components
with respect to the dyad are Ψn (that is, the spinor
ΨABCD contracted with n iotas and 4 − n omicrons).
A key consequence of the assumptions (a)–(f) is the

Sachs peeling property

Ψn ¼
Ψ0

nðu; θ;φÞ
r5−n

þOð1=r6−nÞ: ð7Þ

Note in particular that Ψ4, which represents the part of the
field transverse to the outgoing null congruence, falls off as
1=r and the other components fall off more rapidly. Thus
Ψ4 is referred to as the radiative part of the field. It is linked
by the asymptotic Bianchi identity ~ðΨ0

4 ¼ ∂uΨ0
3 to Ψ

0
3, and

this latter component is sometimes called the semiradiative
part. The Bondi news N ¼ Nðu; θ;ϕÞ is a potential for
these: one hasΨ0

3¼ ~ðN, Ψ0
4 ¼ ∂uN. Here N ¼ −∂uσ̄

0, with

σ ¼ σ0=r2 þOðr−3Þ ð8Þ

the asymptotic expansion of the shear. Two other spin
coefficients’ asymptotic forms involving the radiation will
be important:
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σ0 ¼ N=rþOðr−2Þ; κ0 ¼ ~ðN=rþOðr−2Þ: ð9Þ

Bondi-Metzner-Sachs group. The group of transforma-
tions preserving the asymptotic structure is the Bondi-
Metzner-Sachs group. It can be viewed as the group of
coordinate transformations preserving the Bondi-Sachs
form of the metric. It is the semidirect product of the
(proper, orthochronous) Lorentz group acting on the
asymptotic sphere of directions with the supertranslations
u → uþ αðθ;φÞ.

III. GRAVITATIONAL RADIATION AND
ASYMPTOTIC GEOMETRY

In order to get to the main ideas as rapidly as possible,
we will begin, in subsection A, by showing how Sachs
peeling gives rise to the holonomic obstructions which are
at the heart of the scattering. While the formulas are simple,
we will find that to interpret them rigorously we need to
define a class of tensor and spinor fields in the asymptotic
regime scaling in a different way from those often used in
the Iþ formalism; we call these the physically bounded
fields and treat them in subsection B. Subsection C, which
may be skipped, discusses the conditions for radiation
dominance and gives some estimates for astrophysical
situations in which they might hold.

A. Gravitational radiation and holonomy

It is commonly asserted that isolated radiating general-
relativistic systems are modeled by space-times which are
asymptotically flat. This, however, is not entirely true, and
accepting it too uncritically would lead to missing key
physical features of these systems. It is in fact a signature of
gravitational radiation that the effects of curvature are
stamped on the asymptotic geometry as finite effects, even
in the limit of passage to infinitely distant regions.
This follows directly from the scaling of the radiative and

semiradiative parts of the field according to Sachs peeling.
Consider the increment a vector receives on being trans-
ported parallel around an area element dSpq, which is
given by the holonomy Rpqb

adSpq. If we take dSpq to be
determined by an interval δu in Bondi retarded time and a
change δμ ¼ ðδθ − i sin θδϕÞ= ffiffiffi

2
p

in angle, then to leading
order in r, according to (3)–(5), we will have δu∂u ¼
δuðna þ ð1=2ÞlaÞ but

δθ∂θ þ δϕ∂ϕ ¼ rðδμma þ δμm̄aÞ þ amultiple of la;

ð10Þ
where the r factor arises because the change δμ in angle
gives a physical displacement scaling as r. On the other
hand, the gravitational radiation field, the leading compo-
nent of Rpqa

b as r → ∞, falls off as 1=r. One is thus left
with a finite holonomy even as r → ∞, which one can
check is

δuδμΨ0
4ðu; θ;ϕÞðlamb −malbÞ þ conjugate: ð11Þ

Sachs peeling of the radiative term balances the physical
scaling due to a change in asymptotic angle, leaving one
with a finite effect.
One finds, similarly, that for dSab spanning the two

independent angular directions that there is finite limiting
holonomy proportional to Ψ0

3ðu; θ;ϕÞðlamb −malbÞ (and
conjugate). Recall that Ψ0

4, Ψ
0
3 exactly measure the gravi-

tational radiation content of the field (and are linked to each
other by an asymptotic Bianchi identity).
The analysis here has dealt with parallel transport in

three of the four dimensions: changes in angle and in
retarded time. One can also consider the remaining direc-
tion, that is, passage outward to more distant regions. The
leading contribution is due to holonomies spanned by
δr∂r ¼ la and δθ∂θþδϕ∂ϕ is proportional to δrδμΨ0

2=r
2

(and conjugate) and to those spanned by δr∂r and δu∂u is
δrδuΨ0

3=r
2 (and conjugate). Thus, even integrating out-

wards from r to infinity, the holonomies they contribute
will have dominant terms bounded by δμΨ0

2=r and δuΨ
0
3=r

(and conjugates). Both of these vanish as r → ∞, so they
contribute no holonomy in the limit. In other words, the
contributions to the ambiguities in identifying vectors at
different points due to propagation outwards along la

vanish as r−1.
In these arguments, two sorts of scalings in the asymp-

totic regime are used. First, we wish to compare what
happens as we go out to very great distances along different
outgoing null directions; it is in studying this that the
relevant displacement field rðδμma þ δμ̄m̄aÞ has the factor
of r, indicating the increasing distance in physical space-
time corresponding to a fixed change in asymptotic angle.
On the other hand, in maintaining that the limit (11) is finite
we imply that we do not need to worry about factors of r in
applying (11) to vectors or covectors. In fact, to make
precise what the interpretation of the limit (11) is, we must
specify what objects it acts on.
We shall do this formally in the next subsection.

However, if an asymptotically covariantly constant vector
field did exist, we should certainly expect its components
with respect to the tetrad to be bounded, and evidently (11)
then provides an obstruction. We see then that precisely
for gravitationally radiating space-times, there are no
asymptotically covariantly constant vector fields: curvature
obstructions to their existence persist as finite limits as one
passes to future null infinity.

B. Physically bounded fields

The underlying reason the Iþ formalism is so useful is
that, in many cases of interest, the appropriate scaling
of physical quantities with the affine parameter r turns
out to be equivalent to the extensibility of the quantity to
the conformal boundary. Conversely, geometrically natural
structures on the conformally rescaled manifold with
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boundary M̂ ¼ M∪Iþ have certain space-time asymptotic
scalings. However, some of those which have been most
commonly used are not well adapted to the questions here.
A vector field defined in the neighborhood of some point

on Iþ will in general, in the physical space-time, appear to
diverge in the physical space-time as one approaches Iþ
along the outgoing Bondi-Sachs congruence. (This diver-
gence is with respect to parallel-propagation, and also in the
Bondi coordinates.) This is because, starting from a finite
point, one need only flow by a finite parameter to reach Iþ
along the field.
In this paper, we shall be concerned with spinor and

tensor fields which are candidates for being, in a sense to be
made precise, asymptotically constant. Such fields should
have bounded components with respect to the Bondi dyad
or tetrad as r → þ∞.7 We would expect, based on the
argument of the previous paragraph, that these fields must
have no components transverse to Iþ. This is indeed the
case, as we now make precise.
We shall work in terms of spinors, from which the results

for other quantities can be obtained. If oA, ιA is a norma-
lized dyad adapted to the Bondi system, then the rescaled
dyad ~oA ¼ Ω−1oA, ~ιA ¼ ιA has a nonzero limit on Iþ. (And
dually ~oA ¼ oA, ~ιA ¼ ΩιA.) Thus any spinor field ξA can be
expressed as

ξA ¼ ξ0oA þ ξ1ιA ð12Þ

¼ ~ξ0 ~oA þ ~ξ1~ιA ð13Þ

with

~ξ0 ¼ Ωξ0; ~ξ1 ¼ ξ1: ð14Þ
We will say the field is physically bounded if ξ0, ξ1 are
bounded as r → ∞. Note that it makes sense to speak of the
degree of differentiability of a physically bounded field, as
a field on Iþ. We will here be interested in physically
bounded fields which are at least C2 (because we want to be
able to differentiate them once in a direction transverse to
Iþ and once in a direction tangential to it).
While the characterization of physically bounded fields

has been given with respect to a dyad, it is easy to see it is
Bondi-Metzner-Sachs invariant. For it is equivalent to
requiring ~ιAξA to vanish at Iþ, and ~ιA is invariantly defined
on Iþ, up to proportionality.
From a physical point of view, the limiting components

of the field are those with respect to the physical, rather
than the rescaled dyad. We have ξ1 ¼ ~ξ1, but we have
ξ0 ¼ −~la ~∇a

~ξ0 ¼ − ~Þ~ξ0 in the limit, since ~ÞΩ ¼ −1 at Iþ.
Note that these limiting values are invariant under

supertranslation-induced changes of dyad (since under a
supertranslation ~ιA is preserved and ~oA changes by a
multiple of ~ιA).
At a given point of Iþ, the set of all limiting values of

physically bounded spinor fields evidently forms a two-
complex-dimensional vector space, and the family of these
as the point on Iþ varies forms the bundle of physically
bounded spinors over Iþ, which can be viewed as a
boundary of the spin-bundle over the physical space-time.
This bundle is not the spin bundle over the conformally
rescaled ðM̂; ĝabÞ. However, it is a direct sum of certain
spin- and boost-weighted bundles there, for ξ1 ¼ ξA ~oA is a
section of the bundle of Geroch-Held-Penrose type f1; 0g,
and ξ0 a section of the bundle of type f0; 1g, over Iþ with
respect to the rescaled metric.
Higher-valence physically bounded fields are defined as

tensor products of the physically bounded spinor fields and
their duals.
These definitions allow us to interpret the arguments

of the previous subsection rigorously; we see that (11)
precisely defines a holonomy on the space of physically
bounded vectors at Iþ.

C. Some estimates for radiation dominance

The main idea in this paper is that the Bondi-Sachs
treatment of energy-momentum, extended to the radiation
zone, resolves the holonomic obstructions. This in turn
depends on the holonomy being well approximated by the
lead terms in the Bondi-Sachs expansion, in other words,
the effects of any matter there being relatively negligible,
what I called radiation dominance. In this subsection, I give
some rough estimates for this condition to be fulfilled. The
aim is not to be exhaustive, but to give the reader a sense of
the scales involved. The results here are not used elsewhere
in this paper; this section may be skipped.
The essential restrictions are: that Ψ3 and Ψ4 should be

well modeled by their leading asymptotic forms; and that
the other curvature terms contribute negligible amounts, in
the sense of their actions by holonomy on physically
bounded quantities. In fact, the physical quantities of
interest in any given situation will not depend on every
detail of these curvature components but only on certain
integrals, and thus one really should have an averaging
scale in mind. However, here we will (conservatively) look
at the full infinitesimal holonomies.
The question of just when (for which values of r) the

components Ψ3 and Ψ4 take on their asymptotic forms
depends on the details of the system. Roughly speaking we
expect that for a wave packet of nominal angular frequency
ω this will occur once r ≫ c=ω. (This corresponds the
frequency-based definition of a wave zone used by some
authors.) However, there will also be emissions of radiation
which are not well represented by wave packets, because
they involve “memory effects” with arbitrarily low-
frequency components. For instance, if such an effect is

7Note that in such statements the points in question have
angular coordinates in the interior of the chart, that is, the chart is
chosen so that we avoid the polar coordinate singularities.
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due to ejection of a jet, one expects the radiation zone to
take over sufficiently far from the jet (a moving boundary,
with r increasing with time).
I will now turn to the restrictions on the matter (although,

for conceptual clarity, I will keep track of the Weyl tensor
components as well). These conditions are estimated by
considering holonomies as in Sec. III A. Suppose we
require a precision ηang for the generators of holonomies
in the angular directions (spanned by rma, rm̄a). Then we
find

jr2Ψ1j; jr2Ψ2j; jr2Ψ3−Ψ0
3j; jr2Φ1qj; jr2Λj<ηang

ð15Þ

(whereRab ¼ 6Λgab − 2Φab withΦab trace-free) for q ¼ 0,
1, 2. For a requisite precision ηu;ang for infinitesimal
holonomies in an angular direction and the u-direction

jrΨ2j; jrΨ3j; jrΨ4 −Ψ0
4j; jrΦ2qj < ηu;ang;

ð16Þ

with q ¼ 0, 1, 2. (Note that these quantities have units
inverse time, in contrast to those from the angular-angular
directions.) There are also stability restrictions, for holon-
omies involving the outward direction, but these are very
similar and will not be discussed explicitly.
What sorts of sensitivities ηang, ηu;ang are needed? The

holonomy we wish to detect in angular directions is ~ðN,
and in u-angular directions ∂uN. Thus the sensitivities
required can be suggestively written as lδN, ωδN where δN
is a measure of the sensitivity sought for the news, and l, ω
are measures of the effective spherical harmonic, and
effective angular frequency, of the news. (These are simply
notations to help understand what is going on—the source
need not be a pure spherical harmonic, nor purely mono-
chromatic.) We have then

ηang ¼ δN=l; ηu;ang ¼ ωδN: ð17Þ

Note that in the radiation zone we expect to have r ≫ c=ω,
and hence

ðr=cÞηu;ang ≫ lηang > ηang: ð18Þ

This means that where the restrictions (15), (16) overlap, it
is the former which is the more stringent.8

To get an idea of the scales involved, let us consider as a
source a binary of equal masses, each M, in nonrelativistic
mutual circular orbits with orbital angular frequency ω
(so the angular frequency of the gravitational waves is 2ω).
Then we have

jNj≃ 8ðGMω=c3Þ5=3

¼ .04 ×

�
M

1.4M⊙
·
2ω=ð2πÞ
103 s−1

�
5=3

; ð19Þ

where M⊙ is the Sun’s mass and the figures are scaled to
correspond to a late-stage binary of neutron stars. For
2ω=ð2πÞ ¼ 1 s−1, the estimate would be 4 × 10−7. Thus if
we would like to measure radiation from a double neutron
binary with wave frequency about 1 s−1, it would be
reasonable to take ηang ¼ 10−8 or so; we could get by
with ηang ¼ 10−3 in the later stages.
We can determine from this restrictions on the radiation

zone. Taking Ψ2 ≃ 2.8ðGM⊙=c2Þ=r3, we see from (15)
that we must have r≳ 2.8ðGM⊙=c2Þ=ηang. This would be
2 × 1013 cm (roughly 1 au) for ηang ¼ 10−8. (The con-
straints from Ψ1 and Ψ0 would be expected to be weaker.)
This marks the onset of the radiation zone, in the absence
of matter.
What if matter is present? If the matter is nonrelativistic,

the most severe constraints will come from the Φ11 terms;
we will have Φ11 ∼ 2πGρ=c2, with ρ the density. Thus we
will have ρr2 ≲ ηangc2=ð2πGÞ. To put in some standard
astrophysical scales, this may be cast as

�
ρ

10−24 g cm−3

��
r

1013 cm

�
2 ≲ 2 × 1017

�
ηang
10−8

�
: ð20Þ

So, for instance, for ηang ¼ 10−8, radiation dominance
should apply for a nonrelativistic medium of density
10−24 g cm−3 up to a radius of about 4 × 1021 cm≃ 1 kpc.
These examples show that the condition of radiation

dominance, as defined in this paper, can apply in realistic
situations.

IV. ASYMPTOTICALLY CONSTANT FIELDS

We have seen that, when gravitational radiation is
present, there will be no covector fields which are asymp-
totically covariantly constant. Nevertheless, there is a space
of asymptotically constant covectors T� used in the con-
struction of the Bondi-Sachs energy-momentum. While the
starting-point for this is a set of covector fields, the results
are not covector fields in the ordinary sense, because
components are discarded and limits are taken.
The goal here is to define asymptotically constant fields

in a neighborhood of Iþ. It is simplest to make the
construction for spinors; other fields are then determined
from the tensor algebra of those. The first subsection gives
a treatment of the fields at Iþ; by using physically bounded
fields we recover all the relevant components there. The
second subsection extends the construction inwards, to the
physical space-time.

8If memory effects are to be considered, some elements of the
discussion in this paragraph must be modified.
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A. Asymptotic constancy at null infinity

An asymptotically constant spinor field will be physi-
cally bounded. If ξA is a physically bounded field which is a
candidate for asymptotic constancy, then we shall want to
examine its physical covariant derivative ∇aξ

B in various
directions in the limit that the points in question approach
Iþ. If we investigate the directions tangent to Iþ (the
behavior transverse to Iþ will be the focus of the next
subsection), then we are interested in ∇aξ

B contracted with
the physical dyad oB, ιB but the rescaled tetrad vectors ~na,
~ma, ~̄ma, as the points approach Iþ. This amounts to asking
for the behavior of∇aξ

B as a one-form on Iþ with values in
the physically bounded spinors. Because of the holonomic
obstructions, requiring this quantity to vanish is too strong.
One keeps only certain components of it.
Recall that the physical dyad oA, ιA rescales according to

~oA ¼ Ω−1oA, ~ιA ¼ ιA to achieve finite limits at Iþ as spinor
fields on the conformally rescaled space-time, and so

~ξ0 ¼ Ωξ0 and ~ξ1 ¼ ξ1: ð21Þ

We shall not distinguish between ~ξ1 and ξ1, nor between ~ιA

and ιA. This means that ~ξ0 will vanish at Iþ; in the usual
treatment of Bondi-Sachs asymptotic constancy, done
strictly at Iþ, the field ~ξ0 is simply omitted, and the
definitions cast entirely in terms of ~ξ1 ¼ ξ1.
The usual definition of Bondi-Sachs constancy is equiv-

alent to requiring that ~ιA
0∇AA0ξB vanish on Iþ when

contracted with the rescaled dyad. Using the relation

∇AA0ξB ¼ ~∇AA0ξB − ϵA
BΥCA0ξC; ð22Þ

where Υa ¼ Ω−1 ~∇aΩ ¼ −Ω−1 ~na, we find, after a brief
calculation, that the Bondi-Sachs constancy condition is

~ðξ1 ≈ 0 and ~Þ0ξ1 ≈ 0; ð23Þ

where A ≈ B means A and B are equal at Iþ. (In this
computation, and the ones which follow, the only issue
which requires a bit of work is the limit associated with the
vanishing of Ω in ϒa. Note that each side of Eq. (22) is
independent of the choice of conformal factor within the
allowed class, and so will be the vanishing of the compo-
nents in question. The most direct way of doing the limit,
keeping with this paper’s general formalism, is to use
the standard asymptotic expansions for the spin coefficients
in the Bondi-Sachs frame ([13], pp. 394–395), taking
Ω ¼ 1=r.) Again, this system makes no mention of the
field ξ0, and that field is not generally used in analyses
on Iþ.
In order to fix the field ξ0, we shall require that na∇aξ

B,
~ma∇aξ

B should vanish at Iþ as physically bounded
spinors. We have

na∇aξ
B ¼ Ω ~oB ~Þ0ξ0 þ ιB ~Þ0ξ1 þ Ωξ0 ~Þ0 ~oB þ ξ1 ~Þ0ιB

¼ Ω ~oB ~Þ0ξ0 þ ιB ~Þ0ξ1 − Ωξ0~τιB − ξ1 ~κ0 ~oB

¼ oB ~Þ0ξ0 þ ιB ~Þ0ξ1 −Ωξ0~τιB − ξ1Ω−1 ~κ0oB: ð24Þ

We recall that the values of the components of this are
defined to be the coefficients of oB and ιB at Iþ. Now ~κ0

vanishes at Iþ, and therefore Ω−1 ~κ0 ¼ − ~Þ~κ0 to first order at
Iþ. However, one of the spin-coefficient equations gives us
~Þ~κ0 ≈ 0. Therefore the vanishing of the components of
Eq. (24) is equivalent to

~Þ0ξ0 ≈ 0; ~Þ0ξ1 ≈ 0: ð25Þ
Similarly, we have

~mAA0∇AA0ξB¼Ω ~oB ~ðξ0þ ιB ~ðξ1þΩξ0ð ~oBþ ξ1ðιB

¼Ω ~oB ~ðξ0þ ιB ~ðξ1−Ωξ0 ~σιB−ξ1 ~ρ0 ~oB

¼ oB ~ðξ0þ ιB ~ðξ1−Ωξ0 ~σιB−ξ1Ω−1 ~ρ0oB: ð26Þ

We have ~ρ0 ∼ 1=ð2rÞ, and so ~ρ0 ≈ 0, Ω−1 ~ρ0 ≈ 1=2. Thus we
obtain

~ðξ0 − ð1=2Þξ1 ≈ 0; ~ðξ1 ≈ 0: ð27Þ

We may therefore collect our equations for an asymp-
totically constant spinor field, in terms of data at Iþ, as

~Þ0ξ0≈0; ~Þ0ξ1≈0; ~ðξ0− ð1=2Þξ1≈0; ~ðξ1≈0:

ð28Þ

It follows from standard spin-coefficient formulas that
these equations are integrable and have a two-complex-
dimensional space of solutions; also, these equations imply

~ð0ξ0 ≈ 0; ~ð0ξ1 ≈ −ξ0: ð29Þ

We take Eqs. (28), (29) to determine the asymptotically
constant spinors. Asymptotically constant vectors, covec-
tors, etc., are determined from these.
We compute for use below the remaining derivative,

tangent to Iþ, of a physically bounded field:

~̄ma∇aξ
B ¼ ~̄ma ~∇aξ

B − ιBΩ−1 ~oA
0∇CA0ξC

¼ ~ð0ξB − ιBΩ−1ð~ξ0 ~ÞΩþ ξ1 ~ð0ΩÞ
¼ ð~ð0ξ0 −Ω−1 ~σ0ξ1ÞoB
þ ð~ð0ξ1 − ~̄ρ0 ~ξ0 −Ω−1ð~ξ0 ~ÞΩþ ξ1 ~ð0ΩÞÞιB

≈ ð~ð0ξ0 þ _̄σ0ξ1ÞoB þ ð~ð0ξ1 þ ξ0ÞιB: ð30Þ
(The reader used to the calculus in terms of the rescaled
quantities should note that the symbol ≈ at the last step is
here used for equality at Iþ of physically bounded fields.)
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Now suppose that ξA is asymptotically constant. Then, as
a one-form on Iþ with values in the physically bounded
fields, we have, using Eqs. (29), (30),

∇aξ
B ¼ − ~ma ~̄m

c∇cξ
B

¼ − ~ma _̄σ
0oDoBξD: ð31Þ

(As a one-form on Iþ, only the contractions of this with
~na, ~ma, ~̄ma are determined; we could add to this anything
proportional to ~na.)

B. Finite space-time and the induced connection

We extend the asymptotically constant spinor fields off
Iþ and into the finite space-time by requiring that they be
transported parallel along the outgoing null congruence
associated with the radiation field. The efficient way to
implement this is to introduce a connection Da measuring
the discrepancy from asymptotic constancy.
We define Daξ

B be requiring ζBDaξ
B ¼ ∇aðζBξBÞ for

every asymptotically constant spinor ζB. That is,

ζBDaξ
B ¼ ζB∇aξ

B þ ξB∇aζB: ð32Þ

Evidently, our task is to compute ∇aζ
B for asymptotically

constant spinors ζB.
The computation will be valid in the Bondi chart, and

will use parallel propagation along the geodesic congru-
ence with tangent field la. For any point p in the chart, and
any vector ua at p, let uaðqÞ be the connecting (Jacobi) field
along the geodesic, so l ·∇ua ¼ u · ∇la. We then have,
since ζB is covariantly constant along la, that

le∇eðuf∇fζ
BÞ ¼ leufRefQ

BζQ; ð33Þ

where RefQ
B ¼ ð1=2ÞRefQQ0BQ

0
is the curvature acting on

spinors. We may regard Eq. (33) as an evolution equation
for u ·∇ζB along the outward geodesic γ through p.
Indeed, we have

u · ∇ζBjγðs1Þγðs0Þ ¼
Z

s1

s0

leufRefQ
BζQds; ð34Þ

where we understand that parallel transport along γ is used
to relate quantities at different points along this geodesic.
In order to put this in a more useful form, let us introduce

a Green’s function for the connecting fields: let Wa
bðq; pÞ

be such that uaðqÞ ¼ Wa
bðq; pÞubðpÞ is the connecting

field along γ which is uaðpÞ when q ¼ p, that is

l · ∇Wa
b ¼ ð∇claÞWc

b

Wa
bðp; pÞ ¼ δab

�
; ð35Þ

where the operator l ·∇ acts on the variable q. We note for
future use that

∇cla ¼ −lcτm̄a þmcðρm̄a þ σ̄maÞ þ conjugate; ð36Þ

and so (35) can be integrated if the spin coefficients
are known.
We can now rewrite Eq. (34) as

∇aζ
Bjp¼γðs0Þ ¼ Wc

aðq; pÞ∇cζ
Bjq¼γðs1Þ

−
Z

s1

s0

leWf
aðγðsÞ; pÞRefQ

BðγðsÞÞdsζB;

ð37Þ
where again parallel transport along γ is understood to
compare the quantities at different points. The idea is now
to take q to Iþ. In this case, the first term on the right will
be given by the results of the previous section, and we have

∇aζ
Bjp¼γðs0Þ ¼ − lim

s→þ∞
Wc

aðγðsÞ; pÞ ~mc _̄σ
0oQoBζQ

−
Z þ∞

s0

leWf
aðγðsÞ; pÞRefQ

BðγðsÞÞdsζQ:

ð38Þ
Notice that the right-hand side involves ζQ only
algebraically.
The formula (38) is exact, and is valid in any Bondi

chart. In principle, it can be evaluated if the “optical”
quantities ρ, σ and τ, governing the evolution of the pencil
of null geodesics near γ, and the curvature, are known. Here
we are only interested in its form in the radiation zone.
In this computation, wemust keep track of the error terms

OðrnÞ for both rðpÞ and rðqÞ inWa
bðq; pÞ. The easiest way

to do this is to consider a basis Uj
aðqÞ of connecting

fields (j ¼ 0; 1; 2; 3); thenWa
bðq;pÞ¼ðU−1ÞbjðpÞUj

aðqÞ.9
From the standard expansions

ρ ¼ −r−1 þOðr−3Þ ð39Þ

σ ¼ σ0r−2 þOðr−3Þ ð40Þ

τ ¼ −ð1=2ÞΨ0
1r

−3 þOðr−4Þ: ð41Þ

it is easy to check that we may take

Uj
a ¼

2
6664
1 0 0 0

0 1 Oðr−2Þ Oðr−2Þ
0 0 rþOð1Þ Oð1Þ
0 0 Oð1Þ rþOð1Þ

3
7775

2
6664

la

na

ma

m̄a

3
7775: ð42Þ

9While of course this formula is exact, the precise error
estimates one gets depend on how well one knows the solutions
Uj

a, which generally depends both on the basis chosen and how
many terms in the asymptotic expansion one wants. We are
simply interested in getting the dominant contribution and
ensuring that it is dominant, and there is a natural choice which
is adequate for this.
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Then

ðU−1Þbj¼ ½nb lb −m̄b −mb �

×

2
66664

1 0 0 0

0 1 Oðr−3Þ Oðr−3Þ
0 0 r−1þOðr−2Þ Oðr−2Þ
0 0 Oðr−2Þ r−1þOðr−2Þ

3
77775; ð43Þ

and

Wa
bðq; pÞ ¼ nbla þ lbna −

rðqÞ
rðpÞ ðm̄bma þmbm̄aÞ

þ lower-order terms; ð44Þ

where the estimates on the lower-order terms can be
recovered by multiplying (42) and (43), if needed. One
should bear in mind that on the right-hand side of Eq. (44),
the vectors are evaluated at q and the covectors at p.
We then have, for the first term in (38), the expression

− lim
s→þ∞

Wc
aðγðsÞ; pÞ ~mc _̄σ

0oQoB ¼ −
_̄σ0

rðpÞmaoQoB

þOðrðpÞ−2Þ: ð45Þ

We also have, using Sachs peeling, that

−
Z

∞

rðpÞ
leWf

aðq; pÞRefQ
Bds ¼ −

Ψ0
3

rðpÞ laoQo
B

þOðrðpÞ−2Þ: ð46Þ

We recall that Ψ0
3 ¼ −~ð _̄σ0, and that the news function

N ¼ − _̄σ0. Thus we have

∇aζ
B ¼ r−1ðNma − ~ðNlaÞoQoBζQ þOðr−2Þ ð47Þ

and

Daξ
B ¼ ∇aξ

B − r−1ðNma − ð~ðNÞlaÞoQoBξQ þOðr−2Þ:
ð48Þ

Alternatively, using the standard far-field forms σ0 ¼ N=r,
κ0 ¼ ~ðN=r for the shear and acceleration of the field na, we
can write

Daξ
B ¼ ∇aξ

B − ðσ0ma − κ0laÞoQoBξQ þOðr−2Þ; ð49Þ

and so on vectors

Daξ
b ¼ ∇aξ

b − ððσ0ma − κ0laÞðlqmb −mqlbÞξq
þ conjugateÞ þOðr−2Þ: ð50Þ

Equation (50) gives the parallelism in the radiation zone
which enables us to compare local energy-momenta at
different events. This connection is by construction curva-
ture-free and metric-preserving; it does (therefore) have
torsion.

C. Asymptotic frames

Using the formula (49) for the connection defining the
asymptotically constant spinors and vectors, we have, in the
radiation zone,

DaoB ¼ ρmaι
B − ðαma þ βm̄aÞoB þOðr−2Þ ð51Þ

Daι
B ¼ ρ0m̄aoB þ ðαma þ βm̄aÞιB þOðr−2Þ ð52Þ

where all the spin coefficients which appear have, to the
required order, the same forms as they do in Minkowski
space. (This would not be true had we used the covariant
derivative ∇a in place of Da). Thus the asymptotically
constant spinor or vector fields are given by linear
combinations of the dyad or tetrad elements, where the
coefficients are spherical harmonics (spin-weighted, in the
spinor case).
We remark that in particular the Bondi-Sachs frame’s

time-vector ta ¼ ð1=2Þla þ na is asymptotically constant.
However, it is not asymptotically covariantly constant;
one has

∇atb ¼ −κ0lamb þ conjugate: ð53Þ

The integral curves of ta are not geodesics; rather

ta∇atb ¼ −κ0mb þ conjugate: ð54Þ

Here and from now on, we drop the qualifier “þOðr−2Þ.”

V. ENERGY-MOMENTUM EXCHANGE

We can now compute the exchange of energy-momen-
tum between matter and the gravitational field in the
radiation zone.
Let ζa be any asymptotically constant vector field, so

Daζ
b ¼ 0. Then if Tab is the stress-energy, the quantity

Tabζ
b can be interpreted as the four-current of local material

energy-momentum in the ζa direction. Thus ∇aðTabζ
bÞ

will give the rate of creation of the ζa-component of material
energy-momentum per unit time per unit volume, and
because the total energy-momentum of the system (includ-
ing gravitational radiation) is fixed, we attribute this creation
to a conversion of gravitational energy-momentum. We
have, from Eq. (47),
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∇aðTabζ
bÞ ¼ Tab∇aζb

¼ Tabðσ0ma − κ0laÞðldmb −mdlbÞζd
þ conjugate; ð55Þ

and thus

dPd

dτ
¼Tabðσ0ma− κ0laÞðldmb−mdlbÞþ conjugate ð56Þ

is the rate of conversion of gravitational to material energy-
momentum per unit time per unit volume (here dτ is the
four-volume element). (More precisely, it is the rate of
conversion of gravitational, to material, contributions to the
total energy-momentum, but this is too cumbersome to say
each time.) In particular, the rate of conversion of gravita-
tional to material energy (with respect to the Bondi frame,
the td ¼ ð1=2Þld þ nd component of (56)) per unit time per
unit volume is

dE
dτ

¼ Tabðσ0ma − κ0laÞmb þ conjugate: ð57Þ

It should be emphasized that this does notmean thatmatter is
created or destroyed; it rather means that the contribution of
whatever matter is present to the energy-momentum of the
system, as measured at null infinity, may change.
For matter confined to the region under study, we may

compute the total rate of conversion dPa=du of gravita-
tional to material energy-momentum per unit retarded time:

dPd

du
ζd ¼

Z
u¼constant

Tabðσ0ma − κ0laÞðldmb −mdlbÞζd

þ conjugate; ð58Þ

where ζa is any asymptotically constant vector and the
volume form ϵabcdna is understood.
The fact that only the vectors la, ma, m̄a appear in these

expressions has implications both for which components
of the stress-energy contribute to the energy-momentum
exchange and how the local contributions are directed.
Matter moving ultrarelativistically outward from the source
(which will have Tab proportional to lalb) will not
exchange energy-momentum with gravitational radiation10;
inward-directed ultrarelativistic matter or radiation (with
Tab proportional to nanb) will tend to exchange transverse
momentum (in the ma–m̄a plane); transverse stress-energy
components are needed to exchange outward-directedmom-
entum. Depending on the sign of the energy-momentum
exchange, the effect on a local distribution of matter may
be to increase its energy and contribute to its momentum

outward, or to decrease its energy and contribute to its
momentum inward: but it cannot increase the energy and
also contribute to inward momentum, nor decrease the
energy and contribute to outward momentum.
The rate of energy-momentum exchange thus is given by

a sum of terms, each of which is a product of a component
of the stress-energy with the news function (or an angular
derivative of the news function). It is thus formally first
order in both the matter and the gravitational radiation. On
the other hand, one must remember that the entire analysis
assumes that the curvature effects of the matter terms only
give small perturbations to the geometry set by the Bondi-
Sachs asymptotics, and thus the exchange has only been
established in cases where it is effectively second order in
the radiation.
There are some further fine points about the order of the

effects involved, which are discussed next.

VI. RELATION TO LINEARIZED THEORY

Since in most practical cases gravitational radiation is
weak, it is natural to analyze it by perturbation theory. This
can certainly be done within the framework developed here.
This is for the most part straightforward, but there are two
points which deserve comment.
The first point is elementary but worth making explicitly:

the holonomies in the asymptotic regime are nontrivial at
the linearized level. This means that the construction of the
asymptotically constant covectors will also be nontrivial at
this level, as will be energy-momentum-exchange effects.
In other words, the essential physics is nonlocal, but it is not
exclusively nonlinear.
The second point is a conceptual one which will not

figure explicitly in the analysis but explains the perhaps
unexpected forms of some of the results. The reader may
wish to skim this at first and come back to it as necessary.
In the Bondi-Sachs analysis, the power radiated is given

by

ð4πGÞ−1 lim
r→∞

I
jσ0j2dS ð59Þ

over spheres r ¼ constant, u ¼ constant. (There are similar
formulas for the other components of the radiated energy-
momentum.) Because this is quadratic in σ0, one might think
that a knowledge of σ0 in linearized theory would be
adequate for a lowest-order computation of the power. In
particular, it would be tempting to think of the physics in the
radiation zone as due to two contributions, one froma central
radiating source and the other from the matter in the zone.
We are already assuming the matter effects are smaller than
the radiation ones; if (as will usually be the case) the
radiation from the central source is also small, shouldn’t
we have simply σ0 ¼ σ0central source þ σ0radiation-zone matter?
And would not energy-momentum-exchange effects be
derivable from such considerations?

10This may be contrasted with the interconversion of electro-
magnetic and gravitational waves in an electromagnetic back-
ground, e.g., Ref. [11].
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The answer is “no.” To understand this, suppose we start
with a vacuum radiation zone, and ask how the outgoing
shear σ0 there changes as a little matter is introduced. To do
this, we follow the geometry from outside the matter
inwards, along the la congruence. As we do so, we must
maintain the Bondi coordinate and tetrad conditions. In
particular, the tetrad vectors na and m̄a, which figure in the
definition of σ0, will be affected by the matter. Thus there
will be changes in what we would call σ0central source due to
the change in the tetrad vectors as they are affected by the
matter’s gravitation. These will lead to energy-momentum
exchanges of the same order as, but distinct from, the
cross-terms σ0central sourceσ̄

0
radiation-zone matter (plus conjugate).

(There will generally be other changes, too, of the same
magnitude.)
In the following sections, we will have examples of this.

VII. TEST PARTICLES

Test particles can be viewed as special cases of the
general results of the previous section, or analyzed directly
in terms of the asymptotically constant frame and the
connection Da.

A. General formulas and interpretations

Let a particle of mass μ fall freely along an affinely
parameterized geodesic γ. Then the geodesic equation
implies _γb∇bðμ_γaÞ ¼ 0, which means that the energy-
momentum of the particle is propagated parallel along the
trajectory. On the other hand, the rate of change of the
energy-momentumwith respect to the Bondi-Sachs frame is

_γbDbðμ_γaÞ ¼ μðκ0lb − σ0mbÞðlamc −malcÞ_γb _γc
þ conjugate: ð60Þ

To begin to understand this, it may be helpful to compare
it with the formula for the motion of a particle of charge
q in a Minkowski-space electromagnetic radiation zone,
which is

_γb∇bðμ_γ1Þ ¼ qϕ2ðlamc −malcÞ_γc þ conjugate; ð61Þ
where ϕ2 is the radiative component. Thus the two cases
have a common factor ðlamc −malcÞ_γc; this codes the
polarization in the electromagnetic case, and is essentially
the square root of the polarization in the gravitational one.
The remaining directional character of the gravitational
effects appears in the factor κ0lb − σ0mb.
In the Maxwell case it is a component of the Faraday

tensor, a local geometric object, which enters: but for
gravity it is the spin coefficients σ0 and κ0, which are
essentially nonlocally determined potentials for the curva-
ture, which come up. In particular, the Bondi news, and so
σ0, may be nonzero in a range of ðu; θ;ϕÞ values for which
the radiative curvature term Ψ0

4 vanishes.

In the nonrelativistic limit (where _γa differs from ta only
by small terms), one has to leading order

_γbDbðμ_γaÞ ¼ −μκ0ma þ conjugate; ð62Þ
which is formally similar to the response −qϕ2ma þ
conjugate of a charged particle; however, for relativistic
motion the difference in forms between the equations
becomes apparent. For ultrarelativistic particles, the geo-
metric factors m · _γ, l · _γ will tend to zero along the
outgoing portions of the trajectory, and these will inhibit
energy-momentum exchange.
In Eq. (60), the differentiation is with respect to the affine

parameter (say s) along the geodesic. If we convert it to
differentiation with respect to the Bondi parameter u using
du=ds ¼ _γala, we have

D
Du

μ_γa ¼ −σ0
�
μ
ð_γbmbÞ2
_γclc

�
la þ κ0ðμ_γbmbÞla

þ μ_γbðσ0mamb − κ0malbÞ
þ conjugate: ð63Þ

This expression represents the rate of transfer of energy-
momentum from the gravitational field to the particle.
(While the particle’s energy-momentum changes relative to
the Bondi-Sachs frame, its mass

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ_γaμ_γbgab

p
does not,

because the connection Da preserves the metric.)
The terms on the right in (63) have interesting inter-

pretations. The factor μð_γbmbÞ2=_γclc in the first term would
be, in linearized theory, half the contribution of the test
particle to the Bondi shear. Thus there is a shear–shear
coupling, between the shear σ0 of the ingoing congruence
and a measure of the Bondi (outgoing) shear due to the test
particle, leading to a transfer of energy-momentum along
la. The second term gives also an outward-directed accel-
eration (with respect to the Bondi frame), this one propor-
tional to the acceleration κ0 of the ingoing congruence. The
terms in parentheses of the second line of Eq. (63) are half
the projection of Lngab, the Lie derivative of the metric
along na, in the directions spanned by mamb and malb.
Roughly speaking, the effect of the second line is as if the
particle experienced an acceleration (relative to the Bondi
frame) from being batted by the ingoing congruence, or
rather by the projected effects of this. (One should bear in
mind that the incoming congruence does not here code any
incoming radiation, but rather the temporal evolution which
is necessary to maintain the Bondi gauge.)
Over short portions of the particle’s trajectory, we expect

the geometric terms _γama, _γala to be nearly constant, as
well as the value of r. We have σ0 ≃ − _̄σB=r and κ0 ≃
−~ð _̄σB=r in the radiation zone. Over short portions of the
trajectory, the angular variables which (with u) are the
arguments of σB do not change much, and so the change in
the particle’s energy-momentum as measured with the
Bondi-Sachs frame will be
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Δμ_γa ≈
Δσ̄B
r

�
μ
ð_γbmbÞ2
_γclc

�
la −

~ðΔσ̄B
r

ðμ_γbmbÞla

þ μ_γb
�
−
Δσ̄B
r

mamb þ
~ðΔσ̄B
r

malb

�

þ conjugate: ð64Þ

This means that we have an approximately conserved
quantity

Πa ¼ μ_γa þ
σ̄B
r

�
μ
ð_γbmbÞ2
_γclc

�
la −

~ðσ̄B
r

ðμ_γbmbÞla

þ μ_γb
�
−
σ̄B
r
mamb þ

~ðσ̄B
r

malb

�

þ conjugate: ð65Þ

The existence of this approximate conservation law is
closely connected with the character of the backreaction of
the test particle on the radiation field. Were the quantity to
be exactly conserved, one would expect no radiated energy,
and hence no backreaction, in cases where σB returns to its
original value after a burst of radiation. A net change in σB
would be a “memory effect”; we see that glitches leading
to steps in σB over short u-intervals (over which Πa is
conserved) correspond to steps in the particle’s energy-
momentum, measured relative to the Bondi-Sachs frame.

B. Scattering by quadrupolar waves

A simple but important example is the scattering of test
particles by quadrupole radiation in linearized gravity.
Because the energy-momentum transfer is linear in the

news, it will suffice to consider the case of a constant
polarization; the general case is a sum of such terms. We
take the Bondi news to be N ¼ fðuÞKcdm̄cm̄d, where the
amplitude profile fðuÞ is a complex dimensionless func-
tion, and the polarization Kcd (also dimensionless) is a
fixed Minkowskian tensor, real, symmetric, trace-free and
orthogonal to ∂=∂t; here u ¼ t − r is the retarded time. The
real and imaginary parts of f determine, respectively, what
are called the electric and magnetic contributions to the
news. We have

σ0 ¼ fðuÞ
r

Kcdm̄cm̄d ð66Þ

κ0 ¼ −2
fðuÞ
r

Kcdm̄cr̂d: ð67Þ

Since the energy-momentum transfer is proportional to
the news function, which is already first-order, we may take
the particle’s trajectory to be Minkowskian. Let us write

γaðsÞ ¼ bBa þ sðcosh ξÞta þ sðsinh ξÞCa ð68Þ

as a vector relative to the origin in Minkowski space, where
Ba, Ca are mutually orthogonal spacelike unit vectors,
orthogonal to ta ¼ ∂=∂t, the impact parameter is b and the
rapidity is ξ. We have then

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ s2sinh2ξ

p
ð69Þ

u ¼ s cosh ξ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ s2sinh2ξ

p
: ð70Þ

We also note for future use that

r̂a ¼ ð1=2Þla − na ¼ ðbBa þ sðsinh ξÞCaÞ=r ð71Þ

is a unit radial vector orthogonal to ta, and then

m̄cma ¼ m̄ðcmaÞ þ m̄½cma�

¼ ð1=2Þð−gca þ tcta − r̂cr̂a − iϵcapqtpr̂qÞ: ð72Þ

The energy-momentum transfer is then

ΔPa ¼ μ

Z
½κ0lp − σ0mp�½mqla − lqma�_γp _γqds

þ conjugate

¼ −2μ
Z

fðuÞ
r

Kcd _γp _γqm̄cm½qla�ðm̄dmp þ 2r̂dlpÞds

þ conjugate: ð73Þ

Note that it is orthogonal to Pa (as expected, since we
consider only first-order changes and PaPa is preserved).
For a given radiation field, the dependence of the energy-

momentum transfer on the trajectory γ is quite rich, and we
shall here work out only a few limiting cases.
The limit ξ → 0. This is the nonrelativistic limit touched

on earlier. In this case we have r̂a ¼ Ba, r ¼ b, ds ¼ du, as
well as

_γqm̄cm½qla� ¼ −ð1=4Þ
× ð−gca þ tcta − BcBa − iϵcarstrBsÞ ð74Þ

_γpðm̄dmp þ 2r̂dlpÞ ¼ 2Bd; ð75Þ

so

ΔPa ¼ ðμ=bÞKcdð−gca − BcBa − iϵcarstrBsÞBd

×
Z

fðuÞduþ conjugate: ð76Þ

As noted earlier, the momentum transfer in this case is a
memory effect, responding to Δσ0 ¼ −Kcdmcmd

R
f̄du,

the net change in Bondi shear. The transfer is orthogonal to
Ba, and falls off with b, the distance from the source. The
real and imaginary parts of the news couple through the real
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and imaginary terms within the parentheses in (76), giving
different parity-dependences on the separation vector Ba.
The case jξj → ∞. This case is much more complicated.

The calculations are straightforward, though, and I shall
only indicate the main points.
The energy-momentum transfer is

ΔPa ¼ −2μejξj
Z

0

−∞
fðuÞKcdðAca þ BcaÞDd

du
juj

þ conjugate ð77Þ

(one can check that the numerator in the integrand vanishes
as u↑0, and in fact there is no singularity at u ¼ 0), where

Aca ¼ ð1=4ÞsgnðξÞsechζ
× ð−sechζCc þ sgnðξÞ tanh ζBc − iϵcqrsCqtrBsÞ
× ðta þ sechζBa þ sgnðξÞ tanh ζCaÞ ð78Þ

Bca ¼ ð1=4Þð−gca þ tcta − r̂cr̂a − iϵcapqtpr̂qÞ
× ð1 − tanh ζÞ ð79Þ

Dd ¼ ð1=4ÞsgnðξÞsechζ
× ð−sechζCd þ sgnðξÞ tanh ζBd − iϵdpqrCptqBrÞ
þ ð1 − tanh ζÞðsechζBd þ sgnðξÞ tanh ζCdÞ ð80Þ

with

ζ ¼ − logðjuj=bÞ: ð81Þ

Note that because this scales as ejξj, the fractional energy-
transfers ΔE=E will attain a jξj-independent limit (and this
will also apply to massless particles).
While the general form of the energy-momentum trans-

fer is evidently complicated, it simplifies considerably in
certain regimes. For any fixed trajectory, the contributions
to ΔPa from different values of u break down to those from
an incoming regime u≲ −b, a transition regime u ∼ −b,
and an outgoing regime −b≲ u < 0. It is only in the
transition regime that all the terms in the integrand are
potentially significant; in the other two the limiting forms
are much simpler. I will give the forms first, and then
discuss their interpretations.
The contribution from the incoming regime is

ΔPajincoming ¼ −2μejξjKcd

× ð−gca − CcCa − isgnðξÞϵcapqtpCqÞ

× ðsgnðξÞCdÞ
Z
u≲−b

fðuÞ du
u

þ conjugate; ð82Þ

and from the outgoing regime

ΔPajoutgoing ¼ zPa ð83Þ

where

z¼ð2b2Þ−1KcdUcUd

Z
−b≲u<0

fðuÞuduþconjugate ð84Þ

with

Uc ¼ Bc − isgnðξÞϵcqrsCqtrBs: ð85Þ

The notation z is chosen to fit with the usual notion of a
red-shift. Thus formula (82) would suffice to give the
energy-momentum transfer if the amplitude f vanished for
−b≲ u < 0, and (83) would suffice if the amplitude
vanished for u≲ −b.
The contributions from the incoming regime have the

following important features: (a) They are independent of
the direction Ba of the trajectory’s closest approach. (b) The
directional dependence is formally the same as in the ξ ¼ 0
case, but with Ba there replaced by sgnðξÞCa here. In
particular, the transfer is purely one of spatial momenta.
(c) They depend on the impact parameter b only through
the range of integration.
The contributions from the outgoing regime are very

different: (a) They purely dilate the energy-momentum,
that is, they purely red- or blue-shift it, without changing
its space-time direction. (b) Their angular dependence is
very curious, with the electric part coupling to BcBd −
WcWd (whereWc ¼ ϵcqrsCqtrBs; note thatWc ¼ ðB × CÞc
in three-vector terms), and the magnetic part to
sgnðξÞðBcWd þ BdWcÞ.
One would like to get a sense of what the range of the

scattering is, in terms of how it depends on the impact
parameter. Because the source will be time-dependent,
there is no truly universal answer to this. If we consider a
fixed source and formally expand the exchange (77) for
b → ∞, we find it scales as

R
0
−∞ fðuÞudu=b2 for b → ∞. If

for instance f were compactly supported, then this would
show that the scattering fell off as 1=b2. This is more rapid
than the Newtonian result, because the Newtonian scatter-
ing accumulates over a large portion of the particle’s
trajectory, with significant contributions over a spatial scale
∼b. (If the Newtonian force somehow acted only for a time-
interval Δt near the particle’s point of closest approach, the
scattering would go as vΔt=b2, with v the particle’s speed.)
For a monochromatic source, because the scattering will
average out for the early portion of the particle’s trajectory,
a similar argument applies, and we expect a scaling
∼1=ðωbÞ2 for angular frequency ω. However, a wave
which falls off as jfðuÞj ∼ ju=u0j−1=2−ϵ as u → −∞ will
carry finite energy but could by Eq. (82) lead to exchanges
scaling as ju0=bj−1=2−ϵ0 .

ENERGY-MOMENTUM AND ASYMPTOTIC GEOMETRY PHYSICAL REVIEW D 90, 044005 (2014)

044005-17



VIII. NONZERO AVERAGE EFFECTS

We have seen that the energy-momentum exchange
between matter and gravitational waves is determined by
integrals of components of the stress-energy against certain
spin coefficients, which are in turn proportional to the
Bondi news N (and its angular derivative ~ðN). If the
frequencies of the gravitational waves are large compared
to the scales on which the stress-energy changes, averaging
will suppress the exchange. Interesting net exchange effects
therefore require defeating this averaging.
One possibility for doing this is to have matter which is

not static on the time scale over which the waves cycle.
Most simply, the stress-energy may beat with or against
monochromatic waves, leading to a secular exchange
(compare [3,17]). Of course, such effects require a resonant
tuning which will not be generic.
Even for waves which are not monochromatic, one could

have matter whose time-dependence was correlated with
that of the wave in such a way as to give nontrivial net
effects. Such a possibility was suggested some time ago, in
the case of tidal energy-momentum exchanges, by Press
[4], with the idea of mimicking the mirrors, waveguides,
etc., available for electromagnetic radiation. Of course,
given the basic assumption of this paper that matter
perturbs the radiative geometry only slightly, we cannot
expect here to find anything like the efficiency needed to
construct a gravitational mirror or waveguides; also, the use
of bulk rather than tidal effects makes the analogy with
electromagnetism more distant, and there is a difference in
that the present techniques speak most directly to energy-
momentum, not waveforms. Nevertheless, we will see that
it is in principle possible in at least some cases to have
matter respond to gravitational waves so that the flow of
energy-momentum is coherently modified, for example, to
cause a net absorption of one component.
Finally, and potentially most broadly, one could get net

changes in energy-momentum exchange if the waves carry
“memory.” The memory effect in this case is a net change in
Bondi shear between the period prior to the wave and the
one after it. In the quadrupole approximation, the Bondi
shear is essentially the second time derivative of the
quadrupole, so systems emitting jets will generate gravi-
tational waves with memory.
I shall give examples of these different nonzero average

effects here, simply to give a sense of some of the features
and issues which come up. (As will become apparent, there
are so many degrees of freedom that full treatments would
be lengthy.) We shall see in particular that the gravitational
waves from relativistic jets may be affected by their
propagation through matter.

A. Beating with or against the waves

The simplest examples of secular energy-momentum
effects are constructed from quadrupoles in linearized

gravity. We suppose that we have a central quadrupole
source at the spatial origin, and at coordinate value r
another, smaller, quadrupole. Any orbital motion of this
smaller quadrupole will be neglected here, since we are
interested in gravitational waves of much higher frequen-
cies than any orbital frequency (compare [17]).
The key relation is Eq. (56), repeated here:

dPd

dτ
¼Tabðσ0ma− κ0laÞðldmb−mdlbÞþ conjugate: ð86Þ

The idea will be to integrate this over a small spatial volume
containing the smaller quadrupole.
The stress-energy terms will be approximated as local-

ized at the small object. While in reality the object will have
a finite size (large enough, in particular, that it is nowhere
near its Schwarzschild radius), most of the details of its
internal structure will be irrelevant, and we will as usual
suppose that we may represent it by a spatial multipole
distribution insofar as integrals of smooth quantities, not
varying much on the scale of the object, against its stress-
energy go. We will discard any monopole or dipole terms,
since these are not expected to change rapidly enough to
beat against the waves. We will assume the remaining terms
can be treated as pure quadrupoles. In general such terms in
the stress-energy involve certain coefficient functions times
spatial delta functions or times derivatives of spatial delta
functions [12]. Here any derivatives of spatial delta
functions will be discarded, since these will be integrated
against the (spatially) slowly varying σ0, κ0. We may then
write

Tablalb ¼ ð1=2ÞQ̈el
abl

albδsp ð87Þ

Tablamb ¼ ð1=2ÞQ̈el
abl

ambδsp ð88Þ

Tabmamb ¼ ð1=2ÞQ̈el
abm

ambδsp; ð89Þ

where δsp is a spatial delta function at the object’s location
and Qel

abðuÞ is the object’s “electric” or “mass” quadrupole,
and the dots are derivatives with respect to u. (The
“magnetic” or “current” quadrupole does not appear
because it contributes only terms with derivatives of δsp.)
Note that in these equations, because the quadrupoles are
purely spatial, we may replace la with r̂a.
Now let us turn to the central source. We will allow it to

have a complex quadrupole moment

Qab ¼ Qel
ab þ iQmag

ab ; ð90Þ
where Qel

ab, Q
mag
ab are purely spatial, symmetric, trace-free

tensors. We have

N ¼ −Qð3Þ
ab m̄

am̄b ð91Þ
~ðN ¼ þ2Qð3Þ

ab r̂
am̄b; ð92Þ
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where the superscript indicates the third retarded
time-derivative.
As a final preparatory step, we have from Eq. (72) the

identity

mam̄p ¼ ð1=2Þð−Πap − iRpaÞ; ð93Þ
where

Πa
b ¼ −mam̄m − m̄amb ð94Þ

is the projection to the transverse spatial directions and

Rp
a ¼ ϵpaqstqr̂s ð95Þ

is the generator of rotations in this plane, about r̂a (with the
usual orientation).
Integrating Eq. (56), we have, after some algebra

ΔPd ¼−
1

4

Z
Q̈el

abQ
ð3Þel
pq ½ðΠapΠbq−RpaRqb−4r̂ar̂pΠbqÞld

− lbðΠapΠd
q−RpaRq

dÞ�r−1du

þ1

4

Z
Q̈el

abQ
ð3Þmag
pq ½ð2ΠapRqb−4r̂ar̂pRqbÞld

− lbðΠapRq
dþRpaΠq

dÞ�r−1du: ð96Þ

Evidently the dependence on the polarizations, indicated by
the terms in square brackets, can be rather complicated.

However, the initial Q̈el
abQ

ð3Þ
pq factors show clearly the

possibilities for constructive or destructive interference,
if the frequencies are matched.
At resonance at an angular frequency ω, ignoring the

polarizations, the energy-momentum exchange scales as
∼ω5Qel

abQpqΔu=r. This should be contrasted with the
radiated energy of the central source, which goes as
∼ω6QabQpqΔu. Thus the relative change is suppressed
by two factors: the (assumed) intrinsic weakness of the
waves from the small object relative to those from the
source; and c=ðωrÞ, which will be small in the radiation
zone. While in many practical cases this relative change
will certainly be tiny, there is no inherent reason for it to be
so in all cases. Also many of these small objects could, in
principle, surround the source.
The effects of the polarizations are curious and different

from those of tidal effects. Because of the complications of
the expressions, I will just discuss a few of the possibilities.
Suppose that the source quadrupole has principal axes

along the coordinates, with degenerate eigenvalues in the
x–y plane. Then it turns out that if the small object is on the
z axis, there is no effect. However, for an object along (say)

the x axis, the coupling to Qð3Þ el
ab would be proportional to

ðQ̈xx − Q̈yyÞld − Q̈xzx̂d þ Q̈xyŷd: ð97Þ

Thus if the object’s quadrupole were purely in the “plus”
polarization relative to the x and y axes, it would give net

changes in the energy-momentum proportional to
la ¼ ta þ x̂a.11 Thus the system could acquire or loose
energy-momentum in this direction, depending on the
phase matching. It is not clear, in general, how this would
be distributed among the system’s components. However,
one could imagine the central source and the small object
joined by some framework, in which case presumably the
entire system would move in response. (One needs the
usual caveat here about relativistic systems not being
strictly rigid.) If one had two small objects, oppositely
placed about the central source, then depending on their
phases, one could have energy-momentum transfers purely
in the ta or x̂a directions.
I have so far emphasized the case of resonant coupling,

but it is possible to generalize this, because the formula (96)
expresses the coupling of the wave from the central source
and the small object in the time-domain. This equation
shows that if the time dependences of the waves from the
central source and the matter in the radiation zone are
suitably correlated, energy-momentum-exchange effects
can build up.
It is worth noting that formula (96) and its consequences

are not what one would get by using linearized-gravity
computations of the news and the Bondi-Sachs energy-
momentum-loss formula; this is an example of the second
point raised in Sec. VI.

B. Dynamically active matter

It is natural to ask whether there are gravitational analogs
of the familiar materials which control and modify the
propagation of electromagnetic waves, that is, of optically
active materials. In the context of the current work, we
cannot expect any exact analogy, for we study here not the
changes of the waves themselves but of their energy-
momentum. We may say that matter is dynamically active
if it affects the energy-momentum of gravitational waves
passing through (or near) it. Of course this term—like its
optical counterpart—is so broad that strictly speaking all
matter has this property. We are really interested in
knowing what the character of the activity is.
The results of the previous subsection show that there are

at least some similarities with optical activity: that in some
circumstances matter may coherently alter the flow of
energy-momentum in the waves. However, there is a very
substantial difference.
The energy-momentum exchanges are given in terms of

the spin coefficients σ0, κ0, which are not locally deter-
mined, because they depend on the Bondi tetrad (in
particular on the spinor ιA). To the extent this nonlocality
is essential, matter in the radiation zone cannot causally
adapt to radiation in its vicinity. That is, while matter might

11Note that this orientation is not transverse to the waves from
the central source—those would be described by polarizations
transverse to the x axis.
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happen to be positioned in the radiation zone of a specific
source so as to effect particular changes in the flow of
energy-momentum, one cannot contrive a distribution of
matter guaranteed to respond in a prescribed way to
arbitrary sources.
It is possible to partially compensate for this limitation,

by using the relations (valid asymptotically)

∂uσ
0 ¼ Ψ4; rðΨ4 ¼ ∂uκ

0: ð98Þ
These relate the spin coefficients to components of the
curvature tensor. Now, while the curvature tensor itself is
locally determined, one must be cautious that one is here
taking components again with respect to the Bondi tetrad.
However, in the radiation zone, the Weyl curvature is to
good approximation ΨABCD ¼ Ψ4oAoBoCoD, so it is
enough to know the outgoing spinor oA to know Ψ4,
and this will be the case if we assume we know the
outgoing wavefronts, or equivalently the coordinate u,
locally. (The phase of oA will not matter.) However, the
operator ðwill not be well determined locally, being subject
to an ambiguity of addition of Oð1Þ multiples of l ·∇.
Again assuming the relevant matter terms can be taken to

be “electric” quadrupoles, we have

ΔPd ¼ ð1=2Þ
Z

u1

u0

Q̈el
abðσ0ma − κ0laÞðldmb −mdlbÞdu

þ conjugate

¼ ð1=2Þ _Qel
abðσ0ma − κ0laÞðldmb −mdlbÞju1u0

− ð1=2Þ
Z

u1

u0

_Qel
abðΨ4ma − rððΨ4ÞlaÞ

× ðldmb −mdlbÞduþ conjugate: ð99Þ

In this form, there are two sorts of problematic terms, each
of which will vanish for suitable local restrictions on the
matter. The first are the boundary terms, which involve
the spin coefficients explicitly; these can be eliminated if
we consider transitions betweenQel

ab ¼ constant states. The
other problematic terms are those proportional to ðΨ4;
those will vanish if we consider quadrupoles which are
polarized purely transversely to the waves. We thus find:
For a gravitational wave encountering a quadrupole of

electric type, whose polarization changes only purely
transversely to the wave, and making a transition between
two Qel

ab ¼ constant states, the energy-momentum
exchange is determined by data in the vicinity of the
quadrupole, is parallel or anti-parallel to the outgoing
direction, and is

ΔPd ¼ −ð1=2Þ
Z

u1

u0

_Qel
abΨ4maldmbduþ conjugate:

¼ −
Z

u1

u0

_Qel
abCapbqtptqlddu; ð100Þ

where Cabcd is the Weyl tensor. The qualifications at the
beginning of this paragraph give, by contrast, some sense of
the degree to which nonlocal considerations can effect the
energy-momentum transfer generally.

C. Memory effects

Even if a system emits gravitational radiation only for a
finite interval of retarded time, there may be a net change in
its Bondi shear, which is a sort of memory effect.12 Since
the Bondi news N ¼ −∂uσ̄B, the difference in Bondi shear,
as a function of angle, will contribute to a holonomy
between the regimes before and after the emission of
radiation, and thus will have consequences for energy-
momentum exchange.
The simplest examples of this occur when mass is

ejected from a system. If a mass M is ejected with four-
velocity _γa, then the resulting change in Bondi shear will be
ΔσB ¼ 2Mð_γ ·mÞ2=_γ · l in linearized gravity. For simplic-
ity we consider the effects of this on nonrelativistic matter
in the radiation zone, so the dominant contribution to the
energy-momentum exchange (56) comes from Tablalb—
for nonrelativistic matter, this is the energy density ρ. Then
the exchange will be

ΔPd ¼
Z

Tablalbðκ0md þ conjugateÞdτ

¼ M
Z

ρ_γ · m̄

�
2_γ · r̂ _γ ·lþ _γ · m̄ _γ ·m

ð_γ · lÞ2
�

×mdr−1dð3Þvolþ conjugate

¼ M
Z

ρð−2_γ · r̂ð_γ · lÞ−1 þ ð1=2Þ_γp _γqΠpqð_γ · lÞ−2Þ

× _γrΠrdr−1dð3Þvol ð101Þ
Suppose for instance that _γa ¼ ta cosh ξþ ẑa sinh ξ, and
that ρ represents a localized mass μ. Then

ΔPd ¼ −
�ð3cos2θ þ 1Þ sinh ξ − 4 cos θ cosh ξ

ðcosh ξ − cos θ sinh ξÞ2
�

×
Mμ sin θsinh2ξ

2r
·
1

r
∂
∂θ : ð102Þ

In the ultrarelativistic case, this goes over to

ΔPd ¼ 3 cos θ − 1

1 − cos θ
·
Mμ sin θeξ

4r
·
1

r
∂
∂θ for θ ≳ e−ξ ð103Þ

¼ θe3ξ ·
Mμ

2r
·
1

r
∂
∂θ for θ ≪ e−ξ: ð104Þ

12The sort of memory figuring here goes back to Bondi [1] and
is also at the root of Christodoulou’s work [18]. Indeed, Bondi
looked at this in connection with energy-momentum exchange.
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Because of its physical interest, let us look at the
ultrarelativistic case. The exchange is everywhere spatial
and directed along a meridian. At colatitudes θ <
cos−1ð1=3Þ ¼ 71 deg the wave transfers energy-momen-
tum to matter in a direction of decreasing θ, whereas
outside this cone the transfer is to increasing θ. This will
also be the sense of whether the transfer contributes along
the direction of the jet or oppositely. The transfer to the
matter will be towards the axis for cos−1ð1=3Þ < θ < π=2
and away from the axis elsewhere.
Remarkably, a direct calculation from Eq. (102) shows

that for a spherical distribution of matter the net energy-
momentum exchange vanishes. However, this result
depends on the cancellation of potentially significant terms.
(For instance, near θ ¼ 0 the contributions to the exchange
are large in magnitude, but are directed symmetrically in
azimuth.) From Eq. (103) the fractional energy-momentum
exchange will scale like a weighted average over angles of
integrals ðG=c2Þ R ρrdr along the outward null geodesics.
We saw in Sec. III C that integrals like this could in
reasonable astrophysical circumstances be large. Of course,
the present, radiation-dominated, approximation is only
valid when these integrals are small.
We are thus left with the possibility that relativistic

jets from sources surrounded by sufficiently inhomo-
geneous distributions of nonrelativistic matter might suffer,
within the realm where the analysis here is valid, energy-
momentum exchanges which are small (but not very small)
fractions of unity. We cannot say what happens when still
more matter is present, but one would very much like to
know. It is certainly possible that grosser effects may occur.

IX. DISCUSSION

The main idea underlying this paper is that space-times
with gravitational radiation are not asymptotically flat in
the sense usually required for giving a consistent account-
ing of energy-momentum, but that this problem is resolved
by extending the Bondi-Sachs construction of energy-
momentum to the radiation zone. (This applies even at
the linearized level.) This procedure is strongly nonlocal,
depending on the physics of the gravitational field in all
asymptotic directions around the source. The result is a
well-defined way of measuring the contributions of local
distributions of matter in the zone to the system’s total
energy-momentum. Tracking these gives measures of the
exchange of contributions to the total energy-momentum
from the matter and gravitational radiation, that is, bulk
exchanges, in contrast to the tidal ones usually considered.
This approach is not derived from first principles, but is

plausible as long as holonomies in the radiation zone are
well modeled by the leading terms from the Bondi-Sachs
analysis. Since that analysis is concerned with space-times
with near-vacuum radiation zones, all of the effects dis-
covered here are relatively small ones in cases where the
approach can be conservatively regarded as reliable. The

question of just what happens when we go beyond this
“radiation-dominated” regime, and in particular, how much
larger the energy-momentum exchanges could be, is very
much of interest, but will require other techniques, or at
least other justifications.
The scattering of test particles was discussed first.

Perhaps surprisingly, although we consider here outgoing
waves, the scattering appeared to be most naturally inter-
preted in terms of the incoming congruence associated with
the Bondi frame. We found a shear–shear coupling,
between what would be the particle’s contribution to the
outgoing shear in the linearized limit, and the shear of the
incoming congruence, as well as other terms. Roughly
speaking, this is because (for outgoing radiation) the
incoming Bondi-Sachs congruence codes the changes in
temporal evolution necessary to maintain the Bondi gauge
in the presence of outgoing radiation. The scattering of the
particle is due to the adjustments in gauge required by the
Bondi-Sachs framework.
The case of test particles scattered by quadrupole radiation

in linearized theory was completely worked out. The details
of these results were complex, reflecting partly the freedom
in the source’s time-dependence, but also the ways the its
polarization could couple to the orbital elements of the
particles. Because of this time-dependence, there is no simple
universal formula for the fall-off of the scattering with the
particles’ impact parameters. Formonochromatic sourceswe
found a scaling∼ðωbÞ−2 (withω the angular frequency andb
the impact parameter). However, for sources slowly varying
in the past larger effects were possible. (In the future, for
relativistic particles, retardation provides a cutoff.)
In general, the energy-momentum exchanges will tend to

average out if the waves’ periods are shorter than the
dynamical timescales associated with the matter (intrinsic
time-dependences, as well as transit times across the
source’s sphere of directions). So I considered several cases
in which this averaging could be, a least partially, defeated.
The most straightforward of these was a resonance

between the waves and intrinsically time-dependent matter;
the latter was modeled by small quadrupoles in the
radiation zone. We did indeed find possibilities for secular
energy-momentum exchange. The effects depended differ-
ently on the polarizations than one would find from a naïve
application of linear theory; this was because the naïve
picture does not maintain the Bondi-Sachs gauge to the
required accuracy.
An issue closely related to resonance is the sense in

which gravitational waves’ energy-momentum can be
effectively directed, absorbed or reflected; I referred to
this as dynamic activity, analogous to optical activity for
electromagnetic waves. (Could one have mirrors, or
refractors, of gravitational energy-momentum? Of course,
the work here is limited to fractionally small effects, so it
could not justify any very efficient reflection or refraction.)
The nonlocality of the energy-momentum was a serious
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impediment to having matter which could be dynamically
active. We did find, however, that for matter consisting of
small quadrupoles, some sort of localized controlled
response was possible if the vector towards the distant
source was known; the quadrupoles had to be purely
electric, make transitions between constant-quadrupole
states, and their changes in polarization had to be transverse
to the waves. The energy-momentum exchange in this case
was directed parallel or antiparallel to the wave vector.
A third way of defeating the averaging was to consider

waves with net changes of Bondi shear. Such waves can
exchange energy-momentum even with very simple forms
of matter, such as nonrelativistic dust. We considered a
simple model, corresponding to waves from a source due
to the emission of a relativistic jet. (The jet is not the matter
with which energy-momentum will be exchanged.) We
found that for perfectly spherically symmetric distributions
of matter, the exchange vanished. However, that was excep-
tional. Typically the contribution to the fractional change in
energy-momentum of the waves due to matter along a ray
outward from the source went like ∼G

R
ρrdr (with ρ the

density), and a sort of angular average of these was taken.
Such integrals can, in reasonable astrophysical circumstan-
ces, become substantial. Thismeant that, for inhomogeneous
matter around a source due to a jet, the exchange effects can
become at least large enough for the present treatment to
break down, and the possibility of their being so large as to
substantially degrade the waves must be taken seriously.
This leads us to an issue of potentially broad concern:

What are the backreactions on the waveforms caused by
the energy-momentum exchanges? As pointed out in the

introduction, common arguments that such effects will
be tiny have involved the implicit assumption that the
exchanges are due to tidal effects, but tidal effects would
generally be only small fractions of bulk exchanges. One
really needs to revisit the question of the transparency of
matter to gravitational waves. In this connection, one
should bear in mind that ultimately gravitational-wave
astronomy is expected to require better than percent-level
accuracy in at least some of the degrees of freedom [6].
As emphasized earlier, the present techniques cannot settle

this question, for two reasons: first, they speak to energy-
momentum, and notwaveforms; second, they are known to be
reliable only in radiation-dominated regimes. Those regimes
are too restricted to count as full realisticmodels: a real system
might not have the requisite clean geometry, and, even if it
does, the waves, as they move outwards, must eventually
weaken to the point that radiation dominance fails. However,
this paper’s analysis can help point to astrophysical situations
to investigate by other means, either analytical or numerical.
It does seem very possible that the averaging-out dis-

cussed above will mean that in many cases the net modi-
fication of the waves will indeed be very small. Resonance
effects could provide secular energy-momentum exchanges
and so presumably larger effects, but these require tuning
and so are presumably rare. We also found that for memory
effects involving net changes in Bondi shear, where the
averaging does not apply, there seemed to be no reason to
rule out more substantial backreaction effects. These points
could affect the observability of waves from astrophysical
jets; compare [5] and references therein.
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