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Energy-momentum and asymptotic geometry
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I show that radiative space-times are not asymptotically flat; rather, the radiation field gives rise
to holonomy at null infinity. (This was noted earlier, by Bramson.) This means that when
gravitational radiation is present, asymptotically covariantly constant vector fields do not exist.
On the other hand, according to the Bondi-Sachs construction, a weaker class of asymptotically
constant vectors does exist. Reconciling these concepts leads to a measure of the scattering of
matter by gravitational waves, that is, bulk exchanges of energy-momentum between the waves
and matter. Because these bulk effects are potentially larger than the tidal ones which have
usually been studied, they may affect the waves’ propagation more significantly, and the question
of matter’s transparency to gravitational radiation should be revisited. While in many cases
there is reason to think the waves will be only slightly affected, some situations are identified
in which the energy-momentum exchanges can be substantial enough that a closer investigation
should be made. In particular, the work here suggests that gravitational waves produced when
relativistic jets are formed might be substantially affected by passing through an inhomogeneous

medium.
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I. INTRODUCTION

The aim of this paper is to present limited but
clean results on the interaction of gravitational waves
with matter. I shall explain how waves exchange
energy-momentum with small amounts of matter in
the waves’ radiation zone. (Throughout this paper,
“matter” means anything with stress-energy; in par-
ticular, it includes electromagnetic radiation. I con-
sider only outgoing radiation; of course, one could
time-reverse the treatment to obtain results for incom-
ing waves.)

Here the radiation zone of an isolated source will be
a (usually finite, large) regime around it in which
certain elements of the space-time geometry can be
well approximated by the leading terms in the
Bondi-Sachs asymptotic expansions [1,2]. In particular
the system need not be ideally isolated, that is,
the Bondi-Sachs geometry need not approximate the
physical geometry indefinitely far out. When the
waves leave this zone (because they begin to en-
counter curvature from other sources), other physics
takes over.

Of course, it is well known that waves’ tidal effects
can alter the energy-momentum of one small body
relative to another nearby; here, however, the project
is to understand how each body’s local energy-momentum
contributes to the system’s total. Thus we are interested
in bulk energy-momentum exchanges between matter
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and radiation; tidal effects will be the differentials of
these.'

The premise will be that the Bondi-Sachs formalism
gives a convincing treatment of the total energy-
momentum PBondi-Sachs of gystems which are idealized
as perfectly isolated (that idealization being reflected
in that PBondi-Sachs jg defined strictly at null infinity).
The aim is to extend this construction inwards, to
finite points in the radiation zone. In this sense the
work here is a step towards treating energy-momentum
quasilocally.

Another way of viewing this is as a search for a
(limited) general-relativistic analog of potential energy—
we seek a way of relating the energy-momenta of
localized objects in the radiation zone (which take values
in the cotangent bundle) to the energy-momentum of the
entire system (which exists in a sort of “cotangent space
at infinity”).

We do not know enough to solve such problems
from first principles, or even to be confident that

'A word about the analogy with electromagnetism is in
order. When we think of electromagnetic waves encountering
matter, we usually have in mind matter which is (macroscop-
ically) neutral. Then the main macroscopic effects come
from its polarizability, which is analogous to a tidal distortion
in gravity. But the parallel with macroscopically neutral
matter is not the correct one, since mass, the relativistic
analog of charge, comes with only one sign. It would be
better to think of electromagnetic waves encountering distri-
butions of charge.
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they have solutions.” Here the idea is not to guess at an
overarching formalism, but to use the special properties of
the radiation zone to guide us to a physically plausible
approximate treatment.

We will see that this zone has a distinctive geometry
which codes at once the gravitational radiation and the
difficulties in relating local to global measures of energy-
momentum. Examining the Bondi-Sachs construction with
this understanding will give a way to resolve those
difficulties, and so to treat energy-momentum in the
radiation zone.

This approximate treatment is useful: it clarifies con-
ceptual points about the physical interpretation of the
radiation zone and gives computations of scattering. The
core of the physics is the nonlocality of the total, general-
relativistic, energy-momentum. This is on one hand closely
connected with an (unsubtle) scaling property implied by
Sachs peeling, and on the other with the (arguably subtle)
fine gauge control provided by the Bondi-Sachs approach.

I began by characterizing the present results as limited;
this is because the treatment requires the matter perturb
the radiation-zone geometry only slightly. This will mean
that, while interesting effects will be uncovered, they will
generally be fractionally small where the treatment is
valid. The question of whether they can be more substantial
when the hypotheses here are relaxed will have to be
answered by other means. What the approach here does do
is to identify potentially interesting cases of energy-
momentum exchange.

A. Main results

The main new formulas describe how local measures of
energy-momentum in the radiation zone are related to the
total energy-momentum. For example, the contribution of a
test particle of mass y freely falling along a geodesic y to
the total energy-momentum will change as the particle
encounters radiation, the rate of change along the trajectory
being denoted

J}bDb(/’”}a) = :u(Kllb - G/mb)(lamc - malc)}.,b}}c
+ conjugate, (1)

where the spin coefficients ¢’, ¥’ code the radiation, and the
Bondi-Sachs tetrad vectors [, m“ its outward-propagating
transverse character. Integrating (in a suitable sense) this
will give us a measure of the scattering the particle suffers
owing to radiation.

The Bondi coordinates are (u,r,0,¢), where u is the
Bondi retarded time (one can think of the u = constant
hypersurfaces as the outgoing wavefronts; they are null and

“The twistorial approach suggests that the quasilocal kinematic
quantities will not generically be energy-momentum and rela-
tivistic angular momentum, derived from the Poincaré group, but
quantities modeled on de Sitter or anti—de Sitter symmetries.
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1, = V,u), the coordinate r is an affine parameter along the
null geodesics generating those fronts, and 6, ¢ are angles.
In the asymptotic regime, one has ¢’ ~N/r, K& ~3N/r,
where 3 is a certain angular derivative, and N = N(u, 0, ¢),
the Bondi news, is essentially a potential for the radiative
components of the curvature. Thus contributions to scatter-
ing from high-frequency wave packets in the news will tend
to average out. More precisely, this suppression will occur
if neither the value of r, nor the dilation 7*V ,u of the Bondi
retarded time relative to the particle’s proper time, nor the
angular dependence of the news, is significant on the
portion of the particle’s worldline extending over a period
of oscillation. To avoid such cancellations, the particle must
pass through an angle on the sphere of directions outwards
from the source over which significant contributions from
the news can accumulate. This means either sources with
very strong angular dependences, or particles moving
rapidly enough past them that they subtend a significant
angle over a period of oscillation. Note that for low-enough
frequency components, and in particular sources with
“memory,” the cancellation mechanism does not apply.

More generally, for any distribution of matter in the
radiation zone, we find that the rate of conversion of
material contributions to the total energy-momentum to
gravitational-wave contributions, per unit time per unit
volume, is

d
% = Top(0'm® — K1) (Iym" — myl”) + conjugate, (2)
T

where T, is the stress-energy. (It should be emphasized
that this does not mean that matter is created or destroyed;
what is changing is the matter’s contribution to the total
energy-momentum of the system, just as a mass in a
Newtonian potential contributes differently to the total
energy, depending on its position.) That this depends only
on the stress-energy and not on other characteristics of the
matter can be viewed as a compatibility of the approach
here with the weak equivalence principle.

For general distributions of matter, there are more
possibilities for energy-momentum exchange than for
freely falling test masses. Most importantly, the stress-
energy tensor of the matter may have significant local time-
dependence and there is the possibility of resonant beating
against the gravitational waves to drive intervals of secular
exchange. (The possibility of electromagnetic and

3Contrast this with the usual view of tidal effects, where for
instance the local energy-exchange between two masses on a
spring and gravitational waves depends on the stiffness of the
spring, not just its mass. To reconcile these views, note that the
relative difference in energy between two superficially similar
springs of different stiffnesses is only a tiny fraction of the
springs’ rest-energies. Here, in considering bulk effects, it is
the springs’ relativistic energy-momenta which we track, and we
see how small a fraction of this tidal effects are.
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gravitational waves beating against each other was sug-
gested long ago, by Gertsenshtein [3]. However, the setup
here is much more general and the effects here are different
from his.)

Closely related to this is the question of what sorts of
redirection and absorption of gravitational-wave energy-
momentum are possible by matter. (Note that this is not
quite the same as redirecting or absorbing the waves; also
because bulk rather than tidal effects are concerned it
differs from earlier investigations, for example that of
Press [4].) This issue is complicated by the nonlocality
of the energy-momentum, but we do find that there are
some circumstances in which nearly local statements are
possible and matter can alter the energy-momentum by
terms proportional to the waves’ outgoing null covector /,,.

Another possibility for effects which are not suppressed
by averaging occurs with “memory,” in this case a net
difference in Bondi shear between two nonradiating
regimes. Substantial differences in shear are expected in
particular for relativistic jets. We find that such radiation
passing through nonrelativistic matter may lose momen-
tum, perhaps enough to significantly degrade the waves.
This could affect their detectability; compare Ref. [5].

B. Implications for propagation

Verifying that energy-momentum can be exchanged
between matter and radiation is gratifying but unsurprising.
It does, however, raise important questions about propa-
gation: for these exchanges should cause backreactions
on the waves, and this calls us to reexamine the common
claim that passage through matter does not alter the waves
(except for background-curvature effects, or in extraordi-
nary circumstances). Ultimately, detailed gravitational-
wave astronomy, measuring many parameters of sources,
will require better than percent-accuracy knowledge of
certain features of the waveforms [6]; for this, even
relatively small effects need to be seriously considered.

The usual arguments that matter is transparent to
gravitational waves depend in part on estimates about
how energy can be exchanged, but those estimates have
been based on an implicit assumption that one need only
consider tidal effects [7,8]. As those are only the differ-
entials of whatever bulk effects are present, the question of
transparency needs to be reconsidered.

Unfortunately, the techniques here track energy-
momenta, and not waveforms, so they do not give direct
information about propagation. However, because the
emitted energy-momentum is quadratic in the radiation,
it is reasonable to suppose that the orders of magnitude of
the fractional changes in waveform and the waves’ energy-
momentum, due to intervening matter, are the same. Now,
because the basic assumption here is that the geometry of
the radiation zone is well approximated by the Bondi-Sachs
asymptotics, which treat vacuum space-times (or, at most,
those with an electromagnetic radiation field), any
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backreaction effects should be small. But there is no
general reason to think that these effects are limited in
principle to be well below the percent level.

As pointed out earlier, in many cases the waves will
oscillate much more rapidly than the stress-energy changes,
and for these the net energy-momentum exchange will tend
to be suppressed. While we do not understand just how this
averaging should affect the waves, it does seem plausible
that in these cases there will be a significant suppression of
backreaction effects. Recall, though, that in some important
cases (as with jets) there may be effects which are not
suppressed by averaging.

The question of just which degrees of freedom of the
signals could be affected by backreaction is critical; it could
well be that in many cases the effects of encounters with
matter could easily be separated. This would open the
possibility of extracting more information from gravita-
tional waves. We need careful analyses of propagation to
investigate and clarify this matter.

I have so far described what will be done; I now sketch
how it will be done.

C. The main ideas

The main ideas of this paper turn on formalizing the idea
of a radiation zone and on its nonlocal geometry. The
approach of Bondi and Sachs is used very strongly. While
this certainly overlaps with the less formal notion of a
radiation zone based on treating waves as perturbations of a
background, the fine gauge control of the Bondi-Sachs
approach is essential.

1. The radiation zone and radiation dominance

It is probably fair to say that Bondi’s approach was
aimed at finding a suitable, fully covariant, characterization
of the radiation zone of a system idealized as perfectly
isolated. He was led, by previous investigations, to hypoth-
esize that in this regime the geometry should admit a
certain asymptotic coordinate system (u, r, 0, ¢) (with u a
“retarded time,” the u = constant hypersurfaces being null
and opening outwards, the “radial” coordinate r being an
affine parameter up the null generators of these hyper-
surfaces,4 and (0, ¢) angular variables on the sphere), with
respect to which the metric would have a certain asymptotic
expansion as r — oo. Penrose then showed that these
conditions could be recast as the existence of a conformal
boundary; this led to an elegant formalism and also shifted
the focus of work from the radiation zone to null infinity
itself, for much could be said about the limiting forms of
quantities there.

4Actually, Bondi used a luminosity distance, not an affine
parameter, but affine parameters are simpler for most purposes
and have been used in most subsequent work. Also Bondi
assumed axisymmetry; the generic case was treated by Sachs.
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Our view will be closer to Bondi’s original one, however.
We shall say a physical system admits a radiation zone if it
has a region in which the geometry is well approximated by
the leading terms in the Bondi asymptotic expansion. (We
need no physical hypotheses on the rest of the system or the
Universe, although we may, as a mathematical conven-
ience, imagine embedding the zone in an auxiliary space-
time extending to null infinity.) This parallels the notion of
a radiation zone in special-relativistic electromagnetism, as
a regime in which the field is well approximated by its
radiative term.

While this definition is natural, it has an important novel
feature. It does not restrict the radiation field to be weak;
it does mean that any matter present should perturb the
geometry of the radiation zone only slightly. This is the
most important restriction on the approach here. Notice that
it is opposite in spirit to the usual assumption that the
radiation field only perturbs the matter infinitesimally.

We may call this the radiation-dominated regime, and
contrast it with the more usual matter-dominated one. It
would evidently be a natural limit to consider, if only for
conceptual reasons. One might wonder, in fact, if it is only
of academic interest, since gravitational waves are gen-
erally very weak—but the coupling of matter to curvature is
also weak, being mediated by the gravitational constant G.
So just when does radiation dominance apply?

To answer this, we must specify which elements of the
physical regime’s geometry must be well modeled by the
Bondi-Sachs asymptotics.

However, because we do not have a fundamental under-
standing of quasilocal kinematics, we have no way of
knowing all the geometric structures which might turn out
to be relevant. What we can do is point to the minimal set
of elements of the geometry which are involved in our
construction. We shall find that there are plausible sit-
uations in which radiation dominance, in this sense, holds.

Finally, a comment on invariance is in order. Let us start
with a parallel case, an electromagnetic radiation zone in
special relativity. In such a zone, the field appears to good
approximation to be radiative—that is, to be outgoing
transverse waves. This zone will certainly not be Poincaré-
invariant. For one thing, translations will move one out of
the zone. But also, even locally, large enough boosts will
destroy the approximation that the waves are transverse—
nontransverse terms, which are small in the frame of the
radiation zone, will not be small in other frames. (The zone
does have an approximate invariance for “small enough”
translations or Lorentz motions.) The usefulness of a
radiation zone is not that it is invariant, but just the
opposite, that it gives a distinguished frame rendering
the field simple.

Parallel comments apply to the gravitational case, where
the relevant asymptotic symmetries form the Bondi-
Metzner-Sachs (BMS) group. Any structure which is
universal to isolated radiating space-times will be BMS
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invariant, but specific radiation zones will not be. The
construction here relies in particular on identifying the
outgoing direction in which the waves propagate. This is
subject to an ambiguity, which is the same as the approxi-
mate symmetry group, and varies inversely with the extent
of the radiation zone. (Note that in practical cases this
ambiguity is of the order of the angle subtended by the
source as viewed from the inner points in the zone.)

2. Nonlocality and scattering

The core issues can be brought out by considering a
prototypical problem: Suppose a test particle falls freely
through the radiation zone. Its energy-momentum then
remains, in its own frame, unchanged. So how, or in what
sense, can one say it has been scattered?

Historically (up to around 1957 [9]), concerns like this
were used to argue that gravitational radiation had no
physical significance. The response was to look to tidal
effects of the waves, as in principle (and now, we hope, in
practice) local observable properties. That did help con-
vince workers of the waves’ physical reality, which was a
critical advance. But from the point of view of the
scattering problem, it represented a retreat, for tidal effects
are only the differentials of whatever bulk scattering is
present. It is the bulk effects which we want to analyze.

The local energy-momentum of a test particle (or other
localized material body) at an event ¢ in the radiation zone
takes its value in the cotangent space 77, so if we wish to
compare the energy—momenta of such particles, we need a
way of identifying the cotangent spaces—in mathematical
terms, a parallelism of the cotangent bundle of the
radiation zone.

One’s first thought might be to try to use parallel
propagation (over paths restricted to the zone) to define
a parallelism, at least in a limiting sense for distant enough
events. However, this fails. Sachs peeling implies that
precisely when gravitational radiation is present, there are
holonomic obstructions which persist even in the limit of
more and more distant paths. An equivalent statement is
that when gravitational radiation is present, asymptotically
covariantly constant vector and covector fields do not
exist.” In this sense, radiative space-times are not asymp-
totically flat.

What, then, can we do to find a parallelism? We shall
look to the construction of the Bondi-Sachs energy-
momentum PEOM-Sa¢hs for g ouide. This energy-momentum
takes values in a certain asymptotic covector space 7.
Roughly speaking, this space can be given as follows®:

(1) Start with smooth covector fields &, on the

Bondi chart.

SEssentially this observation was made earlier, by Bramson [10].

The construction is more easily done in spinor terms, and

these are used in the body of the paper, but for conceptual reasons
it is sketched here with covectors.
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(2) Discard certain components (with respect to the
Bondi chart) of the fields.

(3) Impose certain differential equations, derived from
but weaker than the covariant-constancy conditions,
on the remaining components.

(4) Look for asymptotic solutions as r — oo.

The result is the space 7*. The most important nonlocal
aspect of the construction is that the differential equations
imposed are elliptic in the angular variables (6, ¢), so that
the four-dimensional solution-space arises from requiring
regularity over the sphere of directions; locally, the system
of equations is underdetermined.

We will extend this construction so that it provides a
well-defined four-dimensional family of covector fields
in the radiation zone. Two changes are necessary: the
(discarded) components of &£, are recovered from certain
components of the covariant-constancy equations, and a
further differential equation, propagating the fields parallel
along the outgoing Bondi null congruence, is imposed.

The result of this construction is a four-dimensional
space Ty mpoic Of covector fields which we take, by
definition, to be asymptotically constant, although they
will not be asymptotically covariantly constant. These
define the parallelism.

It is precisely the deviation of the asymptotically con-
stant covector fields from asymptotic covariant constancy
which is responsible for, and codes, the exchange of
energy-momentum between matter and the gravitational
radiation field. For instance, a test particle’s energy-
momentum P, at a particular event g may be identified
with the asymptotically constant covector field £, with
£.(q) = P,. As the particle falls through the radiation zone,
however, one will not be able to maintain this equation with
a single asymptotically constant covector field &,, for the
particle’s equation of motion is local, but the fields &, are
determined nonlocally. Just this gives the change in the
particle’s contribution to the total energy-momentum, as an
element of T as the particle moves.

asymptotic?

3. Limitations

I have sketched the underlying ideas of the analysis, and
shown how this calls for a reexamination of gravitational-
wave propagation. This was in part because the techniques
here give us no direct information about waveforms.
However, there was also another limitation, whose force
is important to understand, which is due to the approach
and ultimately the lack of a general, quasilocal, kinematics.

The basic logical architecture of this approach is:

(1) We defined a radiation zone as a regime in which
certain elements of the space-time geometry were
well modeled by their leading Bondi-Sachs expan-
sions. In this regime, a consistent treatment of
energy-momentum was possible—again, to leading
order in the expansions. The plausiblity of this
treatment rests on the existence of a radiation zone
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in the sense defined, because it is in this zone that the
construction of the asymptotic covectors precisely
compensates for the holonomic obstructions caused
by Sachs peeling of the radiation field.

(2) While usually the Bondi-Sachs analysis has been
applied to space-times which are vacuum, or have
only electromagnetic stress-energy, in the asymp-
totic regime, here the whole point of the program is
to consider what might happen for different sorts of
matter in the radiation zone. At the same time, the
main assumption is that certain elements of the
geometry cannot deviate too much from those of
the vacuum case.

So by its nature, the approach here cannot describe any
large relative changes in gravitational radiation or its
energy-momentum due to matter. As soon as such changes
cause substantial changes in the relevant elements of the
asymptotic geometry, the treatment has no clear justifica-
tion. It is not clear whether these limitations are only
features of the arguments used here, or are really absolute
physical restrictions. This applies in particular to the
questions of how strongly the propagation of gravitational
waves, or the energy-momentum they carry, may be
affected by matter.

D. Comparison with earlier work

This paper is most naturally viewed as taking up lines
of thought which were interrupted some time ago. Most
directly, these are the study of radiation zones in the form
initiated by Bondi, and the problems of energy-momentum
transfer which were part of the debate on the significance
of gravitational waves [9]. As discussed above, historical
accidents turned research in different directions, focusing
attention on null infinity rather than the radiation zone, and
on tidal effects rather than bulk scattering.

The interaction of gravitational waves with matter has
received almost no direct attention within the Bondi-Sachs
framework (although the analysis of the local energetics of
tidal effects was a key step in Bondi’s work). These
interactions have received some consideration within lin-
earized-perturbation frameworks. There are two standard
reviews touching on this, by Thorne [7] and by Grishchuk
and Polnarev [11]. T will comment on those; for further
work, see the references in those, and also in Ref. [8].

Thorne discusses the absorption or dispersion of waves,
with the assumption that those processes are due to tidal
effects, and concludes that in real astrophysical situations
they are totally negligible. By contrast, Grishchuk and
Polnarev discuss some processes which could, in principle,
include bulk effects: (a) an Einstein-Maxwell system, and
(b) a gas of particles described by a Boltzmann equation.
However, the particular configurations they investigated do
not show the effects that are found here. That is because
their analyses were done in local coordinates, in terms of
weak-field plane waves, and so the nonlocal effects, and the
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transit of the matter across the sphere of directions out-
wards from the source, do not appear. Also, none of these
works considered the radiation-dominated regime.

Finally, there has been much work on the scattering of
light and radio signals, in the geometric-optics limit, by
gravitational waves. However, on one hand, this has very
largely dealt with coordinate, rather than invariant, com-
putations of scattering; and, on the other, the intended
applications of this to look for gravitational-wave modu-
lations of signals from astrophysical sources are only
sensitive to differential effects (one must compare two
signals, neighboring in time or space) [12].

E. Organization

Section II reviews the Bondi-Sachs asymptotics which
will be used. Section III establishes the key relation
between gravitational radiation and asymptotic holonomy.
In Sec. IV the equations governing the asymptotically
constant fields are derived; these are used to get the basic
formulas for energy-momentum exchanges in Sec. V.
Section VI goes over the relation to linearized theory,
which involves a fine point. Section VII discusses the
response of test particles, giving in particular general
formulas for scattering of them in the case of linearized
quadrupolar waves. I pointed out above that in many cases
the waves’ high frequencies (compared to the matter’s
dynamical time-scales) leads to an averaging-out of energy-
momentum transfers; however, Sec. VIII discusses three
classes of cases in which nonzero average effects are
possible. The final section contains a brief summary and
discussion.

Notation and conventions

The notation and conventions are those of Penrose and
Rindler [13], except where explicitly indicated. These books
also serve as a reference for all material not otherwise
explained, including the spin-coefficient calculus in the
form given by Geroch, Held and Penrose [14,15]. The metric
signature is + —— —, and the curvature tensors satisfy
V., V,]Jv? = R,,.%v¢ and R,. = R,.". The speed of light
c is often suppressed. Einstein’s equation (without cosmo-
logical constant) is R,. — (1/2)Rg,. = —87(G/c*)T 4. A
familiarity with two-component spinors is assumed for some
of the derivations (the treatment without them is signifi-
cantly more labored), but the main results are given in
tensor form.

II. PRELIMINARIES

We recall here the main elements of the Bondi-Sachs
asymptotics and their expression in terms of Newman-
Penrose spin coefficients. The main point which will be
used explicitly is the Sachs peeling property. However,
because the nonlocality of the gauge plays such an
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important implicit role, we also review how this arises.
The reader familiar with these points can skip this section.

All of this material can be found in Ref. [13], and no
proofs are given.

Asymptotic hypotheses. We may say that a space-time
admits Bondi-Sachs-Penrose asymptotics if (a) the space-
time (M, g,,) embeds as the interior of a manifold with
boundary M = MUZ*, where Z+ = &M, (b) there is a non-
negative function Q: M — R of class C* with Q vanishing
precisely on Z+ but V,Q nowhere zero on I+, (c) the
rescaled metric §,, = Q2g,;, is Lorentzian and C* on M,
(d) all matter fields vanish at Z* (that is, the stress-energy
T,, has a well-defined limit of zero at ZT) and the
cosmological constant A = 0, (e) each point on the boun-
dary Z* is a future (but not a past) end-point of null
geodesics in (M, g,;,), and () the boundary Z¥ is a §,;,-null
hypersurface diffeomorphic to $? x R, and the R factors
can be taken to be §,,-null generators.

A few comments are in order. First, the assumption that
the cosmological constant is zero means that cosmological
effects are not important over the scale of the isolated
system we are modeling; it is not a cosmological hypoth-
esis. Second, the assumptions are not all independent; they
have been included for convenience. Third, these assump-
tions are very nearly those of weak future asymptotic
simplicity, but for reasons explained elsewhere [16] I prefer
not to rely on some of the hypotheses of that concept.

Bondi coordinates and nonlocality. With these assump-
tions, we may introduce a Bondi coordinate system
(u,r,0,¢) in a neighborhood of Z*. Here u is a null
coordinate, the Bondi retarded time, with the ¥ = constant
hypersurfaces meeting Z* transversely. Since u is null,
these hypersurfaces are ruled by null geodesics with
parallel-transported null tangent [¢ = V9u; this defines
the outgoing null congruence associated with the Bondi
system. We take r to be an affine parameter along the
geodesics of this congruence, normalized by 1V, ,r = 1.
The zero of r may be set by a natural device; see, e.g., [13].
We may take Q = 1/r. The regularity of the rescaled
metric, and the hypotheses on the curvature, at Z* then
imply certain asymptotic expansions in r.

The angular coordinates (6, ¢) label the generators of
Z", and these extend to coordinates on space-time by
mapping a point in space-time to the (0, ¢) values of the
end-point of the member of the outgoing congruence
through the point. However, at this point we know only
that the r = constant, u = constant surfaces are diffeomor-
phic to spheres, so the angular coordinates are as yet
determined only up to a diffeomorphism of $2. It is in
restricting this freedom that the nonlocal gauge choice,
which is ultimately responsible for the definition of the
asymptotically constant vectors, enters.

One can show that the metrics on the u = constant,
r = constant surfaces have a well-defined u-independent
conformal structure as r — co. (One shows that with the
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asymptotic hypotheses, the shear up the generators of Z
vanishes.) These surfaces must then, up to a conformal
factor, approach ordinary metric spheres (or, more properly,
spheres with the negatives of the ordinary metric). The
conformal factor Q> = r~2 gives a well-defined metric on
the surfaces (by (c)), so we must be able to choose
coordinates (6, @) such that Q?g,,, when restricted to
vectors tangent to these surfaces, approaches —(d6” +
sin? @dg?). The construction of these coordinates—
equivalent to finding a complex stereographic coordinate
on the sphere—implicitly involves the solution of an
elliptic partial differential equation on the sphere. This is
anonlocal problem. Indeed, the nonlocality is much stronger
than, for example, that involved in Newtonian potentials, for
here the sphere represents the family of all asymptotic null
directions. In other words, this nonlocality does not fall off
with distance from the source; it reflects the problem of
correlating (even asymptotically distant) frames at different
angles around the source. In this sense it is scale free.

If the conformal structure and orientation of a sphere are
known, then the structure present is that of a Riemann
sphere, and the symmetries are the fractional linear trans-
formations SL(2,C)/{+I}. This group is of course iso-
morphic to the proper orthochronous Lorentz group, and
the sphere has naturally the structure of the light rays
through an event in Minkowski space. The choices of unit
sphere metrics on it compatible with this structure are in
one-to-one correspondence with the choices of a unit
timelike vector in Minkowski space, which would allow
the identification of the set of light-rays with a unit sphere
at time coordinate unity. Applying this now to the u =
constant spheres at Z*, we see that the choice of unit sphere
metric can be thought of as a choice of asymptotic time
direction. In fact, it turns out that there is a well-defined
way of comparing these directions at different u values, and
in a Bondi system we restrict the allowable choices of u so
that these time directions are all the same. Once the choice
of time-direction has been made, there remains an SO(3)
freedom in the choice of 6 and ¢.

The null tetrad. We now introduce a null tetrad [4, m¢,
m“, n® compatible with the Bondi system. We keep /¢ the
parallel-transported null vector along the outgoing con-
gruence, and we require m® and n“ to be transported
parallel along /. We also require n“ to have a well-defined
limit at Z" where it becomes tangent to the null generators
of Z7, and normalized so that n*V,u = 1. (In fact, for the
standard null tetrad, we require slightly more, namely that
1’V n® vanish at 7+, where I = Q219 off 7+ and [* is
defined by continuity on Z*.) Then m* will lie tangent to
the u = constant hypersurfaces. We will also use an
associated spinor dyad o?, 14, so I*4" =040, mA =oAr?,
n® = 1*1". We shall not need a definite choice of phase for
m“—such a choice would conventionally be associated
with a particular choice of (6, ¢).
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Asymptotic expansions. The spin-coefficient equations
can be integrated inwards along the congruence defined
by [* to get asymptotic expansions for the tetrad, the spin
coefficients, and the curvature components.

The null tetrad vectors have the coordinate forms

[“=0, (3)

m® = (rv2)71(9y + icsc0,)
+ (O(r7?) terms in 9y, 8,,) + wd, (4)

nt =0, +Ud, + X0y + X0, (5)

where w, U, X?, X? are functions with the asymptotic
properties
o=0("),

U=-1/2+0(r"), X? X*=0(r73)

(6)

along the outgoing null congruence. Here the symbol O(g)
means a term whose magnitude is bounded by an
r-independent multiple of |g| as r — oo. These expansions
hold uniformly in the angular directions and locally
uniformly in u. (Again, near any given space-time point
one can use the freedom in choosing (0,¢) to avoid
coordinate singularities.)

We note for later use that the tangents to a u =
constant, r = constant surface are m“ — wl?, m® — wl°.
These are evidently normalized (and differ from m¢, m*
only by a null rotation). Thus the surface area element
is (2i)7'(m — wl®) A (0 — @lb).

Sachs peeling. The Weyl tensor is Cgeq =
Uipcpean€ecn + Yapopesg€cp, and its components
with respect to the dyad are W, (that is, the spinor
W, pcp contracted with n iotas and 4 — n omicrons).

A key consequence of the assumptions (a)—(f) is the
Sachs peeling property

_ U (w0, )

v
n S

+O(1/r5 ™). (7)
Note in particular that U, which represents the part of the
field transverse to the outgoing null congruence, falls off as
1/r and the other components fall off more rapidly. Thus
W, is referred to as the radiative part of the field. It is linked
by the asymptotic Bianchi identity 6@2 =0, ‘11(3) to \Ifg, and
this latter component is sometimes called the semiradiative
part. The Bondi news N = N(u,0,¢) is a potential for
these: one has U9=0N, ¥} = 9,N. Here N = —9,5°, with

c=0c"/r+0(r3) (8)
the asymptotic expansion of the shear. Two other spin

coefficients’ asymptotic forms involving the radiation will
be important:
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o =N/r+0(r?), K =0N/r+0(r2). (9

Bondi-Metzner-Sachs group. The group of transforma-
tions preserving the asymptotic structure is the Bondi-
Metzner-Sachs group. It can be viewed as the group of
coordinate transformations preserving the Bondi-Sachs
form of the metric. It is the semidirect product of the
(proper, orthochronous) Lorentz group acting on the
asymptotic sphere of directions with the supertranslations
u—u+ald,e).

III. GRAVITATIONAL RADIATION AND
ASYMPTOTIC GEOMETRY

In order to get to the main ideas as rapidly as possible,
we will begin, in subsection A, by showing how Sachs
peeling gives rise to the holonomic obstructions which are
at the heart of the scattering. While the formulas are simple,
we will find that to interpret them rigorously we need to
define a class of tensor and spinor fields in the asymptotic
regime scaling in a different way from those often used in
the Z* formalism; we call these the physically bounded
fields and treat them in subsection B. Subsection C, which
may be skipped, discusses the conditions for radiation
dominance and gives some estimates for astrophysical
situations in which they might hold.

A. Gravitational radiation and holonomy

It is commonly asserted that isolated radiating general-
relativistic systems are modeled by space-times which are
asymptotically flat. This, however, is not entirely true, and
accepting it too uncritically would lead to missing key
physical features of these systems. It is in fact a signature of
gravitational radiation that the effects of curvature are
stamped on the asymptotic geometry as finite effects, even
in the limit of passage to infinitely distant regions.

This follows directly from the scaling of the radiative and
semiradiative parts of the field according to Sachs peeling.
Consider the increment a vector receives on being trans-
ported parallel around an area element dSP9, which is
given by the holonomy R,,,“dSPe. If we take dSP? to be
determined by an interval du in Bondi retarded time and a
change 6y = (60 — i sin85¢)/+/2 in angle, then to leading
order in r, according to (3)—(5), we will have éud, =
Su(n® + (1/2)1) but

800, + 50, = r(Sum“ + dum®) + amultiple of 14,
(10)

where the r factor arises because the change du in angle
gives a physical displacement scaling as r. On the other
hand, the gravitational radiation field, the leading compo-
nent of quab as r — oo, falls off as 1/r. One is thus left
with a finite holonomy even as r — oo, which one can

check is
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SuduV(u, 0, ¢)(1,m> — m,1%) + conjugate. (11)

Sachs peeling of the radiative term balances the physical
scaling due to a change in asymptotic angle, leaving one
with a finite effect.

One finds, similarly, that for dS%’ spanning the two
independent angular directions that there is finite limiting
holonomy proportional to W9 (u,d, ¢)(I,m" — m,I’) (and
conjugate). Recall that U9, U9 exactly measure the gravi-
tational radiation content of the field (and are linked to each
other by an asymptotic Bianchi identity).

The analysis here has dealt with parallel transport in
three of the four dimensions: changes in angle and in
retarded time. One can also consider the remaining direc-
tion, that is, passage outward to more distant regions. The
leading contribution is due to holonomies spanned by
8rd, = 1 and 800, +5¢d, is proportional to Sréu¥y/r*
(and conjugate) and to those spanned by 6rd, and éud, is
sréu¥y/r? (and conjugate). Thus, even integrating out-
wards from r to infinity, the holonomies they contribute
will have dominant terms bounded by u0Y/r and 5u®y/r
(and conjugates). Both of these vanish as r — oo, so they
contribute no holonomy in the limit. In other words, the
contributions to the ambiguities in identifying vectors at
different points due to propagation outwards along [
vanish as r7!.

In these arguments, two sorts of scalings in the asymp-
totic regime are used. First, we wish to compare what
happens as we go out to very great distances along different
outgoing null directions; it is in studying this that the
relevant displacement field r(Sum“ + Sum®) has the factor
of r, indicating the increasing distance in physical space-
time corresponding to a fixed change in asymptotic angle.
On the other hand, in maintaining that the limit (11) is finite
we imply that we do not need to worry about factors of r in
applying (11) to vectors or covectors. In fact, to make
precise what the interpretation of the limit (11) is, we must
specify what objects it acts on.

We shall do this formally in the next subsection.
However, if an asymptotically covariantly constant vector
field did exist, we should certainly expect its components
with respect to the tetrad to be bounded, and evidently (11)
then provides an obstruction. We see then that precisely
for gravitationally radiating space-times, there are no
asymptotically covariantly constant vector fields: curvature
obstructions to their existence persist as finite limits as one
passes to future null infinity.

B. Physically bounded fields

The underlying reason the Z* formalism is so useful is
that, in many cases of interest, the appropriate scaling
of physical quantities with the affine parameter r turns
out to be equivalent to the extensibility of the quantity to
the conformal boundary. Conversely, geometrically natural
structures on the conformally rescaled manifold with
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boundary # = MUZ* have certain space-time asymptotic
scalings. However, some of those which have been most
commonly used are not well adapted to the questions here.

A vector field defined in the neighborhood of some point
on Z* will in general, in the physical space-time, appear to
diverge in the physical space-time as one approaches 7
along the outgoing Bondi-Sachs congruence. (This diver-
gence is with respect to parallel-propagation, and also in the
Bondi coordinates.) This is because, starting from a finite
point, one need only flow by a finite parameter to reach Z+
along the field.

In this paper, we shall be concerned with spinor and
tensor fields which are candidates for being, in a sense to be
made precise, asymptotically constant. Such fields should
have bounded components with respect to the Bondi dyad
or tetrad as r — +oc0.” We would expect, based on the
argument of the previous paragraph, that these fields must
have no components transverse to Z*. This is indeed the
case, as we now make precise.

We shall work in terms of spinors, from which the results
for other quantities can be obtained. If 0, ! is a norma-
lized dyad adapted to the Bondi system, then the rescaled
dyad 64 = Q7 'o#,7 = 1 has a nonzero limit on Z*. (And
dually 6, = 04,14 = Qu,.) Thus any spinor field & can be
expressed as

& = ot 4 g (12)
= &% + &' (13)

with
=qr =g (14)

We will say the field is physically bounded if &, &' are
bounded as r — oo. Note that it makes sense to speak of the
degree of differentiability of a physically bounded field, as
a field on Z*. We will here be interested in physically
bounded fields which are at least C? (because we want to be
able to differentiate them once in a direction transverse to
Z7" and once in a direction tangential to it).

While the characterization of physically bounded fields
has been given with respect to a dyad, it is easy to see it is
Bondi-Metzner-Sachs invariant. For it is equivalent to
requiring 7,&4 to vanish at 7+, and 7, is invariantly defined
on Z7, up to proportionality.

From a physical point of view, the limiting components
of the field are those with respect to the physical, rather

than the rescaled dyad. We have &' = El, but we have
& = -1V, & = —p& in the limit, since PQ = —1 at 7.
Note that these limiting values are invariant under

"Note that in such statements the points in question have
angular coordinates in the interior of the chart, that is, the chart is
chosen so that we avoid the polar coordinate singularities.
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supertranslation-induced changes of dyad (since under a
supertranslation 7 is preserved and 0% changes by a
multiple of 7).

At a given point of Z, the set of all limiting values of
physically bounded spinor fields evidently forms a two-
complex-dimensional vector space, and the family of these
as the point on Z* varies forms the bundle of physically
bounded spinors over Z', which can be viewed as a
boundary of the spin-bundle over the physical space-time.
This bundle is not the spin bundle over the conformally
rescaled (M, §,,). However, it is a direct sum of certain
spin- and boost-weighted bundles there, for &' = £46, is a
section of the bundle of Geroch-Held-Penrose type {1,0},
and & a section of the bundle of type {0, 1}, over Z+ with
respect to the rescaled metric.

Higher-valence physically bounded fields are defined as
tensor products of the physically bounded spinor fields and
their duals.

These definitions allow us to interpret the arguments
of the previous subsection rigorously; we see that (11)
precisely defines a holonomy on the space of physically
bounded vectors at 7.

C. Some estimates for radiation dominance

The main idea in this paper is that the Bondi-Sachs
treatment of energy-momentum, extended to the radiation
zone, resolves the holonomic obstructions. This in turn
depends on the holonomy being well approximated by the
lead terms in the Bondi-Sachs expansion, in other words,
the effects of any matter there being relatively negligible,
what I called radiation dominance. In this subsection, I give
some rough estimates for this condition to be fulfilled. The
aim is not to be exhaustive, but to give the reader a sense of
the scales involved. The results here are not used elsewhere
in this paper; this section may be skipped.

The essential restrictions are: that W5 and W, should be
well modeled by their leading asymptotic forms; and that
the other curvature terms contribute negligible amounts, in
the sense of their actions by holonomy on physically
bounded quantities. In fact, the physical quantities of
interest in any given situation will not depend on every
detail of these curvature components but only on certain
integrals, and thus one really should have an averaging
scale in mind. However, here we will (conservatively) look
at the full infinitesimal holonomies.

The question of just when (for which values of r) the
components W5 and ¥, take on their asymptotic forms
depends on the details of the system. Roughly speaking we
expect that for a wave packet of nominal angular frequency
@ this will occur once r > c¢/w. (This corresponds the
frequency-based definition of a wave zone used by some
authors.) However, there will also be emissions of radiation
which are not well represented by wave packets, because
they involve “memory effects” with arbitrarily low-
frequency components. For instance, if such an effect is
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due to ejection of a jet, one expects the radiation zone to
take over sufficiently far from the jet (a moving boundary,
with r increasing with time).

I will now turn to the restrictions on the matter (although,
for conceptual clarity, I will keep track of the Weyl tensor
components as well). These conditions are estimated by
considering holonomies as in Sec. III A. Suppose we
require a precision 77,,, for the generators of holonomies
in the angular directions (spanned by rm¢, rim®). Then we
find

[ 21 R T 2 P Ve R

|r2q)lq‘7 |r2A| <77ang

(15)
(where R, = 6Ag,, — 29, with &, trace-free) for ¢ = 0,

1, 2. For a requisite precision 7, ., for infinitesimal
holonomies in an angular direction and the u-direction

|r\I/2

s |r\I/3

s ‘V\IJ4 - \:[140; s |r(I>2q| < Myang»

(16)

with ¢ =0, 1, 2. (Note that these quantities have units
inverse time, in contrast to those from the angular-angular
directions.) There are also stability restrictions, for holon-
omies involving the outward direction, but these are very
similar and will not be discussed explicitly.

What sorts of sensitivities 7,4, #4,ang are needed? The
holonomy we wish to detect in angular directions is 0N,
and in u-angular directions 0,N. Thus the sensitivities
required can be suggestively written as [ON, @ON where 6N
is a measure of the sensitivity sought for the news, and /, @
are measures of the effective spherical harmonic, and
effective angular frequency, of the news. (These are simply
notations to help understand what is going on—the source
need not be a pure spherical harmonic, nor purely mono-
chromatic.) We have then

Nang = SN/, NMuang = wON. (17)
Note that in the radiation zone we expect to have r > c¢/w,
and hence

(r/c)nu.ang > l”/ang > Mang- (18)

This means that where the restrictions (15), (16) overlap, it
is the former which is the more stringent.

To get an idea of the scales involved, let us consider as a
source a binary of equal masses, each M, in nonrelativistic
mutual circular orbits with orbital angular frequency
(so the angular frequency of the gravitational waves is 2w).
Then we have

81f memory effects are to be considered, some elements of the
discussion in this paragraph must be modified.
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IN| = 8(GMw/c*)/3

=.04 x M
1.4M

2w/ (27)\ /3
103 s—'> ’ (19)

where M, is the Sun’s mass and the figures are scaled to
correspond to a late-stage binary of neutron stars. For
2w/(2m) = 1 s7!, the estimate would be 4 x 1077, Thus if
we would like to measure radiation from a double neutron
binary with wave frequency about 1 s~!, it would be
reasonable to take 77,,, = 1078 or so; we could get by
with 77,,, = 107 in the later stages.

We can determine from this restrictions on the radiation
zone. Taking W, =2.8(GM/c?)/r’, we see from (15)
that we must have r > 2.8(GM/¢?) /1ng. This would be
2x 10" cm (roughly 1 au) for #,,, = 107%. (The con-
straints from ¥; and ¥, would be expected to be weaker.)
This marks the onset of the radiation zone, in the absence
of matter.

What if matter is present? If the matter is nonrelativistic,
the most severe constraints will come from the ®;; terms;
we will have ®,, ~ 27Gp/c?, with p the density. Thus we
will have pr? < nec?/(27G). To put in some standard
astrophysical scales, this may be cast as

4 r 2 < 17 [ Mang
2% 1017 ( T ) 5
<10—24 gcm‘3> (10'3 cm) ~ex 10s) (20

So, for instance, for Nang = 1078, radiation dominance
should apply for a nonrelativistic medium of density
1072* gem™ up to a radius of about 4 x 10! cm = 1 kpc.

These examples show that the condition of radiation
dominance, as defined in this paper, can apply in realistic
situations.

IV. ASYMPTOTICALLY CONSTANT FIELDS

We have seen that, when gravitational radiation is
present, there will be no covector fields which are asymp-
totically covariantly constant. Nevertheless, there is a space
of asymptotically constant covectors 7* used in the con-
struction of the Bondi-Sachs energy-momentum. While the
starting-point for this is a set of covector fields, the results
are not covector fields in the ordinary sense, because
components are discarded and limits are taken.

The goal here is to define asymptotically constant fields
in a neighborhood of Z*t. It is simplest to make the
construction for spinors; other fields are then determined
from the tensor algebra of those. The first subsection gives
a treatment of the fields at Z™; by using physically bounded
fields we recover all the relevant components there. The
second subsection extends the construction inwards, to the
physical space-time.
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A. Asymptotic constancy at null infinity

An asymptotically constant spinor field will be physi-
cally bounded. If & is a physically bounded field which is a
candidate for asymptotic constancy, then we shall want to
examine its physical covariant derivative V, £ in various
directions in the limit that the points in question approach
I7T. If we investigate the directions tangent to Z* (the
behavior transverse to Z* will be the focus of the next
subsection), then we are interested in V&2 contracted with
the physical dyad og, 15 but the rescaled tetrad vectors n¢,
m®, m?, as the points approach Z*. This amounts to asking
for the behavior of V&8 as a one-form on Z+ with values in
the physically bounded spinors. Because of the holonomic
obstructions, requiring this quantity to vanish is too strong.
One keeps only certain components of it.

Recall that the phys1ca1 dyad o#, i rescales according to

= Q71047 = 1" to achieve f1n1te limits at Z+ as spinor
ﬁelds on the conformally rescaled space-time, and so

Q=00 and & =¢. (21)

We shall not distinguish between &' and &', nor between i

and /. This means that EO will vanish at Z; in the usual
treatment of Bondi-Sachs asymptotic constancy, done
strictly at ZF, the field & is simply omitted, and the
definitions cast entirely in terms of El =&l

The usual definition of Bondi-Sachs constancy is equiv-
alent to requiring that 7'V, &P vanish on Z* when
contracted with the rescaled dyad. Using the relation

vAA’fB = 6AA’§B - €ABYCA’§C’ (22)

where Y, = Q'V,Q = —Q'7,, we find, after a brief
calculation, that the Bondi-Sachs constancy condition is

3'~0 and P& ~0, (23)

where A~ B means A and B are equal at Z*. (In this
computation, and the ones which follow, the only issue
which requires a bit of work is the limit associated with the
vanishing of Q in Y,. Note that each side of Eq. (22) is
independent of the choice of conformal factor within the
allowed class, and so will be the vanishing of the compo-
nents in question. The most direct way of doing the limit,
keeping with this paper’s general formalism, is to use
the standard asymptotic expansions for the spin coefficients
in the Bondi-Sachs frame ([13], pp. 394-395), taking
Q = 1/r.) Again, this system makes no mention of the
field £°, and that field is not generally used in analyses
onZt.

In order to fix the field &, we shall require that n?V &2,
mV,E8 should vanish at Z* as physically bounded
spinors. We have
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QOBP'E0 + BPE! + QEOP' 68 + £1P/ 1B
= QOBP/E0 4 BPE! — Q7B — £GP
= 0PP'E0 1 BPE — QTP — E1Q IR 0B, (24)

n‘VvV fB

We recall that the values of the components of this are
defined to be the coefficients of 0® and % at Z*. Now &’/

vanishes at Z*, and therefore Q~'%’ = —P&’ to first order at
Z". However, one of the spin-coefficient equations gives us

P’ ~ 0. Therefore the vanishing of the components of
Eq. (24) is equivalent to

P ~0,

Similarly, we have

P'E ~0. (25)

AV 0 EB = QOBOE + 1BOE! + Q0008 + £108

= Q0P8 +13¢" — Q&GP — & /6P

= 0P0& +1P3¢! —Q&%1P — E'Q1 o, (26)
We have p' ~ 1/(2r), and so p/ =
obtain

~0,Q7'p' ~ 1/2. Thus we

—(1/2)8' %0, 3 ~0. (27)

We may therefore collect our equations for an asymp-
totically constant spinor field, in terms of data at 7, as

(1/2)8'~0, &' ~0
(28)

PO~0, PeE~0, 30—

It follows from standard spin-coefficient formulas that
these equations are integrable and have a two-complex-
dimensional space of solutions; also, these equations imply

3O ~0, 8 x-&. (29)

We take Eqgs. (28), (29) to determine the asymptotically
constant spinors. Asymptotically constant vectors, covec-
tors, etc., are determined from these.

We compute for use below the remaining derivative,
tangent to Z*, of a physically bounded field:

MV, EB = V&8 — BQ15A'V 0y EC
=88 —BQ(EPQ 4 £18'Q)
— (8/50 _ 9—15151)03
+ (3 - pE - Q71 (EPQ + £13'Q))”
~ (08 4+ 6908 + (3" + £9).8. (30)

(The reader used to the calculus in terms of the rescaled
quantities should note that the symbol =~ at the last step is
here used for equality at Z" of physically bounded fields.)
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Now suppose that &4 is asymptotically constant. Then, as
a one-form on Z* with values in the physically bounded
fields, we have, using Eqs. (29), (30),

vafB = _rhu’%cvcéB

= —1n,5'0poBEP. (31)

(As a one-form on Z™, only the contractions of this with
n®, m®, m* are determined; we could add to this anything
proportional to 7,.)

B. Finite space-time and the induced connection

We extend the asymptotically constant spinor fields off
Z7" and into the finite space-time by requiring that they be
transported parallel along the outgoing null congruence
associated with the radiation field. The efficient way to
implement this is to introduce a connection D, measuring
the discrepancy from asymptotic constancy.

We define D &8 be requiring (3D, &8 = V,(£5E8) for
every asymptotically constant spinor ¢Z. That is,

$8DaE" = (V8P + 8PV L. (32)
Evidently, our task is to compute V,¢2 for asymptotically
constant spinors 5.

The computation will be valid in the Bondi chart, and
will use parallel propagation along the geodesic congru-
ence with tangent field /. For any point p in the chart, and
any vector u® at p, let u®(q) be the connecting (Jacobi) field
along the geodesic, so [-Vu? = u-VI*. We then have,
since {2 is covariantly constant along /¢, that

leve(blfvjcé:B) = lel/tfRefQBgQ, (33)

where R,;o® = (1/2)R,;00®¢ is the curvature acting on
spinors. We may regard Eq. (33) as an evolution equation
for u-V¢B along the outward geodesic y through p.
Indeed, we have

u- Ve = / 1wl R, ;0P 0ds, (34)

So

where we understand that parallel transport along y is used
to relate quantities at different points along this geodesic.

In order to put this in a more useful form, let us introduce
a Green’s function for the connecting fields: let W%, (g, p)
be such that u%(q) = W%,(q, p)u’(p) is the connecting
field along y which is u“(p) when ¢ = p, that is

l‘ VW"b - (Vcl“)W”b } (35)

W (p.p) = 8%,

where the operator [ - V acts on the variable g. We note for
future use that
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V.14 = —l.zm® + m.(pm“ + 6m®) + conjugate, (36)
and so (35) can be integrated if the spin coefficients

are known.
We can now rewrite Eq. (34) as

V.8 = WCa(QaP)vc§B|q:V(Sl)

- /Sl lvea(}’(S)vp)Ref'QB(y(s))dS£B’

S0

|P =7(s0)

(37)

where again parallel transport along y is understood to
compare the quantities at different points. The idea is now
to take ¢ to ZT. In this case, the first term on the right will
be given by the results of the previous section, and we have

el = lim We,(y(s), p)in.c°0g0"C?

s—>+00

_ / " WS 4 (1(5). )R (1(s))dsC2.

20

|P7

(38)

Notice that the right-hand side involves (¢ only
algebraically.

The formula (38) is exact, and is valid in any Bondi
chart. In principle, it can be evaluated if the “optical”
quantities p, ¢ and z, governing the evolution of the pencil
of null geodesics near y, and the curvature, are known. Here
we are only interested in its form in the radiation zone.

In this computation, we must keep track of the error terms
O(r") for both r(p) and r(q) in W%, (g, p). The easiest way
to do this is to consider a basis U;(¢q) of connecting
fields (j = 0, 1,2, 3); then W9, (¢.p)=(U"),/(p)U;%(q).”
From the standard expansions

p=-r4+03) (39)
c=0"r?+4+0(r73) (40)
v = —(1/2)P0 + 0(r ). (41)

it is easy to check that we may take

1 0 0 0 14
0 1 o) —2 o0 —2 a
o - ()06 e
0 0 r+0(1) 0() m
00 01 r+001)]Lm

"While of course this formula is exact, the precise error
estimates one gets depend on how well one knows the solutions
U;“, which generally depends both on the basis chosen and how
many terms in the asymptotic expansion one wants. We are
simply interested in getting the dominant contribution and
ensuring that it is dominant, and there is a natural choice which
is adequate for this.
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Then

(U, =[ny 1, =iy —my]

10 0 0
01 o(r3 o(r3
) TG N
00 r''+0(r?) o(r??)
00 o(r?) 14+ 0(r )
and
Wey(q. p) = npl® + lpn — rla) (mym® + my,m®)
r(p)
+ lower-order terms, (44)

where the estimates on the lower-order terms can be
recovered by multiplying (42) and (43), if needed. One
should bear in mind that on the right-hand side of Eq. (44),
the vectors are evaluated at g and the covectors at p.

We then have, for the first term in (38), the expression

20
— lim W¢,(y(s), p)m.°00"% = —G—ma()QoB

s>+ r(p)
+0(r(p)™?). (45)
We also have, using Sachs peeling, that

o0 \I}O
- 1°W/ (g, p)R,;o%ds = ——1,00"

[(p) e I"(p) ©
+0(r(p)7?).  (46)

We recall that 09 = —086°, and that the news function
N = —5°. Thus we have

V.8 =" (Nm, — ON1,)000"L0 + O(r7%)  (47)
and

D&% =V, &8 — " (Nm, — (ON)1,)0908E2 + O(r2).
(48)

Alternatively, using the standard far-field forms ¢/ = N/r,
k' = ON/r for the shear and acceleration of the field n“, we
can write

DaéB = vagB - (O-/ma - K/la)OQOng + O(r_z)’ (49)

and so on vectors
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D& =V & - ((6'm, — K’la)(lqmb - mqlb)fq
+ conjugate) + O(r72). (50)

Equation (50) gives the parallelism in the radiation zone
which enables us to compare local energy-momenta at
different events. This connection is by construction curva-
ture-free and metric-preserving; it does (therefore) have
torsion.

C. Asymptotic frames

Using the formula (49) for the connection defining the
asymptotically constant spinors and vectors, we have, in the
radiation zone,

D 08 = pm 8 — (am, + pin,)o® + O0(r72) (51)
D% = p'm,o® + (am, + pim,)i® +0(r?) (52)

where all the spin coefficients which appear have, to the
required order, the same forms as they do in Minkowski
space. (This would not be true had we used the covariant
derivative V, in place of D,). Thus the asymptotically
constant spinor or vector fields are given by linear
combinations of the dyad or tetrad elements, where the
coefficients are spherical harmonics (spin-weighted, in the
spinor case).

We remark that in particular the Bondi-Sachs frame’s
time-vector 1* = (1/2)1° + n® is asymptotically constant.
However, it is not asymptotically covariantly constant;
one has

V, t* = —k'l,m" + conjugate. (53)
The integral curves of #* are not geodesics; rather
1Vt = —'m + conjugate. (54)

Here and from now on, we drop the qualifier “+O(r~2).”

V. ENERGY-MOMENTUM EXCHANGE

We can now compute the exchange of energy-momen-
tum between matter and the gravitational field in the
radiation zone.

Let {* be any asymptotically constant vector field, so
D," = 0. Then if T,, is the stress-energy, the quantity
T ,,¢" can be interpreted as the four-current of local material
energy-momentum in the ¢ direction. Thus V(T &%)
will give the rate of creation of the {“-component of material
energy-momentum per unit time per unit volume, and
because the total energy-momentum of the system (includ-
ing gravitational radiation) is fixed, we attribute this creation
to a conversion of gravitational energy-momentum. We
have, from Eq. (47),
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va(Tabe) = Tabvaz:b
=T (6'm® —K19)(I;mb — myl")¢d
+ conjugate, (55)
and thus
dPq

e T (6'm® —'19) (1ym” —m41%) + conjugate  (56)
T

is the rate of conversion of gravitational to material energy-
momentum per unit time per unit volume (here dz is the
four-volume element). (More precisely, it is the rate of
conversion of gravitational, to material, contributions to the
total energy-momentum, but this is too cumbersome to say
each time.) In particular, the rate of conversion of gravita-
tional to material energy (with respect to the Bondi frame,
the 1 = (1/2)1¢ + n¢ component of (56)) per unit time per
unit volume is

fl—f =T (6’m® — k'1*)Ym® + conjugate. (57)
It should be emphasized that this does not mean that matter is
created or destroyed; it rather means that the contribution of
whatever matter is present to the energy-momentum of the
system, as measured at null infinity, may change.

For matter confined to the region under study, we may
compute the total rate of conversion dP,/du of gravita-
tional to material energy-momentum per unit retarded time:

dPq

= [ Temt =R = mat
du u=constant

+ conjugate, (58)

where {“ is any asymptotically constant vector and the
volume form €,;,.4n“ is understood.

The fact that only the vectors /¢, m®, m® appear in these
expressions has implications both for which components
of the stress-energy contribute to the energy-momentum
exchange and how the local contributions are directed.
Matter moving ultrarelativistically outward from the source
(which will have T,, proportional to [,I,) will not
exchange energy-momentum with gravitational radiation'’;
inward-directed ultrarelativistic matter or radiation (with
T, proportional to n,n;) will tend to exchange transverse
momentum (in the m“—m® plane); transverse stress-energy
components are needed to exchange outward-directed mom-
entum. Depending on the sign of the energy-momentum
exchange, the effect on a local distribution of matter may
be to increase its energy and contribute to its momentum

"This may be contrasted with the interconversion of electro-
magnetic and gravitational waves in an electromagnetic back-
ground, e.g., Ref. [11].
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outward, or to decrease its energy and contribute to its
momentum inward: but it cannot increase the energy and
also contribute to inward momentum, nor decrease the
energy and contribute to outward momentum.

The rate of energy-momentum exchange thus is given by
a sum of terms, each of which is a product of a component
of the stress-energy with the news function (or an angular
derivative of the news function). It is thus formally first
order in both the matter and the gravitational radiation. On
the other hand, one must remember that the entire analysis
assumes that the curvature effects of the matter terms only
give small perturbations to the geometry set by the Bondi-
Sachs asymptotics, and thus the exchange has only been
established in cases where it is effectively second order in
the radiation.

There are some further fine points about the order of the
effects involved, which are discussed next.

VI. RELATION TO LINEARIZED THEORY

Since in most practical cases gravitational radiation is
weak, it is natural to analyze it by perturbation theory. This
can certainly be done within the framework developed here.
This is for the most part straightforward, but there are two
points which deserve comment.

The first point is elementary but worth making explicitly:
the holonomies in the asymptotic regime are nontrivial at
the linearized level. This means that the construction of the
asymptotically constant covectors will also be nontrivial at
this level, as will be energy-momentum-exchange effects.
In other words, the essential physics is nonlocal, but it is not
exclusively nonlinear.

The second point is a conceptual one which will not
figure explicitly in the analysis but explains the perhaps
unexpected forms of some of the results. The reader may
wish to skim this at first and come back to it as necessary.

In the Bondi-Sachs analysis, the power radiated is given
by

(47G) 1hm f |6'|*dS (59)

over spheres r = constant, # = constant. (There are similar
formulas for the other components of the radiated energy-
momentum.) Because this is quadratic in ¢’, one might think
that a knowledge of ¢ in linearized theory would be
adequate for a lowest-order computation of the power. In
particular, it would be tempting to think of the physics in the
radiation zone as due to two contributions, one from a central
radiating source and the other from the matter in the zone.
We are already assuming the matter effects are smaller than
the radiation ones; if (as will usually be the case) the
radiation from the central source is also small, shouldn’t
we have Simply 6/ = o-::emral source + O-/radiation»zone matter?
And would not energy-momentum-exchange effects be
derivable from such considerations?
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The answer is “no.” To understand this, suppose we start
with a vacuum radiation zone, and ask how the outgoing
shear ¢’ there changes as a little matter is introduced. To do
this, we follow the geometry from outside the matter
inwards, along the [ congruence. As we do so, we must
maintain the Bondi coordinate and tetrad conditions. In
particular, the tetrad vectors n® and m“, which figure in the
definition of ¢’, will be affected by the matter. Thus there
will be changes in what we would call ¢/ .1 source dUE tO
the change in the tetrad vectors as they are affected by the
matter’s gravitation. These will lead to energy-momentum
exchanges of the same order as, but distinct from, the
cross-terms OJcentral sourcea*adiation—zone matter (plus Conjugate)'
(There will generally be other changes, too, of the same
magnitude.)

In the following sections, we will have examples of this.

VII. TEST PARTICLES

Test particles can be viewed as special cases of the
general results of the previous section, or analyzed directly
in terms of the asymptotically constant frame and the
connection D,,.

A. General formulas and interpretations

Let a particle of mass p fall freely along an affinely
parameterized geodesic y. Then the geodesic equation
implies 7°V,(uy,) = 0, which means that the energy-
momentum of the particle is propagated parallel along the
trajectory. On the other hand, the rate of change of the
energy-momentum with respect to the Bondi-Sachs frame is

}.'bDb (/”./a) = IM(K/lb - Ulmb)(lamc - malc)}}b?c
+ conjugate. (60)

To begin to understand this, it may be helpful to compare
it with the formula for the motion of a particle of charge
g in a Minkowski-space electromagnetic radiation zone,
which is

P"Ny(uin) = abs(lym® — m,I€)p, + conjugate,  (61)

where ¢, is the radiative component. Thus the two cases
have a common factor (I,m¢—m,I)y.; this codes the
polarization in the electromagnetic case, and is essentially
the square root of the polarization in the gravitational one.
The remaining directional character of the gravitational
effects appears in the factor «'l, — 6'm,,.

In the Maxwell case it is a component of the Faraday
tensor, a local geometric object, which enters: but for
gravity it is the spin coefficients ¢’ and «’, which are
essentially nonlocally determined potentials for the curva-
ture, which come up. In particular, the Bondi news, and so
o', may be nonzero in a range of (u, 0, ¢) values for which
the radiative curvature term W9 vanishes.
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In the nonrelativistic limit (where y* differs from #* only
by small terms), one has to leading order

7'Dy(uis) = —pu'm, + conjugate,  (62)

which is formally similar to the response —g¢,m, +
conjugate of a charged particle; however, for relativistic
motion the difference in forms between the equations
becomes apparent. For ultrarelativistic particles, the geo-
metric factors m -y, [-y will tend to zero along the
outgoing portions of the trajectory, and these will inhibit
energy-momentum exchange.

In Eq. (60), the differentiation is with respect to the affine
parameter (say s) along the geodesic. If we convert it to
differentiation with respect to the Bondi parameter u using
du/ds = y*l,, we have

D . / (}.’bmb)z .
_ — N0 l / b l
Dytfe =0 <M )l + K& (uy’my)l,

+ )uj/b (G/mamb - K/ma lb)
+ conjugate. (63)

This expression represents the rate of transfer of energy-
momentum from the gravitational field to the particle.
(While the particle’s energy-momentum changes relative to

the Bondi-Sachs frame, its mass \/uyuy,g°° does not,
because the connection D, preserves the metric.)

The terms on the right in (63) have interesting inter-
pretations. The factor u(y”my,)? /€1, in the first term would
be, in linearized theory, half the contribution of the test
particle to the Bondi shear. Thus there is a shear—shear
coupling, between the shear ¢’ of the ingoing congruence
and a measure of the Bondi (outgoing) shear due to the test
particle, leading to a transfer of energy-momentum along
[,. The second term gives also an outward-directed accel-
eration (with respect to the Bondi frame), this one propor-
tional to the acceleration «’ of the ingoing congruence. The
terms in parentheses of the second line of Eq. (63) are half
the projection of £,g,;, the Lie derivative of the metric
along n%, in the directions spanned by m,m,; and m,l,.
Roughly speaking, the effect of the second line is as if the
particle experienced an acceleration (relative to the Bondi
frame) from being batted by the ingoing congruence, or
rather by the projected effects of this. (One should bear in
mind that the incoming congruence does not here code any
incoming radiation, but rather the temporal evolution which
is necessary to maintain the Bondi gauge.)

Over short portions of the particle’s trajectory, we expect
the geometric terms y“m,, y*l, to be nearly constant, as
well as the value of r. We have ¢/ = —5g/r and ' =
—d6g/r in the radiation zone. Over short portions of the
trajectory, the angular variables which (with u) are the
arguments of o do not change much, and so the change in
the particle’s energy-momentum as measured with the
Bondi-Sachs frame will be
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. AGg [ (7Pmy)? 0AGy |, .

Apj, ~—2 (/t 1, = —— (upPmy)1,

r yel, r

[ AG dAG
—I—M}/b (—TBmamb + Bmalb)

+ conjugate. (64)

This means that we have an approximately conserved
quantity

‘b 2 X =
y’m 0o , .
( yclb) >la _—B(ﬂybmb)la

. | g
Ha=wa+—<ﬂ
r r

a 36
+ ﬂyb (_ = mamy, + —= malb)
r r
+ conjugate. (65)

The existence of this approximate conservation law is
closely connected with the character of the backreaction of
the test particle on the radiation field. Were the quantity to
be exactly conserved, one would expect no radiated energy,
and hence no backreaction, in cases where oy returns to its
original value after a burst of radiation. A net change in og
would be a “memory effect”; we see that glitches leading
to steps in og over short u-intervals (over which II, is
conserved) correspond to steps in the particle’s energy-
momentum, measured relative to the Bondi-Sachs frame.

B. Scattering by quadrupolar waves

A simple but important example is the scattering of test
particles by quadrupole radiation in linearized gravity.

Because the energy-momentum transfer is linear in the
news, it will suffice to consider the case of a constant
polarization; the general case is a sum of such terms. We
take the Bondi news to be N = f(u)K?in in,, where the
amplitude profile f(u) is a complex dimensionless func-
tion, and the polarization K¢ (also dimensionless) is a
fixed Minkowskian tensor, real, symmetric, trace-free and
orthogonal to 9/0t; here u = t — r is the retarded time. The
real and imaginary parts of f determine, respectively, what
are called the electric and magnetic contributions to the
news. We have

o = ! (ru) Km my, (66)
K = —2@1{0%6%. (67)

Since the energy-momentum transfer is proportional to
the news function, which is already first-order, we may take
the particle’s trajectory to be Minkowskian. Let us write

y?(s) = bB* 4 s(cosh &)1* + s(sinh &) C* (68)
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as a vector relative to the origin in Minkowski space, where
B¢, C* are mutually orthogonal spacelike unit vectors,
orthogonal to t* = 0/0t, the impact parameter is b and the
rapidity is £&. We have then

r = \/b* + s>sinh?¢ (69)
u = scosh & — \/b? + s%sinh?¢. (70)

We also note for future use that
P = (1/2)I* — n® = (bB* 4 s(sinh &)C) /r (71)
is a unit radial vector orthogonal to 74, and then
MMy = M Mgy + MMy
= (1/2)(=gea + tety = Fefy = i€capgt??).  (72)

The energy-momentum transfer is then

AP, =u /[K’lp —o'my)[m,l, — 1,m,)yPylds
+ conjugate
= —2;1/L:)chyﬂqucm[qla](mdm,, + 2741, )ds
+ conjugate. (73)

Note that it is orthogonal to P? (as expected, since we
consider only first-order changes and P,P? is preserved).

For a given radiation field, the dependence of the energy-
momentum transfer on the trajectory y is quite rich, and we
shall here work out only a few limiting cases.

The limit £ — 0. This is the nonrelativistic limit touched
on earlier. In this case we have 7#¢ = B4, r = b, ds = du, as
well as

J}qmcm[qla] = _(]/4)

X (_gca + tt, — BcBa - iecarstrBS) (74)

7P (imgm, + 2741,) = 2B,. (75)
SO
AP, = (u/b)K“ (=g, — BB, — i€ qyst" B*)By
x /f(u)du + conjugate. (76)

As noted earlier, the momentum transfer in this case is a
memory effect, responding to Ac® = —K““m.my [ fdu,
the net change in Bondi shear. The transfer is orthogonal to
B,, and falls off with b, the distance from the source. The
real and imaginary parts of the news couple through the real
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and imaginary terms within the parentheses in (76), giving
different parity-dependences on the separation vector B“.
The case |E| — oo. This case is much more complicated.
The calculations are straightforward, though, and I shall
only indicate the main points.
The energy-momentum transfer is

0 du
APa = _2ﬂe|§| f(”)KCd(Aca + Bca)Dd| |
oo u

+ conjugate (77)

(one can check that the numerator in the integrand vanishes
as u710, and in fact there is no singularity at u = 0), where

A., = (1/4)sgn(&)sechd
x (—sech{C, + sgn(¢§) tanh (B, — i€, C!t"B*)
x (t, + sech{B, + sgn(&) tanh {C,) (78)

By = (1/4)(=Geq + tety = Ty — i€0qpgtP77)
x (1 —tanh () (79)

Dy = (1/4)sgn(&)sechd
x (—sech{C, + sgn(&) tanh B, — i€y, CP11B")
+ (1 — tanh ) (sech{ B, + sgn(&) tanh {C,) (80)

with

¢ = —log(|ul/b). (81)

Note that because this scales as el!, the fractional energy-
transfers AE/FE will attain a |£|-independent limit (and this
will also apply to massless particles).

While the general form of the energy-momentum trans-
fer is evidently complicated, it simplifies considerably in
certain regimes. For any fixed trajectory, the contributions
to AP, from different values of u break down to those from
an incoming regime u < —b, a transition regime u ~ —b,
and an outgoing regime —b Su < 0. It is only in the
transition regime that all the terms in the integrand are
potentially significant; in the other two the limiting forms
are much simpler. I will give the forms first, and then
discuss their interpretations.

The contribution from the incoming regime is

APa|incoming = _2ﬂe‘§‘KCd
X (_gca - Ccca - isgn(g)ecapqtpcq)
du
< sen(@)Co) [0S
u<—b u
+ conjugate, (82)

and from the outgoing regime
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APu|outg0ing = 5Pa (83)

where

5:(2b2)‘1K""UCUd/ f(u)udu+ conjugate (84)

—b=<u<0
with
U, = B, — isgn(£)e s Ct'B°. (85)

The notation 3 is chosen to fit with the usual notion of a
red-shift. Thus formula (82) would suffice to give the
energy-momentum transfer if the amplitude f vanished for
—b<Su<0, and (83) would suffice if the amplitude
vanished for u < —b.

The contributions from the incoming regime have the
following important features: (a) They are independent of
the direction B of the trajectory’s closest approach. (b) The
directional dependence is formally the same as in the £ = 0
case, but with B“ there replaced by sgn(£)C* here. In
particular, the transfer is purely one of spatial momenta.
(c) They depend on the impact parameter » only through
the range of integration.

The contributions from the outgoing regime are very
different: (a) They purely dilate the energy-momentum,
that is, they purely red- or blue-shift it, without changing
its space-time direction. (b) Their angular dependence is
very curious, with the electric part coupling to B.B,; —
W W, (where W, = €.,,,C7t"B*; note that W¢ = (B x C)°
in three-vector terms), and the magnetic part to
sen(£)(B.W, + ByW.).

One would like to get a sense of what the range of the
scattering is, in terms of how it depends on the impact
parameter. Because the source will be time-dependent,
there is no truly universal answer to this. If we consider a
fixed source and formally expand the exchange (77) for
b — oo, we find it scales as [°_ f(u)udu/b* for b — oco. If
for instance f were compactly supported, then this would
show that the scattering fell off as 1/b?. This is more rapid
than the Newtonian result, because the Newtonian scatter-
ing accumulates over a large portion of the particle’s
trajectory, with significant contributions over a spatial scale
~b. (If the Newtonian force somehow acted only for a time-
interval Az near the particle’s point of closest approach, the
scattering would go as vAt/b?, with v the particle’s speed.)
For a monochromatic source, because the scattering will
average out for the early portion of the particle’s trajectory,
a similar argument applies, and we expect a scaling
~1/(wb)?* for angular frequency w. However, a wave
which falls off as |f(u)| ~ |u/ug|™"/?>¢ as u — —co will
carry finite energy but could by Eq. (82) lead to exchanges
scaling as |uy/b|~1/>¢ .
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VIII. NONZERO AVERAGE EFFECTS

We have seen that the energy-momentum exchange
between matter and gravitational waves is determined by
integrals of components of the stress-energy against certain
spin coefficients, which are in turn proportional to the
Bondi news N (and its angular derivative ON). If the
frequencies of the gravitational waves are large compared
to the scales on which the stress-energy changes, averaging
will suppress the exchange. Interesting net exchange effects
therefore require defeating this averaging.

One possibility for doing this is to have matter which is
not static on the time scale over which the waves cycle.
Most simply, the stress-energy may beat with or against
monochromatic waves, leading to a secular exchange
(compare [3,17]). Of course, such effects require a resonant
tuning which will not be generic.

Even for waves which are not monochromatic, one could
have matter whose time-dependence was correlated with
that of the wave in such a way as to give nontrivial net
effects. Such a possibility was suggested some time ago, in
the case of tidal energy-momentum exchanges, by Press
[4], with the idea of mimicking the mirrors, waveguides,
etc., available for electromagnetic radiation. Of course,
given the basic assumption of this paper that matter
perturbs the radiative geometry only slightly, we cannot
expect here to find anything like the efficiency needed to
construct a gravitational mirror or waveguides; also, the use
of bulk rather than tidal effects makes the analogy with
electromagnetism more distant, and there is a difference in
that the present techniques speak most directly to energy-
momentum, not waveforms. Nevertheless, we will see that
it is in principle possible in at least some cases to have
matter respond to gravitational waves so that the flow of
energy-momentum is coherently modified, for example, to
cause a net absorption of one component.

Finally, and potentially most broadly, one could get net
changes in energy-momentum exchange if the waves carry
“memory.” The memory effect in this case is a net change in
Bondi shear between the period prior to the wave and the
one after it. In the quadrupole approximation, the Bondi
shear is essentially the second time derivative of the
quadrupole, so systems emitting jets will generate gravi-
tational waves with memory.

I shall give examples of these different nonzero average
effects here, simply to give a sense of some of the features
and issues which come up. (As will become apparent, there
are so many degrees of freedom that full treatments would
be lengthy.) We shall see in particular that the gravitational
waves from relativistic jets may be affected by their
propagation through matter.

A. Beating with or against the waves

The simplest examples of secular energy-momentum
effects are constructed from quadrupoles in linearized
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gravity. We suppose that we have a central quadrupole
source at the spatial origin, and at coordinate value r
another, smaller, quadrupole. Any orbital motion of this
smaller quadrupole will be neglected here, since we are
interested in gravitational waves of much higher frequen-
cies than any orbital frequency (compare [17]).

The key relation is Eq. (56), repeated here:

% =T, (6'm*—«'1)(1;m" —m41°) + conjugate. (86)
The idea will be to integrate this over a small spatial volume
containing the smaller quadrupole.

The stress-energy terms will be approximated as local-
ized at the small object. While in reality the object will have
a finite size (large enough, in particular, that it is nowhere
near its Schwarzschild radius), most of the details of its
internal structure will be irrelevant, and we will as usual
suppose that we may represent it by a spatial multipole
distribution insofar as integrals of smooth quantities, not
varying much on the scale of the object, against its stress-
energy go. We will discard any monopole or dipole terms,
since these are not expected to change rapidly enough to
beat against the waves. We will assume the remaining terms
can be treated as pure quadrupoles. In general such terms in
the stress-energy involve certain coefficient functions times
spatial delta functions or times derivatives of spatial delta
functions [12]. Here any derivatives of spatial delta
functions will be discarded, since these will be integrated
against the (spatially) slowly varying ¢’, . We may then
write

Tapll" = (1/2) 08,141, (87)
T pl'm? = (1/2)0C% 14mP5,, (88)

Tyym®m® = (1/2)Q5,mm"s, (89)

D
where &, is a spatial delta function at the object’s location
and Qzlb(u) is the object’s “electric” or “mass” quadrupole,
and the dots are derivatives with respect to u. (The
“magnetic” or “current” quadrupole does not appear
because it contributes only terms with derivatives of &;.)
Note that in these equations, because the quadrupoles are
purely spatial, we may replace [* with 7.

Now let us turn to the central source. We will allow it to
have a complex quadrupole moment

where Q% Q7*¢ are purely spatial, symmetric, trace-free
tensors. We have

N = -0 mein® (91)
ON = +20 3 pajmb, (92)
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where the superscript indicates the third retarded
time-derivative.
As a final preparatory step, we have from Eq. (72) the

identity

maﬁ'lp = (1/2)(_Hap - iRpa)v (93)

where
Hab = —m“rhm - rh”mb (94)
is the projection to the transverse spatial directions and
RP 4 = €P g5t 17° (95)

is the generator of rotations in this plane, about 7 (with the
usual orientation).
Integrating Eq. (56), we have, after some algebra

[
AP;=—, / ¢ QU ! [(TePT1Pe — RPORaP — 4747P1104)1,

— IP(M1%PT1,9 — RPARY )| r~ du

L[
+2 / e QU™ E[(2UPRI® — 43P RIP)

— IP(TT9PRY 4+ RPTI4,)|r~ ' du. (96)

Evidently the dependence on the polarizations, indicated by
the terms in square brackets, can be rather complicated.

However, the initial Q% QE?,,) factors show clearly the
possibilities for constructive or destructive interference,
if the frequencies are matched.

At resonance at an angular frequency w, ignoring the
polarizations, the energy-momentum exchange scales as
~w’Q% Q, Au/r. This should be contrasted with the
radiated energy of the central source, which goes as
NwGQaprun. Thus the relative change is suppressed
by two factors: the (assumed) intrinsic weakness of the
waves from the small object relative to those from the
source; and ¢/ (wr), which will be small in the radiation
zone. While in many practical cases this relative change
will certainly be tiny, there is no inherent reason for it to be
so in all cases. Also many of these small objects could, in
principle, surround the source.

The effects of the polarizations are curious and different
from those of tidal effects. Because of the complications of
the expressions, I will just discuss a few of the possibilities.

Suppose that the source quadrupole has principal axes
along the coordinates, with degenerate eigenvalues in the
x—y plane. Then it turns out that if the small object is on the
Z axis, there is no effect. However, for an object along (say)

the x axis, the coupling to Q(jb) * would be proportional to

<Qxx - ny)ld - sz)%d + Qxyj\)d‘ (97)

Thus if the object’s quadrupole were purely in the “plus”
polarization relative to the x and y axes, it would give net
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changes in the energy-momentum proportional to
1“ = t* + 34" Thus the system could acquire or loose
energy-momentum in this direction, depending on the
phase matching. It is not clear, in general, how this would
be distributed among the system’s components. However,
one could imagine the central source and the small object
joined by some framework, in which case presumably the
entire system would move in response. (One needs the
usual caveat here about relativistic systems not being
strictly rigid.) If one had two small objects, oppositely
placed about the central source, then depending on their
phases, one could have energy-momentum transfers purely
in the #“ or X“ directions.

I have so far emphasized the case of resonant coupling,
but it is possible to generalize this, because the formula (96)
expresses the coupling of the wave from the central source
and the small object in the time-domain. This equation
shows that if the time dependences of the waves from the
central source and the matter in the radiation zone are
suitably correlated, energy-momentum-exchange effects
can build up.

It is worth noting that formula (96) and its consequences
are not what one would get by using linearized-gravity
computations of the news and the Bondi-Sachs energy-
momentum-loss formula; this is an example of the second
point raised in Sec. VL.

B. Dynamically active matter

It is natural to ask whether there are gravitational analogs
of the familiar materials which control and modify the
propagation of electromagnetic waves, that is, of optically
active materials. In the context of the current work, we
cannot expect any exact analogy, for we study here not the
changes of the waves themselves but of their energy-
momentum. We may say that matter is dynamically active
if it affects the energy-momentum of gravitational waves
passing through (or near) it. Of course this term—Ilike its
optical counterpart—is so broad that strictly speaking all
matter has this property. We are really interested in
knowing what the character of the activity is.

The results of the previous subsection show that there are
at least some similarities with optical activity: that in some
circumstances matter may coherently alter the flow of
energy-momentum in the waves. However, there is a very
substantial difference.

The energy-momentum exchanges are given in terms of
the spin coefficients ¢’, ¥/, which are not locally deter-
mined, because they depend on the Bondi tetrad (in
particular on the spinor 2,). To the extent this nonlocality
is essential, matter in the radiation zone cannot causally
adapt to radiation in its vicinity. That is, while matter might

"Note that this orientation is not transverse to the waves from
the central source—those would be described by polarizations
transverse to the x axis.
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happen to be positioned in the radiation zone of a specific
source so as to effect particular changes in the flow of
energy-momentum, one cannot contrive a distribution of
matter guaranteed to respond in a prescribed way to
arbitrary sources.

It is possible to partially compensate for this limitation,
by using the relations (valid asymptotically)

0,06 =,, oV, = 9,k (98)

These relate the spin coefficients to components of the
curvature tensor. Now, while the curvature tensor itself is
locally determined, one must be cautious that one is here
taking components again with respect to the Bondi tetrad.
However, in the radiation zone, the Weyl curvature is to
good approximation V,p-p = V404050c0p, sO it is
enough to know the outgoing spinor o, to know W,
and this will be the case if we assume we know the
outgoing wavefronts, or equivalently the coordinate u,
locally. (The phase of o, will not matter.) However, the
operator 0 will not be well determined locally, being subject
to an ambiguity of addition of O(1) multiples of /- V.

Again assuming the relevant matter terms can be taken to
be “electric” quadrupoles, we have

APd = (1/2) /ul Qzlb(o'/ma —_ K/la)(ldmb — mdlb)du

ug

+ conjugate

= (1/2) Q% ('m® = K'19)(Ilgm® = m 1"z,
— (/) [ (vt = row )
U
x (I;mb — myl”)du + conjugate. (99)

In this form, there are two sorts of problematic terms, each
of which will vanish for suitable local restrictions on the
matter. The first are the boundary terms, which involve
the spin coefficients explicitly; these can be eliminated if
we consider transitions between Q%, = constant states. The
other problematic terms are those proportional to 0W,;
those will vanish if we consider quadrupoles which are
polarized purely transversely to the waves. We thus find:

For a gravitational wave encountering a quadrupole of
electric type, whose polarization changes only purely
transversely to the wave, and making a transition between
two ¢l = constant states, the energy-momentum
exchange is determined by data in the vicinity of the
quadrupole, is parallel or anti-parallel to the outgoing
direction, and is

AP, =—(1/2) /ul Qfllb\hm“ldmbdu + conjugate.
U

— / " O, Carbar 1 lydu, (100)
Uug
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where C,,., is the Weyl tensor. The qualifications at the
beginning of this paragraph give, by contrast, some sense of
the degree to which nonlocal considerations can effect the
energy-momentum transfer generally.

C. Memory effects

Even if a system emits gravitational radiation only for a
finite interval of retarded time, there may be a net change in
its Bondi shear, which is a sort of memory effect.'” Since
the Bondi news N = —0,,6, the difference in Bondi shear,
as a function of angle, will contribute to a holonomy
between the regimes before and after the emission of
radiation, and thus will have consequences for energy-
momentum exchange.

The simplest examples of this occur when mass is
ejected from a system. If a mass M is ejected with four-
velocity 7%, then the resulting change in Bondi shear will be
Acg = 2M(y - m)?/7 - | in linearized gravity. For simplic-
ity we consider the effects of this on nonrelativistic matter
in the radiation zone, so the dominant contribution to the
energy-momentum exchange (56) comes from 7T, [/"—
for nonrelativistic matter, this is the energy density p. Then
the exchange will be

AP, = / T, 191° (K’ my + conjugate)dr

. _(2y-Fyl+y-my-m
—M/py-m( -
(7-1)7?

x myr~'d®)vol + conjugate
=M [ o230 D7+ (17257 )

(101)

x 7", d®)vol

Suppose for instance that y* = t“ cosh & + 2 sinh &, and
that p represents a localized mass y. Then

(3cos?@ + 1) sinh & — 4 cos @ cosh &
(cosh & — cos @ sinh &)?
My sin @sinh?¢ 1 0
P ——
2r r 00

AP! = —[
(102)
In the ultrarelativistic case, this goes over to

APd_3cos6—l Musinfe 1 0

> o—¢
1 —cos@ 4r r o0 for 9 e7= (103)

for 0 < e7%. (104)

"The sort of memory figuring here goes back to Bondi [1] and
is also at the root of Christodoulou’s work [18]. Indeed, Bondi
looked at this in connection with energy-momentum exchange.
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Because of its physical interest, let us look at the
ultrarelativistic case. The exchange is everywhere spatial
and directed along a meridian. At colatitudes 0 <
cos™!(1/3) = 71 deg the wave transfers energy-momen-
tum to matter in a direction of decreasing 6, whereas
outside this cone the transfer is to increasing 6. This will
also be the sense of whether the transfer contributes along
the direction of the jet or oppositely. The transfer to the
matter will be towards the axis for cos™'(1/3) < 6 < z/2
and away from the axis elsewhere.

Remarkably, a direct calculation from Eq. (102) shows
that for a spherical distribution of matter the net energy-
momentum exchange vanishes. However, this result
depends on the cancellation of potentially significant terms.
(For instance, near § = 0 the contributions to the exchange
are large in magnitude, but are directed symmetrically in
azimuth.) From Eq. (103) the fractional energy-momentum
exchange will scale like a weighted average over angles of
integrals (G/c?) [ prdr along the outward null geodesics.
We saw in Sec. IIIC that integrals like this could in
reasonable astrophysical circumstances be large. Of course,
the present, radiation-dominated, approximation is only
valid when these integrals are small.

We are thus left with the possibility that relativistic
jets from sources surrounded by sufficiently inhomo-
geneous distributions of nonrelativistic matter might suffer,
within the realm where the analysis here is valid, energy-
momentum exchanges which are small (but not very small)
fractions of unity. We cannot say what happens when still
more matter is present, but one would very much like to
know. It is certainly possible that grosser effects may occur.

IX. DISCUSSION

The main idea underlying this paper is that space-times
with gravitational radiation are not asymptotically flat in
the sense usually required for giving a consistent account-
ing of energy-momentum, but that this problem is resolved
by extending the Bondi-Sachs construction of energy-
momentum to the radiation zone. (This applies even at
the linearized level.) This procedure is strongly nonlocal,
depending on the physics of the gravitational field in all
asymptotic directions around the source. The result is a
well-defined way of measuring the contributions of local
distributions of matter in the zone to the system’s total
energy-momentum. Tracking these gives measures of the
exchange of contributions to the total energy-momentum
from the matter and gravitational radiation, that is, bulk
exchanges, in contrast to the tidal ones usually considered.

This approach is not derived from first principles, but is
plausible as long as holonomies in the radiation zone are
well modeled by the leading terms from the Bondi-Sachs
analysis. Since that analysis is concerned with space-times
with near-vacuum radiation zones, all of the effects dis-
covered here are relatively small ones in cases where the
approach can be conservatively regarded as reliable. The
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question of just what happens when we go beyond this
“radiation-dominated” regime, and in particular, how much
larger the energy-momentum exchanges could be, is very
much of interest, but will require other techniques, or at
least other justifications.

The scattering of test particles was discussed first.
Perhaps surprisingly, although we consider here outgoing
waves, the scattering appeared to be most naturally inter-
preted in terms of the incoming congruence associated with
the Bondi frame. We found a shear—shear coupling,
between what would be the particle’s contribution to the
outgoing shear in the linearized limit, and the shear of the
incoming congruence, as well as other terms. Roughly
speaking, this is because (for outgoing radiation) the
incoming Bondi-Sachs congruence codes the changes in
temporal evolution necessary to maintain the Bondi gauge
in the presence of outgoing radiation. The scattering of the
particle is due to the adjustments in gauge required by the
Bondi-Sachs framework.

The case of test particles scattered by quadrupole radiation
in linearized theory was completely worked out. The details
of these results were complex, reflecting partly the freedom
in the source’s time-dependence, but also the ways the its
polarization could couple to the orbital elements of the
particles. Because of this time-dependence, there is no simple
universal formula for the fall-off of the scattering with the
particles’ impact parameters. For monochromatic sources we
found a scaling ~(wb)~2 (with @ the angular frequency and b
the impact parameter). However, for sources slowly varying
in the past larger effects were possible. (In the future, for
relativistic particles, retardation provides a cutoff.)

In general, the energy-momentum exchanges will tend to
average out if the waves’ periods are shorter than the
dynamical timescales associated with the matter (intrinsic
time-dependences, as well as transit times across the
source’s sphere of directions). So I considered several cases
in which this averaging could be, a least partially, defeated.

The most straightforward of these was a resonance
between the waves and intrinsically time-dependent matter;
the latter was modeled by small quadrupoles in the
radiation zone. We did indeed find possibilities for secular
energy-momentum exchange. The effects depended differ-
ently on the polarizations than one would find from a naive
application of linear theory; this was because the naive
picture does not maintain the Bondi-Sachs gauge to the
required accuracy.

An issue closely related to resonance is the sense in
which gravitational waves’ energy-momentum can be
effectively directed, absorbed or reflected; I referred to
this as dynamic activity, analogous to optical activity for
electromagnetic waves. (Could one have mirrors, or
refractors, of gravitational energy-momentum? Of course,
the work here is limited to fractionally small effects, so it
could not justify any very efficient reflection or refraction.)
The nonlocality of the energy-momentum was a serious
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impediment to having matter which could be dynamically
active. We did find, however, that for matter consisting of
small quadrupoles, some sort of localized controlled
response was possible if the vector towards the distant
source was known; the quadrupoles had to be purely
electric, make transitions between constant-quadrupole
states, and their changes in polarization had to be transverse
to the waves. The energy-momentum exchange in this case
was directed parallel or antiparallel to the wave vector.
A third way of defeating the averaging was to consider
waves with net changes of Bondi shear. Such waves can
exchange energy-momentum even with very simple forms
of matter, such as nonrelativistic dust. We considered a
simple model, corresponding to waves from a source due
to the emission of a relativistic jet. (The jet is not the matter
with which energy-momentum will be exchanged.) We
found that for perfectly spherically symmetric distributions
of matter, the exchange vanished. However, that was excep-
tional. Typically the contribution to the fractional change in
energy-momentum of the waves due to matter along a ray
outward from the source went like ~G [ prdr (with p the
density), and a sort of angular average of these was taken.
Such integrals can, in reasonable astrophysical circumstan-
ces, become substantial. This meant that, for inhomogeneous
matter around a source due to a jet, the exchange effects can
become at least large enough for the present treatment to
break down, and the possibility of their being so large as to
substantially degrade the waves must be taken seriously.
This leads us to an issue of potentially broad concern:
What are the backreactions on the waveforms caused by
the energy-momentum exchanges? As pointed out in the
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introduction, common arguments that such effects will
be tiny have involved the implicit assumption that the
exchanges are due to tidal effects, but tidal effects would
generally be only small fractions of bulk exchanges. One
really needs to revisit the question of the transparency of
matter to gravitational waves. In this connection, one
should bear in mind that ultimately gravitational-wave
astronomy is expected to require better than percent-level
accuracy in at least some of the degrees of freedom [6].

As emphasized earlier, the present techniques cannot settle
this question, for two reasons: first, they speak to energy-
momentum, and not waveforms; second, they are known to be
reliable only in radiation-dominated regimes. Those regimes
are too restricted to count as full realistic models: areal system
might not have the requisite clean geometry, and, even if it
does, the waves, as they move outwards, must eventually
weaken to the point that radiation dominance fails. However,
this paper’s analysis can help point to astrophysical situations
to investigate by other means, either analytical or numerical.

It does seem very possible that the averaging-out dis-
cussed above will mean that in many cases the net modi-
fication of the waves will indeed be very small. Resonance
effects could provide secular energy-momentum exchanges
and so presumably larger effects, but these require tuning
and so are presumably rare. We also found that for memory
effects involving net changes in Bondi shear, where the
averaging does not apply, there seemed to be no reason to
rule out more substantial backreaction effects. These points
could affect the observability of waves from astrophysical
jets; compare [5] and references therein.
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