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We prove the generalized covariant entropy bound,ΔS ≤ ðA − A0Þ=4Gℏ, for light-sheets with initial area
A and final area A0. The entropy ΔS is defined as a difference of von Neumann entropies of an arbitrary
state and the vacuum, with both states restricted to the light-sheet under consideration. The proof applies to
free fields, in the limit where gravitational backreaction is small. We do not assume the null energy
condition. In regions where it is violated, we find that the bound is protected by the defining property of
light-sheets: that their null generators are nowhere expanding.
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I. INTRODUCTION

The study of black hole thermodynamics has led to
some interesting entropy bounds that should be obeyed for
the consistency of the theory. The simplest one is the
Bekenstein bound, which does not involve Newton’s
constant [1]. This bound, when properly formulated [2]
(see also [3]), is a simple consequence of relativistic
quantum field theory.
A different kind of bound involves bounding entropies

by areas in Planck units. These bounds are inspired by the
black hole entropy formula. The most general bound of this
type is the Bousso bound [4] or covariant entropy bound. It
can be applied not only to matter crossing black hole
horizons, but also to rapidly expanding or collapsing
regions that cannot be converted to black holes. Thus
it transcends the original motivation from black hole
thermodynamics.1

The covariant entropy bound states that the entropy ΔS
on a light-sheet cannot exceed its initial area A:

A
4Gℏ

≥ ΔS: ð1:1Þ

A light-sheet is a null hypersurface whose cross-sectional
area is decreasing or staying constant, in the direction away
from A.
A light-sheet can be constructed by starting with any

surface A,2 in any spacetime. There are four orthogonal null

directions, past and future directed to either side of A. A
light-sheet is generated by null geodesics that have non-
positive expansion, θ ≤ 0, away from A. This is a local
condition and it is required to hold at every point on the
light-sheet. When it breaks down, e.g. at caustics where
neighboring generators intersect, the corresponding gen-
erator must be terminated. If A has more than one light-
sheet, the bound can be applied to each individually.
If any generators are terminated before a caustic is

reached, then the cross-sectional area A0 of the end points
of the light-sheet will not vanish. In this case the conjecture
can be strengthened [8]:

ΔA
4Gℏ

≥ ΔS: ð1:2Þ

The difference between the initial and final area,
ΔA ¼ A − A0, is non-negative because the expansion
θ ≤ 0 is the logarithmic derivative of the area transverse
to the null generators, with respect to an affine parameter
that increases away from A [9].
Fundamentally, the covariant entropy bound is a con-

jecture. It might capture aspects of how spacetime and
matter arise from a more fundamental theory [10,11]. A
general proof may not become available until such a theory
is found. Nevertheless, it is of interest to prove the bound at
least in certain regimes, or subject to assumptions that hold
in a large class of examples.
In this spirit, the bound (1.2) has been shown to hold in

settings where the entropy ΔS can be approximated
hydrodynamically, as the integral of an entropy flux over
the light-sheet; and where suitable relations constrain the
entropy and energy fluxes [8,12]. These assumptions apply
to a large class of spacetimes, such as cosmology or the
gravitational collapse of a star. Thus they establish the

1A key motivation was the holographic principle [5,6].
Fischler and Susskind [7] pioneered the search for a holographic
entropy bound in cosmology.

2Amust be spacelike and of codimension two in the spacetime.
It need not be closed. We use A to denote both the surface and its
area.
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broad validity of the bound. But the underlying assump-
tions have no fundamental status, for two reasons that we
will now describe.
Unlike the stress tensor, entropy is not local, so the

hydrodynamic approximation breaks down if the light-
sheet is shorter than the modes that dominate the entropy. In
this regime, it is not clear how to define the entropy at all.
Consider a single photon wave packet with a Gaussian
profile propagating through otherwise empty flat space. In
order to obtain the tightest bound, we may take the light-
sheet to have initially vanishing expansion. ΔA is easily
computed from the stress tensor and Einstein’s equations.
For a finite light-sheet that captures all but the exponential
tails of the wave packet, one finds that the packet focuses
the geodesics just enough to lose about one Planck area,
ΔA=Gℏ ∼Oð1Þ [13]. For smaller light-sheets, ΔA tends to
0 quadratically with the affine length. For larger light-
sheets, ΔA can grow without bound. To check if the bound
is satisfied for all choices of light-sheet, one would need a
formula for the entropy on any finite light-sheet. Globally,
the entropy is logn ∼Oð1Þ, where n is the number of
polarization states. Intuitively this should also be the
answer when nearly all of the wave packet is captured
on the light-sheet, but how can this be quantified? (In field
theory, the entropy in a finite region would be dominated by
vacuum entanglement entropy across the initial and final
surface, and hence largely unrelated to the photon.) Worse,
for short light-sheets, there is no intuitive notion of
entropy at all. What is the entropy of, say, a tenth of a
wave packet?3

A second limitation of the sufficient conditions identified
in Refs. [8,12] is that the assumed inequalities between
entropy and energy flux imply the null energy condition.
This condition on the stress tensor does not hold in all
regions for all quantum states. Hence, independently of the
validity of the hydrodynamic limit, the sufficient conditions
of Refs. [8,12] need not hold. An example of a region
where the null energy condition is violated is the horizon of
an evaporating black hole. Indeed, it has been argued
[14,15] that by critically illuminating a black hole so as to
keep its horizon area constant, an arbitrary amount of
entropy can be passed through a light-sheet. This violates
the bound (1.1) only over a time scale on which quantum
corrections to the geometry become dominant. However,
the stronger bound (1.2) becomes violated immediately,
and thus in a regime where the gravitational backreaction
from both Hawking radiation and infalling matter is small.
In this paper we will address the above difficulties for the

case that matter consists of free fields, and in the limit of
weak gravitational backreaction. We will provide a sharp

definition of the entropy on a finite light-sheet in terms of
differences of von Neumann entropies. Our definition does
not rely on a hydrodynamic approximation. It reduces to
the expected entropy flux in obvious settings. Using this
definition, we will prove the covariant bound. We will not
assume the null energy condition.
Outline.—In Sec. II we provide a definition of the

entropy on a weakly focused light-sheet. We define ΔS
as the difference between the entropy of the matter state and
the entropy of the vacuum, as seen by the algebra of
operators defined on the light-sheet.
The proof of the bound then has two steps. In Sec. III, we

note that ΔS ≤ ΔK, where ΔK is the difference in expect-
ation values for the vacuum modular Hamiltonian. This
property holds for general quantum theories [2]. In Sec. IV,
we show that ΔK ≤ ΔA=4Gℏ. We first compute an explicit
expression for the modular Hamiltonian, in Sec. IVA. For
general regions, the modular Hamiltonian is complicated
and nonlocal. However, the special properties of free fields
on lightlike surfaces enable us to derive explicitly the
modular Hamiltonian in terms of the stress tensor. The
expression is essentially the same as the result we would
obtain for a null interval in a 1þ 1 dimensional CFT.
Finally, in Sec. IV B, we use the Raychaudhuri equation to
compute the area difference ΔA. The area difference comes
from two contributions: focusing of light rays by matter,
and potentially, a strictly negative initial expansion. Usually
one may choose the initial expansion to vanish. If this
choice is possible, it will minimize ΔA and provide the
tightest bound. However, if the null energy condition is
violated, it can become necessary to choose a negative
initial expansion, in order to keep the expansion non-
positive along the entire interval in question and evade
premature termination of the light-sheet. We find that the
two contributions together ensure that ΔA=4Gℏ ≥ ΔK.
Combining the two inequalities, we obtain the covariant
bound, ΔA=4Gℏ ≥ ΔS.
In Sec. V, we discuss possible generalizations of our

result to the cases of interacting fields and large back-
reaction. We comment on the relation of our work to
Casini’s proof of Bekenstein’s bound from the positivity of
relative entropy [2], to Wall’s proof of the generalized
second law [16], and to an earlier proposal for incorpo-
rating quantum effects in the Bousso bound [15].
In the Appendix, we prove monotonicity of ΔA=ð4GℏÞ−

ΔS under inclusion, a result stronger than that obtained in
the main body of the paper.

II. REGULATED ENTROPY ΔS

We will consider matter in asymptotically flat space,
perturbatively in G. Since Minkowski space is a good
approximation to any spacetime at sufficiently short dis-
tances, our final result should apply in arbitrary spacetimes,
if the transverse and longitudinal size of the light-sheet is
small compared to curvature invariants. For definiteness,

3Similar limitations apply to the Bekenstein bound [1], which
can be recovered as a special case of the generalized covariant
bound in the weak-gravity limit [13]: precisely in the regime
where the bound becomes tight, one lacks a sharp definition of
entropy.
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we work in 3þ 1 spacetime dimensions; the generalization
to dþ 1 dimensions is trivial.
At zeroth order in G, the metric is that of Minkowski

space:

ds2 ¼ −dxþdx− þ dx2⊥; ð2:1Þ

where dx2⊥ ¼ dy2 þ dz2. Without loss of generality, we
will consider a partial light-sheet L that is a subset of the
null hypersurface H given by x− ¼ 0. Any such light-
sheet can be characterized by two piecewise continuous
functions bðx⊥Þ and cðx⊥Þ with −∞ < b ≤ c < ∞ every-
where: L is the set of points that satisfy x− ¼ 0,
b < xþ < c. See Fig. 1.
We begin by giving an intrinsic definition of the vacuum

state on H in free field theory. The generator of a null
translation xþ → xþ þ aðx⊥Þ along H is given by

pþ½a� ¼
Z
dx2⊥

Z
∞

−∞
dxþTþþaðx⊥Þ; ð2:2Þ

where Tþþ ¼ Tabkakb and ka ¼ ∂þ is the tangent vector to
H. Given any choice of aðx⊥Þ, one can define a vacuum
state j0ia by the condition pþ½a�j0ia ¼ 0.
In fact, all nowhere vanishing functions aðx⊥Þ define the

same vacuum, j0iH, because of the following important
result [16]: there are neither interactions nor correlations4

between different null generators of H. When restricted to
H, the algebra of observables A becomes ultralocal in the
transverse direction. For any partition fHig of the null

generators of H, the algebra can be written as a tensor
product

AðHÞ ¼
Y
i

AðHiÞ: ð2:3Þ

In the limit where the translation is localized to one ray,
aðx0⊥Þ ¼ δðx0⊥ − x⊥Þ, Eq. (2.2) reduces to the generator

pþðx⊥Þ ¼
Z

∞

−∞
dxþTþþ; ð2:4Þ

and pþðx⊥Þj0ix⊥ ¼ 0 defines a vacuum state independently
for each generator. By ultralocality, the vacuum state on H
is a tensor product of these states. (In terms of small
transverse neighborhoods of each generator, Hi, one can
write j0iH ¼ Q

ij0ii.)
It will be convenient to write the vacuum state on H as a

density operator,

σH ≡ j0iHHh0j: ð2:5Þ

Let the actual state of matter on H be ρH; this state may
be mixed or pure. Let σL and ρL be the restriction,
respectively, of the vacuum and the actual state to the
light-sheet L:

σL ≡ TrH−LσH; ð2:6Þ

ρL ≡ TrH−LρH: ð2:7Þ

The von Neumann entropy of either of these density
matrices diverges in proportion to the sum of the areas
of the two boundaries of L (in units of a UV cutoff).
However, we may define a regulated entropy as the
difference between the von Neumann entropies of the
actual state and the vacuum [2,17,18]:

ΔS≡SðρLÞ−SðσLÞ ¼−TrρL logρLþTrσL logσL: ð2:8Þ

A

H

L

A’

x

x

λ= +

b(x )

c(x )

(a) 

x

x

λ= +

(b) 

Ai

A1
A2

FIG. 1 (color online). The light-sheet L is a subset of the light front x− ¼ 0, consisting of points with bðx⊥Þ ≤ xþ ≤ cðx⊥Þ (a). The
light-sheet can be viewed as the disjoint union of small transverse neighborhoods of its null generators (b).

4These statements hold for correlators that have at least one
derivative along the plus direction ∂þϕ. Correlators of ϕ with no
derivatives are nonzero at spacelike distances. However, they do
not lead to well-defined operators along the light front since we
cannot control the UV divergences by smearing it along the light
front directions. For this reason we do not consider ϕ as part of
the algebra AðHÞ. The canonical stress tensor component Tþþ ∝
ð∂þϕÞ2 depends only on such derivatives of the field in the null
direction. For further details, see Ref. [16].
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For finite energy global states ρH, this expression will be
finite and independent of the regularization scheme. It
reduces to the global entropy, ΔS → −TrρH log ρH, in the
limit where the latter is dominated by modes that are well
localized to L. Examples include large thermodynamic
systems such as a bucket of water or a star, but also a
single particle wave packet that is well localized to the
interior of L.
An important feature is that we are computing these

entropies for null segments. It is more common to consider
entropies for spatial segments; see Fig. 2. In that case, the
algebra of operators includes all the local operators in
the domain of dependence of the segment, see Fig. 2(a). We
can also consider a boosted interval as in Fig. 2(b). The
domain of dependence changes accordingly. In the limit of
a null interval the domain of dependence becomes just a
null segment. This is a singular limit of the standard
spacelike case: the proper length of the null interval
vanishes and the domain of dependence degenerates.
Despite these issues, we find that the entropy difference
between any state and the vacuum, (2.8), is finite and well
defined. In the free theory case, the limiting operator
algebra has the ultralocal structure described above.

III. PROOF THAT ΔS ≤ ΔK

The vacuum state on the light-sheet L defines a modular
Hamiltonian operator KL, via

σL ¼ e−KL

Tre−KL
; ð3:1Þ

up to a constant shift that drops out below. Expectation
values such as TrKLσL and TrKLρL will diverge, but we
may define a regulated (or vacuum-subtracted) modular
energy of ρL:

ΔK ≡ TrKLρL − TrKLσL: ð3:2Þ

For any two quantum states ρ; σ, in an arbitrary setting,
one can show that the relative entropy,

SðρjσÞ≡ Trρ log ρ − Trρ log σ; ð3:3Þ

is non-negative [19].5 With the definitions above, we
find

ΔK − ΔS ¼ SðρLjσLÞ; ð3:4Þ

so non-negativity of the relative entropy immediately
implies [2]

ΔS ≤ ΔK: ð3:5Þ

To prove the generalized covariant entropy bound, we
will now show that ΔK ≤ ΔA=4Gℏ, where ΔA is the
area difference between the two boundaries of the
light-sheet.

IV. PROOF THAT ΔK ≤ ΔA=4Gℏ

We can think of the null hypersurface H as the disjoint
union of small neighborhoods Hi of a large discrete set of
null generators; see Fig. 1(b). By ultralocality of the
operator algebra, Eq. (2.3), we have for the vacuum state
σH ¼ Q

iσL;i, σL ¼ Q
iσL;i, where the density operators for

neighborhood i are defined by tracing over all other
neighborhoods [16]. Using σi in Eqs. (3.1) and (3.2), a
modular energyΔKi can be defined for each neighborhood,
which is additive by ultralocality: ΔK ¼ P

iΔKi. Strictly,
we should take the limit as the cross-sectional area of each
neighborhood becomes the infinitesimal area element
orthogonal to each light ray, Ai → d2x⊥. However, we
find it more convenient to think of Ai as finite but small,
compared to the scale on which the light-sheet boundaries b
and c vary.
Since both the modular energy and the area are

additive,6 it will be sufficient to show that ΔKi ≤
ΔAi=4Gℏ, where ΔAi is the change in the cross-sectional
area Ai produced at first order in Gℏ by gravitational
focusing. We will demonstrate this by evaluating ΔKi
and bounding ΔAi. For any given neighborhood Hi,
we may take the affine parameter λi to run from 0 to 1 on
the light-sheet Li, as xþ runs from bi ¼ bðx⊥Þ to
ci ¼ cðx⊥Þ.
For notational simplicity we will drop the index i in the

remainder of this section.

(a) (c)(b) 

FIG. 2 (color online). Operator algebras associated to various
regions. (a) Operator algebra associated to the domain of
dependence (yellow) of a spacelike interval. (b) The domain
of dependence of a boosted interval. (c) In the null limit, the
domain of dependence degenerates to the interval itself.

5Moreover, the relative entropy decreases monotonically under
restrictions of ρ; σ to a subalgebra [20]. With the help of this
stronger property, our conclusion can be strengthened to the
statement that ΔAðc;bÞ

4Gℏ − ΔS decreases monotonically to zero if the
boundaries b and c are moved towards each other. This is shown
in the Appendix.

6By contrast, the entropy ΔS is subadditive over the transverse
neighborhoods. In Eq. (2.8), the vacuum state σL factorizes, but
the general state ρL can have entanglement across different
neighborhoods Hi. This does not affect our argument since we
have already shown directly that ΔS ≤ ΔK.
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A. Ultralocality and conformal symmetry determine ΔK

We compute the modular Hamiltonian KL on the null
interval 0 < λ < 1 in three steps. First, we review the
calculation that gives the modular Hamiltonian for a semi-
infinite spatial interval. Next, we explain how to use this
result to obtain the modular Hamiltonian for the null
interval 1 ≤ λ0 < ∞. Finally, we use the special conformal
symmetry of the algebra of observables A to obtain KL by
inversion.
First we consider the modular Hamiltonian of a semi-

infinite spacelike interval 0 ≤ x < ∞. The algebra of
observables on this interval is the same as that of the right
Rindler wedge with a bifurcation surface at x ¼ 0. By
tracing the global vacuum σ over the left Rindler wedge,
one finds [21,22] that the state on the right is given by the
thermal density matrix

σRW ¼ e−KRW

Tre−KRW
; ð4:1Þ

where the modular Hamiltonian

KRW ¼ 2π

ℏ

Z
d2x⊥

Z
∞

0

dx xT00 ð4:2Þ

is proportional to the well-known Rindler Hamiltonian.
For a semi-infinite null interval, the modular

Hamiltonian is still of Rindler form. This is because the
future horizon is a Cauchy surface for the wedge. Note that
any contributions to the modular Hamiltonian from null
infinity decouple. We therefore obtain

KH ¼ 2π

ℏ

Z
d2x⊥

Z
∞

1

dλ0ðλ0 − 1ÞTλ0λ0 : ð4:3Þ

Wall [16] has shown that the horizon algebra on each
generator of H is that of the left-moving modes of a 1þ 1
dimensional conformal field theory. General states trans-
form nontrivially, but the vacuum σ is invariant under
special conformal transformations. Hence, the modular
Hamiltonian on the interval 0 < λ < 1 can be obtained
by applying an inversion λ0 → λ ¼ 1=λ0 to the Rindler
Hamiltonian. This is a special conformal transformation, so
the stress tensor transforms without anomaly:

Tλ0λ0 ¼ Tλλ

�
dλ
dλ0

�
2

: ð4:4Þ

Using this, one obtains for the modular Hamiltonian of the
light-sheet L

KL ¼ 2π

ℏ

Z
d2x⊥

Z
1

0

dλ λð1 − λÞTλλ: ð4:5Þ

Let us make some comments. If we were dealing with a
two-dimensional conformal field theory (CFT) the formula

(4.5) would be familiar. If instead we had a massive free
field in two dimensions, then we note that a null interval is
conceptually similar to a very small interval. Therefore we
are exploring the UV properties of the theory, which are the
same as those for a massless free field. When we go to
higher dimensions we can understand (4.5) as the result of
thinking of the free field in terms of a two-dimensional
massive fields with masses given by a Kaluza-Klein
reduction along the transverse dimensions.

B. Focusing and nonexpansion bound ΔA

Generally, the expansion of a null congruence is defined
as [9]

θðλÞ≡ d∇aka ¼
d log δA

dλ
; ð4:6Þ

where δA is an infinitesimal cross-sectional area element.
Recall that in the present context we consider the transverse
neighborhood of one null geodesic, with small cross
section Ai, so we may replace δA ≈ Ai. Our task is to
compute the change ΔAi of this small cross section, from
one end of Li to the other, by integrating Eq. (4.6). We will
drop the index i, as it suffices to consider any one
neighborhood.
At zeroth order in Gℏ, the light-sheet of interest is a

subset of the null plane x− ¼ 0 in Minkowski space, and so
has vanishing expansion θ and vanishing shear σab every-
where. One may compute the expansion at first order in Gℏ
by integrating the Raychaudhuri equation

dθ
dλ

¼ −
1

2
θ2 − σabσ

ab − 8πGTλλ: ð4:7Þ

The twist ωab vanishes identically for a surface-orthogonal
congruence. The shear σab can be sourced by matter, but
σabσ

ab will not contribute at order Gℏ.
We will pick λ ¼ 0 as the initial surface and integrate

up to λ ¼ 1. The choice of direction is nontrivial, since
we must ensure that the defining condition of light-sheets
is everywhere satisfied: the cross-sectional area must be
nonexpanding away from the initial surface, everywhere
on L. As we shall see, this implies that at first order in
Gℏ, we must allow for a nonzero initial expansion θ0 at
λ ¼ 0. The required initial expansion can be accom-
plished by a small deformation of the initial surface [13],
the effects of which on ΔK and ΔS only appear at higher
order. (Of course, we could also start at λ ¼ 1 and
integrate in the opposite direction. For any given state,
both ΔA and the initial expansion will depend on the
choice of direction. But we will demonstrate that ΔK ≤
ΔA for all states on future-directed light-sheets begin-
ning at λ ¼ 0. By symmetry of KL under λ → 1 − λ, the
same result immediately follows for past-directed light-
sheets beginning at λ ¼ 1.)
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From Eq. (4.7) we obtain at first order in Gℏ:

θðλÞ ¼ θ0 − 8πG
Z

λ

0

T λ̂ λ̂dλ̂: ð4:8Þ

The nonexpansion condition is

θðλÞ ≤ 0; for all λ ∈ ½0; 1�: ð4:9Þ

If the null energy condition holds, Tλλ ≥ 0, then this
condition reduces to θ0 ≤ 0. More generally, however,
we may have to choose θ0 < 0 to ensure that antifocusing
due to negative energy densities does not cause the
expansion to become positive, and thus the light-sheet to
terminate, before λ ¼ 1 is reached. However, it is always
sufficient to take θ0 to be of order Gℏ, so it was self-
consistent to drop the quadratic terms ∝ θ2, σabσab, in the
focusing equation.7

We would also like to include the entropy carried by
gravitational waves. Strictly, their inclusion requires a
modification of the background solution; then in
Eq. (4.7), gravitational waves would contribute to focusing
through the shear term. However, in the semiclassical
quantization scheme, the contribution from gravitational
waves to the shear can be absorbed into the stress tensor, by
separating the gravitational field into long and short
distance modes. Then they contribute to Eq. (4.7) through
the stress tensor, and we may retain the Minkowski
background.
From the definition of the expansion, Eq. (4.7), one

obtains the difference between initial and final cross-
sectional area:

ΔA
A

¼ −
Z

1

0

dλ θðλÞ ¼ −θ0 þ 8πG
Z

1

0

dλð1 − λÞTλλ;

ð4:10Þ

where we have used Eq. (4.8) and exchanged the order of
integration. In order to eliminate θ0 we now use the
nonexpansion condition: let FðλÞ be a function obeying
Fð0Þ ¼ 0, Fð1Þ ¼ 1 and F0ðλÞ ≥ 0 for 0 ≤ λ ≤ 1. From
Eq. (4.9), we have 0 ≥

R
1
0 F

0θ dλ, and thus from (4.8) and
integration by parts we find

θ0 ≤ 8πG
Z
dλ½1 − FðλÞ�Tλλ: ð4:11Þ

With the specific choice FðλÞ ¼ 2λ − λ2 we find from
Eqs. (4.10) and (4.11) that the area difference is bounded
from below by the modular Hamiltonian:

ΔA ≥ A × 8πG
Z

1

0

dλ λð1 − λÞTλλ: ð4:12Þ

Comparison with Eq. (4.5) shows that ΔK ≤ ΔA=4Gℏ, as
claimed.
Combined with the earlier result ΔS ≤ ΔK, this com-

pletes the proof of the covariant entropy bound,
ΔS ≤ ΔA=4Gℏ, for free fields in the weak gravity limit.

V. DISCUSSION

An interesting aspect of this argument is that we did not
need to assume any microscopic relation between energy
and entropy. We did have to assume that we had a local
quantum field theory at short distances. Therefore the
necessary relation between entropy and energy is the
one automatically present in quantum field theory,
i.e., given by the explicit expression of the modular
Hamiltonian in terms of the stress tensor. Our discussion
required a careful definition of the entropy that appeared in
the bound. In that sense it is very similar to the Casini
version [2] of the Bekenstein bound (see also [17,18]), and
also to Wall’s proof of the generalized second law [16,23].
All these developments underscore the interesting inter-

play between local Lorentz invariance of the quantum field
theory, Einstein’s equations, and information. It has often
been speculated that the validity of these entropy bounds
would require extra constraints on the matter that is coupled
to Einstein’s equations. Here we see that the only constraint
is that matter obeys the standard rules of local quantum
field theory. (Conversely, it may be possible to view these
rules as a consequence of entropy bounds [24].)
Relation to other work.—In [14] a possible counterex-

ample to the covariant entropy bound was proposed. The
idea is to feed matter so slowly into an evaporating black
hole that the horizon area remains static or slowly decreases
during the process. Hence the horizon is a future-directed
light-sheet, to which the bound applies. Yet, it would
appear that one can pass a very large amount of entropy
through the horizon in this way. How is this consistent with
our proof?
To understand this, consider the simplest case where the

stress tensor component Tþþ is constant on the light-sheet.
For the horizon area to stay constant or shrink, one must
have Tþþ ≤ 0. By Eq. (4.5), this implies ΔK ≤ 0,8 and
positivity of the relative entropy requires ΔS ≤ ΔK.
Hence, in this case, ΔS ≤ 0. Thus we find that with our

7We can also consider surfaces with expansion or shear
nonvanishing at zeroth order in G. However, this gives a variation
of area which is zeroth order in G, unrelated to the stress tensor,
and the bound is trivially satisfied.

8We have considered the case where the light-sheet L is a
portion of a null plane H in Minkowski space, whereas we are
now discussing the case where L is a portion of the horizonH of a
black hole. In general, application of our flat space results to
general spacetimes would require that the transverse size of L be
small compared to the curvature scale. This is not the case for the
horizon of a black hole. However, the vacuum states σH and σL
can be defined directly on the black hole background; σH is the
Hartle-Hawking vacuum.
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definitions, the entropy is negative for an evaporating black
hole, even with the addition of some positive, partially
compensating flux; and the entropy is at least nonpositive
in the static case. Since ΔA ≥ 0 by the nonexpansion
condition, the bound is safe.
Strominger and Thompson [15] have also proposed a

quantum version of the covariant entropy bound. Their
proposal is analogous to the definition of generalized
entropy, in that one adds to the area the entanglement
entropy of quantum fields that are outside the horizon and
distinct from the matter crossing the light-sheet. In contrast,
we have given a definition which only involves properties
of the quantum fields on the light-sheet L, i.e., on the
relevant portion of the horizon.
A similar distinction must be made when comparing our

result to Wall’s proof of the generalized second law [16,23].
Wall considers the generalized entropy SgenðAÞ ¼ SmðAÞ þ
A=4Gℏ on semi-infinite horizon regions, where A the area
of a horizon cross section, and SmðAÞ is the matter entropy
on the portion of the horizon to the future of A (which is
closely related to the matter entropy on spatial slices
exterior to A). Given two horizon slices with A2 to the
future of A1, monotonicity of the relative entropy under
restriction of the semi-infinite null hypersurface starting
at A1 to the semi-infinite subset starting at A2 implies
the generalized second law (GSL):

0 ≤ SgenðA1Þ − SgenðA2Þ: ð5:1Þ

The argument applies to causal horizons, such as Rindler
and black hole horizons.
Unlike our proof of the covariant bound, Wall’s proof

(like that of [15]) does not assume the nonexpansion
condition. This is as it should be, since the GSL does
not require any such condition. Suppose, for example, that
the expansion is not monotonic between A1 and A2,
because the black hole is evaporating but there is also
matter entering the black hole. Then the horizon interval
from A1 to A2 is not a light-sheet with respect to either past-
or future-directed light rays. Yet, the GSL must hold. On
the other hand, our proof applies to all weakly focused null
hypersurfaces, whereas the GSL applies only to causal
horizons.
Now suppose we consider a case where both the GSL

and the covariant bound should apply, such as a mono-
tonically shrinking or growing portion of a black hole
horizon. In this case, it should be noted that our proof and
Wall’s proof [16,23] refer to different entropies. In general
the difference in the matter entropy outside A1 and A2 is
distinct from the entropy that we have defined directly on
the interval stretching from A1 to A2:

DS≡ SmðA1Þ − SmðA2Þ ≠ ΔS: ð5:2Þ
BecauseDS − ΔS is not of definite sign (and because of the
different assumptions about nonexpansion), our result does

not imply Wall’s, and his does not imply ours even in the
special case where a horizon segment coincides with a
light-sheet. Instead, this case gives rise to two nontrivial
constraints on two different entropies: one from the GSL
and one from the covariant bound.
Our result allows us to connect a number of older works

concerning Bekenstein’s bound [1]. It was shown long ago
[13] that this bound follows from the covariant bound in the
weak gravity regime. At the time, a sharp definition of
entropy for either bound was lacking [25,26]. A differential
definition of entropy was later applied to the right Rindler
wedge, and positivity of the relative entropy was shown to
reduce to Bekenstein’s bound on this differential entropy, in
settings where the linear size and the energy of an object are
approximately well defined [2].
Our present work offers two additional routes to the

Bekenstein bound, in the sense of providing precise state-
ments that reduce to Bekenstein’s bound in the special
settings where the entropy, energy, and radius of a system
are intuitively well defined. Combining our result with [13]
proves a Bekenstein bound, while supplementing a defi-
nition of entropy for both the covariant bound and
Bekenstein’s bound as the differential entropy on a light-
sheet. The bound is in terms of the product of longitudinal
momentum and affine width, but this reduces to the
standard form 2πER=ℏ, for spherical systems that are well
localized to the light-sheet. Alternatively, we may regard
our Sec. III alone as a direct proof of Bekenstein’s bound.
Again the bound is on the differential entropy, but now in
terms of the modular energy ΔK on a finite light-sheet. For
a system of rest energy E that is well localized to the center
of a light-sheet of width 2R in the rest frame, one has
ΔK ≈ 2πER, so [1] is recovered.
Extensions.—An interesting problem is the extension of

our proof to interacting theories. For interacting theories the
quantization of fields on the light front is notoriously tricky.
One could still try to define the entropy as the difference in
von Neumann entropies for spatial intervals, in the limit
where the spatial interval becomes null. In order to explore
the properties of the entropy defined in this way, one can
consider strongly coupled field theories that have a holo-
graphic gravity dual. We have followed the recipe of [27] to
obtain the modular Hamiltonian in terms of entropy
perturbations. However, we find that ΔS ¼ ΔK holds
exactly, and not just to first order in an expansion for
states close to the vacuum. That is, the relative entropy for
every state is zero. This means that in the lightlike limit, the
operator algebra on the null interval becomes trivial, and all
states on the null interval become indistinguishable.
We expect that this property should extend to interacting

theories without a gravity dual. One can intuitively under-
stand this as follows. Concentrating on a null interval is
equivalent to exploring the theories at large energies, since
we want to localize the measurements at x− ¼ 0. In an
interacting theory this produces parton evolution as in the
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DGLAP equation [28–30]. This evolution leads to states
that all look the same at high energies. We expect the same
equation ΔS ¼ ΔK to hold for nonsuperrenormalizable
theories because, in contrast to the free theories we have
discussed in this paper, these do not have operators
localizable on a finite null surface [31,32]. We plan to
discuss these issues further in a separate publication.
Here we only note that we again find a local form for the

modular Hamiltonian for the null surface:

KL ¼ 2π

Z
dd−2x⊥

Z
1

0

dxþ ḡðxþÞTþþðxþ; x⊥Þ: ð5:3Þ
Here ḡðxþÞ is not given by the same function, xþð1 − xþÞ,
as in the free case (4.5), but it still satisfies all properties
stated in the Appendix. Hence the present proof of the
covariant bound also applies in this interacting case.
Another question is how to extend our definition of

entropy, and our proof, to the more general situation of a
rapidly evolving light-sheet in a general spacetime. One
approach is to divide the light-sheet into small segments
along the affine direction in such a way that the change in
area is small and then do an approximately flat space
analysis for each piece. This is shown in Fig. 3. Here the
initial expansion could be large and negative, but this just
helps in obeying the bound. Thus, for each segment we
obtain a constraint ΔAi=ð4GℏÞ ≥ ΔSi. To make this argu-
ment we need to have a notion of local vacuum in the
quantum field theory in order to define the modular
Hamiltonian and to compute ΔS. We assume that this is
possible. Then, for the original region we end up with a
bound of the type

ΔA
4Gℏ

¼
P

iΔAi

4Gℏ
≥
X
i

ΔSi; ð5:4Þ

whereΔSi are the entropies differences, as in (2.8), for each
of the consecutive null segments. We can take the right-
hand side of (5.4) as the definition of the total entropy flux.
It would be desirable to have a definition of the right-hand

side which involves the whole null interval. Nevertheless,
already (5.4) is a nontrivial bound. In the regime where we
have a clear entropy flux, such as a star or a bucket of water,
it reduces to the expected entropy flux if one takes the
intervals to be large enough to capture many of the infalling
particles.
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APPENDIX: MONOTONICITY OF ΔAðc;bÞ
4Gℏ − ΔS

In Secs. III and IV, we showed that 0 ≤ ΔAðc; bÞ=
4Gℏ − ΔS. In fact, this difference decreases monotonically
to zero as the boundaries b and c are moved together. To
establish this stronger result, it suffices to consider varia-
tions of c. We may set b ¼ 0.
We first note that ΔK − ΔS is monotonically decreasing

when the light-sheet is restricted. This follows immediately
from the monotonicity property of relative entropy
SðρjσÞ ¼ ΔK − ΔS under restriction to a subspace (via a
partial trace operation), or more generally under any
completely positive trace-preserving map [20].
Thus it only remains to be shown that ℏδðcÞ≡

ΔAðc; 0Þ=4G − ΔKðc; 0Þ will decrease monotonically
under restriction. We will prove this for the modular
Hamiltonian of a free scalar field in the first subsection.
In the second subsection, with a view to future inves-
tigations of the interacting case, we will establish simple
sufficient conditions on the modular Hamiltonian from
which monotonicity follows.

1. Free scalar field

Equation (4.10) for the area difference and Eq. (4.5) for
the modular Hamiltonian can easily be generalized to an
interval of length c. Their difference is

δðcÞ ¼
Z
d2x⊥

�
−
θ0ðcÞ
4G

þ 2π

Z
c

0

dλ
ðc − λÞ2

c
TkkðλÞ

�
:

ðA1Þ

matterA

∆Si
∆Ai

initial

Afinal

FIG. 3 (color online). A possible approach to defining the
entropy on a light-sheet beyond the weak-gravity limit. One
divides the light-sheet into pieces which are small compared to
the affine distance over which the area changes by a factor of
order unity. The entropy is defined as the sum of the differential
entropies on each segment.

BOUSSO et al. PHYSICAL REVIEW D 90, 044002 (2014)

044002-8



As we vary c, we always choose the initial expansion to be
the largest value compatible with the light-sheet condition:

θ0 ¼ 8πG inf
0≤λ≤c

Z
λ

0

dλTkkðλÞ: ðA2Þ

The monotonicity of δðcÞ is established by

dδ
dc

¼
Z
d2x⊥

�
−

c
4G

∂θ0
∂c −

θ0
4G

þ 2π

Z
c

0

dλ

�
1 −

λ2

c2

�
TkkðλÞ

�
:

ðA3Þ

The first term is non-negative, since increasing c broadens
the range of the infimum in Eq. (A2). The latter two terms
are together non-negative. This follows from the nonex-
pansion condition by integrating

R
c
0 dη ηθðηÞ ≤ 0. It fol-

lows that δ is monotonically decreasing under restriction
(and monotonically increasing under extension) of the
light-sheet. This proves our claim.

2. Sufficient conditions for monotonicity

Now consider a more general modular Hamiltonian9

ΔK ¼ 2π

ℏ

Z
d2x⊥

Z
c

0

dλ gðλ; cÞTλλðλÞ: ðA4Þ

We may set 2π=ℏ ¼ 4G ¼ 1 in what follows. Symmetry
under time reversal implies gðλ; cÞ ¼ gðc − λ; cÞ, and boost
symmetry implies that

gðλ; cÞ ¼ cḡðλ̄Þ; ðA5Þ

where λ̄ ¼ λ=c. We will now show that monotonicity of
ΔA − ΔK is guaranteed if g satisfies a small number of
other simple properties of g, including concavity.

We have

dδ
dc

¼ −c
dθ0
dc

þ
�
−θ0 þ

Z
c

0

dλ

�
1 −

∂g
∂c

�
TλλðλÞ

�
: ðA6Þ

The first term is non-negative independently of g. The
second term is non-negative if the function ∂g=∂c (viewed
as a function of λ, at fixed c) satisfies the following
properties:

∂g
∂c ð0Þ ¼ 0; ðA7Þ
∂g
∂c ð1Þ ¼ 1; ðA8Þ

d
dλ

�∂g
∂c

�
≥ 0: ðA9Þ

This follows from the nonexpansion condition, via
0 ≥

R
c
0 dλ θ

d
dλ ð∂g∂cÞ.

By Eq. (A5) we have

∂g
∂c ¼ ḡðλ̄Þ − λ̄

∂g
∂λ̄ : ðA10Þ

Hence the above three sufficient conditions for monoto-
nicity are equivalent to the following conditions:

ḡð0Þ ¼ ḡð1Þ ¼ 0; ðA11Þ

ḡ0ð0Þ ¼ −ḡ0ð1Þ ¼ 1; ðA12Þ

ḡ00 ≤ 0; ðA13Þ

where we have also used the symmetry λ̄ → 1 − λ̄.
The first two of these conditions are satisfied because

the modular Hamiltonian must reduce to the Rindler
Hamiltonian near any two-dimensional spatial boundary.
The last condition is concavity; it might be related to strong
subadditivity. Subject to these conditions, the generalized
covariant entropy bound will be satisfied for any state, with
monotonically increasing room to spare as the size of the
light-sheet is increased.

[1] J. D. Bekenstein, Phys. Rev. D 23, 287 (1981).
[2] H. Casini, Classical Quantum Gravity 25, 205021 (2008).
[3] D. D. Blanco and H. Casini, Phys. Rev. Lett. 111, 221601

(2013).
[4] R. Bousso, J. High Energy Phys. 07 (1999) 004.
[5] G. ’t Hooft, arXiv:gr-qc/9310026.
[6] L. Susskind, J. Math. Phys. (N.Y.) 36, 6377 (1995).

[7] W. Fischler and L. Susskind, arXiv:hep-th/9806039.
[8] E. E. Flanagan, D. Marolf, and R. M. Wald, Phys. Rev. D

62, 084035 (2000).
[9] R. M. Wald, General Relativity (The University of Chicago

Press, Chicago, 1984).
[10] R. Bousso, J. High Energy Phys. 06 (1999) 028.
[11] R. Bousso, Rev. Mod. Phys. 74, 825 (2002).

9As will be discussed in a future publication, we expect that an
interacting field theory would have a modular Hamiltonian of this
type for null intervals. (By contrast, the modular Hamiltonian for
spatial regions need not be an integral over local operators.)

PROOF OF A QUANTUM BOUSSO BOUND PHYSICAL REVIEW D 90, 044002 (2014)

044002-9

http://dx.doi.org/10.1103/PhysRevD.23.287
http://dx.doi.org/10.1088/0264-9381/25/20/205021
http://dx.doi.org/10.1103/PhysRevLett.111.221601
http://dx.doi.org/10.1103/PhysRevLett.111.221601
http://dx.doi.org/10.1088/1126-6708/1999/07/004
http://arXiv.org/abs/gr-qc/9310026
http://dx.doi.org/10.1063/1.531249
http://arXiv.org/abs/hep-th/9806039
http://dx.doi.org/10.1103/PhysRevD.62.084035
http://dx.doi.org/10.1103/PhysRevD.62.084035
http://dx.doi.org/10.1088/1126-6708/1999/06/028
http://dx.doi.org/10.1103/RevModPhys.74.825


[12] R. Bousso, E. E. Flanagan, and D. Marolf, Phys. Rev. D 68,
064001 (2003).

[13] R. Bousso, Phys. Rev. Lett. 90, 121302 (2003).
[14] D. A. Lowe, J. High Energy Phys. 10 (1999) 026.
[15] A. Strominger and D. M. Thompson, Phys. Rev. D 70,

044007 (2004).
[16] A. C. Wall, Phys. Rev. D 85, 104049 (2012).
[17] D. Marolf, D. Minic, and S. F. Ross, Phys. Rev. D 69,

064006 (2004).
[18] C. Holzhey, F. Larsen, and F. Wilczek, Nucl. Phys. B424,

443 (1994).
[19] G. Lindblad, Commun. Math. Phys. 33, 305 (1973).
[20] G. Lindblad, Commun. Math. Phys. 40, 147 (1975).
[21] W. G. Unruh, Phys. Rev. D 14, 870 (1976).

[22] J. Bisognano and E. Wichmann, J. Math. Phys. (N.Y.) 17,
303 (1976).

[23] A. C. Wall, Phys. Rev. D 82, 124019 (2010).
[24] R. Bousso, J. High Energy Phys. 05 (2004) 050.
[25] R. Bousso, J. High Energy Phys. 02 (2004) 025.
[26] R. Bousso, J. High Energy Phys. 03 (2004) 054.
[27] D. D. Blanco, H. Casini, L.-Y. Hung, and R. C. Myers,

J. High Energy Phys. 08 (2013) 060.
[28] V. Gribov and L. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).
[29] G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).
[30] Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).
[31] S. Schlieder and E. Seiler, Commun. Math. Phys. 25, 62

(1972).
[32] O. Steinmann, J. Math. Phys. (N.Y.) 4, 583 (1963).

BOUSSO et al. PHYSICAL REVIEW D 90, 044002 (2014)

044002-10

http://dx.doi.org/10.1103/PhysRevD.68.064001
http://dx.doi.org/10.1103/PhysRevD.68.064001
http://dx.doi.org/10.1103/PhysRevLett.90.121302
http://dx.doi.org/10.1088/1126-6708/1999/10/026
http://dx.doi.org/10.1103/PhysRevD.70.044007
http://dx.doi.org/10.1103/PhysRevD.70.044007
http://dx.doi.org/10.1103/PhysRevD.85.104049
http://dx.doi.org/10.1103/PhysRevD.69.064006
http://dx.doi.org/10.1103/PhysRevD.69.064006
http://dx.doi.org/10.1016/0550-3213(94)90402-2
http://dx.doi.org/10.1016/0550-3213(94)90402-2
http://dx.doi.org/10.1007/BF01646743
http://dx.doi.org/10.1007/BF01609396
http://dx.doi.org/10.1103/PhysRevD.14.870
http://dx.doi.org/10.1063/1.522898
http://dx.doi.org/10.1063/1.522898
http://dx.doi.org/10.1103/PhysRevD.82.124019
http://dx.doi.org/10.1088/1126-6708/2004/05/050
http://dx.doi.org/10.1088/1126-6708/2004/02/025
http://dx.doi.org/10.1088/1126-6708/2004/03/054
http://dx.doi.org/10.1007/JHEP08(2013)060
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1007/BF01877587
http://dx.doi.org/10.1007/BF01877587
http://dx.doi.org/10.1063/1.1703995

