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The late collapse, core bounce, and the early postbounce phase of rotating core collapse leads to a
characteristic gravitational wave (GW) signal. The precise shape of the signal is governed by the interplay
of gravity, rotation, nuclear equation of state (EOS), and electron capture during collapse. We explore the
detailed dependence of the signal on total angular momentum and its distribution in the progenitor core by
means of a large set of axisymmetric general-relativistic hydrodynamics core-collapse simulations, in
which we systematically vary the initial angular momentum distribution in the core. Our simulations
include a microphysical finite-temperature EOS, an approximate electron capture treatment during
collapse, and a neutrino leakage scheme for the postbounce evolution. Our results show that the total
angular momentum of the inner core at bounce and the inner core’s ratio of rotational kinetic energy to
gravitational energy T=jWj are both robust parameters characterizing the GW signal. We find that the
precise distribution of angular momentum is relevant only for very rapidly rotating cores with T=jWj ≳ 8%

at bounce. We construct a numerical template bank from our baseline set of simulations, and carry out
additional simulations to generate trial waveforms for injection into simulated Advanced LIGO noise at a
fiducial galactic distance of 10 kpc. Using matched filtering, we show that for an optimally oriented source
and Gaussian noise, Advanced LIGO could measure the total angular momentum to within �20%, for
rapidly rotating cores. For most waveforms, the nearest known degree of precollapse differential rotation is
correctly inferred by both our matched filtering analysis and an alternative Bayesian model selection
approach. We test our results for robustness against systematic uncertainties by injecting waveforms from
simulations utilizing a different EOS and variations in the electron fraction in the inner core. The results of
these tests show that these uncertainties significantly reduce the accuracy with which the total angular
momentum and its precollapse distribution can be inferred from observations.
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I. INTRODUCTION

Massive stars [8M⊙ ≲M ≲ 130M⊙, at zero age main
sequence (ZAMS)] undergo collapse at the end of their
nuclear burning lives once their electron-degenerate core
exceeds its effective Chandrasekhar mass. The inner core
collapses subsonically and, when its density exceeds that
of nuclear matter, experiences core bounce due to the
stiffening of the nuclear equation of state (EOS). A
hydrodynamic shock forms at the interface of inner and
supersonically collapsing outer core. The shock quickly
moves out, but stalls within a few tens of milliseconds at a
radius of 100–200 km, due to dissociation of infalling iron-
group nuclei and energy losses to neutrinos that stream
away from the semitransparent region behind the shock [1].

The shock must be revived by some mechanism to drive an
explosion and create the spectacular display of a core-
collapse supernova across the electromagnetic spectrum.
For the vast majority of core-collapse supernovae with

explosion energies of ∼0.1–1 B (1 Bethe ¼ 1051 erg), the
neutrino mechanism [2–4] is the favored mechanism of
shock revival. It relies on the deposition of a fraction of the
outgoing electron neutrino and electron antineutrino lumi-
nosity (with a typical efficiency of order 10%) behind the
stalled shock, but also requires neutrino-driven convection
and/or the standing accretion shock instability (SASI;
e.g., [5]) to increase the dwell time of accreted matter in
the region behind the shock where net energy absorption
is possible. The neutrino mechanism fails in spherical
symmetry (one dimension, where convection and SASI are
absent). A number of axisymmetric (two-dimensional)
core-collapse supernova simulations with detailed
energy-dependent neutrino transport and microphysics
now report successful explosions [6–8], but the first such
three-dimensional simulations are not yet conclusive
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[9,10]. Other physics or effects such as precollapse
asphericities due to vigorous convective shell burning
may be needed to enable robust explosions in three
dimensions [11].
There is, however, a class of highly energetic core-

collapse supernovae with inferred explosion energies of
up to 10 B that the neutrino mechanism alone seems too
feeble to possibly explain. This class includes relativistic
type Ic supernovae with strongly Doppler-broadened spec-
tral lines from compact hydrogen/helium-poor progenitors
(so-called type Ic-bl supernovae; e.g., [12,13]) and super-
energetic type II supernovae from red supergiants
(e.g., [14,15]) and makes up 1–2% of all core-collapse
supernovae [13]. All supernovae associated with long
gamma-ray bursts have been of type Ic-bl [16,17].
Such energetic events may require a central engine that

can convert the gravitational energy provided by collapse
much more efficiently into energy of the explosive outflow
than neutrinos are capable of. One possibility is the
magnetorotational mechanism in which a millisecond-
period protoneutron star with magnetar-strength magnetic
fields drives a jet-driven bipolar explosion [18–22], which,
in some cases, might set the stage for a subsequent long
gamma-ray burst (e.g., [23,24]).
Current standard lore of stellar evolution theory and

pulsar birth-spin estimates states that most massive stars are
rather slow rotators at the end of their lives, having lost
angular momentum to stellar winds and not being strongly
differentially rotating due to angular momentum redistrib-
ution by magnetic torques (e.g., [25,26]). Special condi-
tions, such as chemically homogeneous evolution at low
metallicity [27,28] or binary interactions [29], might be
necessary to produce the progenitors of hyperenergetic
core-collapse supernovae and long gamma-ray bursts.
This may or may not be the case. Current stellar

evolutionary calculations are still one dimensional and
take into account rotation and angular momentum loss and
redistribution only approximately and in a parametrized,
nonself-consistent way. Pulsar birth-spin estimates, which
are based on magnetic-dipole radiation, could be off by
large factors if early spin-down occurred by direct con-
version of spin energy into magnetic field and/or kinetic
energy of an explosive outflow. Keeping this in mind, it is
not inconceivable that rotation could play a significant role
in many core-collapse supernovae. Rotating core collapse
naturally leads to differential rotation in the outer proto-
neutron star and in the postshock region [26,30]. The free
energy in differential rotation1 could be tapped by the
magnetorotational instability (e.g., [31–33]), which could
either lead to the growth of large-scale magnetic fields

(via a dynamo; as argued for by [22,33]) or local dissipa-
tion (and additional heating) by reconnection [34].
Depending on precollapse spin and magnetization, both
possibilities could either subdominantly assist the neutrino
mechanism in reviving the shock, or dominate the dynam-
ics in a magnetorotational [22,34,35] explosion.
Gravitational waves (GWs) are the most direct and best

probes of rotation in stellar collapse and core-collapse
supernovae. Rotation naturally leads to a quadrupole (i.e.,
oblate) deformation of the collapsing core. The centrifu-
gally deformed core undergoes extreme accelerations dur-
ing the late collapse, bounce, and early postbounce phase.
This provides an extremely large accelerated quadrupole
moment (e.g., [36]), resulting in a GW burst signal that,
depending on the amount of angular momentum in the
inner core, can be detected by the upcoming advanced
generation of GW detectors out to 10–100 kpc [37–39].
After core bounce, on a timescale of tens of milliseconds,
nonaxisymmetric dynamics may develop due to rotational
shear instabilities (e.g., [40–44]), leading to longer-term
quasiperiodic GW emission.
Much effort has gone into modeling the GW signal

from rotating core collapse and bounce over the past
three decades [37,38,40,45–55] and the current state of
the art is set by simulations in conformally flat or full
general relativity (GR) that includes realistic EOS and
approximate neutrino transport [37–39,42]. These studies
found that the GW signal from rapidly rotating core
collapse and bounce has rather simple morphology and
can be described by a prebounce rise in GW strain h, a
large spike at bounce, and a subsequent postbounce ring-
down phase in which the protoneutron star hydrodynami-
cally dissipates its remaining pulsational energy from
bounce. Simulations that included magnetic fields showed
that the bounce and very early postbounce phase and the
associated GW signal are not affected by magnetohy-
drodynamic effects unless the precollapse seed fields are
unrealistically large (B≳ 1012) [55–59]. Dimmelmeier
et al. [37] and Abdikamalov et al. [39] showed that
the peak GW strain from collapse and bounce depends
primarily and sensitively on the mass and angular
momentum of the inner core at bounce. Dimmelmeier
et al. [37], who considered two finite-temperature nuclear
EOS, the EOS of Shen et al. [60,61], and the Lattimer-
Swesty EOS [62], found only a weak dependence of the
GW signal on the nuclear EOS. Ott et al. [38] recently
showed that in rapidly rotating cores that produce
protoneutron stars with spin periods ≲5 ms, the GW
signal depends on the angular momentum of the pre-
collapse core, but not on its detailed structure and
progenitor ZAMS mass. Furthermore, they demonstrated
that postbounce neutrino emission has little influence on
the GW signal from bounce and ring down.
In this work, we extend previous studies and focus on the

influence of the angular momentum distribution in the

1At fixed total angular momentum, uniform rotation is the
lowest energy state. Any process capable of redistributing angular
momentum will operate on differential rotation, driving a system
towards uniform rotation.
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progenitor core on the GW signal of rotating core collapse,
bounce, and ring down. To this end, we carry out 124
axisymmetric simulations with the GR core-collapse code
COCONUT [39,63,64]. For collapse and the very early
postbounce phase, axisymmetry is an excellent approxi-
mation (unless the inner part of the iron core contains
large nonaxisymmetric perturbations, which is unlikely;
cf. [40,42,53]). We employ the Lattimer-Swesty K ¼
220 MeV EOS [62] and treat electron capture during
collapse with the deleptonization scheme of [37,65].
After bounce, we employ the neutrino-leakage scheme
used in [38]. Motivated by the findings of [38], we consider
only a single progenitor model [the 12-M⊙ (at ZAMS)
solar-metallicity progenitor of [66]] and carry out a
systematic set of simulations with five different degrees
of differential rotation and a fine-grained grid of initial
central angular velocities. In order to understand systematic
uncertainties in our simulations, we explore their depend-
ence on the nuclear EOS and the electron fraction in the
inner core.
The results of our simulations show that the GW signal

of rapidly rotating cores has a strong and systematic
dependence on the precollapse degree of differential
rotation in cores that collapse to rapidly rotating proto-
neutron stars with ratio of rotational kinetic energy to
gravitational energy β ¼ T=jWj ≳ 0.08. The GW signal of
more slowly spinning cores has little dependence on
differential rotation and instead just depends on the core’s
“total rotation,” parametrized by its β ¼ T=jWj at core
bounce. We supplement our simulation results with a
matched filtering analysis and a Bayesian model selection
analysis motivated by [67]. Assuming Advanced LIGO
(aLIGO; [68]) design sensitivity, we demonstrate that it is
possible to measure total rotation (i.e., β or the angular
momentum J) within ∼20% for unknown injected rotating
core-collapse signals from galactic events, assuming opti-
mal source-detector orientation and Gaussian noise. We
also show that the degree of differential rotation can be
estimated, but robustly only for rapidly rotating models and
if the EOS and inner-core electron fraction are known.
This paper is organized as follows. In Sec. II, we describe

our computational code and in Sec. III we discuss our
precollapse configurations. Section IV presents the results
of our core-collapse simulations and analyzes the effects of
differential rotation on dynamics and GW signal. In Sec. V,
we present the matched filtering analysis and Bayesian
model selection results. We summarize and conclude
in Sec. VI.

II. METHODS

We perform our simulation in axisymmetric (two-
dimensional) conformally flat GR with the COCONUT
code, which has been extensively described in
[37,39,50,64]. The conformal-flatness condition (CFC)
has been shown to be an excellent approximation to full

GR in the context of rotating stellar collapse to protoneu-
tron stars, including the regime of strongly differential
rotation [51,53,69] (see also Secs. VB and VIC8 of [70]).
For the timescales considered in this work, the small
systematic errors due to CFC approximation are completely
dwarfed by the systematic uncertainties associated with the
nuclear EOS and the treatment of neutrinos. COCONUT
employs Eulerian spherical coordinates and solves the
nonlinear elliptic CFC equations using spectral methods
[64]. GR hydrodynamics is implemented following the
Valencia formulation [71] via a finite-volume method with
piecewise parabolic reconstruction [72] and the approxi-
mate HLLE Riemann solver [73]. The version of
COCONUT used here is the same as in [39], but we have
upgraded the EOS and neutrino microphysics routines as
described in the following.
We use the tabulated finite-temperature nuclear

EOS by Lattimer and Swesty [62] with K ¼ 220 MeV
generated by [74] and available for download from
STELLARCOLLAPSE.ORG. More information on this EOS
and the details of its implementation in a tabulated form can
be found in [74,75]. In order to study the effect of the
nuclear EOS itself, we repeat a select set of our models with
the Shen et al. [60,61] EOS, a table of which is also
available on STELLARCOLLAPSE.ORG.
We employ the neutrino microphysics routines provided

by the open-source code GR1D [74,76], also available for
download from STELLARCOLLAPSE.ORG. During the col-
lapse phase, we use the parametrized YeðρÞ deleptonization
scheme [77] with the same parameters used in [38] (see the
Appendix for details). In the postbounce phase, we use the
neutrino leakage/heating scheme of [74] that approximates
deleptonization, neutrino cooling, and heating. We imple-
ment the optical depth calculation along radial rays aligned
with COCONUT’s radial zones and use the default heating
scaling factor fheat ¼ 1 of this scheme. We take into
account the contribution from neutrinos to the hydrody-
namic pressure and the spacetime stress-energy tensor in
the optically thick region via the ideal Fermi gas approxi-
mation above a fiducial neutrino trapping density of
2 × 1012 g cm−3, following the prescription of [77]. This
leakage/heating scheme has also been applied in the
multidimensional simulations of [38,78,79].
As in previous studies (e.g., [37,39]), we perform our

simulations in a spherical domain spanning 3000 km in
radius under the assumption of equatorial symmetry. In our
production simulations, we cover our domain with 250
logarithmically spaced radial grid points with a central
resolution of 250 m. The 90° of our domain are covered
with 40 equidistant angular grid points. We have performed
a resolution study to ensure that this resolution is sufficient
for the purpose of this study.
We carry out our simulations from the onset of collapse

until 25 ms after bounce. By this time, postbounce ring-
down oscillations of the protoneutron star have ebbed away
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and the protoneutron star has settled into a quasistationary
state. We extract GWs using the variant of the Newtonian
quadrupole formula given in [64], which is very accurate in
the case of rotating stellar collapse to protoneutron stars
[80]. More specifically, this method has negligible phase
error, while the GW strain amplitudes are captured within a
few percent of their true values obtained in full GR
simulations with Cauchy-characteristic extraction [80].
This level of accuracy is sufficient for studying how the
waveforms depend on rotation and the degree of differential
rotation, which is the main goal of this paper. The
gravitational waveforms from all of our simulations are
available from STELLARCOLLAPSE.ORG/GWCATALOG

III. INITIAL MODELS

Existing presupernova stellar models with rotation are
evolved using spherically symmetric codes assuming
shellular rotation (e.g., [25,27,81]). In these models, the
key processes that determine the precollapse rotational
configuration, such as the magnetic braking [e.g., [82]] and
mass loss [e.g., [83]], are treated only approximately, while
the potentially important effects of binary interactions
[e.g., [29]] are generally not included at all.
Since our knowledge of the precollapse rotational

configuration is far from being certain, we employ the
nonrotating 12-M⊙ solar-metallicity progenitor model of
[66] (model s12WH07) and impose a simple parametrized
rotation profile, which facilitates control of the total angular
momentum and its distribution. We use the cylindrical
rotation law of [48,52],

ΩðϖÞ ¼ Ωc

�
1þ

�
ϖ

A

�
2
�
−1
; ð1Þ

where Ωc is the initial central angular velocity, ϖ is the
cylindrical radius, and A is the parameter that controls the
degree of differential rotation. This rotation law yields
constant specific angular momentum at ϖ ≫ A. Upon
mapping into the code, the spherically symmetric initial
model is set into rotation according to Eq. (1). Collapse
proceeds more slowly than the sound crossing time of the
core and the latter is quickly driven into an oblate shape by
centrifugal effects. The validity of this approach was
studied by [48].
It is important to note that it is currently unclear how

realistic the rotation law given by Eq. (1) is. We use it
nevertheless, since it represents the current standard way in
which to set up rotating core collapse and because we
require a rotation law that (i) roughly reproduces the
angular momentum distribution expected in stellar cores,2

(ii) does not violate any known physical principles and
constraints that are relevant in this regime, and (iii) allows
us to easily construct models with different amounts and
distributions of angular momentum. The rotation law given
by Eq. (1) fulfils these requirements.
We restrict our analysis to a single progenitor model,

since different models with the same distribution of angular
momentum as a function of enclosed mass are likely to
produce very similar dynamics and GW signals at bounce
and in the early postbounce ring-down phase. This was
demonstrated by [38].
We consider five sets of models with five different values

of the differential rotation parameter A: A1 ¼ 300 km,
A2 ¼ 417 km, A3 ¼ 634 km, A4 ¼ 1268 km, A5 ¼
10000 km. Figure 1 depicts the ratio Ω=Ωc as a function
of mass coordinate for these values of A in the s12WH07
progenitor model. The higher the value of A, the weaker the
differential rotation. The specific choices of Ai are moti-
vated as follows: A3 is the same value used in [38] and
gives an angular velocity at a mass coordinate of 1M⊙ that
is one half of the central value. A4 is twice as large as A3,
allowing us to probe somewhat more rigid initial rotation,
and A5 ensures near uniform rotation in the inner 1.5M⊙
(corresponding to a radius of ∼3 × 103 km). A1 corre-
sponds to extreme differential rotation, and A2 is in the
middle between A1 and A3.
For each choice of A, we simulate sequences of models

with initial central angular velocities starting at Ωc;min ¼
1 rad s−1 (for this value, rotation is dynamically insignifi-
cant in all models). We increase Ωc in steps of 0.5 rad s−1.
In models with weak or moderate differential rotation
(sequences A3 − A5) the maximum initial central angular
velocityΩc;max is set by the value at which such models still

FIG. 1 (color online). The ratio of the angular velocity to the
central angular velocity as a function of the enclosed-mass
coordinate along the equatorial plane for the s12WH07 progen-
itor and for the five different values of the differential rotation
parameter A considered in this study (cf. Table I).

2The rotation law given by Eq. (1) reproduces the radial
angular momentum distribution in, e.g., rapidly rotating models
16TI and 16OM of Woosley and Heger [27] with reasonable
accuracy in the inner ∼2M⊙ for A ∼ 850 km.
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collapse. For more differentially rotating models, we
choose Ωc;max in such a way that we obtain the global
maximum of βic;b ¼ ðT=jWjÞic;b, the ratio of rotational
kinetic energy to gravitational energy of the inner core
at bounce. We compute T=jWj via the definition given by
[84] and focus on the inner core, because the bounce
dynamics and the associated GW signal are determined by
its spin and mass [37,39]. Note that models with Ωc >
Ωc;max yield decreasing βic;b (see, e.g., the discussions in
[26,37,52]). Since such models collapse only in the case of
very strong differential rotation, they are not useful for our
goal of comparing different degrees of differential rotation.

IV. RESULTS: DYNAMICS AND WAVEFORMS

The top panel of Fig. 2 depicts the time evolution of the
central density ρc during the last phase of collapse, bounce,
and the early postbounce phase of model A3O6, which is
representative for many of the simulated models. For future
reference, we define the time of core bounce as the moment
at which the specific entropy at the edge of the inner core in
the equatorial plane reaches 3kB baryon−1. Just before

bounce, ρc increases rapidly due to the accelerated con-
traction of the inner core. Once nuclear density is reached,
the stiffening of the nuclear EOS abruptly decelerates
collapse. The inner core overshoots its equilibrium con-
figuration due to its immense inertia, and consequently
ρc reaches ∼3.7 × 1014 g cm−3 at maximum contraction.
The core bounces back and settles at a postbounce (pb)
quasiequilibrium central density ρc;pb of ∼3 × 1014 g cm−3,
after a series of ring-down oscillations that last for
∼10–15 ms. These oscillations are clearly visible in the
evolution of the central density in the postbounce phase as a
quasiperiodic ∼7% variation of ρc.
The middle panel of Fig. 2 shows β ¼ T=jWj of the inner

core for model A3O6. By construction, β directly reflects
the importance of rotational support in gravitationally
bound objects [85]. βic grows in the final phase of collapse
due to the spin-up of the inner core, as a consequence of
angular momentum conservation. At bounce, βic peaks at
∼0.1 in this model, before decreasing to ∼0.08 while the
inner core settles into its postbounce quasiequilibrium. The
ring-down protoneutron star oscillations in the postbounce
phase are also visible as small variations in βic.
In Fig. 3, we show βic;b as a function of the initial central

angular velocity Ωc for all models. At fixed Ωc, strongly
differentially rotating models reach smaller βic;b than more
uniformly rotating ones. This is due to the comparatively
modest total angular momentum in the former’s inner
cores. With increasing Ωc, uniformly and mildly differ-
entially rotating models (sequences A3 − A5) eventually
become fully centrifugally supported at the start of the

FIG. 2 (color online). Time evolution of the central density (top
panel), βic (center panel), and GW strain (bottom panel; rescaled
by source distance D) in model A3O6. The arrows indicate the
first three pronounced generic features of the GW signal, labeled
h1;pos, h1;neg, h2;pos, and h2;neg. The thin vertical dashed line
indicates the time of core bounce defined as the time at which the
equatorial edge of the inner core reaches an entropy of
3kB baryon−1. The dashed red line shows the GW strain for
the same model simulated with 50% higher resolution in both the
angular and radial direction. There is excellent agreement, which
suggests that our fiducial resolution yields converged results.

FIG. 3 (color online). Ratio of rotational kinetic energy to
gravitational energy of the inner core at bounce βic;b as a function
of initial central angular velocity Ωc. All model sequences, from
near uniform rotation (A5) to strong differential rotation (A1), are
shown. Sequences with uniform or moderate differential rotation
terminate at Ωc beyond which they would be fully centrifugally
supported already at the onset of collapse; cf. Table I. Note that
the mapping Ωc → βic;b depends on progenitor structure [38].
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simulation and do not collapse. Due to this, the graphs in
Fig. 3 for such models terminate at small to moderate Ωc,
and the corresponding maximum βic;b reached for sequen-
ces A5, A4, and A3 are 0.11, 0.13, and 0.18, respectively.
More strongly differentially rotating models, however,

collapse even at high Ωc. Sequences A2 and A1 reach βic;b
of 0.19 and 0.21, respectively. The graphs corresponding to
these models in Fig. 3 show that these values are very close
to the obtainable global maximum. A further increase in Ωc
would lead to a decrease in βic;b, because bounce occurs
centrifugally at lower core densities, corresponding to a
smaller degree of spin-up (see the extensive discussions
in [26,39,52]).

A. Influence of differential rotation on collapse,
bounce, and early postbounce dynamics

The central objective of this work is to infer the effects of
the angular momentum distribution in the progenitor core
on the dynamics of core collapse, bounce, the early ring-
down oscillations, and the resulting GW signal. As dem-
onstrated already in previous work (e.g., [37,54]), the effect
on the inner core is most important, since its mass and
angular momentum (and, perhaps, its distribution) deter-
mine the GW signal. We will discuss the details of the latter
in Sec. IV B.
As a start, it is useful to define a quantity that describes

the total rotation of the inner core. One possibility is to use
the already introduced quantity βic. It is most useful to
consider the value of βic at bounce, since this is also the
time at which the highest GW amplitudes occur. An
obvious alternative choice is the total angular momentum
of the inner core Jic, which, again, is best considered at the
time of core bounce. Another alternative, though less direct,
measure is the mass of the unshocked inner core at bounce
Mic;b. In the nonrotating case, Mic;b is determined by the
trapped lepton fraction in the inner core (e.g., [1]). Rotation
increasesMic;b by slowing down collapse and thus allowing
a greater amount of material to be in sonic contact and part
of the inner core [37,39,46].
Figure 4 shows that βic;b, Jic;b, and Mic;b obey a simple

linear relationship and are independent of the degree of
differential rotation through most of the considered model
parameter space. Thus they can be used interchangeably
to describe “total rotation.” The simple relationship
becomes nonlinear and dependent on the differential
rotation parameter A only for very rapid rotation
(βic;b ≳ 0.13, Jic;b ≳ 6 × 1048 erg s, Mic;b ≳ 0.8M⊙).
The mapping βic;b → Jic;b, shown in the lower panel of

Fig. 4, exhibits interesting dependence on A in rapidly
rotating models with βic;b ≳ 0.13–0.15. More differentially
rotating models have systematically less Jic;b at fixed βic;b
than less differentially rotating ones. This is straightforward
to understand, since, at fixed Jic;b and Mic;b, a more
differentially rotating inner core will always have more

rotational energy. Hence, at fixed βic;b and Mic;b, Jic;b for a
model with smaller A will be smaller.
The central rest-mass density is important for the

structure and dynamics of the inner core, which turns into
the unshocked protoneutron star core after bounce. In the
nonrotating, low-temperature limit, the central density, for a
given nuclear EOS, determines stellar structure and pulsa-
tional mode spectrum completely [86]. In Fig. 5, we plot
the central density at bounce (ρc;b as a function of βic;b;
upper graphs) and the time-averaged density over the first
few milliseconds after bounce (ρmax;pb as a function of
βic;pb; lower graphs; we average over 6 ms, from 2 to 8 ms
after bounce). Both quantities decrease with increasing total
rotation, since centrifugal support keeps the core in a less
compact (i.e., lower-density) configuration. The central
densities of very slowly rotating models (βic;b ≲ 0.02–0.03)
exhibit little variation with differential rotation parameter A.
In more rapidly rotating models, those with smaller A (more
differential rotation) have systematically slightly larger ρc;b.
Since most of their spin is concentrated at small radii (and
mass coordinates), they experience less centrifugal support
throughout the collapsing inner core than models with

FIG. 4 (color online). Mass of the inner core at bounce (Mic;b,
top panel) and angular momentum (Jic;b, bottom panel) as
functions of βic;b for all model sequences, varying from near
uniform rotation (A5) to strong differential rotation (A1). Jic;b
increases linearly with βic;b and, for βic;b ≲ 0.12, is nearly
independent of the degree of differential rotation. Mic;b also
increases with βic;b (and Jic;b) and is essentially independent of
differential rotation for βic;b ≲ 0.18.
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larger A at the same βic;b. However, after bounce the
extremely rapid rotation in the central regions of strongly
differentially spinning models leads to slightly more oblate
innermost cores and somewhat lower time-average post-
bounce densities, as shown by Fig. 5.
Figure 6 depicts two-dimensional entropy colormaps

with superposed isodensity contours at 12 ms after bounce
for three representative models with βic;b ∼ 0.1 and differ-
ential rotation parameters A1 (model A1O9, strong differ-
ential rotation), A3 (model A3O6, moderate differential
rotation), and A5 (model A5O5.5, nearly uniform rotation).
Shown is the upper hemisphere and the rotation axis is
aligned with the positive z-axis. The unshocked protoneu-
tron star core (specific entropy s≲ 3kB baryon−1) is more
extended in less differentially rotating models, since these
have more angular momentum at larger mass (and radial)
coordinate.
Figure 6 also shows that overall shape of the protoneu-

tron star cores varies with differential rotation. While the
A5model is clearly spheroidal, the density contours (traced
by the entropy distribution) of the strongly differentially
rotating A1model show a double-lobed structure character-
istic of quasitoroidal equilibrium configurations that have
their maximum density not at a single point at the origin,
but in a ring at some finite radius in the equatorial plane.
This is expected to occur in strongly differentially rotating
cores and has been reported before in, e.g., [37,39,48,50].

We indeed find that the tendency to develop off-center
density maxima increases with decreasing A, but even the
most rapidly differentially rotating model in our entire set
has a density contrast of only ρmax;pb=ρc;pb − 1≲ 3%, and
its density maximum is located only∼1.2 km off the origin.
In Fig. 7, we plot the evolution of the central density of

the same three models (A1O9, A3O6, and A505.5) with
βic;b ∼ 0.1 shown in Fig. 6. At bounce, the most differ-
entially rotating model overshoots its postbounce quasie-
qulibrium the most, settles at the lowest ρc;pb, and exhibits

FIG. 5 (color online). The central rest-mass density at bounce
ρc;b as a function of βic;b (upper graphs) and time-average
maximum density in the postbounce phase ρc;pb as a function
of the time-averaged βic;pb (lower graphs). We show curves for the
five values of the differential rotation parameter A. Centrifugal
support leads to a decrease in the density both at bounce and in
the postbounce core. A strong dependence on differential rotation
is apparent only in very rapidly rotating models. Note that
differentially rotating models develop slightly off-center density
maxima and quasitoroidal structure (cf. Fig. 6), but the maximum
density exceeds the central density only by a few percent in such
models.

FIG. 6 (color online). Entropy colormaps of the meridional
plane for models A1O9, A3O6, A5O5.5 with βic;b ∼ 0.1 at 12 ms
after bounce. Black and white lines are mark density isocontours
at 1012, 1012.5, 1013, 1013.5, 1014, and 1. More differentially
rotating models have more compact unshocked (low entropy)
cores and more centrifugally deformed innermost density
isocontours.
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the strongest postbounce ring-down oscillations. These
oscillations are nonlinear and a superposition of multiple
modes, but, in previous work, at least one of the modes has
been identified as the fundamental quadrupole mode of the
protoneutron star core [38]. The most differentially rotating
model has most of its spin concentrated in the innermost
regions. Hence, these regions are most oblate (l ¼ 2)
in this model, yielding the strongest excitation of the
quadrupole core pulsation mode.
In summary and to connect to the next section on GW

emission, although the important quantities ρc;b and
ρmax or c;pb depend primarily on βic;b, we also observe a
dependence on the differential rotation parameter A, in
particular in rapidly rotating cases. This and the obvious
differences in the two-dimensional structure of the post-
bounce cores shown in Fig. 6 suggest that the detailed
multidimensional dynamics of the GW-emitting inner core
is governed not only by its total rotation, but also by the
distribution of angular momentum. We shall next inves-
tigate the effect of differential rotation on the GW signal.

B. Influence of differential rotation on the
gravitational wave signal

For an analysis of the influence of the differential
rotation parameter A on the GW signal, it is useful to first
recap the latter’s general morphology and at which point in
the highly dynamical evolution of the inner core it reaches
its peak values. In the following, without loss of generality,
we will assume that the core’s spin is aligned with the
positive z-axis. The bottom panel of Fig. 2 shows the GW
strain hþ (there is only one polarization due to axisym-
metry) as a function of time in the late collapse, bounce,

and early postbounce phases of our reference model A3O6.
During the collapse phase, h increases slowly and reaches a
positive peak, h1;pos, during the rapid contraction phase
immediately before bounce. During bounce, h decreases
rapidly, reaching its most pronounced negative peak h1;neg
when the inner core is expanding at bounce (cf. the
evolution of the maximum density shown in the top panel
of Fig. 2). Following h1;neg, h reaches positive values and
generically has a new positive local maximum, h2;pos. In
slowly rotating models (βic;b ≲ 0.05), h2;pos coincides with
the first recontraction of the core after bounce. In the
rapidly rotating case, an identification of h2;pos with global
core dynamics is less obvious, since bounce leads to
the excitation of several oscillation modes in the core
(dominated by the fundamental quadrupole mode; see
[38]), which all contribute to the GW signal at this point.
After h2;pos, the core undergoes ring-down oscillations that
are damped hydrodynamically. They produce more peaks
in h whose amplitudes decay on a timescale of 10–15 ms.
Hereafter, we refer to the peaks that occur after h1;neg as
ring-down peaks.
Hayama et al. [87] analyzed two-dimensional

Newtonian simulations of 12 models simulated by
Kotake et al. [49] with varying rotation law and degrees
of total and differential rotation. They studied the peak
values of GW strain and observed that the ring-down peak
with the largest absolute value—which we denote as H
hereafter—is negative (H < 0) for models with rapid
differential rotation [and a cylindrical rotation law like
our Eq. (1)], while for the rest of their models H is positive
and coincides with h2;pos. They argued that the detection
and extraction of the sign ofH could therefore provide clear
information about the angular momentum distribution in
the progenitor’s core.
Figure 8 displays H as a function of βic;b for different

values of A for all of our models. H grows almost linearly
with βic;b for βic;b ≲ 0.08 for all values of A. In this regime,
H is positive and corresponds to h2;pos. All values of A yield
nearly identicalH for a given βic;b for βic;b ≲ 0.08, implying
that in this regime H is affected by the total rotation of the
inner core but not by the distribution of angular momentum
within the inner core.
In more rapidly rotating models (βic;b ≳ 0.08), the values

ofH diverge for different Awith the general trend that more
differentially rotating models yield larger positive H. At
βic;b ≳ 0.12, H becomes negative and no longer corre-
sponds to h2;pos. This occurs first (in βic;b) for less differ-
entially rotating models and the most differentially rotating
sequence A1maintains positiveH with only a single outlier
in which a negative peak has a just slightly (by ∼0.5%)
larger magnitude than h2;pos. From this, we conclude that
the sign ofH is not a good indicator for differential rotation.
This is in disagreement with the statement made by
Hayama et al. [87], who drew their conclusions on the
basis of a smaller set of models that explored the parameter

FIG. 7 (color online). Time evolution of the central density for
models A1O9, A3O6, and A5O5.5, all of which have βic;b ∼ 0.1.
More differentially rotating models more strongly overshoot their
postbounce quasiequilibrium central densities at bounce and
exhibit stronger postbounce ring-down oscillations.
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space less systematically than our model sequences. In their
defense, we note that H < 0 occurs only in models which
have at least weak differential rotation (A≲ A3 in our
model set), simply because uniformly spinning models
cannot reach sufficiently high βic;b for H to become
negative (Figs. 3 and 8). However, the opposite is not
true, since H > 0 does not always indicate uniform
rotation.
In order to further underpin the above conclusion that the

sign ofH is not a good indicator for differential rotation, we
carry out additional simulations of the subset of rapidly
rotating models from the most differentially rotating model
sequence A1. These simulations use the EOS of Shen et al.
[60,61] instead of the Lattimer and Swesty EOS [62] and
we call this model set A1s. The Shen et al. EOS is the EOS
used by the models underlying the Hamaya et al. study
[87]. These additional simulations thus allow us to exclude
potential ambiguities due to the use of a different EOS. The
values of H of the simulations with the Shen et al. EOS are
marked by red circles in Fig. 8. They are positive for all
simulated models. This supports our conclusion that H is
not necessarily negative in strongly differentially rotating
models and thus not a solid indicator of the strength of
differential rotation.
In Fig. 9, we compare waveforms of models with

the same total rotation (as measured by βic;b) but
different degrees of differential rotation. The top panel
depicts waveforms of models with moderate rotation

(βic;b ∼ 0.05) while the bottom panel shows waveforms
of rapidly spinning models with βic;b ∼ 0.10. At
βic;b ∼ 0.05, all choices of A yield essentially the same
waveform between peaks h1;pos and h2;pos and differences
appear only during the ring-down phase. The situation is
different for rapidly rotating models whose dynamics is
more strongly affected by rotation. While the overall shape
of the bounce spike and its width are still the same for all
values of A, more differentially rotating models yield larger
jh1;negj and h2;pos. The ring-down waveform of the most
differentially rotating model is very different from the other
models, reflecting the much more pronounced postbounce
variations in its central density shown in Fig. 7.
The trends seen for the few select models shown in Fig. 9

for the bounce part of the waveform are very systematic.
This is revealed by Fig. 10, which shows the values of
h1;pos, h1;neg, h2;pos, and h2;neg as a function of βic;b for the
five considered choices of differential rotation parameter A.
At slow rotation (βic;b ≲ 0.04–0.08) there is little depend-
ence on differential rotation. In more rapidly rotating
models, increasing differential rotation (¼ decreasing A)
systematically decreases h1;pos, makes h1;neg more negative,

FIG. 8 (color online). Values of the second largest peak (in
absolute value) H of the GW signal as a function of βic;b for all
models (shown is the rescaled quantity HD, where D is the
distance source). Models A1–A5 are simulated with the Lattimer-
Swesty EOS [62], while a subset of rapidly differentially rotating
models from sequence A1, which we refer to as sequence A1s
(shown with red circles), is simulated with the Shen et al. [60,61]
EOS. More differentially rotating models yield larger positive H
and switch to negative H at higher βic;b. While differential
rotation is a necessary criterion for H < 0, it is not a sufficient
one.

FIG. 9 (color online). GW strain hþ rescaled by source distance
D. The top panel shows three models with different degrees of
differential rotation but with the same βic;b ∼ 0.05. The bottom
panel shows three more rapidly spinning models with βic;b ∼ 0.1.
In the first case, the three models exhibit almost identical GW
signals from bounce, suggesting little sensitivity to differential
rotation. The situation is different in the rapid rotation case, where
there is significant variation between models with different values
of the differential rotation parameter A.
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and increases h2;pos. This suggests that it should—in
principle—be possible to infer the degree of differential
rotation of rapidly rotating cores from the GW signal
alone. In Sec. V, we explore two methods that can be
used to “measure” total rotation and A from an observed
signal.

V. RESULTS: EXTRACTING THE ANGULAR
MOMENTUM DISTRIBUTION FROM AN

OBSERVED SIGNAL

A. Numerical template bank analysis

As our analysis in the previous section suggests, many
characteristics of both the dynamics and GW emission
associated with rotating core-collapse supernovae are
dependent on both total rotation (expressed in βic;b) and
the degree of differential rotation given by parameter A. In

the following, we carry out a matched filter analysis to
assess the dependence of all signal features on βic;b and A
and to study how well we can hope to extract total and
differential rotation from an observed signal. In the case of
a known signal in Gaussian noise, it has been shown that
matched filtering is the optimal detection technique [88].
This approach cross correlates the GW data observed with a
series of filter waveforms, known as templates, produced
from GW emission models for the targeted source.
Generally, GWs from core-collapse supernovae are not

amenable to matched filtering analysis, since turbulence in
the protoneutron star and behind the stalled shock provides
a stochastic component to the signal [89,90]. However, in
the case of rapid rotation, convection is suppressed by a
stabilizing positive specific angular momentum gradient in
the postshock region (e.g., [91]) and does not contribute
significantly to the GW emission, in particular, not at
bounce and in the first few milliseconds after bounce.
Hence, the signal from rotating collapse, bounce, and
postbounce ring down can be modeled deterministically
and with high precision for a given EOS and neutrino
treatment and matched filtering can be applied.
We construct a numerical template bank, utilizing the

GW signals from all models described in Table I (see
Table II for a summary of quantitative results) as templates
to filter observed GW data. Using the known GW wave-
form expected from each model and the detector’s noise
statistics, we find the best-fitting template for each signal.
We consider signal waveforms not used as templates in
order to imitate the “real-life” situation where the observed
GW signal is not exactly known. For all values of A, we use
injections spanning the template parameter space, with
values of Ωc differing from those of the templates by at
least 0.25 rad s−1. As βic;b and A for all templates are
known, finding the best-fitting template for an injected

FIG. 10 (color online). The values of the first three peaks of the
GW strain h1;pos, h1;neg, h2;pos (cf. Fig. 2) as a function of βic;b
plotted for all five model sequences. These three prominent GW
signal peaks are insensitive to the angular momentum distribution
for slowly rotating models that reach βic;b ≲ 0.04–0.08. More
rapidly rotating models show clear trends with differential
rotation.

TABLE I. Summary of key parameters of our model sequences.
Ωc;max is the central angular velocity corresponding to the fastest
spinning model in each A-sequence. βic;b;min and βic;b;max are the
values of β ¼ T=jWj of the inner core at bounce for the slowest
and fastest rotators of each sequence, respectively. Note that
Ωc;max and βic;b;max in the only mildly differentially rotating
sequence A4 and A5 are limited by the fact that more rapidly
spinning models fail to collapse. In more differentially rotating
models, Ωc;max is the value for which we obtain βic;b;max. Due to
centrifugal effects, models with higher initial Ωc yield smaller
βic;b (see Fig. 4, and, e.g., [26,37,52]).

Model
sequence

A
[km]

Ωc;min
[rad s-1]

Ωc;max
[rads-1]

βic;b;min
[10−2] βic;b;max

Number
of models

A1 300 1 15.5 1.62 0.21 30
A2 417 1 11.5 3.13 0.19 22
A3 634 1 9.5 3.58 0.18 18
A4 1268 1 6.5 4.66 0.13 12
A5 10000 1 5.5 5.15 0.11 10
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TABLE II. Summary of simulation results. Ωc is the intitial central angular velocity, ρc;b is the central density at bounce, ρc;pb is the early postbounce central density, ρmax;pb is the
postbounce maximum density, and βic;b and βic;pb are ratios of the rotational kinetic energy to the gravitational binding energy of the inner core at bounce and early postbounce
phase, respectively. βi is the initial value of β.Mic;b and Jic;b are the inner core mass and angular momentum at bounce, jhþ;2jD is the second peak of the GW signal, while jhþ;maxjD
is its maximum value. fmax is the frequency at which the GW spectral energy density reaches a maximum value. The optimal SNR at 10 kpc is the signal-to-noise ratio that would be
seen by Advanced LIGO at design sensitivity, for a source located at 10 kpc. The symbol � at the end of the model name indicates that for this model the peak GW signal is produced
by convection. All waveforms are available for download from http://www.stellarcollapse.org.

Model
Ωc

[rad s−1]
βi

[10−2]
ρc;b

[1014 g cm−3]
ρc;pb

[1014 g cm−3]
ρmax;pb

[1014 g cm−3]
βic;b
[10−2]

βic;pb
[10−2]

Mic;b
[M⊙]

Jic;b
[1048 erg s]

HD
[cm]

jhþ;maxjD
[cm]

EGW
[10−9M⊙c2]

fmax
[Hz]

Optimal SNR
@ 10 kpc

A1O1� 1.0 0.005 4.39 3.60 3.60 0.16 0.13 0.58 0.31 3.55 7.38 7.19 829.17 76.51
A1O1.5� 1.5 0.010 4.38 3.59 3.59 0.36 0.30 0.58 0.46 8.20 15.30 8.62 821.17 80.42
A1O2� 2.0 0.018 4.35 3.57 3.57 0.64 0.53 0.59 0.63 11.41 24.29 9.02 937.69 83.56
A1O2.5� 2.5 0.028 4.36 3.55 3.55 1.00 0.82 0.58 0.77 19.23 39.67 6.26 817.92 66.13
A1O3� 3.0 0.041 4.35 3.52 3.52 1.41 1.17 0.58 0.92 28.33 61.77 7.86 842.68 76.27
A1O3.5 3.5 0.055 4.32 3.49 3.49 1.90 1.58 0.59 1.11 39.25 83.27 6.75 824.79 68.43
A1O4 4.0 0.072 4.26 3.46 3.46 2.46 2.04 0.61 1.37 54.99 109.77 8.90 764.99 64.93
A1O4.5 4.5 0.092 4.22 3.42 3.42 3.07 2.54 0.61 1.50 72.04 138.94 12.01 833.67 72.16
A1O5 5.0 0.113 4.20 3.39 3.39 3.73 3.08 0.61 1.67 95.10 171.21 12.60 678.00 72.77
A1O5.5 5.5 0.137 4.15 3.34 3.35 4.45 3.66 0.65 1.99 123.68 207.07 19.05 681.96 67.64
A1O6 6.0 0.163 4.08 3.29 3.29 5.20 4.27 0.65 2.17 154.79 246.82 31.39 716.50 79.69
A1O6.5 6.5 0.191 4.03 3.24 3.25 6.01 4.92 0.65 2.39 186.88 291.49 38.88 816.62 90.79
A1O7 7.0 0.222 4.00 3.17 3.18 6.84 5.58 0.67 2.69 216.14 334.38 44.36 764.27 89.98
A1O7.5 7.5 0.255 3.92 3.11 3.12 7.73 6.28 0.68 2.94 238.11 374.54 59.05 786.14 113.81
A1O8 8.0 0.290 3.85 3.04 3.06 8.65 6.98 0.70 3.24 250.10 415.24 66.28 811.45 115.69
A1O8.5 8.5 0.327 3.74 2.97 3.00 9.60 7.70 0.70 3.50 250.68 452.12 73.11 834.94 108.89
A1O9 9.0 0.367 3.65 2.89 2.93 10.60 8.42 0.72 3.87 243.61 480.53 80.65 844.19 138.00
A1O9.5 9.5 0.409 3.56 2.81 2.85 11.50 9.14 0.74 4.17 224.49 502.39 86.60 827.66 145.97
A1O10 10.0 0.453 3.45 2.71 2.77 12.50 9.85 0.74 4.52 205.33 514.13 87.51 562.73 147.72
A1O10.5 10.5 0.499 3.35 2.62 2.69 13.40 10.57 0.76 4.92 197.37 520.96 86.21 560.75 160.32
A1O11 11.0 0.548 3.23 2.53 2.61 14.30 11.28 0.78 5.28 196.45 527.25 78.28 504.13 151.77
A1O11.5 11.5 0.599 3.14 2.48 2.55 15.20 12.02 0.79 5.71 202.47 535.99 76.40 483.85 159.97
A1O12 12.0 0.652 3.04 2.46 2.50 16.10 12.78 0.80 6.15 199.54 535.99 74.46 483.08 162.68
A1O12.5 12.5 0.707 3.00 2.41 2.44 17.00 13.57 0.82 6.63 200.88 532.98 70.81 477.07 158.29
A1O13 13.0 0.765 2.91 2.34 2.37 17.80 14.30 0.84 7.10 185.89 522.60 62.99 448.28 171.52
A1O13.5 13.5 0.825 2.82 2.25 2.28 18.50 14.96 0.85 7.58 −168.14 504.03 50.41 433.69 164.50
A1O13 14.0 0.887 2.72 2.15 2.18 19.20 15.55 0.86 8.06 163.46 476.98 37.97 387.50 161.12
A1O14.5 14.5 0.952 2.64 2.05 2.08 19.80 16.10 0.89 8.69 153.26 435.46 25.70 375.43 150.47
A1O15 15.0 1.018 2.53 1.89 1.92 20.30 16.41 0.91 9.33 114.74 393.11 17.24 319.46 140.08
A1O15.5 15.5 1.087 2.41 1.69 1.72 20.60 16.47 0.94 10.24 79.77 339.02 11.41 271.36 130.90
A2O1� 1.0 0.011 4.42 3.59 3.59 0.36 0.31 0.57 0.44 8.47 16.12 17.36 851.53 99.46
A2O1.5� 1.5 0.025 4.42 3.57 3.57 0.63 0.54 0.58 0.61 11.82 24.91 16.34 859.90 74.77
A2O2� 2.0 0.044 4.31 3.54 3.55 1.10 0.95 0.58 0.81 22.59 45.35 7.59 837.97 70.49
A2O2.5� 2.5 0.069 4.28 3.51 3.51 1.70 1.46 0.59 1.04 36.18 73.49 16.82 777.70 80.73
A2O3 3.0 0.099 4.26 3.48 3.48 2.42 2.06 0.61 1.31 55.02 104.90 8.57 853.71 71.84
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Model
Ωc

[rad s−1]
βi

[10−2]
ρc;b

[1014 g cm−3]
ρc;pb

[1014 g cm−3]
ρmax;pb

[1014 g cm−3]
βic;b
[10−2]

βic;pb
[10−2]

Mic;b
[M⊙]

Jic;b
[1048 erg s]

HD
[cm]

jhþ;maxjD
[cm]

EGW
[10−9M⊙c2]

fmax
[Hz]

Optimal SNR
@ 10 kpc

A2O3.5 3.5 0.134 4.19 3.43 3.43 3.23 2.74 0.61 1.51 80.32 142.33 11.67 745.77 74.43
A2O4 4.0 0.175 4.14 3.38 3.39 4.14 3.49 0.63 1.86 114.50 182.76 14.81 687.60 62.25
A2O4.5 4.5 0.222 4.07 3.33 3.33 5.13 4.31 0.64 2.12 154.00 228.38 26.08 827.37 75.95
A2O5 5.0 0.274 4.00 3.26 3.26 6.18 5.18 0.65 2.46 192.64 278.38 34.18 696.93 78.45
A2O5.5 5.5 0.332 3.91 3.19 3.19 7.30 6.12 0.67 2.85 225.44 326.18 45.00 732.25 107.09
A2O6 6.0 0.395 3.80 3.11 3.12 8.48 7.08 0.70 3.25 241.38 369.89 54.82 763.68 120.96
A2O6.5 6.5 0.463 3.69 3.03 3.03 9.71 8.06 0.72 3.72 239.45 404.59 58.80 782.64 111.90
A2O7 7.0 0.537 3.58 2.93 2.94 10.96 9.03 0.72 4.09 210.17 425.35 60.28 797.74 114.80
A2O7.5 7.5 0.617 3.45 2.84 2.86 12.21 10.02 0.74 4.52 168.37 433.27 59.28 814.41 114.98
A2O8 8.0 0.702 3.30 2.73 2.75 13.40 10.95 0.76 5.00 −29.23 434.36 53.48 820.71 123.51
A2O8.5 8.5 0.792 3.17 2.63 2.65 14.55 11.88 0.78 5.63 −128.94 440.92 47.17 828.62 125.06
A2O9 9.0 0.888 3.04 2.52 2.54 15.65 12.80 0.80 6.35 120.47 441.19 40.59 830.37 124.23
A2O9.5 9.5 0.989 2.88 2.44 2.45 16.73 13.80 0.82 6.90 −131.32 421.52 32.56 394.97 126.22
A2O10 10.0 1.096 2.77 2.33 2.34 17.70 14.70 0.84 7.62 −121.56 385.19 21.90 373.13 130.38
A2O10.5 10.5 1.209 2.65 2.19 2.20 18.58 15.55 0.86 8.37 108.38 327.00 14.20 330.47 126.41
A2O11 11.0 1.326 2.52 2.02 2.03 19.17 16.21 0.87 9.05 −92.77 283.57 8.98 292.98 117.20
A2O11.5 11.5 1.450 2.33 1.75 1.76 19.47 16.38 0.89 9.76 −66.93 245.87 5.39 216.11 104.68
A3O1� 1.0 0.018 4.47 3.59 3.59 0.36 0.31 0.57 0.45 7.55 15.84 7.05 873.82 110.38
A3O1.5� 1.5 0.042 4.38 3.56 3.57 0.80 0.70 0.58 0.69 15.96 32.13 8.62 850.91 74.83
A3O2� 2.0 0.074 4.26 3.53 3.53 1.40 1.23 0.59 0.94 29.95 60.87 4.04 798.47 71.14
A3O2.5� 2.5 0.115 4.27 3.49 3.50 2.15 1.88 0.61 1.24 49.99 94.90 6.50 772.97 72.30
A3O3 3.0 0.166 4.15 3.45 3.45 3.03 2.63 0.60 1.45 76.27 135.69 16.04 873.48 72.33
A3O3.5 3.5 0.226 4.12 3.40 3.40 4.04 3.48 0.63 1.82 112.95 178.53 14.12 718.34 69.98
A3O4 4.0 0.295 4.04 3.33 3.33 5.14 4.41 0.65 2.18 155.85 227.84 23.05 706.91 67.38
A3O4.5 4.5 0.374 3.96 3.27 3.27 6.32 5.42 0.66 2.55 196.67 274.55 34.01 706.90 94.83
A3O5 5.0 0.462 3.85 3.18 3.18 7.56 6.48 0.68 2.98 223.97 317.99 44.21 725.72 98.87
A3O5.5 5.5 0.558 3.74 3.09 3.10 8.87 7.59 0.70 3.40 232.28 358.69 49.45 749.09 97.50
A3O6 6.0 0.665 3.62 3.00 3.00 10.20 8.70 0.71 3.81 209.89 381.64 49.92 767.59 97.51
A3O6.5 6.5 0.780 3.49 2.89 2.90 11.60 9.80 0.73 4.40 160.80 391.75 48.03 780.76 102.94
A3O7 7.0 0.905 3.34 2.79 2.80 12.90 10.88 0.75 4.92 106.38 402.40 43.74 795.01 107.17
A3O7.5 7.5 1.038 3.18 2.66 2.67 14.10 11.86 0.77 5.60 −110.93 406.50 36.92 799.64 107.30
A3O8 8.0 1.182 3.04 2.55 2.56 15.30 12.90 0.79 6.31 −83.05 397.21 31.53 797.59 108.76
A3O8.5 8.5 1.334 2.90 2.44 2.45 16.40 13.96 0.81 7.02 −106.00 370.71 22.83 792.28 110.54
A3O9 9.0 1.496 2.75 2.31 2.32 17.40 14.94 0.83 7.74 −92.34 319.63 13.36 371.50 109.63
A3O9.5 9.5 1.666 2.57 2.16 2.16 18.20 15.87 0.85 8.61 −79.50 258.16 7.88 285.59 104.34
A4O1� 1.0 0.048 4.36 3.58 3.58 0.47 0.42 0.57 0.51 10.24 18.49 4.18 871.56 60.29
A4O1.5� 1.5 0.108 4.31 3.55 3.55 1.03 0.95 0.58 0.78 22.79 43.16 3.66 971.44 55.68
A4O2� 2.0 0.192 4.26 3.51 3.51 1.80 1.65 0.60 1.10 42.41 80.59 6.42 808.24 64.09
A4O2.5� 2.5 0.300 4.16 3.46 3.46 2.74 2.48 0.60 1.35 69.73 123.48 9.11 836.50 83.71
A4O3 3.0 0.432 4.11 3.41 3.41 3.84 3.43 0.63 1.75 106.88 169.65 11.64 731.20 51.22

(Table continued)

TABLE II. (Continued)
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signal will infer its associated closest βic;b and A. Hereafter,
we will refer to this procedure as measuring of βic;b
and A.
We perform our analysis in Fourier space, due to

frequency dependence and Gaussian statistics of the GW
detector noise, ~n, which is colored by known one-sided
power spectral density (PSD) ShðfÞ. We model the GW
detector data, ~d, assumed to be comprised of both some

core-collapse supernova GW signal, ~hðf; ~λÞ, and ~n as

~di ¼ ~hðfi; ~λÞ þ ~ni; ð2Þ

where i denotes the frequency bin index.
The parameter dependence of the GW signals considered

here is encoded in ~λ,

~λ ¼ fD; t0; ι; ξ; θ;ϕ;ψg; ð3Þ

where D is the source distance, t0 is the time at which the
GW signal arrives at the detector, and ðι; ξ; θ;ϕ;ψÞ are
source angles. Here, ðι; ξÞ relate the preferred internal axes
of the source to the location of the detector, ðθ;ϕÞ relate the
preferred internal axes of the detector to the location of the
source and ψ defines the relationship between the source
and the detector, via the plane characterizing the polariza-
tion of emitted GWs [92].
Our goal is to establish the best-fitting template for the

observed GW data. We construct the noise-weighted inner
product, hd; xji, for all templates ~xjðfÞwith the data, where
j denotes template index in the catalog, as

hd; xji ¼ 2max
t0

Z
∞

−∞

~dðfÞ~xjðfÞ�ei2πft0
ShðfÞ

df; ð4Þ

where � denotes complex conjugation. We assume sta-
tionary, Gaussian detector noise. We numerically maximize
this quantity over all possible t0 using fast-Fourier trans-
forms. From this, we compute the detection SNR for each
template, ρj, as

ρj ¼ hd; xji
hxj; xji1=2 ; ð5Þ

where hxj; xji is the template norm. For the optimal case in
which h ¼ xj, the expected signal SNR is simply
hxj; xji1=2. Given this quantity, we calculate the set of ρj

across all templates to determine the best-fitting template,
given the data observed. We define the best-fitting template
as the template j producing the largest ρj, given an imposed
detection threshold of ρj ≥ 8 [93].
We utilize simulated Gaussian noise colored by the zero-

detuned high power configuration of aLIGO [94], and, for
simplicity, consider a single GW detector. We repeat all
calculations with ten different realizations of detector noiseM
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and report the averaged result. We assume that the source is
optimally oriented, and located relative to the detector such
that the observed GW strain, h, given by

h ¼ hþFþ þ h×F×; ð6Þ

is maximized, where the antenna response functions, Fþ
and F×, are given by

Fþ ¼ 1

2
ð1þ cos2θÞ cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ ;

ð7Þ

F× ¼ 1

2
ð1þ cos2θÞ cos 2ϕ sin 2ψ þ cos θ sin 2ϕ cos 2ψ ;

ð8Þ

respectively, and hþ is related to H20, the ðl; mÞ ¼ ð2; 0Þ
mode of the GW multipole expansion [95], as

hþ ¼ 1

D

ffiffiffiffiffiffiffiffi
15

32π

r
H20sin2ι: ð9Þ

Due to the axisymmetric nature of the simulations pre-
sented here, hþ is independent of ξ and all GW emission
will be linearly polarized (i.e., h× ¼ 0). In physical terms,
these assumptions correspond to setting source angles
ðι; θ;ϕ;ψÞ ¼ ðπ=2; 0; 0; 0Þ. We place all sources at a
known distance D ¼ 10 kpc, restricting our analysis to
the Galactic locus.
To conclude the discussion of our numerical template

bank analysis, we note that the nature of our analysis is
fundamentally distinct from template banks used in the
context of LIGO/Virgo GW searches for compact binary
coalescences, which can produce templates “on the fly” for
binary inspiral signals using post-Newtonian expressions
for the GW strain for arbitrary system parameters [96]. The
GW emission from rotating core collapse is complicated,
dependent on many parameters, and has yet to be described
phenomenologically. This means that the span of the
numerical template bank across the simulation parameter
space is limited to discrete samples, with template wave-
forms produced by simulations of core collapse. The nature
of templates for binary inspirals also conveys that the phase
of GW emission can be robustly predicted, whereas
convection in the later postbounce stages of core collapse
is largely stochastic, resulting in unpredictable waveform
phase. This limits the predictive power of our analysis in
slowly rotating models in which convection abounds.
Additionally, the study presented here considers only
two unknown progenitor parameters (A and βic;b), while
in reality the simulation parameter space is larger and also
includes (but is not necessarily limited to) EOS and electron
fraction parametrization.

1. Extraction of βic;b
The upper panel of Fig. 11 shows βic;b measured for

injected waveforms versus the true values of βic;b of those
models. The dashed black line denotes the optimal case in
which the measured and true βic;b are identical. The lower
panel shows the relative deviation of βic;b from its correct
value. For most injected waveforms, the value of βic;b
measured lies within ∼20% of the true value for the five
values of A considered, with βic;b ranging from ∼0.01 to
∼0.2. The average relative deviation of measured βic;b from
its true value is ∼8% for all injected waveforms. The
measurement error is largest in slowly spinning models
(small βic;b), because these emit GW signals with strong
stochastic components from prompt postbounce
convection.
The matched filter analysis can extract βic;b with good

accuracy across a wide range of both total rotation and

FIG. 11 (color online). Upper panel: Measured βic;b as a
function of true βic;b for all injected waveforms. The dashed
black line denotes the optimal case in which the measured and
true βic;b are equal. Lower panel: The relative deviation of βic;b
measured from its true value. For most signals, we find that βic;b is
measured with ∼10–20% accuracy. The errors are largest for
slowly rotating models since these have strong stochastic con-
vective components in their waveforms. Outliers at more rapid
rotation are signals from the A1s, A1m, and A1p injection sets.
The A1s models use the Shen et al. EOS [60,61] rather than the
Lattimer-Swesty EOS [62] used for the fiducial models, while the
A1m and A1p models are simulated with ∼5% decreased and
increased YeðρÞ, respectively, at nuclear densities.

ABDIKAMALOV et al. PHYSICAL REVIEW D 90, 044001 (2014)

044001-14



TABLE III. Summary of properties of models for injection. Ωc is the intitial central angular velocity, ρc;b is the central density at bounce, ρc;pb is the early postbounce central
density, ρmax;pb is the postbounce maximum density, βic;b and βic;pb are ratios of the rotational kinetic energy to the gravitational binding energy of the inner core at bounce and early
postbounce phase, respectively. βi is the initial value of β. Mic;b and Jic;b are the inner-core mass and angular momentum at bounce, jhþ;2jD is the second peak of the GW signal,
while jhþ;maxjD is its maximum value. fmax is the frequency at which the GW spectral energy density reaches a maximum value. The optimal SNR at 10 kpc is the signal-to-noise
ratio that would be seen by Advanced LIGO at design sensitivity, for a source located at 10 kpc. All waveforms are available for download from http://www.stellarcollapse.org.

Model
Ωc

[rad s−1]
βi

[10−2]
ρc;b

[1014 g cm−3]
ρc;pb

[1014 g cm−3]
ρmax;pb

[1014 g cm−3]
βic;b
[10−2]

βic;pb
[10−2]

Mic;b
[M⊙]

Jic;b
[1048 erg s]

HD
[cm]

jhþ;maxjD
[cm]

EGW
[10−9M⊙c2]

fmax
[Hz]

Optimal SNR
@ 10 kpc

A1O5.25 5.25 0.12 4.28 3.37 3.37 4.09 3.36 0.63 1.83 111.19 189.59 16.19 991.53 67.91
A1O5.25m 5.25 0.12 4.18 3.41 3.41 4.04 3.38 0.60 1.68 93.98 163.91 23.23 950.30 74.67
A1O5.25p 5.25 0.12 4.18 3.30 3.30 4.14 3.33 0.60 1.96 132.49 213.63 14.33 864.48 81.89
A1O5.25s 5.25 0.12 3.33 2.65 2.65 3.79 3.15 0.60 1.72 87.97 158.17 11.41 687.21 60.11
A1O8.25 8.25 0.31 3.87 3.00 3.03 9.12 7.33 0.68 3.45 252.70 436.55 70.16 826.04 121.84
A1O8.25m 8.25 0.31 3.88 3.05 3.08 9.02 7.37 0.68 3.21 191.78 377.27 86.19 783.88 129.12
A1O8.25p 8.25 0.31 3.88 2.94 2.96 9.19 7.29 0.68 3.58 302.69 469.06 52.56 847.37 120.43
A1O8.25s 8.25 0.31 2.98 2.45 2.45 8.46 6.87 0.66 3.10 218.82 368.80 49.02 737.13 112.11
A1O10.25 10.25 0.48 3.42 2.65 2.72 12.90 10.20 0.76 4.81 199.43 521.24 87.74 645.55 159.93
A1O10.25m 10.25 0.48 3.45 2.75 2.80 12.80 10.20 0.74 4.59 180.30 490.37 93.17 541.00 167.36
A1O10.25p 10.25 0.48 3.45 2.59 2.65 13.00 10.10 0.74 4.92 228.11 540.91 74.00 922.20 140.51
A1O10.25s 10.25 0.48 2.76 2.22 2.26 12.20 9.64 0.72 4.45 211.99 492.01 73.49 795.74 122.64
A1O12.25 12.25 0.68 3.06 2.44 2.47 16.60 13.10 0.81 6.37 202.70 541.45 73.49 475.36 164.05
A1O12.25m 12.25 0.68 3.06 2.49 2.53 16.50 13.20 0.80 6.22 177.02 559.48 55.90 432.05 152.34
A1O12.25p 12.25 0.68 3.06 2.33 2.36 16.40 13.00 0.80 6.47 174.29 512.50 73.84 492.63 164.85
A1O12.25s 12.25 0.68 2.51 1.97 2.05 15.90 12.50 0.77 5.80 −171.29 522.33 66.92 486.68 137.42
A1O13.75 13.75 0.86 2.83 2.22 2.25 18.90 15.40 0.83 7.28 168.01 492.28 44.51 430.02 161.28
A1O13.75m 13.75 0.86 2.88 2.32 2.35 19.10 15.50 0.85 7.72 182.76 547.19 19.80 581.74 131.37
A1O13.75p 13.75 0.86 2.88 1.94 1.97 18.30 14.40 0.85 7.63 129.49 398.03 56.37 440.95 168.50
A1O13.75s 13.75 0.86 2.36 1.89 1.92 18.40 14.70 0.81 7.03 158.99 511.13 53.99 435.78 154.58
A1O15.25 15.25 1.05 2.49 1.79 1.82 20.40 16.50 0.88 9.00 94.80 369.07 13.96 275.55 135.89
A1O15.25m 15.25 1.05 2.61 2.06 2.10 21.10 17.60 0.89 9.19 160.36 469.33 6.77 221.11 126.96
A1O15.25p 15.25 1.05 2.49 1.16 2.10 19.40 14.50 0.89 9.09 −59.28 262.53 31.17 382.93 164.71
A1O15.25s 15.25 1.05 2.28 1.65 1.70 20.50 16.40 0.85 8.40 123.21 469.88 25.96 353.33 150.91
A2O2.25� 2.25 0.06 4.28 3.53 3.53 1.50 1.18 0.16 0.92 30.32 61.47 14.28 846.22 68.47
A2O4.25 4.25 0.20 4.09 3.36 3.36 4.80 3.90 0.34 1.99 135.50 208.99 20.17 708.47 78.09
A2O6.25 6.25 0.43 3.76 3.07 3.08 9.30 7.58 0.59 3.05 244.77 388.74 56.97 772.26 111.00
A2O7.25 7.25 0.58 3.52 2.88 2.90 11.90 9.53 0.73 4.31 191.78 432.45 60.04 795.76 110.38
A2O8.25 8.25 0.75 3.23 2.67 2.69 14.40 11.39 0.77 5.32 132.49 441.19 50.47 827.73 123.82
A2O9.25 9.25 0.94 2.98 2.48 2.49 16.70 13.32 0.81 6.63 110.91 433.54 37.04 831.31 122.93
A2O10.25 10.25 1.15 2.73 2.27 2.28 18.70 15.20 0.85 8.00 107.36 357.87 17.62 331.04 128.63
A2O11.25 11.25 1.39 2.44 1.91 1.92 19.80 16.39 0.88 9.40 −82.78 267.99 6.90 276.56 110.52
A3O2.25� 2.25 0.09 4.24 3.51 3.51 1.67 1.54 0.60 1.09 39.89 76.22 4.83 469.61 70.31
A3O3.25 3.25 0.20 4.14 3.42 3.42 3.30 3.04 0.62 1.64 94.52 158.99 17.38 880.87 65.11
A3O4.25 4.25 0.33 3.99 3.30 3.30 5.40 4.91 0.65 2.33 177.57 251.60 28.98 702.50 93.95
A3O5.25 5.25 0.51 3.80 3.14 3.14 7.70 7.03 0.69 3.19 231.39 340.39 47.44 741.09 97.12

(Table continued)
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differential rotation. This is not surprising, since we
showed in Sec. IV B that the GW signal amplitudes depend
primarily on βic;b both for slowly and rapidly rotating
models.
To test the robustness of this conclusion, we explore the

accuracy with which this analysis can extract βic;b for
injected signals that are produced using a different nuclear
EOS or different YeðρÞ parametrization. Differences in
these aspects are associated with differences in the pres-
sure, energy density, and other thermodynamic quantities.
This leads to variations in the mass of the inner core at
bounce (Mic;b) and influences the dynamics of the final
phase of collapse, bounce, and ring-down oscillations. The
EOS dependence of GW emission from rotating core
collapse was first explored by [37], while the influence
of the Ye parametrization was studied in the context of
accretion-induced collapse by [39].
To evaluate the dependence of our results on the EOS,

we reproduce signals for injection from the A1 model
sequence using the Shen et al. [60,61] EOS in place of
the Lattimer and Swesty EOS [62] used for the fiducial
models listed in Tables I–II, while keeping the YeðρÞ
parametrization unchanged. We refer to this set of
injections as A1s. To explore the dependence of the
GW signals on the Ye parametrization, we repeat the
same sequence with the Lattimer and Swesty EOS but
with ∼5% increased and decreased Ye at nuclear density
(sequences A1p and A1m, respectively). The details of
this parametrization are explained in the Appendix, while
the characteristics of the models from these sequences
are given in Table III.
In Fig. 12 we show the time evolution of the central

density around the time of core bounce in models
A1O10.25, A1O10.25s, A1O10.25m, and A1O10.25p.
Model A1O10.25m reaches the largest ρc at bounce and
settles at the highest postbounce densities, followed by
models A1O10.25, A1O10.25p, and A1O10.25s. Since
models A1O10.25m and A1O10.25 have smaller central Ye
than model A1O10.25p, the pressure in their cores is
slightly lower, allowing the protoneutron star to settle at
higher density. Model A1010.25s (red graph) bounces and
settles at a significantly lower density because the Shen
et al. EOS [60,61] is stiffer than the Lattimer and Swesty
EOS [62] at nuclear densities (see, e.g., Fig. 1 of [74]).
Similar differences were observed in the simulations of
Dimmelmeier et al. [37] who compared rotating core-
collapse simulations with the K ¼ 180 MeV Lattimer and
Swesty EOS and Shen et al. EOS. In the protoneutron
density regime relevant at bounce and in the early post-
bounce phase, the K ¼ 180 MeV and K ¼ 220 MeV
variants of the Lattimer and Swesty EOS yield the same
protoneutron star structure [7]. We refer the reader to
Dimmelmeier et al. [37] for a more in depth discussion of
the EOS dependence of rotating core collapse and the
corresponding GW signals.M
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Differences in the evolution of the central density are
associated with differences in the overall protoneutron star
dynamics, which implies differences in the GW signatures
for models with different EOS and core Ye. This is borne
out by Fig. 13, which shows the GW signals of models

A1O10.25, A1O10.25s, A1O10.25m, and A1O10.25p.
Although the behavior of the GW strain appears qualita-
tively similar in these four cases, there are non-negligible
quantitative differences stemming from the changes in the
EOS and YeðρÞ parametrization, both of which grow with
increasing postbounce time.
The cyan pentagons in Fig. 11 display the measured βic;b

as a function of the true βic;b for sequence A1s. Despite the
difference between the two EOS, the matched filtering
analysis measures βic;b within ≲15% of its correct value for
the waveforms. The average relative deviation between
measured and true βic;b for all A1s models is ∼9%. Such
small deviations are not surprising given the relatively
weak dependence of the GW signal features on the details
of the EOS found by [37]. The green stars and red triangles
in Fig. 11 represent the measured βic;b as a function of true
βic;b for sequences A1m and A1p, respectively. In the case
of rapid rotation (βic;b ≳ 0.05), βic;b is extracted with ≲15%
accuracy with an average deviation of ∼10%, only some-
what larger than in the case of known Ye parametrization.
Stochastic GW signal components from prompt convection
explain the outliers at small βic;b.
Based on these results, we conclude that our matched

filter analysis can extract βic;b robustly with ∼20% accuracy
for GW signals from rotating collapse, bounce, and ring-
down oscillations from galactic core-collapse events. This
measurement is rather robust and not very sensitive to
uncertainties in inner-core Ye and EOS.

2. Extraction of the differential rotation parameter A

The upper panel of Fig. 14 shows the quantity δi ¼
IDX½Ameas:� − IDX½Ainj:� as a function of βic;b, where
IDX½Ameas:� is the integer index of the differential rotation
parameter Ameas. extracted by the matched filter analysis.
Idx:½Ainj:� is the index of the true value of A for the injected
signal (e.g., Idx:½A� ¼ 2 for A ¼ A2). In this construction,
δi ¼ 0 (δi ≠ 0) for the correct (incorrect) measurement of
A. It is important to point out a caveat in measuring the
degree of differential rotation using the method outlined
here. The differential rotation law considered in this paper
is somewhat artificial, and it is not known if the cores of
massive stars obey this. We therefore remind the reader that
we present the ability to measure the distribution of angular
momentum in core-collapse supernova progenitors, given
that they obey the rotation law given by Eq. (1).
For sequences A1, A4, and A5, the values of A are

identified correctly for all injected signals. For sequences
A3 (A2), A is determined accurately for 71% (88%) of
injected waveforms. Moreover, we find that A corresponds
to the next closest value in all misidentification cases. We
note that misidentifications occur only for slowly rotating
models. For βic;b ≳ 0.08, A is correctly determined for all
injected waveforms. More slowly rotating models emit
weaker GWs, so their signal-to-noise ratio in the detector
is lower, which could be a potential cause of the

FIG. 12 (color online). Time evolution of the central density ρc
around bounce models A1O10.25, A1O10.25s, A1O10.25m, and
A1O10.25p. The black line represents ρc generated using the
Lattimer-Swesty EOS [62] and the standard YeðρÞ parametriza-
tion, the red graph corresponds to the model simulated with the
Shen et al. EOS [60,61], while the blue and green graphs are
simulated with ∼5% increased and decreased YeðρÞ, respectively,
at nuclear densities.

FIG. 13 (color online). GW strain hþ rescaled by source
distance D for injected waveforms A1O10.25, A1O10.25s,
A1O10.25m, and A1O10.25p. The black line represents the
waveform generated using the Lattimer-Swesty EOS [62] and
the standard YeðρÞ parametrization, the red graph corresponds to
the model simulated with the Shen et al. EOS [60,61], while the
blue and green graphs are simulated with ∼5% increased and
decreased YeðρÞ, respectively, at nuclear densities.
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misidentification. However, tests in which we placed such
models at closer distances revealed that misidentifications
occur even at high signal-to-noise ratio. It is, hence, more
likely that the convective component of the GW signal,
which dominates in slowly rotating models, spoils the
identification with the correct A. Our finding is also
consistent with the notion that the degree of differential
rotation plays a significant role only at rapid rotation
(see Sec. IV B).
For the A1m and A1p signals, in which Ye in the inner

core is decreased and increased, respectively, A is inferred
correctly for 100% and 83% of injections. We find that A
corresponds to the next closest value in the misidentifica-
tion cases.
For the A1s signals, in which the Shen et al. [60,61] EOS

is used in place of the Lattimer and Swesty EOS [62], A is
inferred correctly for only two rapidly rotating models
(≃33% of all models from these sequences) with βic;b of
∼0.16 and ∼0.2 (shown with cyan pentagons in Fig. 14 and
denoted as A1s). Another ∼33% of models have jδij ¼ 1,
while the remainder are measured with jδij > 1. This
suggests that, unlike βic;b, A is rather sensitive to details
of the nuclear EOS, and is thus more difficult to infer and

features signifying different A can be confused with
features imprinted due to differences in the EOS. This is
supported by the correct identification of A only for rapid
rotation. Rapidly rotating models reach lower maximum
densities than slowly spinning ones, where differences in
EOS are less pronounced than in the high density regime.
To further test the robustness of our conclusions, we use

GW injections characterized by A not represented in the
template bank. Here, we inject signals from model Ai, and
filter the data only with templates associated with models
Aj, j ≠ i. The lower panel of Fig. 14 presents δi as a
function of βic;b for this scenario. Here, δi ¼ �1 implies
Ameas. is estimated to be the closest available value of A. For
A2, A4, and A5, all injections are associated with the closest
Ai. For A3, 87% of the injections are found with δi ¼ �1,
while the remainder have δi ¼ 2. For sequence A1, 67% of
injections return δi ¼ �1, while the remainder return
δi ¼ 2; 3. We find that for models A1m, A1p, and A1s,
δi ¼ �1 for 67%, 33%, and 50% of injections, respectively.
Signals with EOS and YeðρÞ parametrization different from
the fiducial ones result in a larger measurement error in the
inferred value of A.

B. Bayesian model selection

We present now an alternative method to investigate the
dependence of the features of the GW signal on the
differential rotation parameter A and its detectability. We
employ a Bayesian approach utilizing principal component
analysis (PCA) [97], building upon previous work by
Röver et al. [98] and Logue et al. [67].
As discussed in previous sections, GW signals from

progenitors characterized by any given A are expected to
exhibit some strong common features. To exploit this, we
apply PCA to catalogs of waveforms characterized by a
common A for each value of A. Principal component
analysis isolates dominant features of waveforms into
linearly independent principal components, ordered by
their relevance. Mathematically, utilizing matrix C con-
taining a given waveform catalog, one can factorize C as

C ¼ UΣVT; ð10Þ

where U and V are matrices comprised of the eigenvectors
of CCT and CTC, respectively, and Σ is a diagonal matrix,
composed of the square roots of corresponding eigenval-
ues. The principal components, U, are organized according
to their corresponding eigenvalues, such that the more
dominant principal components (characterized by larger
eigenvalues) are shifted to the first few columns of U.
Approximations to waveforms in C, in addition to arbitrary
waveforms, can be constructed as

hi ≈
X
j

Uijϵj; ð11Þ

FIG. 14 (color online). δi ¼ IDX½Ameas:� − IDX½Ainj:� as a
function of βic;b. IDX½Ainj:� and IDX½Ameas:� denote the indices
of the true and inferred values of differential rotation parameter A.
As mentioned previously, δi ¼ 0 (δi ≠ 0) signify that A has been
correctly (incorrectly) identified. The upper and lower panels
represent the cases in which the true value of A is and is not
encompassed by the template bank, respectively.
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where h is the desired waveform approximation, and ~ϵ
contains the projections of the original waveforms onto the
U basis, hereafter referred to as principal component
coefficients.
As in Sec. VA, we model the GW detector data, ~d, as

containing both some core-collapse supernova GW signal
~hðf; ~λÞ and Gaussian noise ~n, colored by known one-sided
PSD ShðfÞ, where ~d and λ are given by expressions (2) and
(3), respectively. We consider trial templates or signals,
~hðf; ~μÞ, where

~μ ¼ f~ϵ; ~λg; ð12Þ
which are reconstructed using principal components.
Our goal is to compute the evidence, pðdjHÞ, that the

data observed contain a GW signal reconstructable from
different sets of principal components, each associated with
a particular degree of differential rotation. The evidence, or
marginal likelihood, of the model H is calculated as

pðdjHÞ ¼
Z
~μ
pðdj~μ;HÞpð~μjHÞd~μ; ð13Þ

where pð~μjHÞ is the prior distribution on the parameters,
given the signal model (assumed to be flat in the absence of
any physical motivation to do otherwise) and pðdj~μ;HÞ is
the likelihood function for the data. Due to the Gaussian
statistics of the noise, the likelihood function for the
presence of some signal ~hðfi; ~μÞ can be written as

pðdj~μ;HÞ ¼
Y
i

1

σi
ffiffiffiffiffiffi
2π

p exp

�
−
j ~di − ~hðfi; ~μÞj2

2σ2i

�
: ð14Þ

Here, σ2i is the variance of the noise in the ith frequency bin,
related to the PSD as

ShðfiÞ ¼ 2
Δt2

T
σ2i ; ð15Þ

where Δt and T are the sampling time step (the inverse of
the sampling frequency) and the total observation time,
respectively. To compute the evidence, we utilize an
implementation of the nested sampling algorithm [99].
We perform an analysis closely linked to previous work
by [67,98]. We compute the relative Bayes factor,
logBi;j ¼ logpðdjiÞ − logpðdjjÞ, between models i and
j, to determine whether the evidence for model i is either
greater than (Bi;j > 0) or less than (Bi;j < 0) the evidence
for model j. We compare a single signal model i to the
noise model via logBi ¼ logpðdjiÞ − logpðd; noiseÞ.
Connecting this to the physical motivation of our

analysis, models i and j are principal component (PC)
sets constructed from waveform catalogs characterized by
different values of A. We normalize the Bayes factor for the
correct model Btrue for each injected signal, to illustrate

whether the correct model for A has been chosen. To do
this, we compute

logBtrue;j ¼ logBtrue −max½logBj�; ð16Þ

where max½logBj� is the maximum logarithmic Bayes
factor obtained for values of A other than the true one.
logBtrue;j > 0 (logBtrue;j < 0) states that the correct model
for A has (has not) been inferred. As is common in
Bayesian model selection, we impose a confidence thresh-
old η, such that logBi;j > η states that model Ai is more
likely than Aj with statistical significance. Following the
conventions in Logue et al. [67], we set η ¼ 5.
As in Sec. VA, we utilize simulated Gaussian noise

colored by the zero-detuned high power configuration of
aLIGO [94], in the context of a single, optimally oriented
GW detector. We assume that the position, inclination, and
polarization of the source are known, such that the antenna
response functions are given by Fþ ¼ 1, F× ¼ 0, and place
all sources at a known distance of 10 kpc. Limited by the
size of the smallest waveform catalog, we use a subset
of 10 PCs from each set to approximately reconstruct
injected waveforms. Given this, the parameter space ~μ is
reduced to a ten-dimensional subset, such that ~μ → ~ϵ,
where ~ϵ ¼ fϵ1;…; ϵ10g.
We construct PCs using the model waveforms described

in Tables I and II. The injected signals are the same used for
injection in Sec. VA, which are distinct from those used to
generate the PCs.
Figure 15 presents the normalized logBtrue;j for all

injected waveforms. Large values of logBtrue;j indicate a
high degree of confidence in the chosen model for A. The
dashed black line represents the detectability threshold
logBtrue;j ¼ 5 discussed above. At βic;b ≲ 0.05, most
injected signals across all A have negative logBtrue;j,
suggesting that it is difficult to infer the correct model
for A in the slow rotation limit. Tests with sources located at
closer distances show that this is not a consequence of the
low signal-to-noise ratio of the GW signal emitted by such
models. Instead, it is most likely due to a combination of
the facts that (i) the stochastic GW signal from prompt
convection is comparable to or stronger than the signal
from collapse, bounce, and ring down, and (ii) that there is
little influence of A on the magnitude of the peaks of the
GW signal at slow rotation (see Sec. IV B).
For a given βic;b, model A1, which is the most strongly

differentially rotating, has the largest logBtrue;j, suggesting
that the ability to infer A with this method is greatest in
extremely differentially rotating models. We also see that
the magnitude of logBtrue;j tends to grow with increasing
βic;b, and the correct model for A is determined for the
majority of injections with βic;b ≳ 0.08. This is in agree-
ment with our GW peaks analysis in Sec. IV B, where
significant dependence on A is observed in the large βic;b
regime.
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To test the robustness of this conclusion, we inject the
waveform set A1s simulated with the Shen et al. EOS
[60,61], described in Sec. VA.We find that, in this case, the
correct model for A is determined only for two models with
very rapid rotation (with βic;b of ∼0.16 and ∼0.2). The
maximum densities reached in these cases are relatively
low, and the two EOS are not very different in this regime.
In the slow rotation limit, the injected signals are strongly
associated with incorrect models for A. This suggests that,
if the differences between the true nuclear EOS and that
used for PC construction are of the same order as the
differences between the Lattimer and Swesty [62] and Shen
et al. [60,61] EOS, then the inference of the progenitor’s
angular momentum distribution from the GW signal
observed is significantly more difficult than if the nuclear
EOS was known. This conclusion is consistent with that of
the matched filter analysis presented in Sec. VA.
We also inject waveform sets A1m and A1p, simulated

with modified YeðρÞ parametrization, as explained in
Sec. VA. For these injections (marked with large green
stars and red triangles, respectively, in Fig. 15), the correct
model for A is determined in the limit of fast rotation,
whereas the wrong model is chosen in the slow rotation
regime. In addition, we find that for models with correctly
chosen A, the magnitude of logBi;j is smaller than for

injections from the A1 sequence where the YeðρÞ para-
metrization is known. This suggests that, unless Ye in the
inner core is known to within 5% accuracy, our ability to
infer the correct model for A suffers greatly.
The upper panel of Fig. 16 shows δi ¼ IDX½Ameas:� −

IDX½Ainj:� (as previously defined) as a function of βic;b for
the injected waveforms. Here, IDX½Ameas:� is the index of
the differential rotation parameter Ameas. determined by
Bayesian model selection, where logBmeas;j > 5 by defi-
nition. For most injections, δi ¼ 0, signifying that the
correct model for A has been inferred. We note that the
fraction of injections with δi ¼ 0 grows with increasing
βic;b, which is consistent with the previous conclusion that
the ability to determine A is greater for rapidly rotating
models. For models A1, A2, A3, A4, and A5, A is measured
correctly in≃100%,≃50%,≃57%,≃80%, and≃100% of
cases. For sequences A1m, A1p, and A1s, A is correctly
inferred in ≃67%, ≃100%, and ≃17% of cases, respec-
tively. These values are consistent with those obtained from
the matched filter analysis.
The lower panel of Fig. 16 shows δi as a function of βic;b

for the case of injections with unknown A, for which the
correct model for A is excluded from the model selection
analysis. In this case, we see that the majority of injected

FIG. 15 (color online). logBtrue;j for all injected waveforms.
logBtrue;j > 0 and logBtrue;j < 0 imply correct and incorrect
inference of A, respectively. Large values of logBtrue;j convey
that the correct model has been chosen with a high degree of
confidence. The black dashed line denotes the confidence thresh-
old logBtrue;j ¼ 5 (see main text for a definition of this thresh-
old). We see that logBtrue;j increases with βic;b, and, at a given
βic;b, A is inferred correctly with the highest confidence for
injections associated with the strongest differential rotation (A1).
In the limit of slow rotation (βic;b ≲ 0.05), the correct model for A
is not determined for most injections. Incorrect A is chosen for all
injections simulated with the Shen et al. [60,61] EOS (A1s), with
the exception of two models characterized by extremely rapid
rotation (βic;b ∼ 0.16).

FIG. 16 (color online). The quantity δi ¼ Idx:½Ameas:� − Idx:½A�
as a function of βic;b, where Idx:½Ameas:� is the index of the
differential rotation parameter Ameas. inferred by the model
selection analysis, and Idx:½A� is the index of the true value of
A (e.g., Idx:½A� ¼ 2 for A ¼ A2). The upper and lower panels
display results for cases in which A for all injections is known and
unknown, respectively.
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models have δi ¼ �1, implying identification with the
closest A to that injected. Measurement of A once more
improves with increasing βic;b.
To conclude this section, we note that a directly

comparable analysis for βic;b is not possible, since, for a
given A, many parameters affect βic;b, such asΩc, EOS, and
YeðρÞ parametrization. However, a roughly analogous
analysis could be constructed in which models describe
ranges of βic;b (e.g., 0 ≤ βic;b ≤ 0.05) rather than discrete
values. This blurs the line between model selection and
parameter estimation, since the proposed models are just
subsets of one model for βic;b, rather than different models.
Instead, we try to estimate some range on βic;b, within
which it is most likely to be. Well-posed Bayesian methods
for parameter estimation typically require a continuous
analytical model describing the parameter dependence of
the system [99]. Such an analytic model (which could, e.g.,
be constructed by interpolating between discrete wave-
forms) is not presently available to us. Hence, we choose to
postpone Bayesian parameter estimation of βic;b to
future work.

VI. SUMMARY AND CONCLUSIONS

Observations of stellar surface velocities show that most
massive stars rotate and some do so with velocities close to
breakup (e.g., [100,101]). The internal distribution of
angular momentum is, however, rather uncertain and this
is true in particular for the cores of presupernova stars.
Rotation can influence the collapse, bounce, and post-
bounce dynamics and may play a role in driving the
explosion. It is thus important to understand, or, better,
measure the angular momentum distribution in the core of
massive stars. As we have shown in this paper, the
observation of GWs from the next galactic core-collapse
supernova may offer us the opportunity to do just that.
We have carried out an extensive set of axisymmetric

general-relativistic simulations of rotating core collapse to
study the influence of the angular momentum distribution
on the GW signal of rotating collapse, bounce, and the very
early postbounce ring-down phase. In total, we have
simulated 124 different models, systematically probing
the effects of total rotation (parametrized either by the
angular momentum of the homologous inner core at bounce
or by βic;b ¼ T=jWjjic;b) and the precollapse degree of
differential rotation. We have also performed simulations
with a different nuclear EOS, variations in the electron
fraction of the inner core, and increased numerical reso-
lution to test for systematic uncertainties. We have
employed a single presupernova stellar model, since we
have previously (in [38]) shown that for a given angular
momentum distribution as a function of enclosed mass,
EOS, and electron capture treatment, the universal nature of
core collapse [102,103] washes out variations due to
differences in precollapse progenitor structure.

Our results show that the overall dynamics of rotating
core collapse is rather insensitive to the precise distribution
of angular momentum within the inner core. We find that
there is a simple linear mapping between the two total
rotation measures Jic;b and βic;b and the centrifugally
enhanced mass of the inner core at bounce (Mic;b) through-
out most of the explored parameter space. Variations in the
angular momentum distribution become relevant to the
detailed dynamics of collapse and bounce only in very
rapidly rotating cases with βic;b ≳ 0.13–0.15, which corre-
sponds to an inner-core angular momentum at bounce of
Jic;b ≳ 5–6 × 1048 erg s and early postbounce density-
weighted average core spin periods of ≲8–10 ms. While
unimportant for the overall dynamics, differential rotation
does affect the structure and postbounce evolution of the
protoneutron star even in more slowly spinning cores. At
fixed total rotation at bounce, more differentially rotating
inner cores have more centrifugally deformed (oblate)
innermost regions while their overall shape is less oblate
than that of their more uniformly spinning counterparts that
have more centrifugal support at greater radii (and
enclosed-mass coordinates).
In slowly rotating models (βic;b ≲ 0.05), the degree of

precollapse differential rotation has little influence on
the GW signal and there are simple linear relationships
that allow one to map back from the amplitude of the
pronounced and easily identifiable bounce peak h1;neg to
Jic;b and βic;b: Jic;b ≈ 1048ðh1;negD=100 cmÞ erg s and
βic;b ≈ 2.3 × 10−2ðh1;negD=100cmÞ. For this purpose, the
distance D must be known with good accuracy, which is
likely for the next galactic core-collapse supernova.
The structural changes due to differential rotation

have important ramifications for the GW signal in
more rapidly spinning models with βic;b ≳ 0.05–0.08
(Jic;b ≳ 2–3 × 1048 erg s), corresponding to early post-
bounce protoneutron star spin periods of ≲12–16 ms.
More differentially rotating models yield higher global
peak GW strain amplitudes at bounce and emit more energy
in GWs. Total rotation and the degree of differential
rotation influence the values of the first three local extrema
of the GW signal, h1;pos, h1;neg, h2;pos, in a highly system-
atic way.
We have exploited this systematic dependence. Our

results show that it is possible to extract both total rotation
(both βic;b and Jic;b, since the two are simply related) and
the degree of differential rotation from a previously
unknown observed galactic rotating core-collapse GW
signal from a source at a known distance of D ¼ 10 kpc
via simple cross correlation with waveforms from a
numerical template GW signal bank created from our
model GW signals. Since more rapidly spinning cores
have a smaller contribution to their GW signals from
stochastic convective motions, this works best for rapid
rotation and our matched filtering analysis can measure
total rotation to within ∼20% for a rapidly rotating
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(βic;b ≳ 0.08, Jic;b ≳ 3 × 1048 erg s) core at D ¼ 10 kpc

that is optimally oriented with respect to a single GW
detector. Measuring total rotation is also possible for more
slowly spinning cores, though the errors may be≳25–35%.
Figure 17 shows the Jic;b inferred by our matched filtering
analysis as a function of the true Jic;b associated with each
injected waveform. The injected waveforms are not part of
the template bank used. Thus, this represents the realistic
case that the exact waveform is not known.
For rapidly rotating cores (βic;b ≳ 0.08) the differential

rotation parameter A of the employed rotation law can be
extracted with good precision (maximum offset of Ai in i is
�1). We find the same result if we instead apply principal
component analysis and Bayesian model selection for the

five choices of differential rotation parameter Ai; i ∈ ½1; 5�
that we consider in this study.
While our simulations are numerically well converged,

our tests reveal important systematic uncertainties associ-
ated with the nuclear EOS and the electron fraction Ye in
the inner core at bounce. We find that a �5% variation of
Ye or a change of the EOS from Lattimer and Swesty with
K ¼ 220 MeV [62] to the Shen et al. EOS [60,61] can
spoil the accuracy with which we can extract total and
differential rotation.
The EOS dependence of our results underlines the need

for improved nuclear EOS tables that take into account all
new experimental, observational, and theoretical EOS
constraints [104]. Future simulations of rotating core
collapse should also consider a broader range of nuclear
EOS models (e.g., [105–107]) to further explore the
sensitivity of the GW signal to the nuclear EOS.
Addressing uncertainties in the Ye of the inner core will

ultimately require full neutrino radiation-hydrodynamics
simulations with up-to-date electron capture rates for heavy
nuclei (e.g., [108]), full velocity dependence, and inelastic
neutrino-electron scattering, which all have an effect on the
Ye in the inner core (e.g., [109]). Such simulations, while
computationally extremely intense, are possible now, for
example, with the radiation-hydrodynamic variant of the
COCONUT code developed by B. Müller [110].
In this study, we have broken entirely new ground by

combining precision computational waveform modeling
with methods of GW astronomy. We have given the proof
of principle that information on both total and differential
rotation can be extracted, or at least constrained, from the
GW signal of the next galactic core-collapse event. Future
work must address our study’s many deficiencies. The most
important of these may be the following: (i) Although
axisymmetry is an excellent approximation for collapse,
bounce, and ring-down oscillations for rotating axisym-
metric progenitors, the subsequent postbounce evolut-
ion (not considered in this work) is likely to exhibit
nonaxisymmetric features in the GW signal [40–42].
Moreover, Kuroda et al. have argued that nonaxisymmetric
perturbations in the inner core may alter the bounce and
postbounce gravitational wave signal. It is presently unclear
if such perturbations are present in the core, but they are
likely to be present in the shell burning layers surrounding
the core [11,111], which are irrelevant for the GW signals
studied here. (ii) We considered only a single rotation law,
but realistic cores of massive stars do not necessarily follow
it. (iii) We assumed optimal source-detector alignment and
only a single detector with Gaussian noise. A real core-
collapse event is unlikely to be optimally aligned, but a
network of second-generation detectors can mitigate
reduced signal strength due to misalignment. (iv) We
assumed the distance to the source to be known precisely.
For a real core-collapse event, the distance is unlikely to be
known exactly. (v) Our treatment of electron capture during

FIG. 17 (color online). Results of our matched filtering analysis
(Sec. VA) for the angular momentum of the inner core at bounce
(Jic;b). Top panel: Extracted Jic;b as a function of Jic;b corre-
sponding to the injected waveform. Bottom panel: relative
measurement error. This analysis assumes optimal source-detec-
tor orientation and a source distance of 10 kpc. The different
symbols correspond to models with different degree of differ-
ential rotation as given by the legend. The A1s models are A1
models, but evolved with the Shen et al. EOS [60,61], and the
A1m (A1p) models used a YeðρÞ parametrization during collapse
that was reduced (increased) by 5% near nuclear density
compared to the fiducial one. Our results show that—in the
optimal case considered here—one can measure the angular
momentum of the inner core at bounce with ∼20–30% accuracy
for a rapidly spinning galactic core-collapse supernova.
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collapse relies on a single-parameter density fit of YeðρÞ
from spherically symmetric radiation-hydrodynamics sim-
ulations. Rapid rotation may lead to significant deviations
from such simple fits in full two-dimensional radiation-
hydrodynamics simulations and this could have a signifi-
cant quantitative effect on the predicted GW signals.
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APPENDIX: YeðρÞ PARAMETRIZED
DELEPTONIZATION SCHEME

Following [77], we use the following fitting function to
model the functional dependence of Ye on ρ:

Ye ¼
1

2
ðYe;1 þ Ye;1Þ þ

x
2
ðYe;1 − Ye;1Þ

þ Ye;c½1 − jxj þ 4jxjðjxj − 1=2Þðjxj − 1Þ�; ðA1Þ

where

x ¼ max

�
−1;min

�
1;
2 log ρ − log ρ2 − log ρ1

log ρ2 − log ρ1

��
ðA2Þ

and ρ1¼ 107 gcm−3, ρ2 ¼ 1013 g cm−3, Ye;1 ¼ 0.5, Ye;2 ¼
0.29, and Ye;c ¼ 0.035. When density ρ is above ρ2, we
make the following correction to Ye:

Ye ¼ Yeðρ2Þ þ
log ρ − log ρ2
log ρcor − log ρ2

½Ye;cor − Yeðρ2Þ�; ðA3Þ

where ρcor ¼ 2.55 × 1014 g cm−3 and Ye;cor is chosen to be
0.2717 for our fiducial YeðρÞ parametrization. In our 5%
reduced (increased) YeðρÞ parametrization, we use a 5%
smaller (larger) value of Ye;cor.
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