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In real-time lattice simulations of cosmic strings in the Abelian Higgs model, the broken translational
invariance introduces lattice artifacts; relativistic strings therefore decelerate and radiate. We introduce two
different methods to construct a moving string on the lattice, and study in detail the lattice effects on
moving strings. We find that there are two types of lattice artifact: there is an effective maximum speed with
which a moving string can be placed on the lattice, and a moving string also slows down, with the
deceleration approximately proportional to the exponential of the velocity. To mitigate this, we introduce
and study an improved discretization, based on the tree-level Lüscher-Weisz action, which is found to
reduce the deceleration by an order of magnitude, and to increase the string speed limit by an amount
equivalent to halving the lattice spacing. The improved algorithm is expected to be very useful for 3D
simulations of cosmic strings in the early Universe, where one wishes to simulate as large a volume as
possible.
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I. INTRODUCTION

Numerical simulations of the classical Abelian Higgs
model [1–6] have been extensively used to understand the
dynamics of cosmic strings [7–9]. Of particular importance
is the derivation of accurate and reliable predictions for
cosmic microwave background perturbations [5,6], espe-
cially of the string-induced B-mode polarization power
spectrum [10] now that a B-mode signal has been detected
at multipoles below 100 [11,12].
In such simulations, the aim is to run at large enough

volumes and for long enough times that the late-time
“scaling” behavior of the string network becomes manifest,
and the unequal time correlation functions of the energy-
momentum tensor can be measured over as wide a range of
scales as possible.
The key parameter to be maximized is the dynamic

range, the ratio between the simulation size L and the string
width rs, while adequately resolving the string with lattice
spacing a. As the simulation is run for half the light-
crossing time, the computational cost goes as the fourth
power of the lattice size N ¼ ðL=aÞ. The smaller the ratio
rs=a, the less the computational cost for a given dynamic
range. It is therefore important to know how small the ratio
rs=a can be, and to have a good understanding of the
artifacts introduced by the lattice.
The lattice artifacts are introduced because momentum is

not conserved on the lattice, due to the violation of

translation invariance. Total energy conservation is gen-
erally not a problem, as the evolution is time symmetric (at
least in Minkowski space), and using a time-symmetric
integration algorithm such as leapfrog (velocity Verlet) will
ensure that there is a conserved quantity which approx-
imates the energy and approaches it as the lattice spacing
goes to zero.
The violation of translation invariance has two effects.

First, the total momentum is not conserved, and momentum
is lost to the lattice. Second, a moving string can emit
radiation as it moves on the lattice, and the string
decelerates. We focus on the violation of momentum
conservation for moving strings, finding that the lattice-
induced deceleration depends very strongly on the string’s
velocity.
We identify two distinct deceleration phases. First, there

is a burst of radiation, which seems to be associated with
there being a maximum speed for a string on the lattice:
attempting to insert a faster string results in a rapid
readjustment of the fields into a string moving at the
maximum speed and some approximately collinear radia-
tion. Second, there is a slower velocity-dependent decel-
eration, whose functional form can be usefully
approximated as exponential in the range of mildly rela-
tivistic velocities (0.2≲ v≲ 0.9) relevant for cosmic string
network simulations. The exponential form can also be
seen in the deceleration observed in kinks on the lattice in
the sine-Gordon and ϕ4 models [13,14], and is presumably
related.
Finally, below a certain (very small) threshold velocity,

strings are unable to overcome the small potential barrier
(the Peierls-Nabarro barrier [15,16]) pinning them to the
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lattice, and they remain stuck, oscillating around the
pinning site.
It is possible to eliminate the Peierls-Nabarro barrier for

(1þ 1)-dimensional kinks by changing the lattice discre-
tization [17,18], but a similar approach does not work for
the Abelian Higgs model [19]. In cosmological simula-
tions, strings generally move much faster than the threshold
velocity, and we do not investigate the barrier further.
However, the other lattice artifacts are potentially serious,

motivating the introduction of an improved discretization of
the equations of motion. We present an improvement with
errorOða4Þ, whose effect is to increase the maximum speed
the string can move on the lattice, and to reduce the
characteristic deceleration at a given speed. The increase
in the maximum speed is approximately equivalent to
halving the lattice spacing, while the late-time deceleration
is reduced by an order of magnitude. The computational
cost of the improved equation of motion adds about 50% to
the run time, which promises a significant net saving in total
cost of a simulation with a given accuracy.
This paper is organized as follows: we first discuss lattice

implementations of the Abelian Higgs model, with and
without improvement. In Sec. III, we discuss creating
stationary and moving strings on the lattice. We then
discuss the details of our simulations in Sec. IV, presenting
our results and analysis in Sec. V. We conclude in Sec. VI.

II. ABELIAN HIGGS MODEL ON THE LATTICE

Cosmic strings are solutions of the system whose
Lagrangian density has the form

L ¼ −
1

4
FμνFμν þ ðDμϕÞ�ðDμϕÞ

þm2ϕ�ϕ − λðϕ�ϕÞ2 −m4

4λ
ð1Þ

where ϕ is a complex scalar Higgs field, Dμ ¼ ∂μ þ igAμ

the gauge covariant derivative, Fμν is the electromagnetic
tensor, and m2 > 0, putting us in the broken phase.
The corresponding equations of motion for fields in

continuum are

DμDμϕþ ϕð−m2 þ 2λϕ�ϕÞ ¼ 0 ð2Þ

∂νFμν þ igðϕ�ðDμϕÞ − ðDμϕÞ�ϕÞ ¼ 0: ð3Þ

In classical lattice field theory, the discretization of this
system is not unique. The only requirement is that the
discretized system has the correct continuum limit; i.e. we
obtain the continuum equations of motion as the lattice
spacing, which we denote with a, vanishes. In the standard
discretization, which has generally been used in network
simulations [5], the lattice errors vanish as Oða2Þ. In this

work we compare the standard discretization with the
improved one, which has only Oða4Þ errors.
We apply the temporal gauge condition A0 ¼ 0 and the

time evolution of the system is carried out on a discrete
lattice; the fields are evolved according to the discrete
Hamiltonian equations of motion [2]. We absorb the gauge
coupling in the gauge field, gAi → Ai. As usual, the scalar
fields are defined on the lattice sites x and gauge fields on
the links between lattice sites. We relate the parallel
transporter to the lattice and continuum gauge fields
through the expression [20]

UiðxÞ ¼ exp½−iaAlatt
i ðxÞ�

¼ exp

�
−i

Z
a

0

dϵAcont
i ðxþ ϵ{̂Þ

�
: ð4Þ

This form is required when the Oða2Þ improved
Hamiltonian is derived. From now on, we only use the
lattice gauge field Alatt

i and drop the label from it.
The lattice Hamiltonian can be expressed as

H¼
X
x

a3
�X

i

1

2
EiðxÞ2þΠ�ðxÞΠðxÞþF2ðxÞ

−ϕ�ðxÞΔ2ϕðxÞ−m2ϕ�ðxÞϕðxÞþλðϕ�ðxÞϕðxÞÞ2þm4

4λ

�

ð5Þ

where the summation is over all lattice sites. Ei and Π are
momenta conjugate to Ai and ϕ, respectively. We have
denoted lattice gauge field strength with F2 and the Laplace
operator with Δ2. In the standard discretization they are

F2
stðxÞ ¼

X
i<j

1

2a2
ðθ1×1ij ðxÞÞ2 ð6Þ

Δ2
stϕðxÞ ¼

X
i

1

a2
½U�

i ðx − a{̂Þϕðx − a{̂Þ

− 2ϕðxÞ þUiðxÞϕðxþ a{̂Þ�; ð7Þ

where {̂, |̂, etc. are unit vectors on the lattice. Here
θ1×1ij ðxÞ ¼ aAiðxÞ þ aAjðxþ a{̂Þ − aAiðxþ a|̂Þ − aAjðxÞ
is the 1 × 1 plaquette in the noncompact representation,
which is what we use in this work. When summed over all
lattice sites the error of these expressions is of order a2; for
example

P
xa

3F2
stðxÞ ¼

R
d3x 1

4
FijFij þOða2Þ.

In the improved discretization new terms are added to
cancel Oða2Þ errors [20–22] (see also Ref. [23]1). For the
gauge field we use the tree-level Lüscher-Weisz action [20]:

1The authors of Ref. [23] state that Oða2Þ discretization errors
are not fully canceled when using the Lüscher-Weisz action. This
is due to their interpretation of the lattice parallel transporter as
UiðxÞ ¼ exp½−iaAcont

i ðxþ aî=2Þ�, instead of Eq. (4).
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F2
imðxÞ ¼

1

2a2
X
i<j

�
5

3
ðθ1×1ij ðxÞÞ2

−
1

12
ððθ1×2ij ðxÞÞ2 þ ðθ2×1ij ðxÞÞ2Þ

�
ð8Þ

where the 1 × 2 rectangles can (in the case of an Abelian
gauge group) be conveniently constructed from the
plaquettes

θ1×2ij ðxÞ ¼ θ1×1ij ðxÞ þ θ1×1ij ðxþ a{̂Þ
θ2×1ij ðxÞ ¼ θ1×1ij ðxÞ þ θ1×1ij ðxþ a|̂Þ; ð9Þ

see Fig. 1. For the lattice Laplace operator we include next-
to-nearest neighbor contributions

Δ2
imϕðxÞ ¼

1

a2
X
i

�
−

1

12
UiðxÞUiðxþ a{̂Þϕðxþ 2a{̂Þ

þ 4

3
UiðxÞϕðxþ a{̂Þ − 5

2
ϕðxÞ

þ 4

3
U�

i ðx − a{̂Þϕðx − a{̂Þ

−
1

12
U�

i ðx − a{̂ÞU�
i ðx − 2a{̂Þϕðx − 2a{̂Þ

�
: ð10Þ

The corresponding discrete equations of motion of the
fields are

_ϕðxÞ ¼ ΠðxÞ ð11Þ

_AkðxÞ ¼ EkðxÞ ð12Þ

_ΠðxÞ ¼ −δH=δϕ�ðxÞ
¼ Δ2ϕðxÞ − ð−m2 þ 2λϕ�ðxÞϕðxÞÞϕðxÞ ð13Þ

_EkðxÞ ¼ − δH=δAkðxÞ: ð14Þ

In the standard discretization the last expression is

−
δHst

δAkðxÞ
¼ −

2

a2
Im½ϕ�ðxÞUkðxÞϕðxþ ak̂Þ�

−
X
i≠k

½θkiðxÞ − θkiðx − a{̂Þ�: ð15Þ

In the improved discretization the expression is lengthy,
and given in Appendix A.
As a consequence of the gauge invariance and conserved

current the Gauss law

GðxÞ ¼
X
j

ðEjðxÞ − Ejðx − a|̂ÞÞ þ 2Imðϕ�ðxÞΠðxÞÞ ¼ 0

ð16Þ
is satisfied exactly on lattice, up to machine precision,
as long as the initial condition satisfies it. One can also
easily verify that this quantity is a constant of motion on
the lattice, by calculating its Poisson bracket with the
Hamiltonian.
The translation and Lorentz invariance of the continuum

system are broken on the lattice, which causes the energy-
momentum relation to differ from that in the continuum.
The dispersion relation of the free theory on the lattice is,

in the standard discretization,

EðkÞ2 ¼ 4

a2
sin2

�
ka
2

�
þm2 ¼ 2

a2
ð1 − cosðkaÞÞ þm2:

ð17Þ
With improved discretization on the lattice the free

dispersion relation becomes

EðkÞ2 ¼ 1

a2

�
5

2
−
8

3
cosðkaÞ þ 1

6
cosð2kaÞ

�
þm2; ð18Þ

which is closer to the continuum dispersion relation than
with standard discretization, particularly when π

2a < jkj < π
a

(see Fig. 2). From the dispersion relation, one can obtain
the group velocity vgroup ¼ dEðkÞ=dk. On the lattice there
exists a maximum group velocity, which is less than unity.
We shall see that—on the lattice—the maximum velocity
that string can acquire is in fact slightly more than
maximum group velocity (see Fig. 5).

FIG. 1. Combinations of plaquettes used in constructing the
improved lattice action and equations of motion.
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Finally, we note that during the course of the simulations
we want to keep track of the total momentum on the lattice,
and more specifically the momentum of the moving string.
We construct the momentum density operator on the lattice,
Pi ¼ T0i, to the same order of accuracy as for the
Hamiltonian. These operators are described in Appendix A.

III. CREATING A MOVING STRING

In order to gain information about velocity and energy
loss of the strings in a large-scale string network simu-
lation, we study a system with only one isolated moving
string. The first lattice simulations of moving strings [1,2]
form the starting point of our own investigation.
We outline the method used in Ref. [2] in Appendix C.

However, it involves a lot of distinct stages of numerical
evaluation: one needs to find the stationary string profile in
continuum numerically, then apply both the gauge and
Lorentz transformations numerically, before finally discre-
tizing the resulting numerical solution on the lattice.
Instead, we have adopted a method of creating the

isolated moving string solution directly on the lattice, with
no extra numerical work required.

A. Anisotropic lattice boosting

Wemust first discuss how to construct a single stationary
string on the lattice. To do so, one simply adds an artificial
2π term, the so-called “twist,” to one plaquette on each x-y
plane every time the plaquette is calculated [24]. This
corresponds to a magnetic flux of 2π through that plaquette
and, since the boundary conditions are chosen to be
periodic on the lattice, the total flux through the system
vanishes. The field configuration must therefore cancel the
twist, and the minimum energy configuration which does
this is the stationary string, which of course has magnetic
flux −2π through it.

We can verify this by computing the winding number for
a configuration [25]. We define

YiðxÞ ¼ AiðxÞ − ½AiðxÞ þ γðxþ {̂Þ − γðxÞ�π; ð19Þ

where γðxÞ ¼ argϕðxÞ and ½X�π ∈ ð−π; π�. The winding nC
for a closed curve C of links is then

nC ¼ 1

2π

X
l∈C

Yi; nC ∈ Z: ð20Þ

An isolated stationary string can be created by adding the
twist to one plaquette and minimizing the total energy of
the system. In order to minimize the energy of the system,
the standard gradient descent method can be used. In the
minimum energy state the canonical momenta fields Π and
Ek vanish, so they can be initialized to zero in the
minimization. The Gauss law is then trivially satisfied.
We have investigated two different ways of creating the

boosted string directly on the lattice.
We first tried to minimize the energy of the system

subject to a constraint on the total momentum. This was
slower and less successful than the technique described
below. However, it yields useful insights into the behavior
of relativistic strings on a discrete lattice, and is discussed
in detail in Appendix C.
The quicker and more efficient method to create the

moving string is to apply the gradient descent method to an
anisotropic lattice, and initialize the field momenta to the
appropriate values for a translating Lorentz-contracted
object.
To sketch how this works, let us choose that the string

shall be boosted in the x direction. Then, in the minimi-
zation phase we use a lattice with points ðaγnx; any; anzÞ≡
ðγx; y; zÞ where ni’s are integers and γ is the Lorentz factor,
corresponding to the desired initial velocity of the string vb.
This is illustrated schematically in Fig. 3. We minimize the
energy of the stationary string on this anisotropic lattice as
usual. We then place the resulting fields on an isotropic
lattice with coordinates ðanx; any; anzÞ≡ ðx0; y; zÞ and
initialize the canonical momenta to

Πðx0; 0Þ ¼ −γvbD1ϕðxÞ
E1ðx0; 0Þ ¼ 0

E2ðx0; 0Þ ¼ γvbF21

E3ðx0; 0Þ ¼ γvbF31; ð21Þ

where we understand the right-hand side in terms of lattice
derivatives and fields. After a transformation to temporal
gauge, this procedure generates a string configuration on
the lattice with a Lorentz boost in the x direction. Technical
details can be found in Appendix B.
Note that the values of the lattice fields ϕ and Ak are the

same on both lattices, which means the parallel transporters

0 π/2a π/a
k

0

4

8

E
(k

)2
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C
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m
FIG. 2. The dispersion relation for scalar excitations in the
free theory. The continuum result, EðkÞ2 ¼ k2 þm2, is shown,
along with the standard and improved discretizations discussed
extensively here.
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are unaffected. It also means that boundary conditions are
automatically satisfied; the twisted plaquette is also unaf-
fected. The plaquettes do change however, as they are
multiplied by the factor γ−1.
Gauss law violations are automatically small. In the

continuum, after the boost, the Gauss law is of the form
GðxÞ ¼ vbγ _E1ðxÞ, but since E1ðxÞ ¼ 0 for all x after the
gauge transformation, G vanishes for all x. On the
lattice there are small violations. We find that locally,
a6GðxÞ2 ≲ 10−9 near the core, and thus the violations can
be ignored.
Note that the discreteness of the lattice can prevent the

string configuration from becoming sufficiently narrow as a
consequence of the boost, if either the final lattice spacing
or the desired initial velocity are too large. As a conse-
quence, the lattice effects will depend on both the lattice
spacing and the boost velocity vb.
A snapshot of the scalar field at the initial time, showing

the Lorentz contracted string, can be seen in Fig. 4 for
vb ¼ 0.75 and 0.95. However, one can also observe that

even though the string is Lorentz contracted, the scalar field
is not sufficiently deep as its modulus is far from zero at the
core. For vb ¼ 0.95 in particular, only after the string has
moved a while and slowed down does the modulus of the
scalar field approach zero at the core. This shows that the
lattice is unable to support highly relativistic strings if
lattice spacing is too large.

IV. SIMULATION DETAILS

In the simulation, we use parameters that have previously
been used for large-scale string network simulations [5],
namely λ ¼ 0.5 andm ¼ 0.5. Having set the lattice spacing
to unity, m2 is the only dimensionful parameter in the
theory and it determines the length scale. Note that the time
step is also in units of the lattice spacing. Keeping the
physical size in the x-y plane constant we carried out
simulations at two lattice spacings: ma ¼ 0.5, L ¼ 256
and ma ¼ 0.25, L ¼ 512. Since the isolated string solution
is cylindrically symmetric, one only needs to simulate a
thin slice in the z direction, which is computationally
inexpensive. In both cases we used a thin L × L × 2 lattice.
The two-site extent of the z direction is for ease of
implementation rather than physical reasons.
As discussed above, each run consists of two phases.

First, we have a minimization phase where we create the
string on the asymmetric lattice using the method outlined
above. After removing the asymmetry and carrying out the
required gauge transformation, we use leapfrog integration
with aδt ¼ 0.02. We use periodic boundary conditions so
the simulations are run for no longer than one half light
crossing time.
Depending on whether the improvements are used or not,

the total energy and momentum are obtained using the

FIG. 3 (color online). Schematic illustration of the Lorentz
contraction of the string configuration on the lattice, as a
consequence of the anisotropic lattice boosting. After the isotropic
lattice is restored, one still needs to apply a gauge transformation.

FIG. 4 (color online). Scalar field configuration during the initial transient stages of the real-time evolution, for ma ¼ 0.5 and
vb ¼ 0.95 and 0.75. For clarity only 64 × 64 lattice sites in the vicinity of the string’s initial position are shown. For vb ¼ 0.95, the
contracted string is initially not “deep” enough: the modulus of the scalar field is still far from zero, since the coarse lattice spacing limits
how narrow the string can be. Only after the string starts moving and begins to slow down does the contraction reduce enough for the
string to fit on the lattice. This effect is much less pronounced in the vb ¼ 0.75 case.
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appropriate expressions. Measurements of the worst-case
local Gauss law violation a6GðxÞ2 do not change if
improvement is used.
In order to measure the velocity of the string we need to

determine its instantaneous location rðtÞ on the lattice. This
can be measured either by determining the plaquette with
maximum winding using Eq. (20), or by finding the
minimum of the scalar field modulus [24]. The results
from both of these strategies agree well. Either way, the
location of the string takes integer values. We improve upon
this basic measurement by fitting a quadratic interpolating
function to the modulus of the scalar field on three points
around the minimum and locating the minimum of the fit.
Nevertheless, the measurement of the location still contains
lattice scale ambiguities which make its time derivative
very noisy. This can be cured by performing a running
Gaussian average of the location, i.e. convolving

r̄ðtÞ ¼ 1

τ
ffiffiffiffiffiffi
2π

p
Z

dt0rðt0Þe−ðt−t0Þ2=ð2τ2Þ ð22Þ

and defining the smoothed velocity as vðtÞ ¼ dr̄=dt. Here τ
is chosen so that the string moves over at least a few lattice
sites in time τ, i.e. τ ≫ t=v. The evolution of vðtÞ over large
time intervals is insensitive to the value of τ used.
The mass of the string is measured from the energy

difference of the system with one stationary string and
minimum energy of the system; in other words the response
to the 2π twist. We have normalized the potential energy by
adding the term m4=4λ to the potential in the Hamiltonian,
Eq. (5). Therefore the mass of the string is simply the
energy of the stationary string.
From the field configurations (shown in Fig. 4) it can be

observed that a rapidly moving string emits quite a lot of
radiation. In order to determine the energy and momentum
carried by the radiation, we track the string’s position and
measure the energy and momentum remaining within a
given radius at a given time. This is defined initially as the
smallest integer radius R such that at least 99% of the total
energy lies inside. With our choice of parameters, R ¼ 4.
The energy of the string at a given time is then defined to be
the amount of energy remaining within distance R of the
string. The energy in radiation is then the energy of
the string subtracted from total energy. One can define
the momentum of the string (and radiation) in a similar
way. Note that we use the unimproved quantities for the
string energy and momentum, Eqs. (5)–(7) and (A4).
The energy and momentum measured around the loca-

tion of the string, as discussed above, agree well with the
corresponding quantities measured from the velocity of the
string, γM and γMv (see Figs. 6 and 7).

V. RESULTS

As the string moves on the lattice, it slows down, losing
energy and momentum. This occurs through two separate

mechanisms. Firstly, momentum is lost “to the lattice” as
the total momentum is reduced. Second, the string radiates
away energy and momentum. The total energy of the
system is, however, well conserved. The higher the initial
velocity of the string, and the larger the lattice spacing, the
more severe these artificial lattice effects are.
We have studied this behavior extensively for an iso-

lated, boosted, string moving on the lattice. In Figs. 6 and 7
we show the momentum and energy for a system with a
relativistic boost to vb ¼ 0.95. We show the totals, and
separate out the parts associated with the string. Two
different lattice spacings are shown, as well as the effects
of the improvement discussed in Sec. A. In Figs. 8 and 9 we
show the time series of the string momentum and velocity
for a range of boost velocities vb between 0.75 and 0.95.
As the string moves on the lattice, it slows down, and we

can identify two different phases.
In the initial phase, the string emits a heavy burst of

radiation in the direction of movement—this can be seen
clearly in Fig. 4. It is also noticeable in Figs. 6–9, as in the
initial phase the energy and momentum of the radiation
increase dramatically.2

The string emerges from this burst of radiation moving
more slowly than the boost velocity vb. In Fig. 5 we plot vb
against the velocity at mt ¼ 2, after the radiation burst has
had time to separate from the string. We see that for the
coarsest lattice and the standard Hamiltonian, the velocity
at mt ¼ 2 shows signs of asymptoting to a maximum. We
can conclude that, when considering the maximum string
velocity on the lattice, the improvement of the Hamiltonian
is approximately equivalent to halving the lattice spacing.
We do not have a thorough understanding of the

maximum. It is associated with the lattice being too coarse
to accommodate the Lorentz contracted string, and we
envisage two possible routes towards an explanation.
Firstly, when wave modes with large k interact, the sum
of the wave vectors might be outside the first Brillouin zone
and momentum is no longer conserved, analogous to
Umklapp scattering in solid state physics. Second, the
string can be thought of as behaving like a wave packet
(even though it is not a superposition of linear waves), and
there is a maximum group velocity on the lattice. For
comparison we have indicated the maximum group veloc-
ity of a wave packet with the dispersion relations given in
Eqs. (17) and (18). While the values are not close, it is
interesting that the relative ordering is the same.
After the transient phase, the system loses its total

momentum in a more predictable manner. The string also
emits radiation in the second phase, but the emission is
more isotropic. This can be inferred from Figs. 6 and 7,

2Due to the definition of the momentum and the energy of the
string with a fixed radius around the string location, the energy
and the momentum of the radiation do not increase right from the
start, as the radiation needs to first escape from this radius.
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where one observes that the momentum in the radiation
increases much more slowly than its energy. This feature is
clearest at the coarsest lattice spacing, ma ¼ 0.5. The finer
lattice spacing reduces the total loss of momentum, and the
slow increase in the momentum of the radiation shows that
it is more aligned with the string motion.

In Figs. 8 and 9 the string momentum and velocity time
series show the effect of the lattice spacing and improve-
ment, as a function of boost velocity. The small oscillations
are a result of the string moving between lattice points. We
see that at late times, the lines accumulate, which indicates
some kind of universal behavior.
This can be seen very clearly if one plots the deceleration

−dvðtÞ=dt against the velocity vðtÞ, as in Fig. 10. The
velocity and deceleration have been determined using the
Gaussian smoothing, as described in Eq. (22). For faster
initial velocities, the deceleration is sufficiently large so
that we can follow the evolution of the deceleration over a
wide range of velocities. These are shown as continuous
lines in Fig. 10. For slower velocities, the deceleration does
not appreciably change during the run, and these are shown
as isolated points. Crucially, it is evident that the data
obtained with a given discretization and parameters fall on
a single line, independent of the initial velocity (after the
nonuniversal settling down period).
Indeed, the deceleration line is approximately exponen-

tial in v,

dv
dt

≈ Aceðv−1Þ=vc ; ð23Þ

in all cases in the range of velocities studied. The fit
parameters Ac and vc for the two discretizations and two
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FIG. 5 (color online). Early times velocity (at mt ¼ 2) of the
string as function of the boost velocity, an input parameter. On a
coarse lattice the initial velocity deviates from the boost velocity
at high velocities. By this measure, the effect of improvement on
the initial velocity is almost as good as halving the lattice spacing.
The maximum group velocities are also shown for the four cases
under consideration; these appear to be rather less than the actual
velocities.
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FIG. 6 (color online). Time series of momenta at boost velocity vb ¼ 0.95. Total momentum is given by Eq. (A4) in unimproved cases,
and by Eq. (A5) in the improved cases. String and radiation momenta are defined at the end of Sec. IV. For comparison purposes, the
desired momentum γMvb is shown, as well as momentum estimated from γMv, which agrees well with our definition of string
momentum (after the initial burst of radiation has left the immediate vicinity of the string). With improvement and a smaller lattice
spacing, the system acquires more momentum initially, so the initial velocity of the string is closer to the boost velocity (compare with
Fig. 5). At smaller lattice spacings, the emitted radiation is better aligned with the string movement, which is why the radiation
contribution is greater in the ma ¼ 0.25 cases.
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FIG. 7 (color online). As Fig. 6 but for energies instead of momenta. The mass of the string is also shown. One observes that the string
loses a significant amount of its kinetic energy due to lattice artifacts. With improvement and smaller lattice spacing, the amount of
radiation decreases (although Fig. 6 suggests the radiation is then better aligned with the string).
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lattice spacings are shown in Table I, and the resulting
curves shown as dashed lines on the plots.
Qualitatively similar behavior has been observed for

moving kinks in the (1þ 1)-dimensional sine-Gordon
model on the lattice [13]. The authors of Ref. [13] derive
an analytical model of the deceleration of the kink, in terms
of radiation produced as the moving kink is perturbed by
the lattice. At v > 0.3, the deceleration is seen to be nearly
exponential in v; see Fig. 7 in [13]. At smaller v the
deceleration dv=dt develops steplike discontinuities in v.
Similar discontinuities may appear for strings at smaller v
than we study here; however, with our parameters the
deceleration will be utterly negligible in practice at these
velocities.
Integrating Eq. (23), we obtain for the velocity

vðtÞ ¼ 1 − vc ln

�
eð1−v0Þ=vc þ Act

vc

�
; ð24Þ

where v0 is the initial velocity at time t ¼ 0. The solution
closely follows the vðtÞ measurements in Fig. 9.
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FIG. 8. Time series for the string momenta with boost velocities vb ¼ 0.95; 0.9; 0.85; 0.8 and 0.75 respectively from top to bottom. For
mt ≲ 10, the string experiences a transient phase, where momentum is lost rapidly to the lattice and radiation. After this, momentum is
lost steadily.
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FIG. 9. As Fig. 8 but for velocity instead of momentum. As seen already in Fig. 5, the initial velocity achieved by the string is smaller
than the “input” boost velocity. In the case of standard discretization andma ¼ 0.5, after at ¼ 100 the maximum velocity of the string is
less than 0.68, which indicates that the lattice does not support highly relativistic strings.
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FIG. 10 (color online). The deceleration −dv=dt plotted against
the velocity v of the string, for standard and improved discre-
tization and for ma ¼ 0.5 and 0.25. After initial settling down
(shown as hooks at some initial velocities) the deceleration settles
on universal curves. At small v the deceleration evolves too
little on the course of the run to be visible on the plot, and we
substitute the curves with plot symbols (circles for standard,
squares for improved discretization). The dashed lines show the
phenomenological fits, Eq. (23).

TABLE I. The parameters of the fit to data using Eq. (23).

Standard Improved

ma vc Ac=a vc Ac=a

0.5 0.038 1.5 0.040 0.15
0.25 0.018 0.95 0.016 0.039
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The significance of the improvement is obvious. For a
fixed v, the improvement makes the deceleration about
1 and 2 orders of magnitude smaller at ma ¼ 0.5 and 0.25,
respectively. Alternatively, one can say that the improved
discretization supports velocities greater by about 0.1 at the
same deceleration. Improvement does not produce as big an
effect as halving the lattice spacing.
Our results are important for 3D lattice simulations of

cosmic strings, where high velocity regions can arise near
cusps (regions where the tangent vector along the string
vanishes [7,8]). In these regions, the string can be expected
to lose energy and momentum as it moves, particularly as it
approaches the maximum velocity illustrated in Fig. 5.
As we have seen, these lattice artifacts can be reduced by

using smaller lattice spacing and by using the improved
discretization. Which method to use depends on the
memory constraints relative to the increased wall time.
The improved discretization uses a factor of about 1.5 more
CPU time, while taking the same amount of memory. String
network simulations are usually memory constrained,
which means it is worthwhile to use the improvement.

VI. CONCLUSIONS

In this article we studied lattice artifacts on moving
strings in the Abelian Higgs model, and presented an
improved algorithm for the numerical solution of the field
equations. We also found a new procedure for generating
moving strings on the lattice, by gradient descent on an
anisotropic lattice, and identified shortcomings with meth-
ods based on minimization with a momentum constraint.
The lattice artifacts affect the strings in two principal

ways: first, there is a maximum speed with which a boosted
string can be placed on the lattice, and second, the string
decelerates as it moves, losing momentum to the lattice, and
also emitting momentum-conserving radiation. If one
attempts to insert a string with too large a boost velocity,
it loses its momentum rapidly and emits a burst of collinear
radiation. After this follows a phase where the string
decelerates more steadily, at a rate approximately propor-
tional to the exponential of the velocity.
The more relativistic the string is, the worse it experi-

ences the lattice artifacts. The transient “burst” phase was
argued to be a consequence of the highly contracted
relativistic string being too narrow to fit, and as the lattice
is made finer, the lattice artifacts naturally become less
severe. In the steady deceleration phase, the string loses its
energy and momentum to more isotropic radiation, through
a mechanism which was argued to be similar to that seen in
moving kinks in one spatial dimension [13,14].
With the improved algorithm, the maximum speed with

which strings can move on the lattice was increased by an
amount equivalent to halving the lattice spacing, and the
subsequent deceleration decreased by an order of magni-
tude. The improved algorithm uses no more memory, and is
only approximately a factor 1.5 slower, so it is expected to

be of great utility for large-scale numerical simulations in
three dimensions. In particular, we expect it to be very
important for applications where accurate values of the
momentum density are required, such as the correlation
functions of the vorticity [5,6].
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APPENDIX A: DETAILS OF IMPROVED
DISCRETIZATION

In this appendix we give the improved discretization
expressions for δH=δAkðxÞ, Eq. (14), and the momentum
density operators Pi ¼ T0i.
δH=δAkðxÞ receives contributions from all terms in the

Hamiltonian which include the lattice link in the kth
direction from point x. For the standard discretization,
δH=δAkðxÞ is given in Eq. (15). For the improved dis-
cretization we can write it as a sum of scalar and gauge
contributions,

δHim

δAkðxÞ
¼ δHscalar

δAkðxÞ
þ δHgauge

δAkðxÞ
ðA1Þ

where the scalar part is

−
δHscalar

δAkðxÞ
¼ −

8

3
Imðϕ�ðxÞUkðxÞϕðxþ k̂ÞÞ

þ 1

6
Imðϕ�ðx − k̂ÞUkðxÞUkðx − k̂Þϕðxþ k̂ÞÞ

þ 1

6
Imðϕ�ðxÞUkðxÞUkðxþ k̂Þϕðxþ 2k̂ÞÞ

ðA2Þ

and the gauge field part

−
δHgauge

δAkðxÞ
¼

X
i≠k

�
−
5

3
½θ1×1ki ðxÞ − θ1×1ki ðx − {̂Þ�

þ 1

12
½θ1×2ki ðxÞ þ θ1×2ki ðx − k̂Þ

− θ1×2ki ðx − k̂ − {̂Þ − θ1×2ki ðx − {̂Þ

þ θ2×1ki ðxÞ − θ2×1ki ðx − 2{̂Þ�
�
: ðA3Þ

The momentum density operator Pi ¼ T0i is, in the
standard discretization and suitably symmetrized,
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Pst;iðxÞ ¼ ReðΠ�ðxÞ½UiðxÞϕðxþ {̂Þ −U�
i ðx − {̂Þϕðx − {̂Þ�Þ

þ 1

4

X
j≠i

fEjðxÞ½θ1×1ij ðxÞ þ θ1×1ij ðx − {̂Þ�

þ Ejðx − |̂Þ½θ1×1ij ðx − |̂Þ þ θ1×1ij ðx − {̂ − |̂Þ�g:
ðA4Þ

In the improved discretization, we again split the operator
into scalar and gauge parts, Pim;i ¼ Pscalar;i þ Pgauge;i,
where

Pscalar;iðxÞ

¼ 2Re

�
Π�ðxÞ

�
2

3
½UiðxÞϕðxþ {̂Þ −U�

i ðx − {̂Þϕðx − {̂Þ�

−
1

12
½UiðxÞUiðxþ {̂Þϕðxþ 2{̂Þ

−U�
i ðx − {̂ÞU�

i ðx − 2{̂Þϕðx − 2{̂Þ�
��

and the gauge part

Pgauge;iðxÞ ¼
1

2

X
j≠i

½EjðxÞfijðxÞ þ Ejðx − |̂Þfijðx − |̂Þ�

ðA5Þ

where we define the improved field strength centered on
link x, j as

fijðxÞ ¼
5

6
½θ1×1ij ðxÞ þ θ1×1ij ðx − {̂Þ�

−
1

24
½θ2×1ij ðxÞ þ θ2×1ij ðx − {̂Þ

þ θ2×1ij ðx − |̂Þ þ θ2×1ij ðx − {̂ − |̂Þ�

−
1

12
½θ1×2ij ðxÞ þ θ1×2ij ðx − 2{̂Þ�: ðA6Þ

APPENDIX B: DETAILS OF ANISOTROPIC
LATTICE BOOST METHOD

1. Boost and gauge transformations

After one has minimized the energy of the system on an
anisotropic lattice with coordinates x ¼ x0 − vbt0 (where
prime denotes coordinates on the isotropic lattice) one
obtains a Lorentz boosted configuration on the isotropic
lattice. Note that the boost velocity vb is the only additional
input parameter. However, one must impose the temporal
gauge condition after the boost. As discussed in Sec. III A,
after the minimization on an anisotropic lattice, the field
configuration is stationary and does not depend on t. Before
the boost, temporal gauge A0 ¼ 0 is satisfied and thus after
the boost the gauge fields are

A0
0ðx0; t0Þ ¼ −vbγA1ðγðx0 − vbt0ÞÞ

A0
1ðx0; t0Þ ¼ γA1ðγðx0 − vbt0ÞÞ

A0
2ðx0; t0Þ ¼ A2ðγðx0 − vbt0ÞÞ

and A0
3ðx0; t0Þ ¼ A3ðγðx0 − vbt0ÞÞ: ðB1Þ

To recover the temporal gauge after the boost, the applied
gauge transformation Λðx0; t0Þ is given by

A00
0 ¼ A0

0ðx0; t0Þ − ∂t0Λðx0; t0Þ ¼ 0 ðB2Þ

where we have denoted the desired, temporal gauge–
satisfying final field with double primes. We find

Λðx0; t0Þ ¼ −γvb
Z

t0

0

dτA1ðγðx0 − vbτÞÞ: ðB3Þ

At the time t0 ¼ 0 the gauge transformed gauge fields are
simply

A0
00ðx0; 0Þ ¼ 0

A1
00ðx0; 0Þ ¼ γA1ðxÞ

A2
00ðx0; 0Þ ¼ A2ðxÞ

A3
00ðx0; 0Þ ¼ A3ðxÞ: ðB4Þ

The calculation of electric field is a bit more complicated,
but still straightforward:

E00
1ðx0; 0Þ ¼ ∂t0A1

00ðx0; t0Þjt0¼0

¼ ∂t0 ðγA1ðγðx0 − vbt0ÞÞ − ∂x0Λðx0; t0ÞÞjt0¼0

¼ ð−γ2vb∂rA1ðγx0 þ rÞ
þ γvb∂x0A1ðγðx0 − vbt0ÞÞÞjt0¼0

¼ 0: ðB5Þ

Similarly,

E2
00ðx0; 0Þ ¼ −γvb∂1A2ðxÞ þ γvb∂2A1 ¼ γvbF21; ðB6Þ

where Fij is the electromagnetic field tensor, and also

E3
00ðx0; 0Þ ¼ γvbF31: ðB7Þ

Finally, the gauge transformed scalar field is

ϕ00ðx0; 0Þ ¼ expðigΛðx0; 0ÞÞϕ0ðx0; 0Þ ¼ ϕðxÞ ðB8Þ

with momentum field
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Π00ðx0;0Þ ¼ ∂t0ϕ
00ðx0; t0Þjt0¼0

¼ ∂t0

�
exp

�
ig
Z

γvbt0

0

drA1ðγx0 − rÞ
�
ϕ0ðx0; t0Þ

�				
t0¼0

¼−γvbð∂1− igA1ðxÞÞϕðxÞ
¼−γvbD1ϕðxÞ: ðB9Þ

The scalar field is therefore unaffected by restoring the
isotropic lattice spacing. Furthermore, the gauge fields
also remain unchanged, since they act only via parallel
transporters,

U00
i ðxÞ ¼ exp

�
ig
Z

xþi

x
dxi0A00

i

�
¼ UiðxÞ; ðB10Þ

since the change in A0
1 ¼ γA1 is canceled by dx10 ¼ dx1=γ

and gauge fields and coordinates other than in the
x-direction remain invariant. Therefore lattice fields do
not change at all in the boost, and the boundary conditions
are automatically satisfied (without the patching of
Ref. [2]). The Lorentz factors in the canonical momenta
fields also cancel when expressed in lattice units,

Π00ðx0;0Þ¼−γvbD1ϕðxÞ

¼−vb
1

2
ðU1ðxÞϕðxþ 1̂Þ−U�

1ðx− 1̂Þϕðx− 1̂ÞÞ:
ðB11Þ

The electric field is handled in a similar manner, since the
plaquettes in the x-y and x-z planes change on an
anisotropic lattice. This can be seen by expanding a
plaquette in the x-y plane (we restore the lattice spacing
a for clarity)

U1×1ðx; yÞ≡ exp

�
ig

�
γaA1

�
x; y −

a
2

�
þ aA2

�
xþ aγ

2
; y

�

− γaA1

�
x; yþ a

2

�
− aA1

�
x −

a
2
; y

���

¼ exp

�
igðγaÞ2 1

γ
F12ðx; yÞ

�
ðB12Þ

and thus on an anisotropic lattice F12ðxÞ ¼ γ−1θ12ðxÞ and
similarly F13ðxÞ ¼ γ−1θ13ðxÞ.
The anisotropic lattice can be realized by making a few

minor changes in the Hamiltonian in the minimization
phase. The plaquettes in x-y and x-z planes are multiplied
by a factor γ−1, as we have already seen. The finite
differences in the x direction are also multiplied by γ−1,
and thus the corresponding terms in the Hamiltonian
become

X
x

�
4þ 2

γ2

�
ϕ�ðxÞϕðxÞ

þ 2
X
x;i

�
1

γ2
δi1 þ δi2 þ δi3

�
Imðϕ�ðxÞUiðxÞϕðxþ {̂ÞÞ:

ðB13Þ

The overall factor γ in the summation (due to the lattice
spacing γa in the x direction) is not needed, since it has no
effect once one minimizes the Hamiltonian.

2. The Gauss law after anisotropic boost

In continuum, after the boost and gauge transformation
back to temporal gauge, the Gauss law is satisfied. This is
easy to verify from the equation of motion in continuum,
Eq. (2),

∂νF1ν − 2Imðϕ�ðD1ϕÞÞ ¼ 0; ðB14Þ

and by using the gauge transformations Eq. (21), we get

∂0E1 þ
1

γvb
∂kEk þ

2

γvb
Imðϕ�ΠÞ ¼ 0: ðB15Þ

From this expression we can obtain the local Gauss law
violation, GðxÞ ¼ −γvb _E1. From Eq. (B5), E1ðxÞ ¼ 0
everywhere. At later times it must remain zero, and so
the time derivative of E1 equals zero and the Gauss law is
always satisfied.
On a lattice the calculation of the Gauss law after the

boost is similar. In the case of the standard discretization the
discrete equation of motion for the x component of electric
field is

_E1ðxÞ ¼ −2Imðϕ�ðxÞU1ðxÞϕðxþ 1̂ÞÞ
þ
X
i<j

− δi1ðθijðxÞ − θijðx − |̂ÞÞ

þ δj1ðθijðxÞ − θijðx − {̂ÞÞ; ðB16Þ

and by inserting here the discrete gauge transformations of
the symmetric form

E2ðxÞ ¼ −
vb
2
ðθ12ðxÞ þ θ12ðx − 1̂ÞÞE3ðxÞ

¼ −
vb
2
ðθ13ðxÞ þ θ13ðx − 1̂ÞÞ ðB17Þ

and ΠðxÞ from Eq. (B11), one obtains GðxÞ ¼
− v

2
ð _E1ðxÞ þ _E1ðx − 1̂ÞÞ. On a lattice the time derivative

of E1 is not exactly zero due to the broken Lorentz
invariance, yet it is so small that the violation in the
Gauss law is negligible.
In the improved simulation, we have used for simplicity

the unimproved discretization in the minimization phase,
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and after the minimization we have changed to the
improved discretization on the physical time evolution.
Strictly speaking this is not correct, as the minimized
system has a different Hamiltonian than that which is then
evolved in the evolution phase, but the error is fairly small
and does not affect the fact that we can see how the lattice
effects are reduced as time evolution is improved.

APPENDIX C: ALTERNATIVE METHODS TO
CREATE A MOVING STRING

Here we discuss alternative methods of creating a
moving string on the lattice. We first outline the method
used by Moriarty et al. in Ref. [2]. Then we discuss yet
another method to create the moving string directly on the
lattice by imposing constraints.

1. Method of Moriarty et al.

In continuum, one can find the stationary string solution,
by starting from a cylindrically symmetric ansatz on a plane
in Cartesian coordinates:

ϕðx; yÞ ¼ xþ iy
r

fðrÞ

Axðx; yÞ ¼ −
y
r2
bðrÞ

Ayðx; yÞ ¼
x
r2
bðrÞ; ðC1Þ

where

fðrÞ; bðrÞ → 0 as r → 0

fðrÞ; bðrÞ → 1 as r → ∞:
ðC2Þ

The radial profile functions fðrÞ and bðrÞ of the scalar and
gauge fields respectively can then be obtained numerically.
The stationary solution can then be Lorentz boosted.
However, one needs to pay attention to the temporal gauge
condition: if it holds before the boost, it is violated
afterwards since the boost mixes the temporal and spatial
components (in the direction of the boost) of the gauge
field. This problem can be resolved by carrying out a time-
independent gauge transformation, such that the spatial
component to the direction of the boost of the gauge field is
initially zero. The gauge transformation

χðx; yÞ ¼ yI2ðx; yÞ ðC3Þ

accomplishes this, when

I2ðx; yÞ ¼
Z

x

0

bð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ y2

p
Þ

ζ2 þ y2
ðC4Þ

and

∂χ
∂y ¼ I2ðx; yÞ þ y

∂I2ðx; yÞ
∂y : ðC5Þ

The integral I2 and its derivative need to be evaluated
numerically.
Thus after the boost, the temporal gauge condition is

again satisfied and one can discretize the moving string
solution on the lattice.

2. Constrained cooling method

In the “constrained cooling" method, one adds the twist
to plaquettes and minimizes the energy of the system with
constraints, forcing the total momentum of the system to be
nonzero. Thus the momentum density around the string
will be nonzero, and we obtain a moving string on the
lattice. The constrained minimization can be done by
applying the augmented Lagrangian method [26,27], which
has previously shown some success in producing topo-
logical solitons that have constrained total momentum [28],
albeit only in global systems.
Unfortunately, the constrained minimization of energy

does not satisfy the Gauss law, and
P

xGðxÞ2 monotoni-
cally increases with respect to fictitious time during the
minimization phase. This cannot be tolerated since because
the Gauss law is a constant of the motion, the violation
from the minimization phase remains during the evolution
phase and has observable, clearly nonphysical conse-
quences. For instance, as the string moves, it leaves
behind a stationary lump of charge due to the term
2Imðϕ�ðxÞΠðxÞÞ in the Gauss law, which is not canceled
by the term

P
j½EjðxÞ − Ejðx − |̂Þ�.

In order to resolve this problem, we must minimize the
violation of the Gauss law by imposing an additional
constraint during the minimization phase. Instead of
imposing the Gauss law violation as a constraint similar
to total momentum, we proceed by first minimizing the
energy with the momentum constraint with the augmented
Lagrangian method (violating the Gauss law), and after that
we minimize just the Gauss law violation using the rather
simpler penalty method (which violates energy and
momentum constraint minimization). The two minimiza-
tion procedures are carried out repeatedly, alternating
between each one. This continues until the quantities have
converged sufficiently well. This resolves the problem with
the Gauss law, as its violation can be forced to be vanish-
ingly small.
There is, however, one remaining problem with this

method. If the given momentum is too high, then the
resulting configuration will not be “clean.” This is most
readily seen by observing that, as the string starts to move,
it tends to emit a large burst of radiation. Furthermore, the
distribution of energy across different parts of the
Hamiltonian does not remain constant, as one would have
expected. As already discussed in the main text, the lattice
cannot support excessively narrow strings, which would
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correspond to highly Lorentz contracted, rapidly moving
strings. The momentum which cannot contribute to the
linear momentum of the string will probably create vibra-
tions in the string. Since this sort of behavior is clearly an
unphysical lattice artifact, we have not investigated it
further and did not adopt this method for the main body
of this paper. However, for small enough initial velocities
the constrained cooling method works nicely.
In the constrained cooling, the function to be

minimized is

H þ μ

2
C2
i − λCi; ðC6Þ

where H is the Hamiltonian and the constraint
Ci ¼ Pi − P0

i . Here Pi is given by Eq. (A4) summed over
all lattice sites and the initial momentum can be chosen by
measuring the mass of the string before cooling and using
P0
x ¼ γMvb, even though on the lattice this relation is not

exact. If the parameter λ were to equal zero, this reduces to
the penalty method. The parameter μ is initially zero, and
this corresponds to creating a stationary string. However
during minimization the μ is increased once in a while to
make Pi converge to P0

x, and the parameter λ is updated at
every step according to λðτÞ ¼ λðτ − δτÞ − μCiðτ − δτÞ.
The role of λ is to make convergence faster, and at every
update, the estimation gets better. In the minimization
phase, the fields are updated with a gradient flow method
that finds a local minimum of Eq. (C6),

_φ ¼ −
δH
δφ� þ ðλ − μCiÞ

δPi

δφ� ðC7Þ

_ψk ¼ −
δH
δψk

þ ðλ − μCiÞ
δPi

δψk
; ðC8Þ

where φ is a complex scalar field (ϕ,Π) and ψk a real vector
field (Ak,Ek).
In the constrained minimization, the canonical momenta

fields become nonzero; there is no reason why the
Gauss law constraint would hold during the constrained
minimization, and indeed one can measure the fatal
violation.
We resolve this problem by minimizing the violation of

the Gauss law separately from constrained energy mini-
mization. After every energy minimization step, we min-
imize violation of the Gauss law sufficiently many times.

The violation of the Gauss law is minimized by evolving
fields as

_φðxÞ ¼ −
X
y

GðyÞ ∂GðyÞ∂φ�ðxÞ ðC9Þ

_ψkðxÞ ¼ −
X
y

GðyÞ ∂GðyÞ∂ψkðxÞ
: ðC10Þ

The derivatives of G are easily calculated, and one
obtains

∂GðyÞ
∂ϕ�ðxÞ ¼ − δx;yiΠðyÞ ðC11Þ

∂GðyÞ
∂Π�ðxÞ ¼ δx;yiϕðyÞ ðC12Þ

∂GðyÞ
∂EkðxÞ

¼ ðδx;y − δx;y−kÞ ðC13Þ

∂GðyÞ
∂AkðxÞ

¼ 0: ðC14Þ

We remark here that these derivatives of G give the
infinitesimal versions of gauge transformations (generated
by the Gauss law) on the lattice. Since the Hamiltonian on
the lattice is invariant under these discrete gauge trans-
formations, GðxÞ is a constant of motion and the Gauss law
is exact on the lattice.
Thus the violation of the Gauss law can be made

arbitrarily small, and one eventually obtains the desired
isolatedmoving string initial state. This method is, however,
relatively slow; one needs to calculate constraintCi at every
energy minimization step, and in addition the Gauss law
violation must be minimized. In addition the resulting
initial state with high velocity can be problematic, as the
lattice cannot bear all the momentum, as we have dis-
cussed above.
As this conceptually simple constrained cooling method

has the mentioned potential drawbacks, we developed and
used the anisotropic lattice boosting method in order to
create the isolated moving string initial state.
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