
Integrated perturbation theory and one-loop power spectra of biased tracers

Takahiko Matsubara*

Department of Physics, Nagoya University, Chikusa, Nagoya 464-8602, Japan
and Kobayashi-Maskawa Institute for the Origin of Particles and the Universe,

Nagoya University, Chikusa, Nagoya 464-8602, Japan
(Received 16 April 2013; published 27 August 2014)

General and explicit predictions from the integrated perturbation theory (iPT) for power spectra and
correlation functions of biased tracers are derived and presented in the one-loop approximation. The iPT is
a general framework of the nonlinear perturbation theory of cosmological density fields in the presence of
nonlocal bias, redshift-space distortions, and primordial non-Gaussianity. Analytic formulas of auto and
cross power spectra of nonlocally biased tracers in both real and redshift spaces are derived and the results
are comprehensively summarized. The main difference from previous formulas derived by the present
author is to include the effects of generally nonlocal Lagrangian bias and primordial non-Gaussianity, and
the derivation method of the new formula is fundamentally different from the previous one. Relations to
recent work on improved methods of nonlinear perturbation theory in the literature are clarified and
discussed.
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I. INTRODUCTION

Density fluctuations in the Universe contain invaluable
information on cosmology. For example, the history and
ingredients of the Universe are encoded in detailed patterns
of the density fluctuations. The large-scale structure (LSS)
of the Universe is one of the most popular ways to probe
the density fluctuations in the Universe. Spatial distribu-
tions of galaxies and other astronomical objects which can
be observed reflect the underlying density fluctuations in
the Universe.
In cosmology, it is crucial to investigate the spatial

distributions of dark matter, which dominates the mass of
the Universe. Unfortunately, distributions of dark matter are
difficult to directly observe, because the only interaction we
know that dark matter surely has is the gravitational
interaction. Consequently, we need to estimate the density
fluctuations of the Universe by means of indirect probes
such as galaxies, which have electromagnetic interactions.
Relations between distributions of observable objects

and those of dark matter are nontrivial. On very large scales
where the linear theory can be applied, the relations are
reasonably represented by the linear bias; the density
contrasts of dark matter δm and those of observable objects
δX are proportional to each other, δX ¼ bδm, where b is a
constant called the bias parameter. However, nonlinear
effects cannot be neglected when we extract cosmological
information as much as possible from observational data of
LSS, and bias relations in a nonlinear regime are not as
simple as those in a linear regime.
Observations of LSS play an important role in cosmol-

ogy. Shapes of power spectra of galaxies and clusters

contain information on the density parameters of cold
dark matter ΩCDM, baryons Ωb, and neutrinos Ων in the
Universe. Precision measurements of baryon acoustic
oscillations (BAO) in galaxy power spectra or correlation
functions can constrain the nature of dark energy [1–3],
which is a driving force of the accelerated expansion of the
present Universe. The non-Gaussianity in the primordial
density field induces a scale-dependent bias in biased
tracers of LSS on very large scales [4–8]. Cosmological
information contained in detailed features in LSS is so rich
that there are many ongoing and future surveys of LSS,
such as the Baryon Oscillation Spectroscopic Survey
(BOSS) [9], fiber multi-object spectrograph (FMOS)
FastSound [10], BigBOSS [11], the Large Synoptic
Survey Telescope (LSST) [12], the Subaru Prime Focus
Spectrograph (PFS) [13], the Dark Energy Survey (DES)
[14], Euclid [15], etc.
Elucidating nonlinear effects on observables in LSS has

crucial importance in precision cosmology. While strongly
nonlinear phenomena are difficult to analytically quantify,
the perturbation theory is useful in understanding the
quasi-nonlinear regime. The traditional perturbation theory
describes evolutions of the mass density field on large
scales where the density fluctuations are small. However,
spatial distributions of astronomical objects such as gal-
axies do not exactly follow the mass density field, and they
are biased tracers. Formation processes of astronomical
objects are governed by strongly nonlinear dynamics
including baryon physics, etc., which cannot be straight-
forwardly treated by traditional perturbation theory.
Even though the tracers are produced through strongly

nonlinear processes, it is still sensible to apply the perturba-
tion theory to study LSS on large scales. For example, the
biasing effect in linear theory is simply represented by a bias*taka@kmi.nagoya‑u.ac.jp
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parameter b as described above. However, biasing effects in
higher-order perturbation theory are not that simple. A
popular model of the biasing in the context of nonlinear
perturbation theory is the Eulerian local bias [16–20]. This
model employs freely fitting parameters in every order of
perturbation and is just a phenomenological model because
the Eulerian bias is not definitely local in reality.
The integrated perturbation theory (iPT) [21] is a

framework of the perturbation theory to predict observable
power spectra and any higher-order polyspectra (or
the correlation functions) of nonlocally biased tracers. In
addition, the effects of redshift-space distortions and
primordial non-Gaussianity are naturally incorporated.
This theory is general enough so that any model of nonlocal
bias can be taken into account. Precise mechanisms of bias
are still not theoretically understood well and are under
active investigation. The framework of the iPT separates
the known physics of gravitational effects on spatial
clustering from the unknown physics of complicated bias.
The unknown physics of nonlocal bias is packed into
“renormalized bias functions” cðnÞX in the iPT formalism.
Once the renormalized bias functions are modeled for
observable tracers, weakly nonlinear effects of gravitational
evolutions are taken care of by the iPT. The iPT is a
generalization of a previous formulation called Lagrangian
resummation theory (LRT) [22–25] in which only local
models of Lagrangian bias can be incorporated.
In recent developments, the model of bias from the halo

approach has turned out to be quite useful in understanding
the cosmological structure formations [26–32]. The halo bias
is naturally incorporated into the framework of the iPT.
Predictions of the iPT combined with the halo model of bias
do not contain any fitting parameter once the mass function
and physical mass of halos are specified. This property is
quite different from other phenomenological approaches to
combining the perturbation theory and bias models.
A concept of nonlocal Lagrangian bias has recently

attracted considerable attention [33–35]. Extending the
halo approach, a simple nonlocal model of Lagrangian
bias was recently proposed [36] for applications to the iPT.
Applying this nonlocal model of halo bias to evaluating
the scale-dependent bias in the presence of primordial non-
Gaussianity, not only are the results of peak-background split
reproduced, but a more general formula is also obtained. In
this paper, the usage of this simple model of nonlocal halo
bias in the framework of the iPT is explicitly explained.
The bias in the framework of the iPT does not have to be

a halo bias. There are many kinds of tracers for LSS, such
as various types of galaxies, quasars, Ly-α absorption lines,
21 cm absorption and emission lines, etc. Once the bias
model for each kind of objects is given, it is straightforward
to calculate biased power spectra and polyspectra of those
tracers in the framework of the iPT. As described above, it
is implied that detailed mechanisms of bias for those tracers
have not yet been fully understood.As emphasized above, the

iPT separates the difficult problems of fully nonlinear biasing
from gravitational evolutions in weakly nonlinear regime.
While the basic formulation of the iPT is developed in

Ref. [21], explicit calculations of the nonlinear power
spectra are not given in that reference. The purpose of
this paper is to give explicit expressions of biased power
spectra with an arbitrary model of nonlocal bias in the one-
loop approximations, in which leading-order corrections to
the nonlinear evolutions are included. The expressions
are given both in real space and in redshift space.
Three-dimensional integrals in the formal expressions of
one-loop power spectra are reduced to one- and two-
dimensional integrals, which are easy and convenient for
numerical integrations. Contributions from primordial non-
Gaussianity are also taken into account in the general
expressions. Explicit formulas of renormalized bias functions
are provided for a simple model of nonlocal halo bias. In this
way, general formulas of power spectra of biased objects in
the one-loop approximation are provided in this paper.
Since the iPT framework is based on Lagrangian pertur-

bation theory (LPT) [37–42], a scheme of resummations of
higher-order perturbations in terms of Eulerian perturbation
theory [43] is naturally considered [22]. In this paper, we
clarify the relations of the present formula of the iPT and
some previous methods of resummation technique such as
renormalized perturbation theory [44,45], gamma expan-
sions [46–51], Lagrangian resummation theory [22–25], and
convolution Lagrangian perturbation theory (CLPT) [52].
Some aspects for the future developments of the iPT are
suggested.
This paper is organized as follows. In Sec. II, formal

expressions of power spectra in the framework of the iPT
with an arbitrary model of bias are derived. A simple model
of renormalized bias functions for a nonlocal Lagrangian
bias in the halo approach are summarized. In Sec. III,
explicit formulas of biased power spectra, which are the
main results of this paper, are derived and presented.
Relations to other previous work in the literature are
clarified in Sec. IV, and conclusions are given in Sec. V.
In the Appendix, diagrammatic rules of the iPT used in this
paper are briefly summarized.

II. THE ONE-LOOP POWER SPECTRA IN THE
INTEGRATED PERTURBATION THEORY

In this first section, the formalism of the iPT [21] is
briefly reviewed (without proofs), and formal expressions
of power spectra in the one-loop approximation are derived.

A. Fundamental equations of the integrated
perturbation theory

In evaluating the power spectra in the iPT, a concept
of multipoint propagators [46,47,53] is useful. The
(nþ 1)-point propagator ΓðnÞ

X of any biased objects, which
are labeled by X in general, is defined by [21]
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�
δnδXðkÞ

δδLðk1Þ…δδLðknÞ
�

¼ ð2πÞ3−3nδ3Dðk − k1…nÞΓðnÞ
X ðk1;…; knÞ; ð1Þ

where δXðkÞ is the Fourier transform of the number density
contrast of biased objects in Eulerian space, δLðkÞ is the
Fourier transform of linear density contrast, δ3D is the
Dirac’s delta function in three dimensions, and we adopt
a notation

k1…n ¼ k1 þ � � � þ kn ð2Þ
throughout this paper. The left-hand side of Eq. (1) is an
ensemble average of the nth-order functional derivative.
The number density field is considered as a functional
of the initial density field. In the basic framework of the
iPT, the biased objects can be any astronomical objects
which are observed as tracers of the underlying density
field in the Universe.
The method of how to evaluate multipoint propagators of

biased objects in the framework of the iPT is detailed in
Ref. [21]. In the most general form of iPT formalism, both
Eulerian and Lagrangian pictures of dynamical evolutions
can be dealt with, and both pictures give equivalent
predictions for observables. The models of halo bias fall
into the category of Lagrangian bias; i.e., the number
density field of halos is related to the mass density field in
Lagrangian space. In such a case, the Lagrangian picture is
a natural way to describe evolutions of the halo number
density field. In the models of Lagrangian bias, the
renormalized bias functions [21] are the key elements in
the iPT, which are defined by

cðnÞX ðk1;…; knÞ ¼ ð2πÞ3n
Z

d3k
ð2πÞ3

�
δnδLXðkÞ

δδLðk1Þ…δδLðknÞ
�
;

ð3Þ

where δLXðkÞ is the Fourier transform of halo number
density contrast in Lagrangian space. We allow the bias
to be nonlocal in Lagrangian space. In fact, the halo bias is
not purely local even in Lagrangian space [36]. For a mass
density field, the Lagrangian number density contrast δLX is
identically zero, and the bias functions are identically zero,
cðnÞX ¼ 0 for all orders n ¼ 1; 2;….
Assuming statistical homogeneity in Lagrangian space,

the renormalized bias functions in Eq. (3) are equivalently
defined by [36]

�
δnδLXðkÞ

δδLðk1Þ…δδLðknÞ
�

¼ ð2πÞ3−3nδ3Dðk − k1…nÞcðnÞX ðk1;…; knÞ: ð4Þ

The similarity of this equation to Eq. (1) is apparent in this
form. The information on dynamics of bias in Lagrangian

space is encoded in the set of renormalized bias functions.
Assuming statistical isotropy in Lagrangian space, the

renormalized bias functions cðnÞX ðk1;…; knÞ depend only
on magnitudes k1;…; kn and relative angles k̂i · k̂j (i > j)
of wave vectors.
Applying the vertex resummation of the iPT, the multi-

point propagators of biased objects X are given by a form

ΓðnÞ
X ðk1;…; knÞ ¼ Πðk1���nÞΓ̂ðnÞ

X ðk1;…; knÞ; ð5Þ

where

ΠðkÞ ¼ he−ik·Ψ i ¼ exp

�X∞
n¼2

ð−iÞn
n!

hðk · Ψ Þnic
�

ð6Þ

is the vertex resummation factor in terms of the displace-
ment field Ψ , and h� � �ic indicates the connected part of the
ensemble average. The displacement fields Ψ ðqÞ are the
fundamental variables in LPT, where q is the Lagrangian
coordinates and the Eulerian coordinates are given by
x ¼ qþ Ψ ðqÞ. The cumulant expansion theorem is used
in the second equality of Eq. (6). Cumulants of the
displacement fields with an odd number vanish from the
parity symmetry, thus the summation in the exponent of
Eq. (6) is actually taken over n ¼ 2; 4; 6;…. The normal-
ized multipoint propagators of the biased objects, Γ̂ðnÞ

X , are
naturally predicted in the framework of the iPT.
In the one-loop approximation of the iPT, the vertex

resummation factor is given by

ΠðkÞ ¼ exp

�
− 1

2

Z
d3p
ð2πÞ3 ½k · L

ð1ÞðpÞ�2PLðpÞ
�
; ð7Þ

and the normalized two-point propagator is given by

Γ̂ð1Þ
X ðkÞ ¼ cð1ÞX ðkÞ þ k · Lð1ÞðkÞ

þ
Z

d3p
ð2πÞ3 PLðpÞ

�
cð2ÞX ðk; pÞ½k · Lð1Þð−pÞ�

þ cð1ÞX ðpÞ½k · Lð1Þð−pÞ�½k · Lð1ÞðkÞ�

þ 1

2
k · Lð3Þðk; p;−pÞ þ cð1ÞX ðpÞ½k · Lð2Þðk;−pÞ�

þ ½k · Lð1ÞðpÞ�½k · Lð2Þðk;−pÞ�
�
; ð8Þ

where LðnÞ is the nth-order displacement kernel in LPT.
Each term in Eq. (8), respectively, corresponds to each

diagram of Fig. 1 in the same order. Diagrammatic rules in
the iPT [21] with the Lagrangian picture, which are
explained in the Appendix, are applied in the correspon-
dence. The normalized two-point propagator of the mass

density field, Γ̂ð1Þ
m , is obtained by putting cðnÞX ¼ 0

into Eq. (8).
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The perturbative expansion of the displacement field in
Fourier space, ~Ψ ðkÞ, is given by

~Ψ ðkÞ ¼
X∞
n¼1

i
n!

Z
k1…n¼k

LðnÞðk1;…;knÞδLðk1Þ…δLðknÞ; ð9Þ

where we adopt a notation

Z
k1…n¼k

� � � ¼
Z

d3k1
ð2πÞ3 � � �

d3kn
ð2πÞ3 ð2πÞ

3δ3Dðk − k1…nÞ � � � :

ð10Þ

A notation such as Eq. (10) is commonly used throughout
this paper.
In real space, the kernels of LPT in the standard theory of

gravity (in the Newtonian limit) are given by [40]

Lð1ÞðkÞ ¼ k
k2

; ð11Þ

Lð2Þðk1; k2Þ ¼
3

7

k12
k122

�
1 −

�
k1 · k2
k1k2

	
2
�
; ð12Þ

Lð3Þðk1; k2; k3Þ ¼
1

3
½Lð3aÞðk1; k2; k3Þ þ perm�; ð13Þ

Lð3aÞðk1; k2; k3Þ

¼ k123
k1232

�
5

7

�
1 −

�
k1 · k2
k1k2

	
2
��

1 −
�
k12 · k3
k12k3

	
2
�

− 1

3

�
1 − 3

�
k1 · k2
k1k2

	
2

þ 2
ðk1 · k2Þðk2 · k3Þðk3 · k1Þ

k12k22k32

��

þ k123
k1232

× Tðk1; k2; k3Þ; ð14Þ

where a vector function T represents a transverse part
whose explicit expression will not be used in this paper.
Complete expressions of the displacement kernels of LPT
up to fourth order, including transverse parts, are given in,
e.g., Refs. [41,42]. Equations (7) and (8) remain valid even
when the nonstandard theory of gravity is assumed as long

as the appropriate form of kernels Ln in such a theory
is used.
One of the benefits in the Lagrangian picture is that

redshift-space distortions are relatively easy to incorporate
into the theory. A displacement kernel in redshift space
LsðnÞ is simply related to the kernel in real space at the same
order by a linear mapping [22]

LðnÞ → LsðnÞ ¼ LðnÞ þ nfðẑ · LðnÞÞẑ; ð15Þ

where f ¼ d lnD=d ln a ¼ _D=HD is the linear growth rate,
DðtÞ is the linear growth factor, aðtÞ is the scale factor, and
HðtÞ ¼ _a=a is the time-dependent Hubble parameter. The
distant-observer approximation is assumed in redshift
space, and the unit vector ẑ denotes the line-of-sight
direction. Strictly speaking, the mapping of Eq. (15) is
exact only in the Einstein–de Sitter universe. However, this
mapping is a good approximation in general cosmology.
The expressions of Eqs. (7) and (8) apply as well in redshift
space when the displacement kernels in redshift space LsðnÞ

are used instead of the real-space counterparts LðnÞ.
The three-point propagator at the tree-level approxima-

tion in the iPT is given by

Γ̂ð2Þ
X ðk1; k2Þ ¼ cð2ÞX ðk1; k2Þ þ cð1ÞX ðk1Þ½k · Lð1Þðk2Þ�

þ cð1ÞX ðk2Þ½k · Lð1Þðk1Þ�
þ ½k · Lð1Þðk1Þ�½k · Lð1Þðk2Þ�
þ k · Lð2Þðk1; k2Þ; ð16Þ

where each term, respectively, corresponds to each diagram
of Fig. 2 in the same order. When the mapping of Eq. (15) is
applied to every displacement kernel in Eq. (16), the
expression of the three-point propagator in redshift space

is obtained. The three-point propagator of mass, Γð2Þ
m , is

given by just substituting cðnÞX ¼ 0 into Eq. (16).
In terms of the multipoint propagators, the power

spectrum of biased objects, up to the one-loop approxi-
mation, is given by

PXðkÞ ¼ Π2ðkÞ
�
½Γ̂ð1Þ

X ðkÞ�2PLðkÞ

þ 1

2

Z
k12¼k

½Γ̂ð2Þ
X ðk1; k2Þ�2PLðk1ÞPLðk2Þ

þ Γ̂ð1Þ
X ðkÞ

Z
k12¼k

Γ̂ð2Þ
X ðk1; k2ÞBLðk; k1; k2Þ

�
; ð17Þ

where PLðkÞ and BLðk; k1; k2Þ are the linear power spec-
trum and the linear bispectrum, respectively. The diagram-
matic representations of Eq. (17) are shown in Fig. 3.
Crossed circles correspond to the linear power spectrum or
the linear bispectrum, depending on the number of lines
attached to them. The first two terms in Eq. (17) correspond
to the first two diagrams in Fig. 3. The last two diagrams in

FIG. 1. The diagrammatic representation of the two-point
propagator with a partially resummed vertex up to one-loop
contributions.
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Fig. 3 are contributions from the primordial non-
Gaussianity. The two diagrams give the same contribution
because of the parity symmetry, and the sum of the two
diagrams corresponds to the last term in Eq. (17).
The matter power spectrum PmðkÞ is simply given by

replacing ΓðnÞ
X by ΓðnÞ

m in Eq. (17) or, equivalently, setting

cðnÞX ¼ 0 for everyn ≥ 1. The cross power spectrumbetween
two types of objects, X and Y, is similarly obtained as

PXYðkÞ ¼ Π2ðkÞ
�
Γ̂ð1Þ
X ðkÞΓ̂ð1Þ

Y ðkÞPLðkÞ

þ 1

2

Z
k12¼k

Γ̂ð2Þ
X ðk1; k2ÞΓ̂ð2Þ

Y ðk1; k2ÞPLðk1ÞPLðk2Þ

þ 1

2
Γ̂ð1Þ
X ðkÞ

Z
k12¼k

Γ̂ð2Þ
Y ðk1; k2ÞBLðk; k1; k2Þ

þ 1

2
Γ̂ð1Þ
Y ðkÞ

Z
k12¼k

Γ̂ð2Þ
X ðk1; k2ÞBLðk; k1; k2Þ

�
:

ð18Þ
The diagrams for the above equations are similar to the ones
in Fig. 3, where the left and right multipoint propagators
correspond to those of X and Y, respectively. When X ¼ Y,
Eq. (18) apparently reduces to Eq. (17).
The predictions of biased power spectra in the one-loop

approximation of the iPT are given by Eq. (17) for the auto
power spectrum, and by Eq. (18) for the cross power
spectrum. Once a model of the renormalized bias functions

cðnÞX is given, it is straightforward to numerically evaluate
those equations. The above results are general and do not
depend on bias models. Any bias model can be incorpo-
rated into the expression of the iPT through the renormal-
ized bias functions. In the next subsection, we explain a
simple model of the renormalized bias function based on
the halo approach.

B. Renormalized bias functions in a simple
model of halo approach

The renormalized bias functions cðnÞX are not specified in
the general framework of the iPT. Precise modeling of bias
is a nontrivial problem, depending on what kind of biased
tracers are considered. In this subsection, we consider a
simple model of halo bias as an example. The expressions
of renormalized bias functions in a simple model of the halo

approach were recently derived in Ref. [36]. We summarize
the consequences of this model below. It should be
emphasized that the general framework of the iPT does
not depend on this specific model of bias.
Without resorting to approximations such as the peak-

background split, the halo bias is shown to be nonlocal even
in Lagrangian space. As a result, the renormalized bias
functions have nontrivial scale dependencies. For the halos
of mass M, the renormalized bias functions are given
by [36]

cðnÞM ðk1;…; knÞ ¼ bLnðMÞWðk1RÞ…WðknRÞ

þ An−1ðMÞ
δc

n

d
d ln σM

½Wðk1RÞ…WðknRÞ�;

ð19Þ

where δc ¼ 3ð3π=2Þ2=3=5≃ 1.686 is the critical overden-
sity for spherical collapse andWðkRÞ is a window function.
In a usual halo approach, the window function is chosen
to be a top-hat type in configuration space, which corre-
sponds to

WðxÞ ¼ 3 sin x − 3x cos x
x3

ð20Þ

in Fourier space. In this case, the Lagrangian radius R is
naturally related to the mass M of the halo by

M ¼ 4

3
πρ̄0R3; ð21Þ

where ρ̄0 is the mean density of mass at the present time, or

R ¼
�

M
1.163 × 1012h−1M⊙Ωm0

�
1=3

h−1 Mpc; ð22Þ

where M⊙ ¼ 1.989 × 1030 kg is the solar mass, Ωm0 is the
density parameter of mass at the present time, and
h ¼ H0=ð100 km s−1 Mpc−1Þ is the normalized Hubble
constant.
Empirically, one can also use other types of window

function. Direct evaluations of the renormalized bias
functions suggest that the Gaussian window function
WðxÞ ¼ e−k2R2=2 gives a better fit [54]. In the latter case,
the relation between the smoothing radius R and massM is
not trivial and should also be empirically modified from the

FIG. 2. The diagrammatic representation of the three-point
propagator with a partially resummed vertex at the tree-level
contribution.

FIG. 3. The diagrammatic representation of the power spectrum
up to one-loop approximation.
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relation of Eq. (22). However, the shapes of one-loop power
spectrum on large scales are not sensitive to the choice of
window function.
The variance of density fluctuations on the mass scaleM

is defined by

σM
2 ¼

Z
d3k
ð2πÞ3W

2ðkRÞPLðkÞ: ð23Þ

The radius R is considered as a function of σM through
Eq. (19). The functions AnðMÞ are defined by

AnðMÞ≡Xn
j¼0

n!
j!
δc

jbLj ðMÞ; ð24Þ

where bLn is the scale-independent Lagrangian bias param-
eter of nth-order. For example, the first three functions are
given by

A0 ¼ 1; A1 ¼ 1þ δcbL1 ;

A2 ¼ 2þ 2δcbL1 þ δc
2bL2 : ð25Þ

When the halo mass function nðMÞ takes a universal form

nðMÞdM ¼ ρ̄0
M

fMFðνÞ
dν
ν
; ð26Þ

where ν ¼ δc=σM, the Lagrangian bias parameters are
given by

bLnðMÞ ¼
�−1
σM

	
n fðnÞMFðνÞ
fMFðνÞ

; ð27Þ

where fðnÞMF ¼ dnfMF=dνn.
Once the model of the mass function fMFðνÞ is given, the

scale-independent bias parameters bLnðMÞ and the functions

AnðMÞ are uniquely given by Eqs. (27) and (24). In Table I,
those functions are summarized for popular models of mass
function, i.e., the Press-Schechter (PS) mass function [26],
the Sheth-Tormen (ST) mass function [30], and the Warren
et al. (Wþ) mass function [55].
In the simplest PS mass function, it is interesting to note

that general expressions of the parameters for all orders can
be derived [36] bLn ¼ νn−1Hnþ1ðνÞ=δcn, An ¼ νnHnðνÞ,
where HnðνÞ are the Hermite polynomials. The ST mass
function gives a better fit to numerical simulations of halos
in cold-dark-matter-type cosmologies with Gaussian initial
conditions. The values of parameters in Table I are p ¼ 0.3,
q ¼ 0.707, and AðpÞ ¼ ½1þ π−1=22−pΓð1=2 − pÞ�−1 is the
normalization factor. When we put p ¼ 0, q ¼ 1, the
ST mass function reduces to the PS mass function.
The Wþ mass function is represented by a parameter
σ ¼ δc=ν, which is also a function ofM, and parameters are
A ¼ 0.7234, a ¼ 1.625, b ¼ 0.2538, c ¼ 1.1982. The
same functional form is applied to the Marenostrum
Institut de Ciéncies de l’Espai (MICE) simulations in
Ref. [56], allowing the parameters to be redshift dependent.
Their values are given by AðzÞ ¼ 0.58ð1þ zÞ−0.13,
aðzÞ ¼ 1.37ð1þ zÞ−0.15, bðzÞ ¼ 0.3ð1þ zÞ−0.084, cðzÞ ¼
1.036ð1þ zÞ−0.024. When the redshift-dependent parame-
ters are adopted, the Wþ mass function is sometimes
referred to as the “MICE mass function.” In the latter case,
the multiplicity function fMFðνÞ explicitly depends on the
redshift, and the mass function is no longer “universal.”
The nonlocal nature of the halo bias in Lagrangian

space is encoded in the second term in the rhs of Eq. (19)
since the simple dependence on the window function of the
first term appears even in the local bias models through the
smoothed mass density field. In the large-scale limit,
k1; k2;…; kn → 0, the second term in the rhs of Eq. (19)
disappears and the renormalized bias functions reduce to
scale-independent bias parameters, cðnÞM ≃ bLnðMÞ. This

TABLE I. Functions bLnðMÞ, AnðMÞ derived from several models of mass function.

PS ST Wþ, MICE (σ ¼ δc=ν)

fMFðνÞ
ffiffi
2
π

q
νe−ν2=2 AðpÞ

ffiffi
2
π

q
½1þ 1

ðqν2Þp�
ffiffiffi
q

p
νe−qν2=2 Aðσ−a þ bÞe−c=σ2

bL1 ðMÞ ν2−1
δc

1
δc
½qν2 − 1þ 2p

1þðqν2Þp� 1
δc
ð2c
σ2
− a

1þbσaÞ

bL2 ðMÞ ν4−3ν2
δc

2
1
δc

2 ½q2ν4 − 3qν2 þ 2pð2qν2þ2p−1Þ
1þðqν2Þp � 1

δc
2 ½4c2σ4

− 2c
σ2
− að4c=σ2−aþ1Þ

1þbσa �

A1ðMÞ ν2 qν2 þ 2p
1þðqν2Þp

2c
σ2
þ 1 − a

1þbσa

A2ðMÞ ν2ðν2 − 1Þ qν2ðqν2 − 1Þ þ 2pð2qν2þ2pþ1Þ
1þðqν2Þp

4c2

σ4
þ 2c

σ2
þ 2 − að4c=σ2−aþ3Þ

1þbσa

Parameters � � � AðpÞ ¼ ½1þ π−1=22−pΓð1=2 − pÞ�−1
p ¼ 0.3
q ¼ 0.707

Wþ∶ MICE∶
A ¼ 0.7234 AðzÞ ¼ 0.58ð1þ zÞ−0.13
a ¼ 1.625 aðzÞ ¼ 1.37ð1þ zÞ−0.15
b ¼ 0.2538 bðzÞ ¼ 0.3ð1þ zÞ−0.084
c ¼ 1.1982 cðzÞ ¼ 1.036ð1þ zÞ−0.024
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property is consistent with the peak-background split.
However, the loop corrections in the iPT involve integra-
tions over the wave vectors of the renormalized bias
functions, and there is no reason to neglect the second
term which represents the nonlocal nature of the
Lagrangian bias of halos.
Equation (19) is shown to be equivalent to the following

expression [36],

cðnÞM ðk1;…;knÞ¼
AnðMÞ
δc

n Wðk1RÞ…WðknRÞ

þAn−1ðMÞσMn

δc
n

d
dlnσM

�
Wðk1RÞ…WðknRÞ

σM
n

�
:

ð28Þ

For the PS mass function, there is an interesting relation,
An ¼ ν2δc

n−1bLn−1, and in this case, the renormalized bias
function cLn is expressible by lower-order parameters bLn−1
and bLn−2, which is a reason why the scale-dependent bias in
the presence of primordial non-Gaussianity is approxi-
mately proportional to the first-order bias parameter, bL1 ,
rather than the second-order one, bL2 [36]. However, this
does not mean that cðnÞM is independent of bLn , because bLn
can be expressible by a linear combination of bLn−1 and bLn−2
in the PS mass function.
In the expressions of renormalized bias functions,

Eqs. (19) and (28), all the halos are assumed to have the
same mass, M. These expressions apply when the mass
range of halos in a given sample is sufficiently narrow.
When the mass range is finitely extended, the expressions
should be replaced by [36]

cðnÞϕ ðk1;…; knÞ ¼
R
dMϕðMÞnðMÞcðnÞM ðk1;…; knÞR

dMϕðMÞnðMÞ ; ð29Þ

where nðMÞ is the halo mass function of Eq. (26) and ϕðMÞ
is a selection function of mass. For a simple example, when
the mass of halos is selected by a finite range ½M1;M2�, we
have

cðnÞ½M1;M2�ðk1;…; knÞ ¼
RM2

M1
dMnðMÞcðnÞM ðk1;…; knÞRM2

M1
dMnðMÞ : ð30Þ

III. EXPLICIT FORMULAS

The auto power spectrum PXðkÞ of Eq. (17) is a special
case of the cross power spectrum PXYðkÞ of Eq. (18) as the
former is given by setting X ¼ Y in the latter. It is general
enough to give the formulas for the cross power spectrum
below. In the following, we decompose Eq. (18) into the
following form:

PXYðkÞ ¼ Π2ðkÞ½RXYðkÞ þQXYðkÞ þ SXYðkÞ�; ð31Þ

where ΠðkÞ is given by Eq. (7) and

RXYðkÞ ¼ Γ̂ð1Þ
X ðkÞΓ̂ð1Þ

Y ðkÞPLðkÞ; ð32Þ

QXYðkÞ ¼
1

2

Z
k12¼k

Γ̂ð2Þ
X ðk1; k2ÞΓ̂ð2Þ

Y ðk1; k2ÞPLðk1ÞPLðk2Þ;

ð33Þ

SXYðkÞ ¼
1

2
Γ̂ð1Þ
X ðkÞ

Z
k12¼k

Γ̂ð2Þ
Y ðk1; k2ÞBLðk; k1; k2Þ

þ ðX↔YÞ: ð34Þ

Three-dimensional integrals appeared in the above
components of Eqs. (32)–(34) can be reduced to lower-
dimensional integrals both in real space and in redshift
space. Such dimensional reductions of the integrals are
useful for practical calculations. The purpose of this section
is to give explicit formulas for the above components Π,
RXY , QXY , SXY in terms of two-dimensional integrals at
most. The results of this section are applicable to any bias
models and do not depend on specific forms of renormal-
ized bias functions, e.g., those explained in Sec. II B.

A. The power spectra in real space

In real space, the power spectrum is independent of the
direction of wave vector k, and thus the components above
ΠðkÞ, RXYðkÞ, QXYðkÞ, SXYðkÞ are also independent of the
direction. In this case, dimensional reductions of the
integrals in Eqs. (32)–(34) are not difficult, because of
the rotational symmetry. The vertex resummation factor
ΠðkÞ of Eq. (7) is given by

ΠðkÞ ¼ exp

�
− k2

12π2

Z
dpPLðpÞ

�
: ð35Þ

On small scales, this factor exponentially suppresses the
power too much, and such a behavior is not physical. This
property is a good indicator of which scales the perturba-
tion theory should not be applied to. However, the
resummation of the vertex factor is not compulsory in
the iPT. When the vertex factor is not resummed, one can
expand the factor as

ΠðkÞ ¼ 1 − k2

12π2

Z
dpPLðpÞ; ð36Þ

instead of Eq. (35) in the case of one-loop perturbation
theory. In a quasilinear regime, the resummed vertex factor
of Eq. (35) gives a better fit to N-body simulations in real
space [22,25].
The expression of the two-point propagator in Eq. (8) is

straightforwardly obtained, substituting the Lagrangian
kernels of Eqs. (11)–(14). Taking the z axis of p as the
direction of k, integrations by the azimuthal angle are
trivial. Transforming the rest of the integration variables
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as r ¼ p=k and x ¼ p̂ · k̂, we have two equivalent
expressions,

Γ̂ð1Þ
X ðkÞ¼1þcð1ÞX ðkÞþ k3

4π2

Z
∞

0

dr
Z

1

−1
dxR̂Xðk;r;xÞPLðkrÞ

ð37Þ

¼ 1þ cð1ÞX ðkÞ þ k3

4π2

Z
∞

0

dr ~RXðk; rÞPLðkrÞ; ð38Þ

where

R̂Xðk; r; xÞ ¼
5

21

r2ð1 − x2Þ2
1þ r2 − 2rx

þ 3

7

ð1 − rxÞð1 − x2Þ
1þ r2 − 2rx

½rxþ r2cð1ÞX ðkrÞ�

− rxcð2ÞX ðk; kr; xÞ; ð39Þ
and

~RXðk;rÞ ¼
6þ 5r2þ 50r4− 21r6

252r2

þð1− r2Þ3ð2þ 7r2Þ
168r3

ln

����1− r
1þ r

����
þ
�
3þ 8r2− 3r4

28
þ 3ð1− r2Þ3

56r
ln

����1− r
1þ r

����
�
cð1ÞX ðkrÞ

− r
Z

1

−1
dxxcð2ÞX ðk;kr;xÞ: ð40Þ

In the above expressions, rotationally invariant arguments
for cð2ÞX are used, i.e.,

cð2ÞX ðk1; k2Þ ¼ cð2ÞX ðk1; k2; xÞ; ð41Þ

where x ¼ k̂1 · k̂2 is the direction cosine between k1 and k2.
The second expression of Eq. (38) is obtained by analyti-
cally integrating the variable x into the first expression of
Eq. (37). Both expressions are suitable for numerical
evaluations. With the expression of Eq. (37) or (38), we
have

RXYðkÞ ¼ Γ̂ð1Þ
X ðkÞΓ̂ð1Þ

Y ðkÞPLðkÞ: ð42Þ

Evaluating the convolution integrals in Eqs. (33) and
(34) with the three-point propagator of Eq. (16) is also
straightforward in real space. Substituting the Lagrangian
kernels of Eqs. (11) and (12) into Eq. (16), and trans-
forming the integration variables as r ¼ k1=k, x ¼ k̂ · k̂1,
we have

QXYðkÞ ¼
k3

8π2

Z
∞

0

dr
Z

1

−1
dxr2Γ̂ð2Þ

X ðk; r; xÞΓ̂ð2Þ
Y ðk; r; xÞ

× PLðkrÞPLðkyÞ ð43Þ

and

SXYðkÞ ¼
k3

8π2
Γ̂ð1Þ
X ðkÞ

Z
∞

0

dr
Z

1

−1
dxr2Γ̂ð2Þ

Y ðk; r; xÞ

× BLðk; kr; kyÞ þ ðX↔YÞ; ð44Þ

where

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 − 2rx

p
ð45Þ

and

Γ̂ð2Þ
X ðk; r; xÞ ¼ − 4

7

1 − x2

y2
þ x

r
½1þ cð1ÞX ðkyÞ�

þ 1 − rx
y2

½1þ cð1ÞX ðkrÞ� þ cð2ÞX ðkr; ky; xÞ:
ð46Þ

The factor Γ̂ð2Þ
Y ðk; r; xÞ is similarly given by substituting

X → Y into Eq. (46). The function Γ̂ð2Þ
X ðk; r; xÞ is just the

normalized three-point propagator Γ̂ð2Þ
X ðk1; k − k1Þ as a

function of transformed variables.
All the necessary components to calculate the power

spectrum of Eq. (31) in real space,

PXYðkÞ ¼ Π2ðkÞ½RXYðkÞ þQXYðkÞ þ SXYðkÞ�; ð47Þ

are given above, i.e., Eqs. (35) [or (36)], (42), (43), and
(44). Numerical integrations of Eqs. (38) [or (37)], (43),
and (44) are not difficult, once the model of the renormal-
ized bias functions cðnÞX and the primordial spectra PLðkÞ,
BLðk1; k2; k3Þ are given. The last factor SXYðkÞ is absent in
the case of Gaussian initial conditions.

B. Kernel integrals

Evaluations of power spectra in redshift space are more
tedious than those in real space. The reason is that the
power spectra depend on the lines-of-sight direction in
redshift space. One cannot arbitrarily choose the direction
of the z axis in the three-dimensional integrations of
Eqs. (8) and (32)–(34), because the rotational symmetry
is not met. Even in such cases, an axial symmetry around
the lines of sight remains, and the three-dimensional
integrations can be reduced to two- or one-dimensional
integrations as shown below. All the necessary techniques
for such reductions are the same with those presented in
Refs. [22,23], making use of rotational covariance. We
summarize useful formulas for the reduction in this sub-
section. We assume the standard theory of gravity in the
formula below, although the same technique may be
applicable to other theories such as modified gravity, etc.
The first set of formulas is related to the two-point

propagator Γð1Þ
X of Eq. (8). The results are summarized in

Table II. The integrals of a form,
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Z
d3p
ð2πÞ3 F ðk; pÞPLðpÞ; ð48Þ

where F ðk; pÞ consists of LPT kernels LðnÞ and renormal-
ized bias functions cðnÞX , are reduced to one-dimensional
integrals, RX

n ðkÞ. The explicit formulas are given in Table II.
In this table, we denote R1ðkÞ ¼ RX

1 ðkÞ and R2ðkÞ ¼
RX
2 ðkÞ, as these functions are independent of the bias.

The functions RX
n ðkÞ are defined by three equivalent sets of

equations,

RX
n ðkÞ ¼

Z
d3p
ð2πÞ3 R

X
n ðk; pÞPLðpÞ

¼ k3

4π2

Z
∞

0

dr
Z

1

−1
dxR̂X

n ðr; xÞPLðkrÞ

¼ k3

4π2

Z
∞

0

dr ~RX
n ðrÞPLðkrÞ; ð49Þ

where integrands RX
n ðk; pÞ, R̂X

n ðr; xÞ, and ~RX
n ðrÞ are given

in Table III. The last expression of Eq. (49) is the formula
which is practically useful for numerical evaluations. The
other expressions are shown to indicate origins of the
integrals.
If the second-order bias function cð2ÞX ðk1; k2Þ only

depends on magnitudes of wave vectors k1 and k2, and
not on the relative angle μ12 ¼ k̂1 · k̂2, the fourth function
generically vanishes: RX

4 ðkÞ ¼ 0. If the first-order bias

function cð1ÞX is scale independent, it is explicitly shown
from the last expressions that RX

3 ðkÞ ¼ ½R1ðkÞþ
R2ðkÞ�cð1ÞX . Specifically, the functions RX

3 ðkÞ and RX
4 ðkÞ

are redundant in the Lagrangian local bias models, in which

renormalized bias functions cðnÞX are scale independent. This
is the reason that only two functions R1ðkÞ and R2ðkÞ are
needed in Ref. [23]. In general situations with Lagrangian
nonlocal bias models, all four functions are needed. In a
simple model of halo bias in this paper, the second-order

bias function cð2ÞX does not depend on the angle μ12 and
R4ðkÞ ¼ 0 in this case.
The second set of formulas is related to the convolution

integrals of the three-point propagators Γð2Þ
X in calculating

the one-loop power spectrum. The integrals of the form

Z
k12¼k

F ðk1; k2ÞPLðk1ÞPLðk2Þ; ð50Þ

where F consists of LPT kernels Ln and renormalized bias

functions cðnÞX and cðnÞY , are reduced to two-dimensional
integrals, QXY

n ðkÞ. The explicit formulas are given in
Table IV. For the third and fifth formulas in this table,
the indices of the LPT kernels are symmetrized since only
symmetric combinations are used in this paper. In this table,
we denote QnðkÞ ¼ QXY

n ðkÞ for n ¼ 1, 2, 3, 4, as these
functions are independent of the bias, andQX

n ðkÞ ¼ QXY
n ðkÞ

for n ¼ 5, 6, 7, 8, 9, as these functions are only dependent
on the bias of objects X.
The functions QXY

n ðkÞ are defined by two equivalent sets
of equations,

QXY
n ðkÞ ¼

Z
k12¼k

QXY
n ðk1; k2ÞPLðk1ÞPLðk2Þ

¼ k3

4π2

Z
∞

0

dr
Z

1

−1
dx ~QXY

n ðr; xÞPLðkrÞ

× PLðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 − 2rx

p
Þ; ð51Þ

where integrands QXY
n ðk1; k2Þ, ~QXY

n ðr; xÞ are given in
Table V. The last expression of Eq. (51) is the formula
which is practically useful for numerical evaluations. The

TABLE II. Integral formulas for one-loop corrections, which
are related to the two-point propagator. We denote R1ðkÞ ¼
RX
1 ðkÞ and R2ðkÞ ¼ RX

2 ðkÞ, as these functions are independent of
the bias.

F ðk; pÞ R d3p
ð2πÞ3 F ðk; pÞPLðpÞ Diagram

Lð3Þðk; p;−pÞ 10
21

k
k2 R1ðkÞ

Lð1Þ
i ð−pÞLð2Þ

j ðk; pÞ 3
14

kikj−k2δij
k4 R1ðkÞ þ 3

7

kikj
k4 R2ðkÞ

Lð2Þðk; pÞcð1ÞX ðpÞ 3
7
k
k2 R

X
3 ðkÞ

Lð1Þð−pÞcð2ÞX ðk; pÞ − k
k2 R

X
4 ðkÞ

TABLE III. Integrands for functions RX
n ðkÞ of Eq. (49).

n RX
n ðk; pÞ R̂X

n ðr; xÞ ~RX
n ðrÞ

1 k2

jk−pj2 ½1 − ðk·pkpÞ2�2 r2ð1−x2Þ2
1þr2−2rx − ð1þr2Þð3−14r2þ3r4Þ

24r2 − ð1−r2Þ4
16r3 ln j 1−r

1þr j

2 ðk·pÞ½k·ðk−pÞ�
p2jk−pj2 ½1 − ðk·pkpÞ2� rxð1−rxÞð1−x2Þ

1þr2−2rx
ð1−r2Þð3−2r2þ3r4Þ

24r2 þ ð1−r2Þ3ð1þr2Þ
16r3 ln j 1−r

1þr j

3 k·ðk−pÞ
jk−pj2 ½1 − ðk·pkpÞ2�c

ð1Þ
X ðpÞ r2ð1−rxÞð1−x2Þ

1þr2−2rx cð1ÞX ðkrÞ ½3þ8r2−3r4
12

þ ð1−r2Þ3
8r ln j 1−r

1þr j�c
ð1Þ
X ðkrÞ

4 k·p
p2 c

ð2Þ
X ðk; pÞ rxcð2ÞX ðk; kr; xÞ r

R
1−1 dxxc

ð2Þ
X ðk; kr; xÞ
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first expressions are shown to indicate origins of the
integrands.
The third set of formulas is related to the initial

bispectrum, which is an indicator of primordial non-
Gaussianity. The integrals of the form,

Z
k12¼k

F ðk1; k2ÞBLðk; k1; k2Þ; ð52Þ

where F consists of LPT kernels Ln and renormalized bias
functions cðnÞX , are reduced to two-dimensional integrals,
SXn ðkÞ. The explicit formulas are given in Table VI. In this

TABLE IV. Integral formulas for one-loop corrections, which are related to convolving three-point propagators. In the third and fifth
formulas, the spatial indices are completely symmetrized. We denote QnðkÞ ¼ QXY

n ðkÞ for n ¼ 1, 2, 3, 4, as these functions are
independent of the bias, and QX

n ðkÞ ¼ QXY
n ðkÞ for n ¼ 5, 6, 7, 8, 9, as these functions are only dependent on the bias of objects X.

F ðk1; k2Þ
R
k12¼k F ðk1; k2ÞPLðk1ÞPLðk2Þ Diagram

Lð2Þ
i ðk1; k2ÞLð2Þ

j ðk1; k2Þ 9
49

kikj
k4

Q1ðkÞ
Lð1Þ
i ðk1ÞLð1Þ

j ðk2ÞLð2Þ
k ðk1; k2Þ 3

14

ðkikj−k2δijÞkk
k6

Q1ðkÞ þ 3
7

kikjkk
k6

Q2ðkÞ
Lð1Þ
ði ðk1ÞLð1Þ

j ðk1ÞLð1Þ
k ðk2ÞLð1Þ

lÞ ðk2Þ 3
8

kikjkkkl−2k2δðijkkklÞþk4δðijδklÞ
k8 Q1ðkÞ − 1

2

kikjkkkl−k2δðijkkklÞ
k8 Q3ðkÞ þ kikjkkkl

k8 Q4ðkÞ
Lð1Þ
i ðk1ÞLð2Þ

j ðk1; k2Þcð1ÞX ðk2Þ 3
7

kikj
k4 QX

5 ðkÞ
Lð1Þ
ði ðk1ÞLð1Þ

j ðk1ÞLð1Þ
kÞ ðk2Þcð1ÞX ðk2Þ − 1

2

kikjkl−k2δðijkkÞ
k6

QX
6 ðkÞ þ kikjkk

k6
QX

7 ðkÞ
Lð2Þðk1; k2Þcð2ÞX ðk1; k2Þ 3

7
k
k2 Q

X
8 ðkÞ

Lð1Þ
i ðk1ÞLð1Þ

j ðk2Þcð2ÞX ðk1; k2Þ 1
2

kikj−k2δij
k4 QX

8 ðkÞ þ kikj
k4 QX

9 ðkÞ
Lð1Þ
i ðk1ÞLð1Þ

j ðk2Þcð1ÞX ðk1Þcð1ÞY ðk2Þ 1
2

kikj−k2δij
k4

QXY
10 ðkÞ þ kikj

k4
QXY

11 ðkÞ
Lð1Þ
i ðk1ÞLð1Þ

j ðk1Þcð1ÞX ðk2Þcð1ÞY ðk2Þ − 1
2

kikj−k2δij
k4 QXY

12 ðkÞ þ kikj
k4 QXY

13 ðkÞ
Lð1Þðk1Þcð1ÞX ðk2Þcð2ÞY ðk1; k2Þ k

k2 Q
XY
14 ðkÞ

cð2ÞX ðk1; k2Þcð2ÞY ðk1; k2Þ QXY
15 ðkÞ

TABLE V. Integrands for functions QXY
n ðkÞ of Eq. (51).

n QXY
n ðk1; k2Þ ½k ¼ k1 þ k2� ~QXY

n ðr; xÞ
�
y ¼ ð1þ r2 − 2rxÞ1=2;

μ ¼ ðx − rÞ=y
�

1 ½1 − ðk1 ·k2k1k2
Þ2�2 r2ð1−x2Þ2

y4

2 ðk·k1Þðk·k2Þ
k12k22

½1 − ðk1·k2k1k2
Þ2� rxð1−rxÞð1−x2Þ

y4

3 k4−6ðk·k1Þðk·k2Þ
k12k22

½1 − ðk1 ·k2k1k2
Þ2� ð1−6rxþ6r2x2Þð1−x2Þ

y4

4 ðk·k1Þ2ðk·k2Þ2
k14k24

x2ð1−rxÞ2
y4

5 k·k1
k12

½1 − ðk1·k2k1k2
Þ2�cð1ÞX ðk2Þ rxð1−x2Þ

y2 cð1ÞX ðkyÞ
6 k2−3k·k1

k12
½1 − ðk1 ·k2k1k2

Þ2�cð1ÞX ðk2Þ ð1−3rxÞð1−x2Þ
y2 cð1ÞX ðkyÞ

7 ðk·k1k12
Þ2 k·k2

k22
cð1ÞX ðk2Þ x2ð1−rxÞ

y2 cð1ÞX ðkyÞ
8 ½1 − ðk1·k2k1k2

Þ2�cð2ÞX ðk1; k2Þ r2ð1−x2Þ
y2 cð2ÞX ðkr; ky; μÞ

9 ðk·k1Þðk·k2Þ
k12k22

cð2ÞX ðk1; k2Þ rxð1−rxÞ
y2

cð2ÞX ðkr; ky; μÞ
10 ½1 − ðk1 ·k2k1k2

Þ2�cð1ÞX ðk1Þcð1ÞY ðk2Þ r2ð1−x2Þ
y2 cð1ÞX ðkrÞcð1ÞY ðkyÞ

11 ðk·k1Þðk·k2Þ
k12k22

cð1ÞX ðk1Þcð1ÞY ðk2Þ rxð1−rxÞ
y2 cð1ÞX ðkrÞcð1ÞY ðkyÞ

12 k2

k12
½1 − ðk·k1kk1

Þ2�cð1ÞX ðk2Þcð1ÞY ðk2Þ ð1 − x2Þcð1ÞX ðkyÞcð1ÞY ðkyÞ
13 ðk·k1k12

Þ2cð1ÞX ðk2Þcð1ÞY ðk2Þ x2cð1ÞX ðkyÞcð1ÞY ðkyÞ
14 k·k1

k12
cð1ÞX ðk2Þcð2ÞY ðk1; k2Þ rxcð1ÞX ðkyÞcð2ÞY ðkr; ky; μÞ

15 cð2ÞX ðk1; k2Þcð2ÞY ðk1; k2Þ r2cð2ÞX ðkr; ky; μÞcð2ÞY ðkr; ky; μÞ
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table, we denote S1ðkÞ ¼ SX1 ðkÞ and S2ðkÞ ¼ SX2 ðkÞ, as
these functions are independent of the bias. The functions
SXn ðkÞ are defined by two equivalent sets of equations,

SXn ðkÞ ¼
Z
k12¼k

SX
n ðk1; k2ÞBLðk; k1; k2Þ

¼ k3

4π2

Z
∞

0

dr
Z

1

−1
dx ~SX

n ðr; xÞ

× BLðk; kr; k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 − 2rx

p
Þ; ð53Þ

where integrands SX
n ðk1; k2Þ, ~SX

n ðr; xÞ are given in
Table VII.

C. The power spectra in redshift space

As all the necessary integral formulas were derived in the
previous subsection, we are ready to write down the explicit
formula of the power spectrum in redshift space. The
decomposition of Eq. (31) is applicable in redshift space,
and it is sufficient to give the explicit expressions for the
functions ΠðkÞ, RXYðkÞ, QXYðkÞ, SXYðkÞ in redshift space.
These functions depend on not only the magnitude k but
also the direction relative to the lines of sight.
We employ the distant-observer approximation for the

redshift-space distortions, and the lines of sight are fixed in
the direction of the third axis, ẑ. Lagrangian kernels are
replaced according to Eq. (15) in the formulas of the
propagators in Eqs. (8) and (16). In those formulas, the
Lagrangian kernels appear only in the form of k · LðnÞ. With

the linear mapping of Eq. (15), we have

k · LðnÞ → k · LsðnÞ ¼ ðkþ nfμkẑÞ · LðnÞ; ð54Þ
where

μ ¼ k̂ · ẑ ð55Þ
and k̂ ¼ k=k. Thus, in the distant-observer approximation
of this paper, the direction dependence comes into the
formulas only through the direction cosine of Eq. (55).
We denote the functions of Eqs. (32)–(34) as RXYðk; μÞ,
QXYðk; μÞ, SXYðk; μÞ in the following.
Substituting Eq. (54) into Eqs. (7), (8), and (16), one can

see that evaluations of Eqs. (32)–(34) are straightforward
by means of the integral formulas in the previous
subsection. The results are explicitly presented in the
following.
The vertex resummation function of Eq. (7) can be

evaluated by applying the same technique of the previous
section. The relevant integral is
Z

d3p
ð2πÞ3 ½k · L

sð1ÞðpÞ�2PLðpÞ

¼ ðki þ fμkẑiÞðkj þ fμkẑjÞ
Z

d3p
ð2πÞ3

pipj

p4
PLðpÞ;

ð56Þ
and the last integral is proportional to Kronecker’s delta.
The proportional factor is evaluated by taking a contraction
of the indices. Consequently, we have

Πðk; μÞ ¼ exp

�
−½1þ fðf þ 2Þμ2� k2

12π2

Z
dpPLðpÞ

�
:

ð57Þ
The two-point propagator of Eq. (8) with the substitution

of Eq. (54) is evaluated by means of Table II, where RnðkÞ
functions are defined by Eq. (49) and Table III. The result is
given by

Γ̂ð1Þ
X ðk; μÞ ¼ 1þ cð1ÞX þ 5

21
R1 þ

3

7
R2 þ

3

7
RX
3 − RX

4

þ
�
1þ 5

7
R1 þ

9

7
R2 þ

6

7
RX
3 − RX

4

�
fμ2

−
3

7
R1f2μ2 þ

�
3

7
R1 þ

6

7
R2

�
f2μ4: ð58Þ

The quantities cð1ÞX , Rn, RX
n on the lhs are functions of k,

although the arguments are omitted. The component RXY of
Eq. (32) is straightforwardly obtained by the above result of
the two-point propagator:

RXYðk; μÞ ¼ Γ̂ð1Þ
X ðk; μÞΓ̂ð1Þ

Y ðk; μÞPLðkÞ: ð59Þ
The tree-level contribution of the above equation is given
by ðbX þ fμ2ÞðbY þ fμ2ÞPLðkÞ, where bX ¼ 1þ cð1ÞX , and

TABLE VI. Integral formulas for one-loop corrections, which
are related to convolving three-point propagators with the linear
bispectrum. We denote S1ðkÞ ¼ SX1 ðkÞ and S2ðkÞ ¼ SX2 ðkÞ, as
these functions are independent of the bias.

F ðk1; k2Þ
R
k12¼k F ðk1; k2ÞBLðk; k1; k2Þ Diagram

Lð2Þðk1; k2Þ 3
7
k
k2 S1ðkÞ

L1iðk1ÞL1jðk2Þ 1
2

kikj−k2δij
k4 S1ðkÞ þ kikj

k4 S2ðkÞ
Lð1Þðk1Þcð1ÞX ðk2Þ k

k2 S
X
3 ðkÞ

cð2ÞX ðk1; k2Þ SX4 ðkÞ

TABLE VII. Integrands for functions SXn ðkÞ of Eq. (53).

n SX
n ðk1; k2Þ

½k ¼ k1 þ k2�
~SX
n ðr; xÞ�

y ¼ ð1þ r2 − 2rxÞ1=2;
μ ¼ ðx − rÞ=y

�

1 1 − ðk1 ·k2k1k2
Þ2 r2ð1−x2Þ

y2

2 ðk·k1Þðk·k2Þ
k12k22

rxð1−rxÞ
y2

3 k·k1
k12

cð1ÞX ðk2Þ rxcð1ÞX ðkyÞ
4 cð2ÞX ðk1; k2Þ r2cð2ÞX ðkr; ky; μÞ
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Kaiser’s linear formula of redshift-space distortions for the
power spectrum [57] is exactly reproduced. In calculating
the mass power spectrum, X ¼ Y ¼ m, we only need terms
with R1ðkÞ and R2ðkÞ and other terms RX

3 ðkÞ and RX
4 ðkÞ

vanish since cðnÞX ¼ 0 for the unbiased mass density field.
The component QXYðk; μÞ of Eq. (33) is similarly

evaluated, while the number of terms is larger. The result
is given by

QXYðk; μÞ ¼
1

2

X
n;m

μ2nfm½qXYnmðkÞ þ qYXnmðkÞ�; ð60Þ

where

qXY00 ¼ 9

98
Q1 þ

3

7
Q2 þ

1

2
Q4 þ

6

7
QX

5 þ 2QX
7 þ 3

7
QX

8 þQX
9

þQXY
11 þQXY

13 þ 2QXY
14 þ 1

2
QXY

15 ; ð61Þ

qXY11 ¼ 18

49
Q1 þ

12

7
Q2 þ 2Q4 þ

18

7
QX

5 þ 6QX
7 þ 6

7
QX

8

þ 2QX
9 þ 2QXY

11 þ 2QXY
13 þ 2QXY

14 ; ð62Þ

qXY12 ¼ − 3

14
Q1 þ

1

4
Q3 þQX

6 − 1

2
QX

8 − 1

2
QXY

10 þ 1

2
QXY

12 ;

ð63Þ

qXY22 ¼ 57

98
Q1 þ

15

7
Q2 − 1

4
Q3 þ 3Q4 þ

12

7
QX

5 −QX
6 þ 6QX

7

þ 1

2
QX

8 þQX
9 þ 1

2
QXY

10 þQXY
11 − 1

2
QXY

12 þQXY
13 ;

ð64Þ

qXY23 ¼ − 3

7
Q1 þ

1

2
Q3 þQX

6 ; ð65Þ

qXY24 ¼ 3

16
Q1; ð66Þ

qXY33 ¼ 3

7
Q1 þ

6

7
Q2 − 1

2
Q3 þ 2Q4 −QX

6 þ 2QX
7 ; ð67Þ

qXY34 ¼ − 3

8
Q1 þ

1

4
Q3; ð68Þ

qXY44 ¼ 3

16
Q1 − 1

4
Q3 þ

1

2
Q4; ð69Þ

and other qXYnmðkÞ’s which are not listed above all vanish.
The quantitiesQn,QX

n ,QXY
n are functions of k, although the

arguments are omitted. The Qn functions of n ¼ 1;…; 4,
10;…; 13; 15 are symmetric with respect to X↔Y, while
those of n ¼ 5;…; 9; 14 are not. In calculating cross power

spectra, X ≠ Y, the symmetrization with respect to XY in
Eq. (60) is necessary. In calculating auto power spectra,
X ¼ Y, two terms in the square bracket in Eq. (60) are the
same and can be replaced by 2qXXnmðkÞ. In calculating the
mass power spectrum, X ¼ Y ¼ m, we only need terms
with Q1ðkÞ;…; Q4ðkÞ, and other terms QX

5 ðkÞ;…; QXY
15 ðkÞ

all vanish since cðnÞX ¼ 0 for unbiased mass density field.
The component SXYðk; μÞ of Eq. (34) is similarly

evaluated. The result is given by

SXYðk; μÞ ¼
1

2
Γ̂ð1Þ
X ðk; μÞ

�
3

7
S1 þ S2 þ 2SY3 þ SY4

þ
�
6

7
S1 þ 2S2 þ 2SY3

	
fμ2

− 1

2
S1f2μ2 þ

�
1

2
S1 þ S2

	
f2μ4

�
þ ðX↔YÞ:

ð70Þ
The quantities Sn, SXn , and SYn are functions of k, although
the arguments are omitted. The normalized two-point
propagator Γ̂ð1Þ

X ðk; μÞ in Eq. (70) can be replaced by the
tree-level term, 1þ cð1ÞX þ fμ2, because the rest of the
factor is already of one-loop order.
All the necessary components to calculate the power

spectrum of Eq. (31) in redshift space,

PXYðk; μÞ ¼ Π2ðk; μÞ½RXYðk; μÞ þQXYðk; μÞ þ SXYðk; μÞ�;
ð71Þ

are provided above, i.e., Eqs. (57), (59), (60), and (70).
Numerical integrations of Eqs. (49), (51), and (53) are not
difficult, once the model of renormalized bias functions cðnÞX
and primordial spectra PLðkÞ, BLðk1; k2; k3Þ are given. The
last term SXYðkÞ is absent in the case of Gaussian initial
conditions.

D. Evaluating correlation functions

We have derived full expressions of power spectra of
biased tracers in the one-loop approximation. The corre-
lation functions are obtained by Fourier transforming the
power spectrum. In real space, the relation between the
correlation function ξXYðrÞ and the power spectrum PXYðkÞ
is standard:

ξXYðrÞ ¼
Z

∞

0

k2dk
2π2

j0ðkrÞPXYðkÞ; ð72Þ

where jlðzÞ is the spherical Bessel function. For a numeri-
cal evaluation, it is convenient to first tabulate the values of
power spectrum PXYðkÞ of Eq. (47) in performing the one-
dimensional integration of Eq. (72).
In redshift space, multipole expansions of the correlation

function are useful [58–60]. For the reader’s convenience,
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we summarize here the set of equations which is useful to
numerically evaluate the correlation functions in redshift
space from the iPT formulas of power spectra derived
above. The multipole expansion of the power spectrum in
redshift space, PXYðk; μÞ, with respect to the direction
cosine relative to lines of sight has a form,

PXYðk; μÞ ¼
X∞
l¼0

pl
XYðkÞPlðμÞ; ð73Þ

where PlðμÞ is the Legendre polynomial. Inverting the
above equation by the orthogonal relation of Legendre
polynomials, the coefficient pl

XYðkÞ is given by

pl
XYðkÞ ¼

2lþ 1

2

Z
1

−1
dμPlðμÞPXYðk; μÞ: ð74Þ

Because of the distant-observer approximation, the index l
only takes even integers.
The dependence on the direction μ of our power

spectrum, PXYðk; μÞ of Eq. (71), appears in forms of
μ2ne−αμ2 where n ¼ 0; 1; 2;… are non-negative integers.
It is possible to analytically reduce the integral of Eq. (74)
by using an identity

Z
1

−1
dμμ2ne−αμ2 ¼ α−n−1=2γ

�
nþ 1

2
; α

	
; ð75Þ

where γðz; pÞ is the lower incomplete gamma function
defined by

γðz; pÞ ¼
Z

p

0

e−ttz−1dt: ð76Þ

Although the number of terms is large, it is straightforward
to obtain the analytic expression of pl

XYðkÞ of Eq. (74) in
terms of QnðkÞ, RnðkÞ, SnðkÞ, cð1ÞX ðkÞ, and the lower
incomplete gamma function. Computer algebra like
Mathematica should be useful for that purpose.
Alternatively, it is feasible to numerically integrate the
one-dimensional integral of Eq. (74) for each k once the

functionsQnðkÞ, RnðkÞ, SnðkÞ, cð1ÞX ðkÞ are precomputed and
tabulated. The latter method is much simpler than the
former.
The multipole expansion of the correlation function in

redshift space, ξXYðr; μÞ, with respect to the direction
cosine relative to lines of sight is given by

ξXYðr; μÞ ¼
X∞
l¼0

ξlXYðrÞPlðμÞ; ð77Þ

ξlXYðrÞ ¼
2lþ 1

2

Z
1

−1
dμPlðμÞξXYðr; μÞ: ð78Þ

Since the power spectrum PXYðk; μÞ and the correlation
function ξXYðk; μÞ are related by a three-dimensional
Fourier transform, corresponding multipoles are related
by [58]

ξlXYðrÞ ¼ i−l
Z

∞

0

k2dk
2π2

jlðkrÞpl
XYðkÞ: ð79Þ

Since l is an even integer, the above equation is a real
number. Once the multipoles of power spectrum pl

XYðkÞ are
evaluated by either method described above and tabulated
as a function of k, we have multipoles of the correlation
function ξlXYðrÞ by a simple numerical integration of
Eq. (79). Because the vertex resummation factor exponen-
tially damps for high k, the numerical integration of
Eq. (79) is stable enough.

E. A sample comparison with
numerical simulations

The purpose of this paper is to analytically derive explicit
formulas of one-loop power spectra in the iPT, and a
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FIG. 4. The correlation functions in real space. The prediction
of the one-loop iPT is compared with numerical simulations. The
results of mass autocorrelation, ξmm, halo autocorrelation, ξhh,
and mass-halo cross correlation, ξmh, are compared in the above
panel. Dashed lines represent the predictions of linear theory,
solid lines represent those of the one-loop iPT, and symbols with
error bars represent the results of numerical simulations. In the
bottom panel, scale-dependent bias parameters, which are defined
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξhh=ξmm

p
for autocorrelations and ξmh=ξmm for cross

correlations, are plotted. Predictions of the iPT are given by a
solid line for autocorrelations and a dotted line for cross
correlations. These two lines are almost overlapped and indis-
tinguishable. The horizontal dashed line corresponds to the
prediction of linear theory with a constant bias factor.
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detailed analysis of numerical consequences of derived
formulas is beyond the scope of this paper. In this
subsection, we only present a sample comparison with
halos in N-body simulations. In Fig. 4, correlation func-
tions in real space are presented.
The numerical halo catalogs in this figure are the same as

the ones used in Sato and Matsubara (2011; 2013) [25,61].
The N-body simulations are performed by a publicly
available tree-particle mesh code, Gadget2 [62], with
cosmological parameters ΩM ¼ 0.265, ΩΛ ¼ 0.735,
Ωb ¼ 0.0448, h ¼ 0.71, ns ¼ 0.963, σ8 ¼ 0.80. Other
simulation parameters are given by the box size
Lbox ¼ 1000h−1 Mpc, the number of particles Np ¼
10243, initial redshift zini ¼ 36, the softening length
rs ¼ 50h−1 kpc, and the number of realizations Nrun ¼
30. Initial conditions are generated by a code based on
second-order Lagrangian perturbation theory [63,64], and
the initial spectrum is calculated by the CODE FOR

ANISOTROPIES IN THE MICROWAVE BACKGROUND

(CAMB) [65]. The halos are selected by a friends-of-
friends algorithm [66] with a linking length of 0.2 times the
mean separation. The output redshift of the halo catalog is
z ¼ 1.0, and the mass range of the selected halos
is 4.11 × 1012h−1M⊙ ≤ M ≤ 12.32 × 1012h−1M⊙.
In the upper panel, the auto-and cross correlation

functions of mass and halos, ξhh, ξmh, ξmm, are plotted.
Since the amplitude of linear halo bias, bL1 , predicted by the
peak-background split in the simple halo model does not
accurately reproduce the value of halo bias in numerical
simulations, we consider the value of smoothing radius R
(or mass M) in the simple model of the renormalized bias
function as a free parameter. We approximately treat this
freely fitted radius as a representative value and ignore the
finiteness of the mass range, e.g., Eq. (29). The same value
of the radius is used in both the auto- and cross correlations,
ξhh and ξmh. We use a Gaussian window function
WðkRÞ ¼ e−k2R2=2, while the shape of the window function
does not change the predictions on large scales. There is no
fitting parameter for the mass autocorrelation function ξmm.
As obviously seen in the figure, the predictions of the one-
loop iPT agree well with N-body simulations on scales
≳30h−1 Mpc where the perturbation theory is applicable.
In the lower panel, scale-dependent bias parameters are

plotted. Two definitions of linear bias factor,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξhh=ξmm

p
and ξmh=ξmm, are presented. The iPT predicts almost
similar curves for both definitions, and a slight scale
dependence of linear bias on BAO scales is suggested.
Such scale dependence is already predicted also in models
of Lagrangian local bias [23]. Unfortunately, the N-body
simulations used in this comparison are not sufficiently
large to quantitatively confirm the prediction for the scale-
dependent bias. However, a recent N-body analysis of the
MICE Grand Challenge run [67] shows qualitatively the
same scale dependence. This observation exemplifies
unique potentials of the method of the iPT.

IV. RELATION TO PREVIOUS WORK

A. Lagrangian resummation theory

It is worth mentioning here the relation between the
above formulas and previous results of Ref. [23], in which
the LRTwith local Lagrangian bias is developed. The iPT is
a superset of LRT. The results of Ref. [23] can be derived
from the formulas in this paper by restricting to the local
Lagrangian bias and by neglecting contributions from the
primordial non-Gaussianity, although the way to derive the
same results is apparently different. The definitions of Qn
and Rn functions are somehow different in Ref. [23] from
those in this paper. The notational correspondences are
summarized in Table VIII.
In Ref. [23], the linear density field δL and the biased

density field in Lagrangian space δLX are related by a local
relation δLXðqÞ ¼ FðδLðqÞÞ in Lagrangian configuration
space. Fourier transforming this relation, the renormalized
bias functions of Eq. (3) in models of local Lagrangian bias
reduce to scale-independent parameters,

TABLE VIII. When the local Lagrangian bias is employed, and
primordial non-Gaussianity is not considered, the expression of
the auto power spectrum (X ¼ Y) in this paper reproduces the
result of Ref. [23]. When contributions from the primordial non-
Gaussianity are extracted, the results of Ref. [36] are reproduced.
Correspondences of the functions defined in this paper and those
defined in Refs. [23,36] are provided in this table. The renor-
malized bias functions are constants in local bias models, and are
denoted by hF0i ¼ cð1ÞX and hF00i ¼ cð2ÞX in Ref. [23].

This paper Ref. [23] Ref. [36]

R1ðkÞ R1ðkÞ=PLðkÞ � � �
R2ðkÞ R2ðkÞ=PLðkÞ � � �
RX
3 ðkÞ hF0i½R1ðkÞ þ R2ðkÞ�=PLðkÞ � � �

RX
4 ðkÞ 0 � � �

Q1ðkÞ Q1ðkÞ � � �
Q2ðkÞ Q2ðkÞ � � �
Q3ðkÞ Q4ðkÞ − 6Q2ðkÞ � � �
Q4ðkÞ Q3ðkÞ � � �
QX

6 ðkÞ hF0iQ6ðkÞ � � �
QX

7 ðkÞ hF0iQ7ðkÞ � � �
QX

8 ðkÞ hF00iQ8ðkÞ � � �
QX

9 ðkÞ hF00iQ9ðkÞ � � �
QXX

10 ðkÞ hF0i2Q8ðkÞ � � �
QXX

11 ðkÞ hF0i2Q9ðkÞ � � �
QXX

12 ðkÞ hF0i2Q10ðkÞ � � �
QXX

13 ðkÞ hF0i2Q11ðkÞ � � �
QXX

14 ðkÞ hF0ihF00iQ12ðkÞ � � �
QXX

15 ðkÞ hF00i2Q13ðkÞ � � �
S1ðkÞ � � � R2ðkÞ
S2ðkÞ � � � 2R1ðkÞ − R2ðkÞ
SX3 ðkÞ � � � Q1ðkÞ=2
SX4 ðkÞ � � � Q2ðkÞ
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cðnÞX ¼ hFðnÞi; ð80Þ

where FðnÞ ¼ ∂nF=∂δLn is the nth derivative of the
function FðδLÞ. Thus the renormalized bias functions are
independent of wave vectors in the case of local bias, and
we have hF0i ¼ cð1ÞX and hF00i ¼ cð2ÞX , etc.
It is explicitly shown that the results of Ref. [23] are

exactly reproduced by setting X ¼ Y and SXY ¼ 0, expand-

ing the product ðΓ̂ð1Þ
X Þ2 in RXX and adopting the replace-

ment of variables according to Table VIII. In making such a

comparison, the product Γð1Þ
X Γð1Þ

Y should be expanded up to
the second-order terms in PLðkÞ (i.e., the one-loop terms).
Thus, Eq. (31) is considered to be a nontrivial generaliza-
tion of the previous formula of Ref. [23]. Another previous
formula of Ref. [22] is a special case of Ref. [23] without

biasing. As a consequence, setting cðnÞX ¼ 0, SXY ¼ 0 in
Eq. (31) reproduces the results of Ref. [22].

B. Scale-dependent bias and primordial
non-Gaussianity

Contributions from the primordial bispectrum, if any, are
included in SXY . In the cases of X ¼ Y and X ≠ Y ¼ m, the
relations between the primordial bispectrum and the scale-
dependent bias were already analyzed in Ref. [36] with
generally nonlocal Lagrangian bias. In the presence of the
primordial bispectrum, the scale-dependent bias emerges
on very large scales [4,5]. The iPT generalizes the previous
formulas of the scale-dependent bias with a lesser
number of approximations. The previous formulas of
scale-dependent bias [4,68–70], which are derived in the
approximation of peak-background split for the halo bias,
are exactly reproduced as limiting cases of the formula
derived by the iPT [36]. It should be noted that the formula
of scale-dependent bias in the framework of the iPT is not
restricted to the particular model of halo bias. Therefore
the iPT provides the most general formula of the scale-
dependent bias among previous work. The correspondence
between the functions defined in Ref. [36] and those in this
paper is summarized in Table VIII.
In this paper, the cross power spectrum of two differently

biased objects, X and Y, are considered in general. One
can derive the scale-dependent bias of cross power spec-
trum PXYðkÞ as illustrated below. In the following argu-
ment, the redshift-space distortions are neglected for
simplicity, although it is straightforward to include them.
We define the scale-dependent bias ΔbXY of the cross
power spectrum by

PXYðkÞ ¼ ½bXYðkÞ þ ΔbXYðkÞ�2PmðkÞ; ð81Þ

where PmðkÞ is the matter power spectrum and bXYðkÞ is
the linear bias factor of the cross power spectrum without
contributions from primordial non-Gaussianity. In the
lowest-order approximation, bXYðkÞ ¼ ½bXðkÞbYðkÞ�1=2,

where bXðkÞ and bYðkÞ are linear bias factors of objects
X and Y, respectively. When higher orders of ΔbXY are
neglected, we have

ΔbXY ¼ 1

2
bXYðkÞ

�
ΔPXYðkÞ
PG
XYðkÞ

− ΔPmðkÞ
PG
mðkÞ

�
; ð82Þ

where PG
XYðkÞ and PG

mðkÞ are the Gaussian parts of the cross
power spectrum and the auto power spectrum of mass,
respectively, and ΔPXYðkÞ and ΔPmðkÞ are corresponding
contributions from primordial non-Gaussianity, so that the
full spectra are given by PXYðkÞ ¼ PG

XYðkÞ þ ΔPXYðkÞ
and PmðkÞ ¼ PG

mðkÞ þ ΔPmðkÞ.
On sufficiently large scales, nonlinear gravitational

evolutions are not important, and dominant contributions
to the multipoint propagators are asymptotically given by
[36]

Γ̂ð1Þ
X ðkÞ ≈ bXðkÞ; ð83Þ

Γ̂ð2Þ
X ðk1; k2Þ ≈ cð2ÞX ðk1; k2Þ; ð84Þ

where bXðkÞ ¼ 1þ cð1ÞX ðkÞ is the linear bias factor of object
X. In this limit, Eq. (34) reduces to

SXYðkÞ ≈ bXðkÞ
Z
k12¼k

cð2ÞY ðk1; k2ÞBLðk; k1; k2Þ: ð85Þ

In the lowest-order approximation with a large-scale limit,
the predictions of the iPT are given by

PG
mðkÞ ≈ PLðkÞ; PG

XYðkÞ ≈ bXðkÞbYðkÞPLðkÞ; ð86Þ

ΔPmðkÞ ≈ 0; ΔPXYðkÞ ≈ SXYðkÞ; ð87Þ

and we have bXYðkÞ ¼ ½bXðkÞbYðkÞ�1=2, as previously
noted. Substituting these equations into Eq. (82), we have

ΔbXYðkÞ ≈
SXYðkÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bXðkÞbYðkÞ

p
PLðkÞ

: ð88Þ

This equation gives the general formula of the scale-
dependent bias for cross power spectra in general.
In a case of the auto power spectrum with X ¼ Y, the

above equation reduces to a known result [36],
ΔbX ≈ SXXðkÞ=½2bXðkÞPLðkÞ�. Previous formulas of
the scale-dependent bias in the approximation of peak-
background split are reproduced in limiting cases of this

result, adopting the renormalized bias functions cðnÞX in the
nonlocal model of halo bias described in Sec. II B. The
integral of Eq. (85) is scale dependent according to the
squeezed limit of the primordial bispectrum, BLðk; k1; k2Þ
with k ≪ k1; k2. Thus, the scale dependencies of the bias in
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cross power spectra are similar to those in auto power
spectra. Amplitudes of the scale-dependent bias are differ-
ent. When the primordial non-Gaussianity is actually
detected, scale-dependent biases of cross power spectra
of multiple kinds of objects would be useful to cross-check
the detection.

C. Convolution Lagrangian perturbation theory

Recently, a further resummation method, called the
CLPT [52], is proposed on the basis of LRT. The
implementation of the CLPT actually improves the non-
linear behavior on small scales where the original LRT
breaks down. The proposed CLPT is based on the LRT, in
which only local Lagrangian bias can be incorporated.
Under the light of the iPT, the resummation scheme of

CLPT corresponds to resumming the diagrams depicted by
Fig. 5. The shaded ellipse with the symbol “C” represents a
summation of all the possible connected diagrams. The
actual ingredients are shown in Fig. 6 up to the one-loop
approximation. The corresponding function of this figure is
given by

~ΛijðkÞ ¼ −Lð1Þ
i ðkÞLð1Þ

j ðkÞPLðkÞ

−
Z

d3p
ð2πÞ3 L

ð1Þ
ði ðkÞLð3Þ

jÞ ðk; p;−pÞPLðpÞPLðkÞ

− 1

2

Z
k12¼k

Lð2Þ
i ðk1; k2ÞLð2Þ

j ðk1; k2ÞPLðk1ÞPLðk2Þ

− Lð1Þ
ði ðkÞ

Z
k12¼k

Lð2Þ
jÞ ðk1; k2ÞBLðk; k1; k2Þ:

ð89Þ

The indices i; j are symmetrized on the rhs of the above
equation. This function is the same as CijðkÞ in Ref. [23],
and−CijðkÞ in Ref. [22]. We refer to the graph of Fig. 6 and
Eq. (89) as “displacement correlator” below. To the full
orders, the displacement correlator ~ΛijðkÞ is given by

h ~ΨiðkÞ ~Ψjðk0Þic ¼ −ð2πÞ3δ3Dðkþ k0Þ ~ΛijðkÞ: ð90Þ

The expression of Eq. (89) is also obtained from this
equation, adopting the one-loop approximation in the
perturbative expansion of Eq. (9).
Using the displacement correlator, the diagrams of Fig. 5

can be represented by a convolution integral of the form

X∞
n¼0

ð−1Þn
n!

ki1…kinkj1…kjn

Z
k1…n¼k0

~Λi1j1ðk1Þ… ~ΛinjnðknÞ

¼
Z

d3qe−ik1…n·q exp ½−kikjΛijðqÞ�; ð91Þ

where k is the wave vector of the nonlinear power spectrum
PXYðkÞ to evaluate, k1…n ¼ k1 þ � � � kn is the total
wave vector that flows through the resummed part of
Fig. 5, and

ΛijðqÞ ¼
Z

d3k
ð2πÞ3 e

ik·q ~ΛijðkÞ ð92Þ

is the displacement correlator in configuration space. The
convolution integral of Eq. (91) contributes multiplicatively
to the evaluation of the power spectrum PXYðkÞ.
The displacement correlator in configuration space,

Eq. (92), is given by the full-order displacement field
ΨðqÞ as

ΛijðqÞ ¼ −hΨiðq2ÞΨjðq1Þic; ð93Þ

where q ¼ q2 − q1. This function is denoted as CijðqÞ=2 in
Ref. [52], and thus we have a correspondence,

CCLPT
ij ðqÞ ¼ 2ΛijðqÞ: ð94Þ

In the CLPT, the vertex resummation factor is included in
a function AijðqÞ ¼ Bij þ CijðqÞ of their notation,
where Bij ¼ 2σ2ηδij and σ2η ¼ hjΨ j2i=3. Thus we have a
correspondence,

ACLPT
ij ðqÞ ¼ 2

3
σ2ηδij þ 2ΛijðqÞ: ð95Þ

The first term in the lhs corresponds to the vertex
resummation in the iPT and is kept exponentiated in both

FIG. 5. Diagrammatic representation of the resummation
scheme of CLPT [52]. The original CLPT does not include
the effects of nonlocal bias and can be easily extended to include
them by applying the formalism of the iPT and the resummation
of these types of diagrams.

FIG. 6. Ingredients of the displacement correlator. All the
diagrams up to one-loop approximation are shown. These
diagrams are resummed in CLPT.
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original LRT and CLPT. The second term is kept expo-
nentiated in CLPT and expanded in the original LRT
formalism.

When the Lagrangian local bias is assumed (cð1ÞX ¼ hF0i,
cð2ÞX ¼ hF00i;…), and the convolution resummation of
Fig. 5 is taken into account in the iPT, the formalism of
CLPT is exactly reproduced. When the Lagrangian non-
local bias is allowed in the iPT with the convolution
resummation, we obtain a natural extension of the CLPT
without restricting to models of local Lagrangian bias.
Extending this diagrammatic understanding of CLPT in

the framework of iPT, it is possible to consider further
convolution resummations that are not included in the
formulation of CLPT. In the CLPT, only connected dia-
grams with two wavy lines (i.e., Fig. 6) are resummed. We
define the three-point correlator of displacement,
~Λijkðk1; k2; k3Þ, where k1 þ k2 þ k3 ¼ 0 by the connected
diagrams with three wavy lines, as shown in Fig. 7. This
function is given by

h ~Ψiðk1Þ ~Ψjðk2Þ ~Ψjðk3Þic ¼ −ið2πÞ3δ3Dðk1 þ k2 þ k3Þ
× ~Λijkðk1; k2; k3Þ: ð96Þ

to the full order. This three-point correlator ~Λijk is the same
as −Cijk in Ref. [23] and −iCijk in Ref. [22]. In a similar
way as in Fig. 5 and Eq. (91), including resummations of
the three-point correlator modifies the convolution integral
of Eq. (91) as

Z
d3qe−ik0·q exp ½−kikjΛijðqÞ þ kikjkkΛijkðqÞ�; ð97Þ

where k0 is the total wave vector that flows through the
resummed part, and

ΛijkðqÞ ¼
Z

d3k
ð2πÞ3 e

ik·q

Z
d3p
ð2πÞ3

~Λijkðk;−p; p − kÞ: ð98Þ

One can similarly consider four- and higher-point con-
volution resummations, which naturally arise in two- or
higher-loop approximations. However, it is not obvious
whether or not progressively including such kinds of
convolution resummations actually improves the descrip-
tion of the strongly nonlinear regime. Comparisons with
numerical simulations are necessary to check. Detailed
analysis of these types of extensions in the iPT is beyond
the scope of this paper and can be considered as an
interesting subject for future work.

D. Renormalized perturbation theory

Recent progress in improving the standard perturbation
theory (SPT) was triggered by a proposition of the renor-
malized perturbation theory (RPT) [44,45]. Although this
theory is formulated in Eulerian space, there are many

common features with iPT in which resummations in terms
of the Lagrangian picture play an important role. Below, we
briefly discuss these common features. However, one should
note that purposes of developing RPT and iPT are not the
same. The RPT formalism mainly focuses on describing
nonlinear evolutions of density and velocity fields of matter,
extrapolating the perturbation theory in Eulerian space. The
iPT formalism mainly focuses on consistently including
biasing and redshift-space distortions into the perturbation
theory from the first principle as far as possible. The RPT
(and its variants) is properly applicable only to unbiased
matter clustering in real space (even though there are
phenomenological approaches with freely fitting parameters,
such as the model of Ref. [51], for example). Thus, the
resummation methods in RPT can be compared only with a
degraded version of iPT without biasing and redshift-space
distortions.

1. Propagators in the high-k limit

An important ingredient of RPT is an interpolation
scheme between low-k and high-k limits of the multipoint
propagator of mass ΓðnÞ

m ðk1;…; knÞ with k ¼ k1���n. Based
on the Eulerian picture of perturbation theory, the high-k
limit of the propagator is analytically evaluated as [45,46]

ΓðnÞ
m ðk1;…; knÞ ≈ exp

�
− 1

2
k2σd2

	
Fnðk1;…; knÞ; ð99Þ

in the fastest growing mode of density field, where

σd
2 ¼ 1

6π2

Z
dk0PLðk0Þ; ð100Þ

Fn is the nth-order kernel function of SPT, and k ¼ jk1���nj.
Although decaying modes and the velocity sector are also
included in the original RPT formalism [44,45], we neglect
them for our purpose of comparison between RPT and iPT.
The multipoint propagator in the iPT has the form of

Eqs. (5) and (6) with full orders of perturbation. In the
unbiased case, X ¼ m, we have

FIG. 7. Connected diagrams with three wavy lines up to tree-
level approximation. These diagrams are not resummed in CLPT.
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ΓðnÞ
m ðk1;…; knÞ ¼ ΠðkÞΓ̂ðnÞ

m ðk1;…; knÞ; ð101Þ
where ΠðkÞ ¼ he−ik·Ψ i is the vertex resummation factor.
Equation (101) should also have the same high-k limit as
Eq. (99) since we are dealing with the same quantities.
Although explicitly proving this property in the framework
of iPT is beyond the scope of this paper, a natural expect-
ation arises that the high-k limit of the resummation factor
ΠðkÞ is given by the exponential prefactor of Eq. (99), as
discussed below.
In the high-k limit, the factor e−ik·Ψ in the definition of

the resummation factor in Eq. (6) strongly oscillates as a
function of displacement field Ψ . Consequently, large
values of the displacement field do not contribute to the
statistical average, and dominant contributions come from a
regime jΨ j≲ k−1. In the high-k limit, this condition
corresponds to a weak field limit of the displacement field,
which is well described by the Zel’dovich approximation,
~Ψ ðkÞ ≈ ðik=k2ÞδLðkÞ. Assuming a Gaussian initial condi-
tion, higher-order cumulants of displacement field in the
Zel’dovich approximation are absent in Eq. (6). Since
hΨiΨjic ¼ δijhjΨ j2i=3 from rotational symmetry in real
space, we have hðk · Ψ Þ2ic ¼ k2hjΨ j2i=3 ¼ k2σd2 in the
Zel’dovich approximation. Thus we naturally expect

ΠðkÞ ¼ he−ik·Ψ i ≈ exp

�
− 1

2
k2σd2

	
; ð102Þ

in the high-k limit, which agrees with the exponential
prefactor of Eq. (99).
Assuming that the above expectation is correct, Eqs. (99)

and (101) suggest that the high-k limit of the normalized
propagator is given by

Γ̂ðnÞ
m ðk1;…; knÞ ≈ Fnðk1;…; knÞ; ð103Þ

i.e., the high-k limit of the normalized propagator is given
by tree diagrams, and contributions from whole loop
corrections are subdominant. This is a nontrivial statement
since the normalized propagator contains nonzero loop
corrections in each order. For example, taking the limit k →
∞ in Eq. (37) of the one-loop approximation, we have

Γ̂ð1Þ
m ðkÞ ≈ 1þ 58

315

Z
∞

0

p2dp
2π2

PLðpÞ; ð104Þ

which is apparently different from F1 ¼ 1. Actually the
integral in the rhs is logarithmically divergent for a
spectrum of cold-dark-matter type, which has an asymptote
PLðkÞ ∝ k−3 for k → ∞. Thus Eq. (103) does not appa-
rently hold when the loop corrections are truncated at any
order. Thus, Eq. (103) has a highly nonperturbative nature.
This situation is natural, because the high-k limit of
Eq. (102) is also highly nonperturbative. When the equa-
tion is truncated at any order, a high-k limit gives divergent

terms, while the whole factor approaches zero. The same is
true for the high-k limit in the RPT formalism, Eq. (99).
Provided that Eq. (99) is true, Eqs. (102) and (103) are the
same statement because of Eq. (101), which is a definition
of the normalized propagator.
The above argument is readily generalized in the case of

non-Gaussian initial conditions. In the high-k limit of the
RPT formalism, the exponential factor in Eq. (99) is
replaced by [47]

exp

�
− 1

2
k2σd2

	
→ heiαðkÞi ¼ exp

�X∞
n¼2

in

n!
h½αðkÞ�nic

	
;

ð105Þ

where

αðkÞ≡−i
Z

d3p
ð2πÞ3

k · p
p2

δLðpÞ: ð106Þ

Comparing these equations of RPTwith Eqs. (6) and (9) of
iPT, there are correspondences,

αðkÞ ¼ −ik ·
Z

d3p
ð2πÞ3 L

ð1ÞðpÞδLðpÞ ¼ −k · Ψ ð1Þ; ð107Þ

heiαðkÞi ¼ he−ik·Ψ ð1Þ i; ð108Þ

where Ψ ð1Þ is the linear displacement field in configuration
space at the origin. Since Eq. (101) holds in non-Gaussian
initial conditions as well, the high-k limit of iPT, Eq. (102),
is replaced by

ΠðkÞ ≈ he−ik·Ψ ð1Þ i ¼ exp

�X∞
n¼2

ð−iÞn
n!

hðk · Ψ ð1ÞÞnic
�
; ð109Þ

which agrees with the the replacement of RPT, Eq. (105).
Since only the exponential factor is replaced in Eqs. (99)
and (102), the high-k limit of Eq. (103) does not change,
even in the case of non-Gaussian initial conditions.

2. Nonlinear interpolation I: REGPT

In the RPT formalism, the nonlinear propagator is
approximated by analytically interpolating the behaviors
in the high-k limit and the low-k limit [45,46,49]. There are
at least two prescriptions for the interpolation. An inter-
polation scheme of Refs. [48,50,51], which is called
REGPT, uses a prescription for the multipoint propagator
truncated at the N-loop order as

ΓðnÞ
RegPT ¼ ðFn þ δΓðnÞ

1-loop þ δΓðnÞ
2-loop þ � � � þ δΓðnÞ

N-loop þC:T:Þ

× exp

�
−1

2
k2σd2

	
; ð110Þ
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where δΓðnÞ
M-loop is the M-loop correction term of the

propagator, and C. T. is a counterterm to match the
N-loop expression exactly in both limits, i.e.,

C:T: ¼
�
1

2
k2σd2 þ

1

8
k4σd4 þ � � � þ 1

N!

�
k2σd2

2

	
N
�
Fn

þ
�
1

2
k2σd2 þ � � � þ 1

ðN − 1Þ!
�
k2σd2

2

	
N−1�

δΓðnÞ
1-loop

þ � � � þ 1

2
k2σd2δΓ

ðnÞ
ðN−1Þ-loop: ð111Þ

The tree-level multipoint propagators are the same as the

kernel functions in SPT, i.e., ΓðnÞ
tree ¼ Fn. It is apparent that

Eq. (110) has the correct low-k limit. In the high-k limit, we

have δΓðnÞ
M-loop ≈ ð−k2σ2d=2ÞMFn=M! according to Eq. (99).

In this limit, it can be shown by induction that all the loop
corrections in the first parentheses of Eq. (110) including
the counterterm remarkably cancel each other, leaving only
the tree-level contribution Fn. Thus Eq. (110) also has the

correct high-k limit, ΓðnÞ
RegPT → Fn expð−k2σd2=2Þ for

k → ∞. The REGPT prescription of Eq. (110) can be
reexpressed in a more compact form including the counter-
term as

ΓðnÞ
RegPT ¼

�
exp

�
1

2
k2σd2

	X∞
N¼0

δΓðnÞ
N-loop

�����
truncated

× exp

�
− 1

2
k2σd2

	
; ð112Þ

where δΓðnÞ
0-loop ≡ Fn, and ½� � ��jtruncated indicates a truncation

up to a given order after completely expanding the
exponential factor.
The REGPT prescription of Eq. (110) can be compared

with Eq. (101) in the iPT formalism. On one hand, applying
a Taylor expansion of the resummation factor Π and
truncating at the n-loop order give the same result as the
n-loop SPT. On the other hand, the lowest-order approxi-
mation of the resummation factor is given by Eq. (35) in
real space, i.e.,

ΠðkÞ ≈ exp

�
− 1

2
k2σd2

	
; ðk → 0Þ; ð113Þ

which is accidentally the same as the exponential factor in
the high-k limit of Eq. (99). From these observations, it is
now clear that the REGPT prescription of Eq. (110) is

equivalent to evaluating the unbiased propagator ΓðnÞ
m by

Eq. (101) in the framework of iPT, keeping only the lowest-
order term in the vertex resummation factor ΠðkÞ and
expanding all the other higher-order terms from the
exponent. In other words, the REGPT prescription is
equivalent to the restricted iPT formalism where the vertex

resummations are truncated at one-loop level (without
biasing and redshift-space distortions).

3. Nonlinear interpolation II: MPTBREEZE

There is another scheme of interpolating the nonlinear
propagators, called MPTBREEZE [49], which is originally
employed in the two-point propagator in the RPT formal-
ism [45]. This method is simpler than the REGPT, in the
sense that calculations of interpolated propagators require
only one-loop integrals. In the MPTBREEZE prescription,
the interpolated propagators are given by

ΓðnÞ
MPTbreezeðk1;…; knÞ ¼ Fnðk1;…; knÞ exp ½δΓð1Þ

1-loopðkÞ�;
ð114Þ

where the one-loop correction term of the two-point
propagator in the growing mode is explicitly given by

δΓð1Þ
1-loopðkÞ¼

Z
d3q
ð2πÞ3

PLðqÞ
504k3q5

�
6k7q−79k5q3þ50q5k3

−21kq7þ3

4
ðk2−q2Þ3ð2k2þ7q2Þ ln jk−qj2

jkþqj2
�
:

ð115Þ

The notationsP0ðkÞ, fðkÞ ΓðnÞ
δ in Ref. [49] are related to our

notations by PLðkÞ ¼ ð2πÞ3D2þðzÞP0ðkÞ, δΓð1Þ
1-loopðkÞ ¼

D2þðzÞfðkÞ and ΓðnÞ
MPTbreeze ¼ ΓðnÞ

δ =DnþðzÞ, where DþðzÞ
is the linear growth factor. Since δΓð1Þ

1-loopðkÞ → −k2σd2=2
in the high-k limit and δΓð1Þ

1-loopðkÞ → 0 in the low-k limit,
Eq. (114) has correct limits.
It is worth noting that the prescription of Eq. (114)

corresponds to replacing all the loop-correction terms of
propagators by

δΓðnÞ
N-loopðk1;…; knÞ →

1

N!
½δΓð1Þ

1-loopðkÞ�NFnðk1;…; knÞ:
ð116Þ

Both prescriptions of MPTBREEZE and REGPT give similar
results, and they agree with numerical simulations fairly
well in the mildly nonlinear regime [49,50]. Thus the
approximation of Eq. (116) turns out to be empirically
good, although the physical origin of the goodness in this
prescription is somehow unclear.
According to Eq. (37) or Eq. (38), the iPT-normalized

two-point propagator of mass is related to the function

δΓð1Þ
1-loopðkÞ by

δΓð1Þ
1-loopðkÞ ¼ δΓ̂ð1Þ

1-loopðkÞ − 1

2
k2σd2; ð117Þ
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where δΓ̂ð1Þ
1-loop is the one-loop correction term which

corresponds to the integral in Eq. (38) without bias,

cðnÞX ¼ 0, or

δΓ̂ð1Þ
1-loopðkÞ ¼

5

21
R1ðkÞ þ

3

7
R2ðkÞ; ð118Þ

as seen in Eq. (58). Substituting Eq. (117) into Eq. (114),
we have

ΓðnÞ
MPTbreeze ¼ Fn exp½δΓ̂ð1Þ

1-loopðkÞ� exp
�
− 1

2
k2σd2

	
: ð119Þ

Comparing this form with Eq. (112), the relation between
the prescriptions of REGPT and MPTBREEZE is explicit.
Both prescriptions differ in the prefactor preceding the
exponential damping factor; a truncation scheme is
employed in REGPT, and a simple model of the higher-
loop corrections is employed in MPTBREEZE.

V. CONCLUSIONS

The iPT is a unique theory of cosmological perturbations
to predict the observable spectra of biased tracers both in
real space and in redshift space. This theory does not have a
phenomenological free parameter once the bias model is
fixed. In other words, all the uncertainties regarding biasing

are packed into the renormalized bias functions cðnÞX , and
weakly nonlinear gravitational evolutions of spatial clus-
tering of biased tracers are described by iPT without any
ambiguity. In this way, the iPT separates the bias uncer-
tainties from weakly nonlinear evolutions of spatial
clustering. The renormalized bias functions are evaluated
for a given model of bias.
Most physical models of bias, such as the halo bias and

the peaks bias, fall into the category of the Lagrangian bias.
Redshift-space distortions are simpler to describe in the
Lagrangian picture than in the Eulerian picture. The iPT is
primarily based on the Lagrangian picture of perturbations,
and therefore effects of Lagrangian bias and redshift-space
distortions are naturally incorporated into the framework
of iPT.
In this paper, general expressions of the one-loop power

spectra calculated from the iPT are presented for the first
time. The cross power spectra of differently biased objects,
PXYðkÞ, both in real space and in redshift space, are
explicitly given in terms of two-dimensional integrals at
most up to one-loop order. The final result in real space is
given by Eq. (47) with Eqs. (35), (42), (43), and (44), and
that in redshift space is given by Eq. (71) with Eqs. (57),
(59), (60), and (70). When the vertex resummation is not
preferred, one can alternatively use Eq. (36) instead of
Eq. (35). An example of the renormalized bias functions is
given by Eq. (19) for a simple model of halo bias.
The iPT is a nontrivial generalization of the method of

Ref. [23], which is applicable only to the case that the

Lagrangian bias is local and that the initial condition is
Gaussian. Although the derivations are quite different from
each other, it is explicitly shown that the general iPT
expression of the power spectrum exactly reduces to the
expression of Ref. [23] in models of local Lagrangian bias
and Gaussian initial condition.
The effects of primordial non-Gaussianity are included

as well. The consequent results are consistent with those
derived by the popular method of peak-background split. In
fact, the iPT provides more accurate evaluations of the
scale-dependent bias due to the primordial non-Gaussianity
[36]. In the present paper, both effects of gravitational
nonlinearity and primordial non-Gaussianity are simulta-
neously included in an expression of biased power spec-
trum. Thus, the most general expressions of power
spectrum with leading-order (one-loop) nonlinearity and
non-Gaussianity are newly obtained in this paper.
In this paper, comparisons of the analytic expressions

with numerical N-body simulations are quite limited. In an
accompanying paper [61], the results in the present paper
are used in calculating the nonlinear auto- and cross-
correlation functions of halos and mass and are compared
with numerical simulations, focusing on stochastic proper-
ties of bias. We have confirmed that the effect of nonlocal
bias is small in the weakly nonlinear regime for the
Gaussian initial conditions. That is not surprising, because
nonlocality in the halo bias is effective on scales of the halo
mass indicated by Eq. (22); for example, R≃ 0.7, 1.4, 3.1,
6.6h−1 Mpc forM ¼ 1011, 1012, 1013, 1014h−1M⊙, respec-
tively, while one-loop perturbation theory is applicable on
scales ≫ 5–10h−1 Mpc for z≲ 3. Therefore, the predic-
tions of iPT in Gaussian initial conditions with one-loop
approximation are almost the same as those of LRT with
Lagrangian local bias [22], which have been compared in
detail [25] with numerical simulations of halos both in real
space and in redshift space. The nonlocality of halo bias
should be important on small scales, and further inves-
tigations on the renormalized bias functions are an inter-
esting extension of the present work.
In the framework of iPT, the vertex resummation is

naturally defined, resulting in the resummation factor ΠðkÞ
of Eq. (35) in real space or Eq. (57) in redshift space. The
vertex resummation of iPT is closely related to other
resummation methods like RPT which are formulated in
Eulerian space. When the vertex resummation is truncated
up to one-loop order, the iPTwithout bias and redshift-space
distortions gives the equivalent formalism to the REGPT, a
version of RPT with regularized multipoint propagators.
Beyond the vertex resummations, the scheme of CLPT is

readily applied to the framework of iPT, as discussed in
Sec. IV C. A further resummation scheme of convolution
can be also considered. It might be an interesting appli-
cation of iPT to include those types of further resummations
in the presence of nonlocal bias and redshift-space
distortions.

TAKAHIKO MATSUBARA PHYSICAL REVIEW D 90, 043537 (2014)

043537-20



Although the resummation technique has proven to be
useful in the one-loop approximation, it is not trivial
whether the same is true in arbitrary orders. The vertex
resummation is not compulsory in iPT: rather, it is optional.
The general form of the vertex resummation factor in iPT is
given by Eq. (6). When this exponential function is
expanded into polynomials, we obtain a perturbative
expression of the power spectrum without resummation,
which is an analogue to SPT. However, for evaluations of
the correlation function, the exponential damping of the
resummation factor stabilizes the numerical integrations of
Fourier transform, and therefore the vertex resummation is
preferred.
The nonlocal model of halo bias [36] explained in

Sec. II B is still primitive. There is plenty of room to
improve the model of nonlocal bias in future work. The iPT
provides a natural framework to separate tractable problems
of weakly nonlinear evolutions of biased tracers from
difficult problems of fully nonlinear phenomena of biasing.
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APPENDIX: DIAGRAMMATIC RULES

A set of diagrammatic rules in iPT which is used in this
paper is summarized in this appendix. A full set of rules and
their derivations are found in Ref. [21]. The relevant
diagrammatic rules are shown in Figs. 8 and 9. Physical
meanings of the graphs are as follows: a double solid line
corresponds to the number density field δXðkÞ, a square box
represents partial resummations of dynamics and biasing, a
wavy line represents the displacement field, a black dot

represents nonlinear evolutions of the displacement field,
and a crossed circle represents the primordial spectra.
The procedures for obtaining a cross polyspectra

PðNÞ
X1…XN

ðk1;…; kNÞ of different types of objects
X1;…; XN are listed below. Auto polyspectra are obtained
by just setting X1 ¼ � � � ¼ XN . The power spectrum is a
special case of polyspectra with N ¼ 2.
(1) Draw N square boxes with labels Xi (i ¼ 1;…N),

each of which has a double solid line. Label each
double solid line with an outgoing wave vector that
corresponds to an argument of the polyspec-

tra PðNÞ
X1…XN

.
(2) Consider possible ways to connect all the square

boxes by using wavy lines, solid lines, black dots,
and crossed circles, satisfying the following con-
straints:
(a) An end of a wavy line should be connected to a

square box, and the other end should be con-
nected to a black dot.

(b) An end of a solid line should be connected to a
crossed circle, and the other end should be
connected to either a square box or a black dot.

(c) Only one wavy line can be attached to a black
dot, while an arbitrary number of solid lines can
be attached to a black dot.

(d) A piece of graph which is connected to a single
square box with only wavy lines or with only
solid lines is not allowed.

(3) Label each (solid and wavy) line with a wave vector
and its direction. The wave vectors should be
conserved at each vertex of the square box, the
black dot, and the crossed circle. Label each wavy
line with a spatial index together with a wave vector.

FIG. 8. Diagrammatic rules of iPT: dynamics and biasing.

FIG. 9. Diagrammatic rules of iPT: primordial spectra.

XX

not allowedallowed

FIG. 10. Examples of an external vertex which is allowed (left)
and not allowed (right) in the iPT.
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(4) Apply the diagrammatic rules of Figs. 8 and 9 to
every distinct graph.

(5) Integrate over wave vectors as
R
d3ki0=ð2πÞ3, where

ki0 are not determined by constraints of wave vector
conservation at vertices.

(6) When there are m equivalent pieces in a graph, put a
statistical factor 1=m! for each set of equivalent
pieces.

(7) Sum up all the contributions from every distinct
graph up to the necessary orders of perturbation.

Rule 2(d) is due to partial resummations of the square
box. For example, the left diagram of Fig. 10 is allowed.
There is a piece of graph that is connected to a single square
box with both wavy and solid lines. However, the right
diagram of Fig. 10 is not allowed, for two reasons. One is
that the upper piece of graph is connected to a single square
box with only wavy lines. The other is that the lower piece
of graph with only solid lines is connected to a single
square box. Each reason by itself prohibits this diagram
from being counted.
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