
Precision cosmology with Padé rational approximations:
Theoretical predictions versus observational limits

Alejandro Aviles,1,* Alessandro Bravetti,2,† Salvatore Capozziello,3,4,5,‡ and Orlando Luongo2,3,4,§
1Departamento de Matemáticas, Cinvestav del Instituto Politécnico Nacional (IPN),

México DF 07360, Mexico
2Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (UNAM),

México DF 04510, Mexico
3Dipartimento di Fisica, Università di Napoli “Federico II”, Via Cinthia, I-80126 Napoli, Italy

4Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Via Cinthia, I-80126 Napoli, Italy
5Gran Sasso Science Institute (INFN), Viale F. Crispi, 7, I-67100 L’Aquila, Italy

(Received 29 May 2014; published 27 August 2014)

We propose a novel approach for parametrizing the luminosity distance, based on the use of rational
“Padé” approximations. This new technique extends standard Taylor treatments, overcoming possible
convergence issues at high redshifts plaguing standard cosmography. Indeed, we show that Padé
expansions enable us to confidently use data over a larger interval with respect to the usual Taylor
series. To show this property in detail, we propose several Padé expansions and we compare these
approximations with cosmic data, thus obtaining cosmographic bounds from the observable Universe for
all cases. In particular, we fit Padé luminosity distances with observational data from different uncorrelated
surveys. We employ Union 2.1 supernova data, baryonic acoustic oscillation data, Hubble Space Telescope
measurements and differential age data. In so doing, we also demonstrate that the use of Padé approximants
can improve the analyses carried out by introducing cosmographic auxiliary variables, i.e., a standard
technique usually employed in cosmography in order to overcome the divergence problem. Moreover, for
any drawback related to standard cosmography, we emphasize possible resolutions in the framework of
Padé approximants. In particular, we investigate how to reduce systematics, how to overcome the
degeneracy between cosmological coefficients, how to treat divergences and so forth. As a result, we show
that cosmic bounds are actually refined through the use of Padé treatments and the thus derived best values
of the cosmographic parameters show slight departures from the standard cosmological paradigm.
Although all our results are perfectly consistent with the ΛCDM model, evolving dark energy components
different from a pure cosmological constant are not definitively ruled out. Finally, we use our outcomes to
reconstruct the effective Universe’s. equation of state, constraining the dark energy term in a model-
independent way.
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I. INTRODUCTION

One of the most challenging issues of modern cosmol-
ogy is to describe the positive late-time acceleration [1–3]
through a single self-consistent theoretical scheme. Indeed,
the physical origin of the measured cosmic speed up is not
well accounted for on theoretical grounds, without invok-
ing the existence of an additional fluid which drives the
Universe’s dynamics, eventually dominating over the other
species. Any viable fluid differs from standard matter by
manifesting negative equation-of-state parameters, capable
of counterbalancing the gravitational attraction at late times
[4]. Thus, since no common matter is expected to behave
antigravitationally, one refers to such a fluid as dark energy
(DE). The simplest candidate for dark energy consists in

introducing within Einstein’s equations a vacuum energy
cosmological constant term, namely Λ [5]. The correspond-
ing paradigm, dubbed the ΛCDM model, has been shown
to be consistent with almost all experimental constraints
[6], becoming the standard paradigm in cosmology. One of
the main advantages of ΛCDM is the remarkably small
number of cosmological parameters that it introduces,
which suggests that any modifications of Einstein’s gravity
reduce to ΛCDM at small redshift [7]. However, recent
measurements of the Hubble expansion rate at redshift z ¼
2.34 [8] and an analysis of linear redshift-space distortions
[9] reside outside the ΛCDM expectations at the 2.5σ and
0.99σ confidence levels, respectively. Due to these facts
and the need of accounting for the ultraviolet modifications
of Einstein’s gravity, extensions of general relativity have
been proposed. Moreover, the standard cosmological
model is plagued by two profound shortcomings. First,
according to observations, it is not clear why matter and Λ
magnitudes appear to be extremely close to each other,

*aviles@ciencias.unam.mx
†bravetti@icranet.org
‡capozzie@na.infn.it
§orlando.luongo@na.infn.it

PHYSICAL REVIEW D 90, 043531 (2014)

1550-7998=2014=90(4)=043531(25) 043531-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.043531
http://dx.doi.org/10.1103/PhysRevD.90.043531
http://dx.doi.org/10.1103/PhysRevD.90.043531
http://dx.doi.org/10.1103/PhysRevD.90.043531


indicating an unexpected coincidence problem [10].
Second, cosmological bounds on Λ indicate a value which
differs from quantum field calculations by a factor of 123
orders of magnitude, leading to a severe fine-tuning
problem [11].
Standard cosmology deems that the Universe’s dynamics

can be framed assuming that dark energy evolves as a
perfect fluid, with a varying equation of state, i.e.,
ωðzÞ≡ P=ρ, with total pressure P and density ρ. So, in
a Friedmann-Robertson-Walker (FRW) picture, the
Universe’s dynamics is depicted through a pressureless
matter term, a barotropic evolving dark energy density and
a vanishing scalar curvature, i.e., Ωk ¼ 0 [12]. In lieu of
developing a theory which predicts the dark energy fluid,
cosmologists often try to reconstruct the Universe’s expan-
sion history, by parametrizing the equation of state of dark
energy [13]. For example, polynomial fits, data-dependent
reconstructions and cosmographic representations [14] are
consolidated manners to reconstruct ωðzÞ [15–20]. All
cosmological recontructions are based on inferring the
properties of dark energy without imposing a priori a
form for the equation of state. In fact, any imposition would
cause misleading results [21], as a consequence of the
strong degeneracy between cosmological models.
Therefore, it turns out that a reconstruction of ωðzÞ should
be carried out as much as possible in a model-independent
manner [22]. In this regard, a well-established method is to
develop a model-independent parametrization by expand-
ing ωðzÞ into a truncated Taylor series and fixing the
corresponding free parameters through current data
[16,23]. However, even though Taylor series are widely
used to approximate known functions with polynomials
around some point, they provide bad convergence results
over a large interval, since ωðzÞ is expanded around z ¼ 0,
while data usually span over intervals larger than the
convergence radius [24,25]. A more sophisticated tech-
nique of approximation, the Padé approximation, aims to
approximate functions by means of a ratio between two
polynomials [26]. Padé approximation is usually best suited
to approximate diverging functions and functions over a
whole interval, giving a better approximation than the
corresponding truncated Taylor series [27].
In Ref. [28], Padé approximations were introduced in the

context of cosmography, whereas applications have been
discussed and extended in Ref. [29], but the authors
focused principally on writing the dark energy equation
of state as a Padé function. In this work we want to propose
a new approach to cosmography, based on approximating
the luminosity distance by means of Padé functions, instead
of Taylor polynomials. In this way we expect to have a
better match between the model and cosmic data and to
overcome possible divergences of the Taylor approach at
z ≫ 1. Indeed, using the Padé approximation of the
luminosity distances, we also show that one can improve
the quality of the fits with respect to the standard

reparametrizations of the luminosity distances by means
of auxiliary variables. We also propose how to deal
numerically with such approximations and how to get
the most viable Padé expansions. As a result, we will obtain
a refined statistical analysis of the cosmographic parame-
ters. A large part of the work will be devoted to outlining
the drawbacks and the advantages of this technique and
comparing it to more standard approaches such as Taylor
series and the use of auxiliary variables. Moreover, we also
include a discussion about the most adequate Padé types
among the wide range of possibilities. Finally, we obtain a
reconstruction of the dark energy equation of state which is
only based on the observational values of the luminosity
distance, over the full range for the redshift in which data
are given. In this way, we demonstrate that Padé approx-
imations are actually preferred to fit high-redshift cosmic
data, thus representing a valid alternative technique to
reconstruct the Universe’s expansion history at late times.
The paper is structured as follows. In Sec. II we highlight

the role of cosmography in the description of the present-
time dynamics of the Universe. In particular, we discuss
connections with the cosmographic series and the FRW
metric. In Sec. III we introduce the Padé formalism and we
focus on the differences between standard Taylor expan-
sions and rational series in the context of cosmography,
giving a qualitative indication that a Padé approximation
could be preferred. We also enumerate some issues related
to cosmography in the context of the observable Universe.
For every problem, we point out possible solutions and we
underline how we treat such troubles in our paper, with
particular attention to the Padé formalism. All experimental
results are portrayed in Secs. IVand V, in which we present
the numerical outcomes derived both from using the Padé
technique and standard cosmographic approach. In Sec. VI
we give an application of the Padé recipe, that is, we use the
Padé technique to estimate the free parameters of some
known models. In Sec. VII, we discuss the consequences
for the equation of state of the Universe which can be
inferred from our numerical outcomes derived by the use of
Padé approximants. Moreover, in Sec. VIII we discuss our
numerical outcomes and we interpret the bounds obtained.
Finally, the last section, Sec. IX, is devoted to conclusions
and the perspectives of our approach.

II. THE ROLE OF COSMOGRAPHY IN
PRECISION COSMOLOGY

In this section we briefly introduce the role of cosmog-
raphy and its standard usage techniques to fix cosmo-
graphic constraints on the observable Universe. The great
advantage of the cosmographic method is that it permits
one to bound present-time cosmology without having to
assume any particular model for the evolution of dark
energy with time. The cosmographic method stands for a
coarse-grained model-independent technique to gather
viable limits on the Universe’s expansion history at late
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times, provided the cosmological principle is valid
[21,22,30]. The corresponding requirements demanded
by cosmography are homogeneity and isotropy with spatial
curvature somehow fixed. Common assumptions on the
cosmological puzzle provide a whole energy budget domi-
nated by Λ (or by some sort of dark energy density), with
cold dark matter (DM) in second place and baryons as a
small fraction only. Spatial curvature in the case of a time-
independent dark energy density is actually constrained
to be negligible. However, for evolving dark energy contri-
butions, observations are not so restrictive [31]. More
details will be given later, as we treat the degeneracy
between scalar curvature and the variation of the accel-
eration. From now on, having fixed the spatial curvatureΩk
to be zero, all cosmological observables can be expanded
around the present time. Moreover, comparing such expan-
sions to cosmological data allows one to fix bounds on the
evolution of each variable under study. This strategy
matches cosmological observations with theoretical expect-
ations. By doing so, one gets numerical outcomes which do
not depend on the particular choice of the cosmological
model, since only Taylor expansions are compared with
data. Indeed, cosmography relates observations and theo-
retical predictions, and it is able to alleviate the degeneracy
among cosmological models. Cosmography is therefore
able to distinguish between models that are compatible with
cosmographic predictions and models that have to be
discarded, since they do not fit the cosmographic limits.
Hence, according to the cosmological principle, we

assume the Universe to be described by a FRW metric, i.e.,

ds2 ¼ dt2 − aðtÞ2ðdr2 þ r2dΩ2Þ; ð1Þ

where we use the notation dΩ2 ≡ dθ2 þ sin2 θdϕ2.
As a first example of cosmographic expansions, we

determine the scale factor aðtÞ as a Taylor series [32]
around the present time t0. We have

aðtÞ ∼ aðt0Þ þ a0ðt0ÞΔtþ
a″ðt0Þ
2

Δt2 þ a‴ðt0Þ
6

Δt3

þ aðivÞðt0Þ
24

Δt4 þ aðvÞðt0Þ
120

Δt5 þ � � � ; ð2Þ

which recovers signal causality if one assumes
Δt≡ t − t0 > 0. From the above expansion of aðtÞ, one
defines

H ≡ 1

a
da
dt

; ð3aÞ

q≡ −
1

aH2

d2a
dt2

; ð3bÞ

j≡ 1

aH3

d3a
dt3

; ð3cÞ

s≡ 1

aH4

d4a
dt4

; ð3dÞ

l≡ 1

aH5

d5a
dt5

: ð3eÞ

Such functions are, by construction, model-independent
quantities, i.e., they do not depend on the form of the
dark energy fluid, since they can be directly bounded by
observations. They are known in the literature as the
Hubble rate (H), the acceleration parameter (q), the
jerk parameter (j), the snap parameter (s) and the lerk
parameter (l) [33]. Once such functions are fixed at present
time, they are referred to as the cosmographic series (CS).
This is the set of coefficients usually derived in cosmog-
raphy from observations.
Rewriting aðtÞ in terms of the CS gives

aðtÞ ∼ 1þH0Δt −
q0
2
H2

0Δt2 þ
j0
6
H3

0Δt3 þ
s0
24

H4
0Δt4

þ l0
120

H5
0Δt5…; ð4Þ

where we have normalized the scale factor to aðt0Þ ¼ 1. By
rewriting Eq. (2) as Eq. (4), one can read out the meaning of
each parameter. In fact, each term of the CS displays a
remarkable dynamical meaning. In particular, the snap and
lerk parameters determine the shape of the Hubble flow at
higher redshift regimes. The Hubble parameter must be
positive, in order to allow the Universe to expand and
finally q and j fix kinematic properties at lower redshift
domains. Indeed, the value of q at a given time specifies
whether the Universe is accelerating or decelerating and
also provides some hints on the cosmological fluid respon-
sible for the dynamics. Let us focus on q first. We can
distinguish three cases, splitting the physical interval of
viability for q0:
(1) q0 > 0, shows an expanding universe which under-

goes a deceleration phase. This is the case of either a
matter-dominated universe or any pressureless bar-
otropic fluid. Observations do not favor q0 > 0 at
present times, which however appears relevant for
early-time cosmology, where dark energy did not
dominate over matter.

(2) −1 < q0 < 0, represents an expanding universe
which is currently speeding up. This actually rep-
resents the case of our Universe. The universe is
thought to be dominated by some sort of antigravita-
tional fluid, as stressed in Sec. I. In turn, cosmog-
raphy confirms such characteristics, without
postulating any particular form of dark energy
evolution.

(3) q0 ¼ −1, indicates that the entire cosmological
energy budget is dominated by a de Sitter fluid,
i.e., a cosmic component with constant energy
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density which does not evolve as the universe
expands. This is the case of inflation during the
very early Universe. However at present time this
value is ruled out by observations.

Besides, the variation of the acceleration provides a way
to understand whether the Universe passes through a
deceleration phase. Precisely, the variation of acceleration,
i.e., dq=dz, is related to j as

dq
dz

¼ j − 2q2 − q
1þ z

: ð5Þ

At present time, we therefore have j0 ¼ dq
dz j0 þ 2q20 þ q0

and since we expect −1 ≤ q0 < −1=2, we get that
2q20 þ q0 > 0. Thus if q0 < −1=2, then j0 is linked to
the sign of the variation of q. We will confirm from
observations that it actually lies in the interval q0 < −1=2.
Accordingly we can determine three cases:
(1) j

0
< 0: The Universe does not show any departure

from the present-time accelerated phase. This would
indicate that dark energy influences early-time
dynamics, without any changes throughout the
Universe’s evolution. Even though this may be a
possible scenario, observations seem to indicate that
this does not occur and it is difficult to admit that the
acceleration parameter does not change its sign as
the Universe expands.

(2) j
0
¼ 0: The acceleration parameter smoothly tends to

a precise value, without changing its behavior as
z → ∞. No theoretical considerations may discard or
support this hypothesis, although observations defini-
tively show that a model compatible with a zero jerk
parameter badly fits current cosmological data.

(3) j
0
> 0: The Universe’s acceleration started at a

precise time during the evolution. Usually, one refers
to the corresponding redshift as the transition red-
shift [34], at which dark energy effects actually
become significant. As a consequence, j0 > 0 in-
dicates the presence of a further cosmological
resource. By a direct measurement of the transition
redshift ztr, one would get relevant constraints on the
dark energy equation of state. It turns out that
the sign of j0 corresponds to a change of the slope
of the Universe’s dynamics. Phrased differently, a
positive j0 definitively forecasts that the acceleration
parameter should change sign at z > ztr.

A useful trick of cosmography is to rescale the CS by
means of the Hubble rate. In other words, it is possible to
demonstrate that if one takes into account n cosmographic
coefficients, only n − 1 are really independent. From the
definitions (3), one can write

_H ¼ −H2ð1þ qÞ; ð6aÞ

Ḧ ¼ H3ðjþ 3qþ 2Þ; ð6bÞ

⃛H ¼ H4½s − 4j − 3qðqþ 4Þ − 6�; ð6cÞ

⃛H ¼ H5½l − 5sþ 10ðqþ 2Þjþ 30ðqþ 2Þqþ 24�; ð6dÞ

and we immediately see the correspondence between
derivatives of the Hubble parameter and the CS (note in
particular the degeneracy, due to the fact that all these
expressions are multiplied by H).
As a consequence of the above discussion, one can

choose a particular set of observable quantities and,
expanding it, as well as the scale factor, it is possible to
infer viable limits on the parameters. To better illustrate this
statement, by means of Eqs. (6a)–(6d), one can infer the
numerical values of the CS using the well-known lumi-
nosity distance.
In fact, keeping in mind the definition of the cosmo-

logical redshift z in terms of the cosmic time t, that is

dz
ð1þ zÞ ¼ −HðzÞdt; ð7Þ

then the luminosity distance in flat space can be expressed
as

dL ¼ ð1þ zÞχðzÞ; ð8Þ

where

χðzÞ ¼
Z

z

0

dz0

Hðz0Þ ð9Þ

is the comoving distance traveled by a photon from redshift
z to us, at z ¼ 0. The dL can be written as

dL ¼ zdHðH0Þ ~dLðz; q0; j0;…Þ; ð10Þ

where

dHðH0Þ ¼
1

H0

; ð11Þ

and

~dLðz; q0; j0;…Þ ¼ 1þ 1 − q0
2

z −
1 − q0ð1þ 3q0Þ þ j0

6
z2

þOðzÞ: ð12Þ

Further expansions up to order 5 in z that will be used in
this work are reported in the Appendix. Here, for brevity
we reported in Eq. (12) the expansion up to the second
order in z.
It is worth noticing that Eq. (10) is general and applies to

any cosmological model, provided it is based on a flat FRW
metric. Thus, by directly fitting the cosmological data for
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dL, one gets physical bounds on q0, j0, s0 and l0 for any
cosmological model (see Refs. [21,22]).
The above description, based on common Taylor expan-

sions, represents only one of the possible approximations
that one may use for the luminosity distance. It may be
argued that such an approximation does not provide
adequate convergence for high-redshift data. Thus, our
aim is to propose possible extensions of the standard Taylor
treatment, i.e., Padé approximants, that could accurately
resolve the issues of standard cosmography.
In the next section we will present a different approxi-

mation for the luminosity distance, given by rational Padé
functions instead of Taylor polynomials. We will analyze
the relationship with the usual Taylor expansion and argue
that the rational approximation may be preferred from a
theoretical point of view. Later, in Secs. IV and V we will
also perform the numerical comparison with observational
data, in order to show that one can get improved results
from this novel approach.

III. PADÉ APPROXIMATIONS IN THE CONTEXT
OF COSMOGRAPHY

In this section we introduce the concept of Padé
approximants and we describe the applications of the
Padé treatment to cosmography.
To do so, let us define the ðn;mÞ Padé approximant of a

generic function fðzÞ, which is given by the rational
function

PnmðzÞ ¼
a0 þ a1zþ � � � þ anzn

1þ b1zþ � � � þ bmzm
; ð13Þ

with degree n ≥ 0 (numerator) and m ≥ 0 (denominator)
that agrees with fðzÞ and its derivatives at z ¼ 0 to the
highest possible order, i.e., such that Pnmð0Þ ¼
fð0Þ; Pnm

0ð0Þ ¼ f0ð0Þ;…; Pmþn
nm ð0Þ ¼ fmþnð0Þ [35]. Padé

approximants for given n and m are unique up to an overall
multiplicative constant. As a consequence, the first constant
in the denominator is usually set to 1, in order to face this
scaling freedom. Hereafter, we follow this standard nota-
tion and indicate as Pnm the Padé approximant of degree n
in the numerator and m in the denominator. As we see, in
cosmology one may use direct data through the distance
modulus μ of different astronomical objects, such as, e.g.,
supernovae (SN). In the usual applications of cosmography,
the luminosity distance dL, which enters μ, is assumed to be
a (truncated) Taylor series with respect to z around the
present time z ¼ 0. A problem with such a procedure
occurs when one uses data from the interval z ≥ 1. In fact,
due to the divergence at high redshifts of the Taylor
polynomials, this can possibly give inaccurate numerical
results [28]. Consequently, data taken over z > 1 are quite
unlikely to accurately fit Taylor series. Padé approximants
can resolve this issue. In fact let us consider the general
situation when one has to reconstruct a function (supposing

that we know the values of such a function) in the two limits
where the independent variable is very small and very large.
Hence, let us consider two different approximate expan-
sions of dL: the first for small values of z (around z ¼ 0),
and the second for large values of z (around 1=z ¼ 0). The
two approximations can be written as

d0L ∼ f0 þ f0zþ f″

2
z2; ð14aÞ

d∞L ∼ g0 þ g0
1

z
þ g″

2

1

z2
: ð14bÞ

In this way, provided we construct a function that behaves
as d0L when z ∼ 0 and as d∞L as z ∼∞, we are sure that in
both limits such a function remains finite (when z ∼ 0 and
z ∼∞, respectively). Given such a property, the most
natural function able to interpolate our data between those
two limits is naturally given by a rational function of z.
Padé approximants are therefore adequate candidates to
carry out this technique. In the next subsection we describe
some problems associated to cosmography and to the Padé
formalism. Later, we also propose feasible solutions that we
will adopt throughout this work.

A. Padé treatment to overcome cosmographic
drawbacks

We introduce this subsection to give a general discussion
about several drawbacks plaguing the standard cosmo-
graphic approach. For every single problem, we describe
the techniques of solutions in the framework of Padé
approximations, showing how we treat Padé approximants
in order to improve the cosmographic analysis.

1. Degeneracy between coefficients

Each cosmographic coefficient may be related to H, as
previously shown. This somehow provides that the whole
list of independent parameters is really limited to
q0; j0; s0; l0;…. However, one can think of measuring
H0 through cosmography in any case, assuming H0 to
be a cosmographic coefficient, without loss of generality.
The problem of degeneracy unfortunately leads to the
impossibility of estimating H0 alone by using measure-
ments of the distance modulus,

μðzÞ ¼ 5log10

�
dLðzÞ
Mpc

�
þ 25; ð15Þ

in the case of supernova observations, as we will see later.
From Eq. (10) it follows that dL can be factorized into two
pieces: dH and ~dL. Since dH ≡H−1

0 , it therefore depends
only on H0, and thus it becomes an additive constant in
μðzÞ which cannot be estimated; its only effect is to act as a
lever to the logarithm of ~dLðz; q0; j0;…Þ.
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In other words, H0 degenerates with the rest of the
parameters. To alleviate such a problem, we here make use
of two different data sets, together with supernovae, i.e., the
Hubble measurements and the Hubble Telescope data. In
this way we employ direct measures of H0, thus reducing
the errors associated to the degeneracy between cosmo-
graphic parameters.

2. Degeneracy with scalar curvature

The spatial curvature of the FRW model enters the
luminosity distance, since the metric directly depends on it.
Thus, geodesics of photons correspondingly change due to
its value. Therefore, any expansion of dL depends on Ωk as
well, degenerating the values of the CS with respect to Ωk.
The jerk parameter is deeply influenced by the value of the
scalar curvature and degenerates with it. In our work, we
overcome this problem through geometrical bounds on Ωk,
determined by early-time observations. According to recent
measurements, the Universe is considered to be spatially
flat and any possible small deviations will not influence the
simple case Ωk ¼ 0. This is the case we hereafter adopt,
except for the last part in which we extensively investigate
the role of Ωk in the framework of the ΛCDM model.

3. Dependence on the cosmological priors

The choice of the cosmological priors may influence the
numerical outcomes derived from our analyses. This turns
out to be dangerous when determining the signs of the
cosmographic coefficients. However, to alleviate this prob-
lem we may easily enlarge all the cosmological priors,
showing that within convergence ranges the CS are fairly
well constrained. The corresponding problem would indi-
cate possible departures from convergence limits, if ranges
are outside the theoretical expectations. Hence, we find a
compromise for each cosmological interval, and we report
the whole list of numerical priors in Table I.

4. Systematics due to truncated series

A slower convergence in the best-fit algorithm may be
induced by choosing truncated series at a precise order,
while (on the contrary) systematics in measurements occur

if series are expanded up to a certain order. In other words,
introducing additional terms would decrease convergence
accuracy, although lower orders may badly influence the
analysis itself. To alleviate this problem, we will constrain
the parameters through different orders of broadening
samples. In this way, different orders will be analyzed
and we will show no significant departures from our
truncated series order.

5. Dependence on the Friedmann equations

Dark energy is thought to be responsible for the present-
time acceleration. However, cosmography is able to
describe the current acceleration of the Universe without
the need for postulating a precise dark energy fluid a priori.
This statement is clearly true only if a really barotropic fluid
is responsible for the dark energy effects.
In the case that there are no significant deviations from a

constant equation of state for pressureless matter and dark
energy is provided by some modification of gravitation,
cosmography should be adjusted consequently.
This leads to the implicit choice of assuming general

relativity as the specific paradigm to get constraints on the
cosmographic observables. One may therefore inquire to
what extent cosmography is really independent of the
Friedmann equations. Phrased differently, to reveal the
correct cosmological model we do not fix further assump-
tions, e.g., geometrical constraints, Lorentz-invariance
violations, and so forth, since we circumscribe our analysis
to general relativity only. Any possible deviations from the
standard approach would need additional theoretical
bounds and the corresponding CS should be adjusted
accordingly. However, this problem does not occur in this
work and we can impose limits without the need for
particular assumptions at the beginning of every analysis.

6. Convergence

The convergence problem probably represents the most
spinous issue of cosmography. As we have previously
stated, the problem of truncated series is intimately inter-
twined with the order chosen for determining the particular
Taylor expansion under study. Unfortunately, almost all
cosmological data sets exceed the bound z≃ 0, which
represents the value around which one expands dL into a
series. In principle, all Taylor series are expected to diverge
when z ≫ 1, a consequence of the fact that they are
polynomials. Thus, finite truncations have problems adapt-
ing to data taken at z ≫ 1, leading to possible misleading
outcomes. For example, this often provides additional
systematic errors because it is probable that the increase
of bad convergence may affect numerical results. Here, we
improve accuracy by adopting the Union 2.1 supernovae
data set and the two additional surveys based on measure-
ments of HðzÞ, i.e., direct Hubble measurements and the
Hubble Space Telescope data. Combining these data
together naturally eases the issue of systematics, whereas

TABLE I. Priors imposed on the free parameters involved in the
Bayesian analysis for all cosmographic tests here employed. The
parameter h is the normalized Hubble rate, while ~Θ indicates a
generic cosmographic coefficient (q0; j0; s0;…). We also report
geometrical consequences for the scalar curvature and the whole
matter density.

Flat priors Additional constraints

0.5 < h < 0.9
0.001 < Ωbh2 < 0.09 Ωk ¼ 0

0.01 < Ωdmh2 < 0.25 Ωm < 0.5

−1000 < ~Θ < 1000
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to overcome finite-truncation problems we manage to
develop the so-called Padé approximation for different
orders. By construction, since Padé approximants represent
a powerful technique to approximate functions by means of
ratios of polynomials, one easily alleviates convergence
problems for z ≫ 1. As such, we expect that Padé approx-
imants can better approximate the luminosity distance with
respect to standard Taylor treatments, especially when
high-redshift data sets are employed in the analysis.
On the other hand, in order to overcome the problem of

divergence, precision cosmology employs the use of several
reparametrizations of the redshift z, in terms of auxiliary
variables (Znew), which enlarge the convergence radius of
the Taylor expansion to a sphere of radiusZnew < 1. Phrased
differently, supposing that data lie within z ∈ ½0;∞Þ, any
auxiliary variable restricts the interval to a more stringent
(nondivergent) range. A prototype of such an approach is for
example given by y1 ¼ z

1þz (see, e.g., Ref. [36]), whose
limits in the past Universe (i.e., z ∈ ½0;∞Þ) read y1 ∈ ½0; 1�,
while in the future (i.e., z ∈ ½−1; 0�) they read y1 ∈ ð−∞; 0�.
The construction of any auxiliary variable should satisfy
some additional requirements. It must be easy to invert the
auxiliary variable, passing from the redshift z to it.
Moreover, it should not diverge for any values of the redshift
z (in this sense, y1 suffers from a divergence problem at
future times). Finally, any parametrization needs to behave
smoothly as the Universe expands, without showing any
critical points.
In this work, we also compare Padé expansions with the

auxiliary variables proposed in the literature, namely y1
(already cited) and y4 ¼ arctan z, which was introduced in
Ref. [22]. The variable y4 improves y1, since it has been
constructed by following the above-mentioned recipe to
build up ad hoc auxiliary variables. One of our results is
that auxiliary variables, albeit being well-consolidated
tricks for reducing the convergence problem, behave worse
than Padé approximations. This is probably due to the
unknown form of the correct Znew, which is not known
a priori. To do so, we describe in detail differences between
our new technique of cosmographic investigations which
uses Padé approximations and standard approaches which
make use of auxiliary variables, showing that the con-
vergence problem may be definitively healed through the
use of rational approximations, instead of constructing
auxiliary variables.
In the next subsection we demonstrate with the help of

exactly soluble models that Padé approximations indeed
improve the accuracy in approximating the luminosity
distance. We stress the fact that this property is more
significant as data span over larger intervals of z, i.e., z ≫ 1.

B. Taylor versus Padé approximations for exact
cosmological models

In this section, we give a qualitative representation of
the improvements that one gets by performing a Padé

approximation of the luminosity distance. To do so, we
plot dL for known models and compare it with the
numerical behavior of different Taylor and Padé approx-
imations over a large range of z. As two significant
examples, we work with the ΛCDM and ωCDM models
for our elucidative purposes [37]. Afterwards, we infer a
theoretical method to focus on viable Padé approximations,
by treating powers n and m, without comparing with
particular models.

1. The ΛCDM model

The Hubble parameter for the ΛCDM model reads

HðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ

q
; ð16Þ

where ΩΛ ¼ 1 −Ωm, representing the dark energy density,
expressed in terms of a pure cosmological constant.
Performing a numerical integration of dL [Eq. (8)], we
can plot such a function over the interval of interest, which
is arbitrarily fixed inside z ∈ ½0; 10�. Besides, we can also
compute different Taylor and Padé approximations for this
function, and graph all the results, to show that the
approximation is generally improved with the use of
rational functions. In Fig. 1, we present the plots of the
exact ΛCDM luminosity distance, compared with its
approximations obtained using a Taylor polynomial and
Padé functions, for different orders of approximation. In
particular, the Taylor polynomial of degree 3 is plotted
together with the Padé approximants of degree (1,1), (1,2)
and (2,1), the polynomial of degree 4 is plotted together
with the Padé approximants of degree (1,3), (3,1) and (2,2)
and finally the fifth-order Taylor polynomial is compared
with the Padé functions of degree (1,4), (3,2), (2,3) and
(4,1). We recall that, e.g., the Taylor polynomials of degree
3 and the Padé approximants of degree (1,2) and (2,1) have
the same number of free parameters and they agree by
definition up to the third order of derivatives at present
time. The same holds for higher orders of both Taylor and
Padé approximations. Therefore, the situation described by
the Taylor and Padé approximants can also be seen as
having two different models which give approximately the
same values for the CS parameters, albeit providing differ-
ent evolutions over the whole interval considered. As one
can immediately notice from all plots in Fig. 1, Taylor
approximations are really accurate until z stays small,
whereas they rapidly diverge from the exact curve as
z > 2. On the contrary, we can see from the first plot that
the rational approximant P21 stays very close to the exact
function over the complete interval analyzed. Moreover, as
we see in the second and third plots, the situation is the
same as we increase the order of the approximants. In fact,
the Padé functions P22 and P32 fairly approximate the exact
ΛCDM luminosity distance over all the intervals consid-
ered. In particular, we remark also that the correctness of
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the approximation does not necessarily increase when
increasing the order of the approximants (as expected,
since all the possible Padé functions have completely
different behaviors, depending on the degrees of the
numerator and denominator) and that P21, P22 and P32

seem to be the best approximations (within the ones
considered), giving excellent results.
As a good check for our conclusions, we repeat such

considerations by using a different model, i.e., the ωCDM
model, probably representing the first step beyond the
ΛCDM model.

2. The ωCDM model

The Hubble parameter resulting from the ωCDM model
reads

HðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩQð1þ zÞ3ð1þωÞ

q
; ð17Þ

whereΩQ ¼ 1 −Ωm and ω is a free parameter of the model
that lies in the interval ω ∈ ð−1;−0.8Þ. The exact integral
of dL involves here a hypergeometric function. We plot it
over the interval of interest, which is again z ∈ ½0; 10�.
Besides, we can also compute different Taylor and Padé
approximations for this function, plotting all the results, to
show that the approximation is generally improved with the
use of rational functions as well as in the ΛCDM case.
Moreover, all the comments presented for the ΛCDM

model also apply for the ωCDM case, showing that the
Padé approximants give a better description of the exact
luminosity distance over the full interval considered, as one
can see in Fig. 2. Exactly as in the ΛCDM case, the best
approximations are given by P21, P22 and P32. To conclude,
Figs. 1 and 2 clearly show that, provided we are given data
over a large interval of values for the cosmological redshift
z, it would be better to fit the observed luminosity distances
with a rational function, in order to get a more realistic
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FIG. 1 (color online). Analytical curves for the luminosity distance of the ΛCDM model compared to its Taylor and Padé
approximations. As we see, the Taylor polynomials T3, T4 and T5 tend to quickly diverge outside the region z ≤ 2. At the same time,
not all the Padé approximants give good approximations of this model. For example, P11, P13 and P23 give spurious singularities when
used to approximate the ΛCDM model. We will see how to avoid this problem in the numerical analysis. On the contrary, P21, P22 and
P32 give excellent approximations to the dL derived from assuming ΛCDM. Additional comments have been reported in the text.
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function that fits such data over the whole interval. By the
same reasoning, the use of Padé approximants seems to be
also more convenient in order to infer the evolution of dL
from knowledge of the CS. In particular, it seems that the
Padé approximants P21, P22 and P32 give the best approx-
imations, which strongly suggests that the order of the
numerator and that of the denominator for these models
should be very close to each other, with the former possibly
being greater than the latter. Given this fact, in the next
section wewill give a quantitative analysis of different Padé
approximations for the luminosity distance, by comparing
them with the astronomical data. In this way we get the best
values for the CS parameters by a direct fit using different
forms. As we will see, this novel approach can give better
bounds on the parameters, and takes better account of more
distant objects, as the Padé approximation over a large
interval is more reliable than Taylor’s technique.

The above considerations suggest some theoretical con-
clusions to build up viable Padé rational functions. Here,
we formalize a possible recipe to determine which Padé
rational functions are favored with respect to others. First,
the Padé function should smoothly evolve in the redshift
range chosen for the particular cosmographic analysis.
Naively, this suggests that any possible Padé approximant
should not have singularities in the observable redshift
intervals. Moreover, any Padé approximant for dL must be
positive definite and cannot show negative regions, other-
wise the definition of magnitude would not hold at all.
Finally, we expect that the degree of the numerator and
that of the denominator should be close, with the former
a little greater than the latter. Keeping this in mind, we
are ready to perform our experimental analyses. To do so,
we consider some Padé expansions as reported in the
following sections.
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FIG. 2 (color online). Analytical curves for the luminosity distance of the ωCDM model compared to its Taylor and Padé
approximations. As we see, the Taylor polynomials T3, T4 and T5 tend to quickly diverge outside the region z ≤ 2. At the same time,
not all the Padé approximants give good approximations of this model. For example, P11, P13, P23 and P41 give spurious singularities
when used to approximate the ωCDMmodel. We will see how to avoid this problem before our numerical analysis. On the contrary, P21,
P22 and P32 give excellent approximations to the dL derived from assuming ωCDM. Additional comments have been reported
in the text.
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IV. EXPERIMENTAL ANALYSIS WITH
PADÉ FUNCTIONS

In this section we present the main aspects of our
experimental analysis. We illustrate how we directly fit
general expressions of dL, in terms of different types
of approximations, i.e., Taylor (standard cosmographic
approach), auxiliary variables and Padé expansions (our
novel cosmographic technique). In general all Padé approx-
imations, due to their rational forms, may show spurious
singularities for certain values of the redshift z lying in the
interval of data. In other words, the need to construct
precise Padé approximations which are not plagued by
divergences due to poles, is actually one of the tasks of our
analysis. In particular, a simple way to completely avoid
such a problem consists in the choice of suitable priors for
the free parameters, built up ad hoc, shifting any possible
poles to future-time cosmological evolution. We show that
data are confined inside intervals of the form z ∈ ½0;∞Þ,
whereas possible divergences of Padé functions are limited
to future times, i.e., z ≤ −1, and hence do not influence our
experimental analysis. Moreover, the cosmological priors
adopted here are perfectly compatible with the ones
proposed in several previous papers and do not influence
the numerical outcomes. This shows that the Padé method
does not reduce the accuracy in fitting procedures and it is a
good candidate to improve standard methods of cosmo-
graphic analyses. Thus, let us investigate the improvements
of the Padé treatments with respect to standard techniques.
To do so, we denote the cosmographic parameters by a
suitable vector θ, whose dimension changes depending on
how many coefficients we are going to analyze in a single
experimental test. Estimations of the cosmographic param-
eters have been performed through Bayesian techniques
and best fits have been obtained by maximizing the
likelihood function, defined as

L ∝ expð−χ2=2Þ; ð18Þ
where χ2 is the common (pseudo-) χ-squared function,
whose form is explicitly determined for each data set
employed. Maximizing the likelihood function leads to
minimizing the pseudo-χ-squared function and it can be
done by means of a direct comparison with each cosmo-
logical data set.
For our purposes, we describe three statistical data sets,

characterized by different maximum orders of parameters,
providing a hierarchy among parameters. This procedure
leads to a broadening of the sampled distributions if the
whole set of parameters is wider, i.e., if the dimension of θ
is higher. As a consequence, the numerical outcomes may
show deeper errors, which may be healed by means of the
above-cited priors. We make use of the supernova Union
2.1 compilation from the Supernovae Cosmology Project
[38], i.e., free available data of the most recent and com-
plete supernova survey. Further, we employ a Gaussian

prior on the present-time Hubble parameter, i.e., H0 ¼
73.8� 2.4 km=s=Mpc [39] implied by the Hubble Space
Telescope (HST) measurements, and we also consider the
almost model-independent baryonic acoustic oscillation
(BAO) ratio, as proposed in Ref. [40]. In addition, we
use relevant measurements of the Hubble parameterHðzÞ at
26 different redshifts spanning from z ¼ 0.09 to z ¼ 2.3
[41–46], commonly named the observational Hubble data
(OHD) or differential Hubble measurements.
The cosmological priors that we have employed here

are summarized in Table I, in which we report the largest
numerical interval developed for any single variable.
Now, we are ready to investigate whether and how much

Padé approximants are favored for estimating bounds on
the late-time Universe. To better illustrate the procedure, we
report below the χ2 function for each of the data sets
adopted in the numerical analysis.

A. Supernova type Ia compilation

Type Ia supernovae observations have been extensively
analyzed during the last decades for parameter fitting of
cosmological models. They are considered as standard
candles, i.e., quantities whose luminosity curves are inti-
mately related to distances. In our work, we employ the
most recent survey of supernovae compilations, namely the
Union 2.1 data set [38], which extends the previous Union
and Union 2 data sets [47,48]. Here, systematics is reduced
and does not influence numerical outcomes, as for previous
surveys.
The standard fitting procedure relies on using a Gaussian

χ-squared function, evaluating differences between
theoretical and observational distance moduli μðzi; θÞ−
μobsðziÞ. Nevertheless, the presence of nuisance parameters
such as the Hubble factor H0 and absolute magnitude M
enforces to marginalize all quantities under exam in
their corresponding domains. Straightforward calculations
provide [49]

χ2SN ¼ A −
B2

C
þ log

�
C
2π

�
; ð19Þ

where we defined

A ¼ xTC−1x;

B ¼
X
i

ðC−1xÞi;

C ¼ Tr½C−1�: ð20Þ

Here C represents the covariance matrix of observational
data, including statistical and systematic errors, and the ith
component of the vector x is given by

xi ¼ 5log10

�
dLðzi; θÞ
Mpc

�
þ 25 − μobsðziÞ: ð21Þ
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B. Ratio of baryonic acoustic oscillations

The ratio of BAOs is slightly model dependent [50],
since acoustic scales actually depend on the redshift (drag
time redshift), inferred from first-order perturbation theory.
However, baryonic acoustic oscillations determined in
Ref. [40] have been found in terms of a model-independent
quantity, i.e.,

BR ≡DVð0.35Þ=DVð0.20Þ ¼ 1.736� 0.065; ð22Þ

where the volumetric distance is defined as

DVðzÞ ¼ ½czdLðzÞ2=ð1þ zÞ2HðzÞ�1=3: ð23Þ

The BAO ratio χ-squared function is simply given by

χ2BAOrðθÞ ¼
ðDVð0.35; θÞ=DVð0.20; θÞ − 1.736Þ2

0.0652
: ð24Þ

We describe below the procedure to compute DV by
means of the Padé expansions for dL. First, one needs to
compute the approximation of HðzÞ in terms of dL by
inverting Eq. (8). It follows that

HðzÞ ¼
�
d
dz

�
dL

1þ z

��
−1
: ð25Þ

Afterwards, inserting HðzÞ from Eq. (25) and the Padé
expressions for dL into Eq. (23), one obtains the corre-
sponding approximations for DV, as reported in the
Appendix.

C. Direct Hubble measurements

We use 26 independent OHD points from [41–46], as
reported in the Appendix of this work. We use these data,
following Refs. [41–43], in which a novel approach to track
the Universe’s expansion history was proposed, employing
massive early-type galaxies as cosmic chronometers [51].
The technique allows one to estimate the quantity dt=dz,
sometimes referred to as differential time, which is related
to the Hubble rate by

HðzÞ ¼ −ð1þ zÞ−1dz=dt: ð26Þ

Recalling Eq. (26), a preliminary list of 19 numerical
outcomes has been found, whereas the other seven data
points have been determined from the study of galaxy
surveys: two from [45], four from the WiggleZ Collabora-
tion [44] and one more from Ref. [46]. All Hubble estimates
are uncorrelated, and therefore the χ-squared function is
simply given by

χ2OHDðθÞ ¼
X
i

ðHðzi; θÞ −HobsðziÞÞ2
σ2i

: ð27Þ

In the Appendix, as already stressed, we provide Table VI,
where we summarize the OHD used in this paper.

D. The fitting procedure

Due to the fact that the different data sets are uncorre-
lated, the total χ-squared function is given by

χ2ðθÞ ¼ χ2SN þ χ2OHD þ χ2BAOr þ χ2HST: ð28Þ

The best fit to the data is given by those parameters that
maximize the likelihood function L ∝ expð−χ2=2Þ. We
obtain them and their respective confidence intervals by
using a Metropolis-Hasting Markov chain Monte Carlo
(MCMC) algorithm [52,53] with the publicly available
COSMOMC code [54,55]. We run several independent
chains and to probe their convergence we use the
Gelman-Rubin criteria R ∼ “mean of chains’ variances”=
“variance of chains’means” [56] with R − 1 < 0.01. We
accurately modify the priors for each θ, within the interval
of values reported in Table I.

V. ESTIMATION OF THE
COSMOGRAPHIC SERIES

For the parameter estimation we will use the CS
combined in three sets with different maximum orders of
parameters:

A ¼ fH0; q0; j0g;
B ¼ fH0; q0; j0; s0g;
C ¼ fH0; q0; j0; s0; l0g: ð29Þ

For the parameter set A the corresponding Padé approx-
imants are P12 and P21, as shown in Fig. 3. Of those
approximants, only P21 gives conclusive results. For B we
obtain conclusive results for P31 and P22 and for C we
obtain conclusive results for P32, P23 and P41.
In Tables II–IV, we show the best fits and 1σ likelihoods

for the parameters sets A, B and C, respectively. We also
show the estimated CS obtained by the standard cosmog-
raphy (SC) or Taylor approach. We worked out the ΛCDM
model, which is for our purposes and the redshifts involved
sufficiently described by two parameters: Ωmh2 and Θ.
Here Θ is defined as 100 times the ratio of the sound

FIG. 3. The Padé approximants used for the different θ. The
approximations enclosed in the triangle give conclusive results.
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horizon to the angular diameter distance at recombination,
while as usual Ωm is the abundance of matter density (both
baryonic Ωb and dark matter Ωdm), and h is the dimension-
less Hubble parameter, as reported in Table I.
The best fits, using the same data sets as above, are given

by Ωmh2 ¼ 0.148þ0.012
−0.010 and Θ ¼ 1.041þ0.011

−0.010 . From these
values and the formulas

q0 ¼ −1þ 3

2
Ωm;

j0 ¼ 1;

s0 ¼ 1 −
9

2
Ωm;

l0 ¼ 1þ 3Ωm −
27

2
Ω2

m; ð30Þ

which are valid only for the flat ΛCDM model, we have
also estimated the cosmographic parameters and we report
them in Tables II–IV.

As we can observe from Figs. 4–6, the Padé approx-
imants give results similar to those from standard cosmog-
raphy, with the advantage of the convergence properties
discussed in the previous sections. We note that in
particular P21, P31 and P23 draw better samples with
narrower dispersion. For this reason, we plot the contours
for these approximants in Figs. 7–9. It is remarkable that
the same degeneracies among the parameters are found in
all cases, even in other cases which have not been
investigated here; see, e.g., Ref. [22].

VI. APPLICATIONS OF PADÉ’S APPROACH

In a flat FRW metric (1), the Friedmann equation for the
energy density ρ≡P

iρi reads 3H2 ¼ 8πG
P

iρi, where
the sum is over all cosmic species contributing to the whole
energy budget. Afterwards, by recovering Bianchi iden-
tities, one gets the continuity equation in the form
_ρi ¼ −3Hð1þ wiÞρi, in the absence of energy transfer
among the different components. In order to determine a
specific model, one must specify the cosmic fluids and their
equations of state [37]. Below we test some models by
means of our cosmographic results, inferred from the Padé
formalism.
We deal with implicit propagation of errors, since it is

convenient to work with the expected values and variances
of the cosmographic parameters, instead of their probability
distribution functions. Thus, for example

hq0i ¼
Z

q0pðq0Þdq0; ð31Þ

TABLE II. Table of best fits and their likelihoods (1σ) for the
parameter set A. SC stands for the standard cosmography
approach and the ΛCDM derived columns are the parameters
inferred assuming that the ΛCDM model is valid.

Parameter P21 SC ΛCDM derived

H0
a

70.64þ2.77
−2.63 71.98þ2.48

−2.55 71.68þ2.25
−2.16

q0 −0.4712þ0.1224
−0.1106 −0.5701þ0.1057

−0.0928 −0.6117þ0.0401
−0.0365

j0 0.593þ0.216
−0.210 0.766þ0.211

−0.207 1
aH0 is given in Km=s=Mpc units.

TABLE IV. Table of best fits and their likelihoods (1σ) for the parameter set C. SC stands for the standard
cosmography approach and the ΛCDM derived columns are the parameters inferred assuming that the ΛCDM
model is valid.

Parameter P41 P32 P23 SC ΛCDM derived

H0
a

71.56þ3.95
−3.95 71.83þ3.53

−3.64 70.75þ3.41
−3.12 71.38þ4.01

−3.68 71.68þ2.16
−2.25

q0 −0.5516þ0.3190
−0.4556 −0.7189þ0.3397

−0.4631 −0.5539þ0.2966
−0.2171 −0.6173þ0.3658

−0.3139 −0.6117þ0.0365
−0.0401

j0 0.721þ2.489
−1.982 1.959þ3.290

−2.516 0.710þ1.389
−1.499 0.949þ1.374

−1.686 1

s0 −1.060þ7.341
−3.193 1.950þ14.072

−5.524 −1.203þ3.073
−2.864 −0.797þ2.962

−3.585 −0.165þ0.120
−0.109

l0 4.43þ19.79
−2.98 8.14þ71.96

−7.05 4.82þ13.07
−3.98 4.47þ18.67

−3.76 2.681þ0.235
−0.277

aH0 is given in Km=s=Mpc units.

TABLE III. Table of best fits and their likelihoods (1σ) for the parameter set B. SC stands for the standard
cosmography approach and the ΛCDM derived columns are the parameters inferred assuming that the ΛCDM
model is valid.

Parameter P31 P22 SC ΛCDM derived

H0
a

71.76þ3.38
−3.46 71.71þ3.35

−3.15 72.53þ3.53
−3.51 71.68þ2.25

−2.16

q0 −0.6483þ0.2589
−0.1623 −0.6767þ0.2395

−0.2580 −0.6642þ0.2050
−0.1963 −0.6117þ0.0401

−0.0365

j0 1.313þ0.521
−0.917 1.500þ0.973

−1.009 1.223þ0.644
−0.664 1

s0 0.425þ1.079
−0.841 0.681þ2.367

−1.055 0.394þ1.335
−0.731 −0.165þ0.109

−0.120
aH0 is given in Km=s=Mpc units.
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FIG. 4 (color online). One-dimensional marginalized posteriors for the parameter set A. SC stands for standard cosmography.
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FIG. 5 (color online). One-dimensional marginalized posteriors for the parameter set B. SC stands for standard cosmography.
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FIG. 6 (color online). One-dimensional marginalized posteriors for the parameter set C. SC stands for standard cosmography.
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where pðq0Þ ¼ fðq0Þ=
R
fðq0Þdq and fðq0Þ is the non-

normalized posterior distribution found in Sec. V via the
MCMC analysis. The variance is

σ2q0 ¼ hq20i − hq0i2; ð32Þ

and similar equations hold for the other cosmological
parameters. For the Padé approximants P21, P31 and P23

we obtain the following.

(1) Padé approximant P21:

hq0i ¼ −0.4623� 0.0677;

hj0i ¼ 0.5834� 0.1215: ð33Þ

(2) Padé approximant P31:

hq0i ¼ −0.6040� 0.1051;

hj0i ¼ 1.1597� 0.3690;

hs0i ¼ 0.2858� 0.4866: ð34Þ

(3) Padé approximant P23:

hq0i ¼ −0.7511� 0.1737;

hj0i ¼ 2.1968� 1.1828;

hs0i ¼ 3.2038� 4.0459;

hl0i ¼ 15.9014� 16.1370: ð35Þ

Here the reported error values are the standard deviations of
the probability distributions, σ ¼

ffiffiffiffiffi
σ2

p
.

Using these results we can approximate the probability
distributions as Gaussians centered around their mean
values and with variance σ2. Now we are ready to
investigate the implications of the results obtained using
the Padé approach for some relevant cosmological models.

A. The case of the ΛCDM model

Concerning the flat ΛCDM model, the only parameters
we need to estimate are H0 and Ωm. It is easy to
demonstrate that, while H0 is actually one of the CS
parameters, the matter density can be related to q0 as
Ωmðq0Þ ¼ 2ðq0 þ 1Þ=3. We have found via the MCMC
algorithm the distribution functions fðq0Þ for q0, obtained
using the results for the Padé approximant P21. The
expected value for Ωm is given by

hΩmi ¼
Z

Ωmðq0Þpðq0Þdq0; ð36Þ

and its variance is σ2 ¼ hΩ2
mi − hΩmi2, which gives

Ωm ¼ 0.36� 0.05: ð37Þ
Using the results for the Padé approximant P31 we obtain,
from Ωmðq0Þ ¼ 2ðq0 þ 1Þ=3 [see Eq. (30)],

Ωmðq0Þ ¼ 0.26� 0.07: ð38Þ
This procedure leads to a projection from a four-parameter
model (the Padé approximant P31) to a two-parameter
model (late-time flat ΛCDM model), providing a broad-
ening of the estimated parameters. In analogy to the
case in which Ωm ¼ Ωðq0Þ, it is easy to show that
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FIG. 7 (color online). Marginalized posterior constraints for the
parameter set A using P21.

68 72 76

−0.8 −0.6 −0.4

0 1 2

−0.5 0.5 1.5
s

0

q 0

68 72 76

−0.8

−0.6

−0.4

j 0

68 72 76
0

1

2

H
0

s 0

68 72 76
−0.5

0

0.5

1

1.5

−0.8 −0.6 −0.4
0

1

2

q
0

−0.8 −0.6 −0.4
−0.5

0

0.5

1

1.5

j
0

0 1 2
−0.5

0

0.5

1

1.5

FIG. 8 (color online). Marginalized posterior constraints for the
parameter set B using P31.

AVILES et al. PHYSICAL REVIEW D 90, 043531 (2014)

043531-14



Ωmðs0Þ ¼ 2ð1 − s0Þ=9. Keeping this expression in mind,
we obtain

Ωmðs0Þ ¼ 0.16� 0.11: ð39Þ

The combination of the two results (38) and (39) should
give tighter constraints. If the probability distribution
functions of s0 and q0 are independent, the distribution
function of Ωm is simply the product of the two distribu-
tions Ωmðq0Þ and Ωmðs0Þ. If we further assume Gaussian
distributions, all the statistical information is given by
Eqs. (38) and (39), leading to the rough estimate

Ωm ≃ 0.23� 0.06: ð40Þ

In this way, we did a three-parameter to two-parameter
projection. We cannot do anything better than Eq. (40) for
the flat ΛCDM model due to the fact that j0 is fixed
to j0 ¼ 1.
As an example, to go beyond the case j0 ¼ 1, one can

consider a generic additional cosmic component X, relevant
at late times. To do so, its equation-of-state parameter
should lie in the interval −1 < wX < 0, but to avoid large
degeneracies with a cosmological constant or with dust

fluids we cannot be very close to −1 or to 0. A possible
example is offered by the scalar curvature Ωk, which we
neglected in all our previous numerical outcomes. In such a
case, one can choose the equation of state PX ¼ −ρX=3,
and thus the corresponding Hubble rate takes the simple
form

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þΩXð1þ zÞ2 þΩmð1þ zÞ3

q
; ð41Þ

with ΩΛ ¼ 1 −ΩX −Ωm. The process of measurement
indeed differs, since dL has different expressions for flat
and nonflat cases. In general, the luminosity distance
equation is

dL ¼ ð1þ zÞffiffiffiffiffiffi
Ωk

p sinhð
ffiffiffiffiffiffi
Ωk

p
χðzÞÞ

≈ ð1þ zÞ
�
χðzÞ þ 1

3!
ΩkχðzÞ3

�
; ð42Þ

where χðzÞ is the comoving distance to redshift z given by
Eq. (9). For sufficiently small Ωk, the second equality in
Eq. (42) is a good approximation. For illustration purposes,
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FIG. 9 (color online). Marginalized posterior constraints for parameter set C using P23.
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we can consider dL ¼ χðzÞ and assume that the estimated
values for the parameters are good for small Ωk and
definitively identify ΩX with curvature.
The cosmographic parameters up to s0 are in this case

q0 ¼ −1þ ΩX þ 3

2
Ωm;

j0 ¼ 1 −ΩX;

s0 ¼ ð1 − ΩXÞ2 −
3

2
ð3 − ΩXÞΩm: ð43Þ

From the second equation and the results for the
Padé approximant P31 [Eq. (34)], we have ΩXðj0Þ ¼
−0.16� 0.37. In the case of Ωm, when using the first
and second equations, Ωmðq0Þ ¼ 0.37� 0.31, and when
using the second and third equations, Ωmðs0Þ ¼
0.29� 0.32. Combining these results, we obtain

Ωm ¼ 0.32� 0.22; ð44Þ

ΩX ¼ −0.16� 0.37: ð45Þ

B. The case of the Chevallier-Polarski-Linder
parametrization

The Chevallier-Polarski-Linder (CPL) [16] dark energy
parametrization assumes that the Universe is composed of
baryons, cold dark matter and dark energy with an evolving
equation of state of the form

wde ¼ w0 þ wa
z

1þ z
: ð46Þ

The background cosmology cannot distinguish between
dark matter and baryons, andthus we write

HðzÞ ¼ H0

�
Ωmð1þ zÞ3 þ Ωdeð1þ zÞ3ð1þw0þwaÞ

× exp

�
−
3waz
1þ z

��
1=2

; ð47Þ

where Ωm ¼ Ωb þΩc and Ωde ¼ 1 −Ωm. Using Eq. (47)
and Eqs. (6a)–(6d), we obtain

q0 ¼
1

2
ð1þ 3w0ð1 −ΩmÞÞ; ð48Þ

j0 ¼
3

2
ðð3w0ðw0 þ 1Þ þ waÞð1 −ΩmÞÞ þ 1; ð49Þ

s0 ¼
1

4
½9w0ð1 −ΩmÞðwaðΩm − 7Þ − 9Þ

− 33wað1 − ΩmÞ − 27w3
0ð1 −ΩmÞð3 − ΩmÞ

þ 9w2
0ð1 −ΩmÞð3Ωm − 16Þ − 14�: ð50Þ

Thus, if we use the P31 results, we have to estimate three
parameters out of other three parameters. This is done
numerically by propagating errors in Eq. (34), obtaining

Ωm ¼ 0.26� 0.19;

w0 ¼ −1.04� 0.16;

wa ¼ 0.08� 0.28: ð51Þ

C. The case of unified dark energy

One relevant approach to dark energy suggests that the
Universe is composed of a single fluid, which unifies dark
matter and dark energy in a single description. A barotropic
perfect fluid with vanishing adiabatic sound speed repro-
duces the ΛCDM behavior at the background level, as
proposed in Ref. [57] and it is compatible with small
perturbations, as shown in Ref. [58]. The corresponding
equation of state reads

wdf ¼ −
1

1þ Að1þ zÞ3 ; ð52Þ

while the total equation of state for the Λþ dm total dark
fluid in the ΛCDM model reads

wΛþdm ¼
P

iρiwiP
iρi

¼ −
1

1þ Ωdm
ΩΛ

ð1þ zÞ3 : ð53Þ

Thus, both models, i.e., ΛCDM and the negligible-sound-
speed model, behave in exactly the same way and hence
they are degenerate. There are several other options for a
unified dark fluid which is not degenerate with ΛCDM.
One of these frameworks is represented by the Chaplygin
gas [59,60] and its generalizations [58,61,62] and constant
adiabatic speed-of-sound models [63], among others.
Therefore, we parametrize the dark fluid equation of state
by a Taylor series:

wdfðzÞ ¼ w0 þ w1zþ w2z2 þ w3z3 þOð4Þ; ð54Þ

where

wi ¼
1

i!
diwðzÞ
dzi

����
z¼0

: ð55Þ

Knowing the value ofΩb we can estimate the coefficient wi
by using the cosmographic parameters. If we use Padé
approximants up to P23, then we truncate the expansion
series at third order. The Hubble rate easily reads

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωbð1þ zÞ3 þ ΩdfFðzÞ

q
; ð56Þ

where Ωdf ¼ 1 −Ωb and we define
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FðzÞ¼ð1þzÞ3ð1þw0−w1þw2−w3Þ

×exp

�
3ðw1−w2þw3Þzþ

3

2
ðw2−w3Þz2þw3z3

�
:

ð57Þ

The parameters to estimate are given implicitly by

q0 ¼
1

2
þ 2

3
w0ð1 −ΩbÞ; ð58Þ

j0 ¼ 1þ 9

2
w0ð1þ w0Þ þ

3

2
w1

−
3

2
Ωbð3w0ð1þ w0Þ þ w1Þ; ð59Þ

s0 ¼ −
7

2
−
9

4
w0ð1 − ΩbÞð9þ w1ð7 − ΩbÞÞ

−
9

4
w2
0ð1 −ΩbÞð16 − 3ΩbÞ

−
27

4
w3
0ð3 − ΩbÞð1 −ΩbÞ

−
45

2
w1ð1 − ΩbÞ − 3w2ð1 −ΩbÞ; ð60Þ

which reduce to the flat ΛCDM values when w0 ¼ −1,
w1 ¼ w2 ¼ 0, and by considering Ωb → Ωm. From several
independent observations we have measurements of the
baryon species in the Universe. In this section we will take
the best fit from the Planck Collaboration Ωb ¼ 0.0488
[64]. We report the estimated values from the Padé
approximants P21, P31 and P23.
(1) Padé approximant P21:

w0 ¼ −0.67� 0.05;

w1 ¼ 0.37� 0.13: ð61Þ

(2) Padé approximant P31:

w0 ¼ −0.77� 0.07;

w1 ¼ 0.63� 0.37;

w2 ¼ 0.06� 0.50: ð62Þ

(3) Padé approximant P23:

w0 ¼ −0.87� 0.12;

w1 ¼ 1.13� 1.09;

w2 ¼ 0.23� 2.71;

w3 ¼ −0.95� 2.21: ð63Þ

These results should be compared with the best-fit
values for the ΛCDM model, w0 ¼ −0.76, w1 ¼ 0.55,

w2 ¼ 0.15 and w ¼ −0.32, obtained by substituting in
Eq. (53) the values Ωm ¼ 0.2880, ΩΛ ¼ 0.7119, esti-
mated in Sec. V for the ΛCDM model, and the value
Ωb ¼ 0.0488 from Planck.

VII. THE UNIVERSE’S EQUATION OF STATE

Now, let us consider an arbitrary collection of fluids
(baryons, cold dark matter, dark energy, ...) with total
energy density ρ ¼ P

iρi which comprises all possible
species present in the Universe. The Friedmann equation is
thus 3H2 ¼ 8πGρ, as already mentioned. We want to
estimate the total equation of state of the Universe given by

wTðzÞ ¼ w0 þ w1zþ w2z2 þ w3z3 þOð4Þ: ð64Þ
The Friedmann equation can be recast as

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffi
FðzÞ

p
; ð65Þ

where FðzÞ is given again by Eq. (57). The cosmographic
parameters are equal to Eqs (58)–(60), by imposing
Ωb ¼ 0. At late times, the total equation of state of the
Universe is given by

wT ¼ −
1

1þ Ωm
ΩΛ

ð1þ zÞ3 : ð66Þ

We report the estimated values from the Padé approx-
imants P21, P31 and P23.
(1) Padé approximant P21:

w0 ¼ −0.64� 0.05;

w1 ¼ 0.41� 0.12: ð67Þ

(2) Padé approximant P31:

w0 ¼ −0.73� 0.07;

w1 ¼ 0.67� 0.34;

w2 ¼ −0.02� 0.50: ð68Þ

(3) Padé approximant P23:

w0 ¼ −0.83� 0.12;

w1 ¼ 1.17� 1.02;

w2 ¼ 0.10� 2.51;

w3 ¼ −0.47� 1.93: ð69Þ

These results should be compared with the best-fit values
for the ΛCDM model, w0 ¼ −0.71, w1 ¼ 0.62, w2 ¼ 0.08
and w ¼ −0.39, obtained by substituting in Eq. (66) the
valuesΩm ¼ 0.2880,ΩΛ ¼ 0.7119, estimated in Sec. V for
the ΛCDM model.
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VIII. CONSEQUENCES OF THE PADÉ RESULTS
FOR DARK ENERGY

We showed that the use of Padé approximants in
cosmography provides a new model-independent technique
for reconstructing the luminosity distance and the Hubble
parameter HðzÞ. This method is particulary valid since
standard constructions in cosmography require one to
develop the luminosity distance dL as a Taylor series and
then match the data with this approximation. In particular,
when data are taken over z > 1, Padé functions work better
than truncated Taylor series. To make the argument con-
sistent, we have performed in Sec. IV a detailed analysis of
our models derived from Padé approximants with respect to
the data taken from different observations. The results have
been elaborated on in Secs. IVand Vand compared with the
standard cosmographic approach and to the values inferred
from assuming the ΛCDM model. As expected, not all the
Padé approximants work properly. For example, we have
commented that one has to take special carewith the possible
spurious divergences that may appear in dL when approxi-
mating with Padé approximants, due to the fact that such
functions are rational functions.
Moreover, not all Padé models can fit the data in the

appropriate way. Indeed, we have seen both theoretically
and numerically that approximants whose numerator and
denominator have similar degrees seem to be preferred (see
Figs. 1–3 and Tables II–IV). This fact suggests that the
increase of the luminosity distance with z has to be indeed
slower than the one depicted by a Taylor approximation.
Interestingly, our numerical analysis has singled out the Padé
functions P21, P31 and P23, which are the ones that draw the
best samples, with the narrowest dispersion (see Figs. 5–9).
As one can see from Tables II–IV, the best-fit values and
errors for the CS parameters estimated using the approxim-
ants P21, P31 and P23 are in good agreement with the SC
results. In particular, the approximant P23 gives smaller
relative errors than the corresponding SC analysis, thus
suggesting that by enlarging the approximation order, the
analysis bymeans of Padé approximants is increasinglymore
appropriate than the standard one. The estimated values of the
CSparameters, through the useof the Padé approximantsP21,
P31 and P23 seem to indicate that the value of H0 is smaller
than the one derived by means of the standard (Taylor)
approximation. Our results therefore agree with the Planck
results, which show smaller values of H0 than previous
estimations. On the contrary, q0 seems to be larger than the
result obtained by standard cosmography, while for j0 the
situation is less clear (P21 and P23 indicate a smaller value,
whileP31 a larger one). In any case, the sign of j0 is positive at
the 68% confidence level. This fact, according to Sec. II,
provides a universe which starts decelerating at a particular
redshift ztr, named the transition redshift.
From the above considerations, a comparison of our

results with the ones obtained previously using Padé
expansions is essential. In particular, in Ref. [28] the

authors employed a P12 Padé approximant; this choice
was motivated by noticing that for z ≪ 1 the requirement
m > n could be appropriate to describe the behavior of dL.
Their idea was to propose this Padé prototype and to use it
for higher redshift domains. Their heuristic guess was
compared in that work with respect to other Pnm approx-
imants. Hence, the need to extend their approach has been
achieved in the present paper, where we analyzed thor-
oughly which extensions work better. Moreover, the
authors adopted the P12 Padé approximant as a first
example to describe the convergence radius in terms of
the Padé formalism, providing discrepancies with respect to
standard Taylor treatments. Their numerical analyses were
essentially based on SN Ia data only, while in our paper we
adopted different data sets, i.e., baryonic acoustic oscil-
lations, Hubble Space Telescope measurements and differ-
ential age data, with improved numerical accuracies
developed by using the COSMOMC code [54,55]. As a
consequence, we found that the cosmographic results
obtained using P21 are significantly different from the ones
obtained using P12. Indeed, in Ref. [28] the authors
employed the P12 approximant only, whereas in our paper
we reported in Fig. 4 the plots of P21, which definitively
provide the differences between P21 and P12. In general,
our results seem to be more accurate and general than the
numerical outcomes of Ref. [28]. However, we showed a
positive jerk parameter, for sets A and B, which is
compatible with their results, albeit not strictly constrained
to j0 > 1, as they proposed. Numerical outcomes for H0

and q0 lie in similar intervals with respect to Ref. [28].
Summing up, although the use of P12 is possible a priori,
we demonstrated here that by considering different models
one can find parametrizations that work better than P12 and
therefore are more natural candidates for further uses in
upcoming works on cosmography.
Further, it is of special interest to look at the comparison of

the numerical results obtained for the cases of ΛCDM, CPL
and unified dark energy models by inserting the values
estimated by fitting the Padé functions P21, P31 and P23 (see
Sec. VI). From this analysis it turns out that all of them
suggest small departures from ΛCDM, as expected.
Moreover, P31 is the one that better reproduces the results
of ΛCDM. However, we expect from Fig. 1 that P22 and P32

should provide an even better match with the ΛCDM
predictions. Therefore, we consider it necessary to repeat
the analysis with a larger set of data in the region z ≫ 1 to
get more reliable results in this sense. This indication will be
the object of extensive future works. Finally, let us comment
on the fact that the results in Table V, compared with those in
Tables II–IV, show that the approximants P21, P31 and P23

give values for the CS parameters that are much closer to the
ones estimated by standard cosmography and by the ΛCDM
model, than the results provided by the introduction of
auxiliary variables in the standard cosmographic approach.
This definitively shows that Padé approximants represent a
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significant alternative to overcome the issues of divergence
in cosmography, without the need of any additional auxiliary
parametrization.

IX. FINAL OUTLOOKS AND PERSPECTIVES

In this work we proposed the use of Padé approximations
in the context of observational cosmology. In particular, we
improved the standard cosmographic approach, which ena-
bles one to accurately determine refined cosmographic
bounds on the dynamical parameters of the models. We
stressed the fact that the Padé recipe can be used as a relevant
tool to extend standard Taylor treatments of the luminosity
distance. Our main goal was to introduce a class of Padé
approximants that are able to overcome all the problems
plaguing modern cosmography. To do so, we enumerated the
basic properties and the most important demands of the Padé
treatment and we matched theoretical predictions with
modern data. In particular, the main advantage of the rational
cosmographic method is that Padé functions reduce the issue
of the convergence of the standard cosmographic approach
based on truncated Taylor series, especially for data taken
over a larger redshift range. In other words, the usual model-
independent expansions performed at z ¼ 0 suffer from
divergences due to data spanning cosmic intervals with
z > 1. Since Padé approximants are rational functions, they
can naturally overcome this issue. In particular, in our
numerical treatment, we have considered all the possible
Padé approximants of the luminosity distance with numer-
ators and denominators whose orders sum to 3, 4 and 5 and
compared them with the corresponding Taylor polynomials
of degree 3, 4 and 5 in z. Among these models, it turned out
that the Padé technique can give results similar to those
obtained by standard cosmography and also improve the
accuracy. In addition, the Padé technique overcomes the
need to introduce auxiliary variables, as proposed in standard
cosmography to reduce divergences at higher redshifts. To
do so, we also compared Padé results with reparametrized
Taylor expansions. In all the cases considered here, our Padé
numerical outcomes appear to improve on the standard
analyses.
Furthermore, we also considered overcoming the degen-

eracy problem by employing additional data sets. In par-
ticular, we used the Union 2.1 type Ia supernovae data set,
baryonic acoustic oscillations, Hubble Space Telescope

measurements and direct observations of Hubble rates, based
on the differential age method. Moreover, all cosmographic
drawbacks have also been investigated and treated in terms
of Padé’s recipe, and a possible solution was proposed for
each problem to improve the experimental analyses.
Afterwards, we guaranteed that our numerical outcomes
lie in viable intervals and we demonstrated that the refined
cosmographic bounds almost confirm the standard cosmo-
logical paradigm, thus forecasting the sign of the variation of
acceleration, i.e., the jerk parameter. However, although the
ΛCDM model passes our experimental tests, we cannot
conclude that evolving dark energy terms are ruled out.
Indeed, we compared our Padé results with a class of
cosmological models, namely the ωCDM model, the
Chevallier-Polarski-Linder parametrization and the unified
dark energy models, finding a good agreement with those
paradigms. Furthermore, we also investigated the conse-
quences of Padé’s bounds on the Universe’s equation of
state. To conclude, we have proposed and investigated here
the use of Padé approximants in the field of precision
cosmology, with particular regard to cosmography. Future
perspectives will be clearly devoted to describing the Padé
approach in other relevant fields. For example, early-time
cosmology is expected to be more easily described in our
framework, as well as additional epochs related to high-
redshift data. Collecting all these results, one could in
principle definitively reconstruct the Universe’s expansion
history—matching late- early-time observations—and
understand whether the dark energy fluid evolves or remains
a pure cosmological constant at all times.
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TABLE V. Table of best fits and their likelihoods (1σ) for the redshift functions y1 and y4, using the parameter sets B and C.

Parameter y1 ¼ z=ð1þ zÞ set B y1 ¼ z=ð1þ zÞ set C y4 ¼ tan z set B y4 ¼ tan z set C

H0
a

75.11þ3.29
−3.44 73.17þ3.92

−3.38 72.34þ3.55
−3.97 72.58þ3.94

−4.31
q0 −1.0642þ0.2216

−0.1958 −0.8517þ0.3795
−0.3695 −0.868þ0.3165

−0.2763 −0.7501þ0.3891
−0.3839

j0 2.991þ1.030
−1.109 1.983þ2.646

−2.772 2.142þ1.411
−1.448 1.520þ2.123

−1.736
s0 4.919þ3.909

−3.198 1.591þ10.905
−6.469 5.149þ2.210

−1.338 −0.206þ4.960
−4.256

l0 � � � 7.96þ47.83
−4.79 � � � −18.64þ21.60

−12.72
aH0 is given in Km=s=Mpc units.
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APPENDIX: FORMULAS USED FOR
APPROXIMATING dL AND THE

OHD TABLE

In this appendix we give the formulas for the approx-
imants of the luminosity distance used to fit the data, for

every Taylor and Padé approximant considered in this
work. Moreover, we provide also a table of the OHD used
in the analysis.
The Taylor polynomials around z ¼ 0 of degree 3, 4 and

5 for the luminosity distance (8) are given by

T3 ¼ z
6H3

0

½2z2ðH0
0Þ2 −H0zðzH″

0 þ 3ðzþ 1ÞH0
0Þ þ 6H2

0ðzþ 1Þ�;

T4 ¼ −z
24ðH0

0Þ4
½6z3ðH0

0Þ3 − 2H0z2H0
0ð3zH″

0 þ 4ðzþ 1ÞH0
0Þ þH2

0ðHð4Þ
0 z3 þ 4ðzþ 1ÞzðzHð3Þ

0 þ 3H″
0ÞÞ − 24H3

0ðzþ 1Þ�;

T5 ¼ −z
120H5

0

f−24z4ðH0
0Þ4 þ 6H0z3ðH0

0Þ2ð6zH″
0 þ 5ðzþ 1ÞH0

0Þ − 2H2
0z

2½3z2ðH″
0Þ2 þ 20ðzþ 1ÞðH0

0Þ2

þ zH0
0ð4Hð3Þ

0 zþ 15ðzþ 1ÞH″
0Þ� þH3

0½Hð4Þ
0 z4 þ 5ðzþ 1Þzð12H0

0 þ zðHð3Þ
0 zþ 4H″

0ÞÞ� − 120H4
0ðzþ 1Þg:

Therefore, using Eqs. (6) and (7), one can rewrite the Taylor approximations for the luminosity distance in terms of the
CS parameters, which are

T3 ¼ z
6H0

½zð−ðjþ 1Þzþ qð3qzþ z − 3Þ þ 3Þ þ 6�;

T4 ¼ z
24H0

½z3ð5jð2qþ 1Þ − qð3qþ 2Þð5qþ 1Þ þ sþ 2Þ − 4z2ðj − qð3qþ 1Þ þ 1Þ − 12ðq − 1Þzþ 24�;

T5 ¼ z
120H0

½z4ð10j2 − jð5qð21qþ 22Þ þ 27Þ − lþ qðqðqð105qþ 149Þ þ 75Þ − 15sþ 6Þ − 11s − 6Þ

þ 5z3ð5jð2qþ 1Þ − qð3qþ 2Þð5qþ 1Þ þ sþ 2Þ − 20z2ðj − qð3qþ 1Þ þ 1Þ − 60ðq − 1Þzþ 120�;

where all the CS parameters are assumed to be evaluated at z ¼ 0.
At the same time, we can write all the Padé approximants used in this work for the luminosity distance, which read

P11 ¼ 2zfzH0
0 − 2H0ðz − 1Þg−1;

P12 ¼ 12H0zf−z2ðH0
0Þ2 þ 2H0zðzH″

0 − 3ðz − 1ÞH0
0Þ þ 12H2

0ððz − 1Þzþ 1Þg−1;
P21 ¼ zð−zðH0

0Þ2 þ 2H0ðzH″
0 − 3ðzþ 1ÞH0

0Þ þ 12H2
0ðzþ 1ÞÞf2H0ð−2zðH0

0Þ2 þH0ðzH″
0 þ 3ðz − 1ÞH0

0Þ þ 6H2
0Þg−1;

P13 ¼ −24H2
0zf−z3ðH0

0Þ3 þ 2H0z2H0
0ðzH″

0 − ðz − 1ÞH0
0Þ −H2

0zð12ððz − 1Þzþ 1ÞH0
0 þ zðHð3Þ

0 z − 4ðz − 1ÞH″
0ÞÞ

þ 24H3
0ðz − 1Þðz2 þ 1Þg−1;

P22 ¼ H0f6zð−zðH0
0Þ3 − 2H0H0

0ððzþ 1ÞH0
0 − zH″

0Þ þH2
0ð−H3

0zþ 4ðzþ 1ÞH″
0 − 12ðzþ 1ÞH0

0Þ þ 24H3
0ðzþ 1ÞÞg

× f−2z2ðH0
0Þ4 þ 2H0zðH0

0Þ2ðzH″
0 þ 6ðz − 1ÞH0

0Þ þ 6H3
0ðH4

0ðz − 1Þzþ 4ðz2 þ 1ÞH″
0 þ 12ðz − 1ÞH0

0Þ
−H2

0ð−4z2ðHð3Þ
0 Þ2 þ 12ðzðzþ 3Þ þ 1ÞðH0

0Þ2 þ 3zH″
0ðH3

0zþ 8ðz − 1ÞH″
0ÞÞ þ 144ðH0

0Þ4g−1;

P31 ¼ fz½2z2ðH0
0Þ4 − 2H0zðH0

0Þ2ðzH″
0 þ 6ðzþ 1ÞH0

0Þ
þH2

0ð−4z2ðH″
0Þ2 þ 12ðz − 4Þðzþ 1ÞðH0

0Þ2 þ 3zH0
0ðHð3Þ

0 zþ 8ðzþ 1ÞH″
0ÞÞ

− 6H3
0ðzþ 1ÞðHð3Þ

0 zþ 4ðz − 1ÞH″
0 − 12H0

0Þ�g
× f6H2

0ð−6zðH0
0Þ3 þ 2H0H0

0ð3zH″
0 þ 4ðz − 1ÞH0

0Þ þH2
0ð−Hð3Þ

0 z − 4ðz − 1ÞH″
0 þ 12H0

0ÞÞg−1;
P14 ¼ 720H3

0zf−19z4ðH0
0Þ4 þ 2H0z3ðH0

0Þ2ð23zH″
0 − 15ðz − 1ÞH0

0Þ − 2H2
0z

2½8z2ðH″
0Þ2 þ 30ððz − 1Þzþ 1ÞðH0

0Þ2
þ 3zH0

0ð3H3
0z − 10ðz − 1ÞH″

0Þ� − 6H3
0zð−H4

0z
3 þ 60ðz − 1Þðz2 þ 1ÞH0

0 þ 5zðH3
0ðz − 1Þz − 4ððz − 1Þzþ 1ÞH″

0ÞÞ
þ 720H4

0ððz − 1Þzðz2 þ 1Þ þ 1Þg−1;
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P41 ¼ fz½−12z3ðH0
0Þ6 þ 24H0z2ðH0

0Þ4ðzH″
0 þ 2ðzþ 1ÞH0

0Þ þ 24H5
0ðzþ 1ÞðH4

0zþ 5H3
0ðz − 1Þ − 20H″

0Þ
− 4H2

0zðH0
0Þ2ð3z2ðH″

0Þ2 þ 2ðzþ 1Þð5zþ 27ÞðH0
0Þ2 þ zH0

0ðH3
0zþ 18ðzþ 1ÞH″

0ÞÞ
þH4

0½960ðzþ 1ÞðH0
0Þ2 þ zð5ðHð3Þ

0 Þ2z2 þ 16ðzþ 1Þð5z − 9ÞðH″
0Þ2 þ 4zð5H3

0ðzþ 1Þ −H4
0zÞH″

0Þ
− 12ðzþ 1ÞH0

0ð20ð2z − 3ÞH″
0 þ zðH4

0zþH3
0ð5zþ 11ÞÞÞ� þ 4H3

0ð6z3ðH″
0Þ3 þ 60ðz − 3Þðzþ 1ÞðH0

0Þ3
− z2H0

0H
″
0ð7H3

0zþ 12ðzþ 1ÞH0
0Þ þ 2ðH0

0Þ2ðH4
0z

3 þ ðzþ 1Þzð7H″
0zþ ð5zþ 63ÞH″

0ÞÞÞ�g
× f24H3

0½−24zðH0
0Þ4 þ 6H0ðH0

0Þ2ð6zH″
0 þ 5ðz − 1ÞH0

0Þ þH3
0ðH3

0zþ 5H3
0ðz − 1Þ − 20H″

0Þ
þH2

0ð−6zðH″
0Þ2 þ 40ðH0

0Þ2 þ 2H0
0ð−4H3

0z − 15ðz − 1ÞH″
0ÞÞ�g−1;

P32 ¼ fz½2z2ðH0
0Þ4 − 2H0zðH0

0Þ2ðzH″
0 þ 6ðzþ 1ÞH0

0Þ
þH2

0ð−4z2ðH″
0Þ2 þ 12ðz − 4Þðzþ 1ÞðH0

0Þ2 þ 3zH0
0ðH3

0zþ 8ðzþ 1ÞH″
0ÞÞ

− 6H3
0ðzþ 1ÞðH3

0zþ 4ðz − 1ÞH″
0 − 12H0

0Þ�gf6H2
0½−6zðH0

0Þ3 þ 2H0H0
0ð3zH″

0 þ 4ðz − 1ÞH0
0Þ

þH2
0ð−H3

0z − 4ðz − 1ÞH″
0 þ 12H0

0Þ�g−1;
P23 ¼ f6zð−zðH0

0Þ3 − 2H0H0
0ððzþ 1ÞH0

0 − zH″
0Þ þH2

0ð−H3
0zþ 4ðzþ 1ÞH″

0 − 12ðzþ 1ÞH0
0Þ þ 24H3

0ðzþ 1ÞÞg
× f−2z2ðH0

0Þ4 þ 2H0zðH0
0Þ2ðzH″

0 þ 6ðz − 1ÞH0
0Þ þ 6H3

0ðH3
0ðz − 1Þzþ 4ðz2 þ 1ÞH″

0 þ 12ðz − 1ÞH0
0Þ

−H2
0ð−4z2ðH″

0Þ2 þ 12ðzðzþ 3Þ þ 1ÞðH0
0Þ2 þ 3zH0

0ðH3
0zþ 8ðz − 1ÞH″

0ÞÞ þ 144H4
0g−1H4

0:

Again, using Eqs. (6) and (7), one can rewrite the Padé approximants for the luminosity distance in terms of the CS
parameters, which are

P11 ¼ 2zfH0ððq − 1Þzþ 2Þg−1;
P12 ¼ −12zfH0ðzð−ð2jþ 5Þzþ qðð3qþ 8Þz − 6Þ þ 6Þ − 12Þg−1;
P21 ¼ zðzð−2jþ qð3qþ 8Þ − 5Þ þ 6ðq − 1ÞÞf2H0ð−ðjþ 1Þzþ qð3qzþ zþ 3Þ − 3Þg−1;
P13 ¼ 24zfH0ðz3ð−ðjð6qþ 9Þ − qð6qðqþ 2Þ þ 19Þ þ sþ 9ÞÞ þ 2z2ð2j − qð3qþ 8Þ þ 5Þ þ 12ðq − 1Þzþ 24Þg−1;
P22 ¼ f6zðzðjð6qþ 9Þ − qð6qðqþ 2Þ þ 19Þ þ sþ 9Þ þ 2ð2j − qð3qþ 8Þ þ 5ÞÞgfH0½z2ð4j2 þ jðqð6q − 23Þ − 7Þ

þ qðqð−9q2 þ 30qþ 13Þ þ 3sþ 4Þ − 3s − 2Þ þ 6zðjð8qþ 7Þ − qðqð9qþ 17Þ þ 6Þ þ sþ 4Þ
þ 12ð2j − qð3qþ 8Þ þ 5Þ�g−1;

P31 ¼ fz½z2ð−4j2 þ jðqð23 − 6qÞ þ 7Þ þ qðqð9q2 − 30q − 13Þ − 3s − 4Þ þ 3sþ 2Þ þ 6zðjð8qþ 7Þ
− qðqð9qþ 17Þ þ 6Þ þ sþ 4Þ þ 24ðj − qð3qþ 1Þ þ 1Þ�gf6H0ðzð5jð2qþ 1Þ − qð3qþ 2Þð5qþ 1Þ þ sþ 2Þ
þ 4ðj − qð3qþ 1Þ þ 1ÞÞg−1;

P14 ¼ −720zfH0½z4ð40j2 − 2jð5qð30qþ 59Þ þ 221Þ − 6lþ qðqð3qð75qþ 188Þ þ 610Þ − 60sþ 646Þ − 96s − 251Þ
þ 30z3ðjð6qþ 9Þ − qð6qðqþ 2Þ þ 19Þ þ sþ 9Þ þ 60z2ð−2jþ qð3qþ 8Þ − 5Þ − 360ðq − 1Þz − 720�g−1;

P41 ¼ fz½4z2ð5j2ð4qþ 11Þ þ jðqð5qð18q − 35Þ − 234Þ þ 5s − 46Þ þ 3lðq − 1Þ þ qð2qðqð−45q2 þ 69qþ 121Þ
þ 15sþ 61Þ − 17sþ 16Þ − 4ð7sþ 2ÞÞ þ 12zð20j2 − jð5qð32qþ 49Þ þ 79Þ − 2lþ qðqðqð135qþ 308Þ þ 205Þ
− 25sþ 32Þ − 27s − 22Þ þ z3½−ð40j3 þ j2ð20qð1 − 2qÞ þ 57Þ þ jð−4lþ 2qðqðqð90qþ 143Þ − 103Þ
þ 4ð5s − 26ÞÞ þ 6s − 32Þ − 4ðl − 2qþ 6sþ 1Þ þ qð4lð3qþ 1Þ þ qðqð184 − 3qðqð45qþ 86Þ − 23ÞÞ þ 108ÞÞ
þ 2qðqð15qþ 31Þ − 18Þsþ 5s2Þ� − 120ð5jð2qþ 1Þ − qð3qþ 2Þð5qþ 1Þ þ sþ 2Þ�g
× f24H0½zð10j2 − jð5qð21qþ 22Þ þ 27Þ − lþ qðqðqð105qþ 149Þ þ 75Þ − 15sþ 6Þ − 11s − 6Þ
− 5ð5jð2qþ 1Þ − qð3qþ 2Þð5qþ 1Þ þ sþ 2Þ�g−1;
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P32 ¼ fz½z2ð−4j2 þ jðqð23 − 6qÞ þ 7Þ þ qðqð9q2 − 30q − 13Þ − 3s − 4Þ þ 3sþ 2Þ þ 6zðjð8qþ 7Þ
− qðqð9qþ 17Þ þ 6Þ þ sþ 4Þ þ 24ðj − qð3qþ 1Þ þ 1Þ�gf6H0ðzð5jð2qþ 1Þ − qð3qþ 2Þð5qþ 1Þ þ sþ 2Þ
þ 4ðj − qð3qþ 1Þ þ 1ÞÞg−1;

P23 ¼ f6zðzðjð6qþ 9Þ − qð6qðqþ 2Þ þ 19Þ þ sþ 9Þ þ 2ð2j − qð3qþ 8Þ þ 5ÞÞgfH0½z2ð4j2 þ jðqð6q − 23Þ − 7Þ
þ qðqð−9q2 þ 30qþ 13Þ þ 3sþ 4Þ − 3s − 2Þ þ 6zðjð8qþ 7Þ − qðqð9qþ 17Þ þ 6Þ þ sþ 4Þ
þ 12ð2j − qð3qþ 8Þ þ 5Þ�g−1;

where all the CS parameters are assumed to be evaluated at z ¼ 0.
For completeness, we also include here the table of the OHD used in this work. They are summarized in Table VI.
To conclude, we also include here all the approximations for the functions HðzÞ and DV corresponding to the Padé

approximations Pnm for dL used in this paper up to order mþ n ¼ 4, following the prescription indicated in Sec. IV B.
Starting from the expressions above and using Eq. (25), one obtains the corresponding functions HðzÞ as

H11¼−
ðzþ1Þ2ððq−1Þzþ2Þ2H0

2ðq−1Þz2−4
;

H12¼−
ðð1þzÞ2ð12þ6ð−1þqÞzþð5þ2j−qð8þ3qÞÞz2Þ2H0

12ð−12þz2ð−1þ10zþjð2þ4zÞ−qð2þ16zþqð3þ6zÞÞÞÞÞ;

H21¼
2ð1þzÞ2ð3þzþjz−qð3þzþ3qzÞÞ2H0

18ð−1þqÞ2þ6ð−1þqÞð−5−2jþqð8þ3qÞÞzþð14þ2j2þjð7−qð10þ9qÞÞþqð−40þqð17þ9qð2þqÞÞÞÞz2 ;

TABLE VI. Summary of the OHD used in this paper. The data in the top panel use passively evolving galaxies as
cosmic chronometers; the data in the bottom panel is inferred from the study of different galaxy surveys. The
standard deviations include model-independent statistical estimation errors and systematics.

z HðzÞa σH
a Reference

0.090 69 12 [41]
0.170 83 8 [41]
0.1791 75 4 [43]
0.1993 75 5 [43]
0.270 77 14 [41]
0.3519 83 14 [43]
0.400 95 17 [41]
0.480 97 62 [42]
0.5929 104 13 [43]
0.6797 92 8 [43]
0.7812 105 12 [43]
0.8754 125 17 [43]
0.880 90 40 [42]
0.900 117 23 [41]
1.037 154 20 [43]
1.300 168 17 [41]
1.430 177 18 [41]
1.530 140 14 [41]
1.750 202 40 [41]
0.2 71 8 [44]
0.24 76.69 3.61 [45]
0.4 70 5 [44]
0.43 86.45 4.96 [45]
0.6 81 5 [44]
0.8 75 4 [44]
2.3 224 8 [46]

aHðzÞ and σH are given in Km=s=Mpc units.
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H13 ¼ ½ð1þ zÞ2ð24þ 12ð−1þ qÞzþ 2ð5þ 2j − qð8þ 3qÞÞz2 − ð9þ jð9þ 6qÞ − qð19þ 6qð2þ qÞÞ þ sÞz3Þ2H0�
× ½24ð24þ z2ð2 − 4jþ 4qþ 6q2 þ 2ð−1þ jð5þ 6qÞ − 3qð1þ 2qð1þ qÞÞ þ sÞzþ 3ð9þ jð9þ 6qÞ
− qð19þ 6qð2þ qÞÞ þ sÞz2ÞÞ�−1;

H22¼−½ð1þzÞ2ð12ð5þ2j−qð8þ3qÞÞþ6ð4þjð7þ8qÞ−qð6þqð17þ9qÞÞþsÞz
þð−2þ4j2þjð−7þqð−23þ6qÞÞ−3sþqð4þqð13þ30q−9q2Þþ3sÞÞz2Þ2H0�
× ½6ð−24ð5þ2j−qð8þ3qÞÞ2−24ð5þ2j−qð8þ3qÞÞð9þjð9þ6qÞ−qð19þ6qð2þqÞÞþsÞz
þ2ð−268þ8j3−9j2ð23þ4qð11þ4qÞÞ−qð−1056þqð384þqð920þ27qð49þqð22þ5qÞÞÞÞÞ
þ6jð−76þqð89þqð236þ9qð18þ5qÞÞ−6sÞ−9sÞ−54sþ6qð19þ6qð2þqÞÞs−3s2Þz2
þ4ð5þ2j−qð8þ3qÞÞð−2þ4j2þjð−7þqð−23þ6qÞÞ−3sþqð4þqð13þ30q−9q2Þþ3sÞÞz3
þð9þjð9þ6qÞ−qð19þ6qð2þqÞÞþsÞð−2þ4j2þjð−7þqð−23þ6qÞÞ
−3sþqð4þqð13þ30q−9q2Þþ3sÞÞz4Þ�−1;

H31¼−½6ð1þzÞ2ð4ð1þj−qð1þ3qÞÞþð2þ5jð1þ2qÞ−qð2þ3qÞð1þ5qÞþsÞzÞ2H0�½−96ð1þj−qð1þ3qÞÞ2
−48ð1þj−qð1þ3qÞÞð4þjð7þ8qÞ−qð6þqð17þ9qÞÞþsÞzþ6ð8j3−j2ð49þ4qð39þ23qÞÞ
−qð−56þqð−128þqð112þqð509þ462qþ81q2ÞÞÞÞþ2jð−34þqð−2þqð205þqð281þ78qÞÞ−6sÞ−9sÞ
þ2qð10þ3qð7þqÞÞs−s2−4ð5þ3sÞÞz2þ2ð6þjð9þ10qÞ−qð6þ5qð5þ3qÞÞþsÞð−2þ4j2

þjð−7þqð−23þ6qÞÞ−3sþqð4þqð13þ30q−9q2Þþ3sÞÞz3þð2þ5jð1þ2qÞ
−qð2þ3qÞð1þ5qÞþsÞð−2þ4j2þjð−7þqð−23þ6qÞÞ−3sþqð4þqð13þ30q−9q2Þþ3sÞÞz4�−1;

where all the cosmographic parameters have been evaluated at z ¼ 0.
Afterwards, according to Eq. (23), the corresponding DV functions are

ðDVÞ11 ¼ 2

�
2z3 − ð−1þ qÞz5

ð1þ zÞ4ð2þ ð−1þ qÞzÞ4H3
0

�
1=3

;

ðDVÞ12 ¼ 12

�
12z3 þ ð1 − 2jþ qð2þ 3qÞÞz5 þ 2ð−5 − 2jþ qð8þ 3qÞÞz6
ð1þ zÞ4ð−12þ zð6 − ð5þ 2jÞzþ qð−6þ ð8þ 3qÞzÞÞÞ4H3

0

�
1=3

;

ðDVÞ21 ¼
1

2
ð½z3ðzð−2jþ qð3qþ 8Þ − 5Þ þ 6ðq − 1ÞÞ2ðz2ð2j2 þ jð7 − qð9qþ 10ÞÞ þ qðqð9qðqþ 2Þ þ 17Þ − 40Þ þ 14Þ

þ 6ðq − 1Þzð−2jþ qð3qþ 8Þ − 5Þ þ 18ðq − 1Þ2Þ�½H3
0ðzþ 1Þ4ðjz − qð3qzþ zþ 3Þ þ zþ 3Þ4�−1Þ1=3;

ðDVÞ13 ¼ 24½ðz3ð24þ z2ð2 − 4jþ 4qþ 6q2 þ 2ð−1þ jð5þ 6qÞ − 3qð1þ 2qð1þ qÞÞ þ sÞzþ 3ð9þ jð9þ 6qÞ
− qð19þ 6qð2þ qÞÞ þ sÞz2ÞÞÞðð1þ zÞ4ð24þ 12ð−1þ qÞzþ 2ð5þ 2j − qð8þ 3qÞÞz2 − ð9þ jð9þ 6qÞ
− qð19þ 6qð2þ qÞÞ þ sÞz3Þ4H3

0Þ−1�1=3;

ðDVÞ22¼−6½ðz3ð2ð5þ2j−qð8þ3qÞÞþð9þjð9þ6qÞ−qð19þ6qð2þqÞÞþsÞzÞ2ð−24ð5þ2j−qð8þ3qÞÞ2
−24ð5þ2j−qð8þ3qÞÞð9þjð9þ6qÞ−qð19þ6qð2þqÞÞþsÞzþ2ð−268þ8j3−9j2ð23þ4qð11þ4qÞÞ
−qð−1056þqð384þqð920þ27qð49þqð22þ5qÞÞÞÞÞþ6jð−76þqð89þqð236þ9qð18þ5qÞÞ−6sÞ−9sÞ
−54sþ6qð19þ6qð2þqÞÞs−3s2Þz2þ4ð5þ2j−qð8þ3qÞÞð−2þ4j2þjð−7þqð−23þ6qÞÞ−3s

þqð4þqð13þ30q−9q2Þþ3sÞÞz3þð9þjð9þ6qÞ−qð19þ6qð2þqÞÞþsÞð−2þ4j2þ jð−7
þqð−23þ6qÞÞ−3sþqð4þqð13þ30q−9q2Þþ3sÞÞz4ÞÞðð1þzÞ4ð12ð5þ2j−qð8þ3qÞÞ
þ6ð4þjð7þ8qÞ−qð6þqð17þ9qÞÞþsÞzþð−2þ4j2þjð−7þqð−23þ6qÞÞ
−3sþqð4þqð13þ30q−9q2Þþ3sÞÞz2Þ4H3

0Þ−1�1=3;
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ðDVÞ31 ¼ −
1

6
½ðz3ð24ð1þ j − qð1þ 3qÞÞ þ 6ð4þ jð7þ 8qÞ − qð6þ qð17þ 9qÞÞ þ sÞz

− ð−2þ 4j2 þ jð−7þ qð−23þ 6qÞÞ − 3sþ qð4þ qð13þ 30q − 9q2Þ þ 3sÞÞz2Þ2ð−96ð1þ j − qð1þ 3qÞÞ2
− 48ð1þ j − qð1þ 3qÞÞð4þ jð7þ 8qÞ − qð6þ qð17þ 9qÞÞ þ sÞzþ 6ð8j3 − j2ð49þ 4qð39þ 23qÞÞ
− qð−56þ qð−128þ qð112þ qð509þ 462qþ 81q2ÞÞÞÞ þ 2jð−34þ qð−2þ qð205þ qð281þ 78qÞÞ
− 6sÞ − 9sÞ þ 2qð10þ 3qð7þ qÞÞs − s2 − 4ð5þ 3sÞÞz2 þ 2ð6þ jð9þ 10qÞ − qð6þ 5qð5þ 3qÞÞ
þ sÞð−2þ 4j2 þ jð−7þ qð−23þ 6qÞÞ − 3sþ qð4þ qð13þ 30q − 9q2Þ þ 3sÞÞz3 þ ð2þ 5jð1þ 2qÞ
− qð2þ 3qÞð1þ 5qÞ þ sÞð−2þ 4j2 þ jð−7þ qð−23þ 6qÞÞ − 3sþ qð4þ qð13þ 30q − 9q2Þ þ 3sÞÞz4ÞÞ
× ðð1þ zÞ4ð4ð1þ j − qð1þ 3qÞÞ þ ð2þ 5jð1þ 2qÞ − qð2þ 3qÞð1þ 5qÞ þ sÞzÞ4H3

0Þ−1�1=3:
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