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In this paper we address the issue of exploring some cosmological scenarios in modified Einstein gravity
through nondynamical (auxiliary) fields. We found that all scenarios are controlled by a specific parameter
associated with an auxiliary field. We explore the emergence of inflationary, radiation, matter, and dark
energy dominated regimes. Furthermore, an interesting possibility, such as the emergence of a self-tuning
mechanism to the cosmological constant problem in the radiation dominated era, is also discussed.
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I. INTRODUCTION

One of the main problems of constructing alternative
theories of gravity by adding extra dynamical fields non-
minimally coupled to gravity is to evade the presence
of extra propagating degrees of freedom which lead to
instabilities in these theories [1,2]. However, as has been
shown very recently by Pani, Sotiriou, and Vernieri [3], one
may circumvent this problem by modifications of Einstein
gravity with nondynamical (auxiliary) fields. See also
Palatini fðRÞ and other modified gravities [4–10] and
Eddington-inspired Born-Infeld theory [11] for related
issues. One of the main consequences of gravity theories
with auxiliary fields is that they lead to the presence of
higher-order derivatives of the matter fields. In the next-to-
leading order in the derivative of matter fields the para-
metrization of the auxiliary fields is simply restricted to two
parameters apart from the cosmological constant. Because
of the higher-order derivatives of the matter fields in the
field equations, these parameters can be severely con-
strained due to the response of the metric to the abrupt
changes in the matter energy density [3]. In other words,
this means the presence of undesirable singularities in
the theory. However, in a recent study in Ref. [12] by
considering Eddington-inspired Born-Infeld theory (which
in some approximation can be seen as a special case of
the new theory [3]) it was pointed out that such singularity
can be removed by some mechanism. In this spirit of
modified theories of gravity, one has already shown in the
literature that Eddington-inspired Born-Infeld is identical to
bigravity theory [13]. More recently this modified gravity
with nondynamical fields was extended to the thick brane-
world model in five dimensions [14] to address the issue of
gravity localization. A similar route in bigravity theory was
also taken in Ref. [15]. In the following we shall focus our
attention to cosmological scenarios.
In this paper we look for cosmological scenarios in this

new theory [3]. By considering the modified Einstein

equations with a nondynamical field in the Friedmann-
Robertson-Walker background we find the modified
Friedmann equations. We concentrate our analysis up to
linear modifications—very recently appeared a similar
study considering higher-order auxiliary fields [16]. We
show that even at this level, the results are far from being
trivial. The modified equation of state gives a richer
cosmological scenario with several dominated regimes.
The existence of the new nondynamical field allows for
dark energy in the modified theory even if the equation of
state of the unmodified theory is just the matter dominated
regime. Another interesting point is that in the radiation
dominated regime emerges a self-tuning mechanism [17–19]
to the cosmological constant problem [20]. See also
Ref. [21] for a recent discussion on such mechanism.
The paper is organized as follows. In Sec. II we briefly

present the formalism of the modified gravity with auxiliary
fields. In Sec. III we discuss the possible cosmological
scenarios in this new theory of gravity. In Sec. IV we
present the emergence of a self-tuning mechanism to the
cosmological constant problem in the radiation dominated
era. Finally, in Sec. V we present our final considerations.

II. THE FORMALISM

The field equations for the modified Einstein equations
with auxiliary fields read

Gab þ Λgab ¼ Tab þ Sab ð1Þ
where [3]

Sab ¼ α1gabTþ α2gabT2 þ α3TTabþ α4TcdTcdþ α5Tc
aTcb

þ β1∇a∇bT þ β2gab□T þ β3□Tab

þ 2β4∇c∇ðaTbÞc þ � � � : ð2Þ
Now we shall keep only nonderivative linear terms in T,

considerΛ → 0 and assume Sab ≪ Tab in order to maintain
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the modified Einstein equations (1) divergent free with a
nondynamical field parametrized by α1 as follows:

Gμν ¼ 8πG½Tμν þ α1Tgμν�; μ; ν ¼ 0; 1; 2; 3 ð3Þ

with the trace of the energy-momentum given by the usual
form T ¼ ρ − 3p. We also recover the factor 8πG, which is
normalized to unit in the original Ref. [3]. Let us now
assume the Friedmann-Robertson-Walker metric (assuming
a flat universe, i.e., k ¼ 0)

ds2 ¼ gμνdxμdxν ¼ dt2 − a2ðtÞd~x2: ð4Þ

By using the metric (4) in the Einstein equations (3) we find

_a2

a2
¼ 8πG

3
½ð1þ α1Þρ − 3α1p� ð5Þ

and

ä
a
¼ −

4πG
3

½ð1 − 2α1Þρþ ð6α1 þ 3Þp�: ð6Þ

III. COSMOLOGICAL SCENARIOS

Let us start with Eqs. (5)–(6) and the equation of state
p ¼ ωρ to rewrite them as the following:

H2 ¼ 8πG
3

½ð1þ α1Þ − 3α1ω�ρ ð7Þ

and

_H þH2 ¼ −
4πG
3

½ð1 − 2α1Þ þ ð6α1 þ 3Þω�ρ ð8Þ

where H ¼ _a=a is the Hubble parameter. Differentiating
Eq. (7) with respect to t we find the relationship between
the time derivative of the energy density and Hubble
parameter

3H _H ¼ 4πG½ð1þ α1Þ − 3α1ω�_ρ: ð9Þ

Another important relationship between these quantities
can be found by substituting Eq. (7) into Eq. (8) which
reads

_H ¼ −4πGð1þ ωÞρ: ð10Þ

Now combining Eqs. (9)–(10) we find the following
important differential equation:

_ρþ 3Hηρ ¼ 0; η ¼
� ð1þ ωÞ
ð1þ α1Þ − 3α1ω

�
ð11Þ

where η → ð1þ ωÞ in Einstein gravity (α1 → 0). For the
sake of comparison, the modified equation of state in our

scenario is defined as ωη ¼ η − 1. By solving the differ-
ential equation (11) we find the standard solution

ρðtÞ ¼ ρ0
a3ηðtÞ : ð12Þ

In order to find explicit solutions for aðtÞ one should
substitute Eq. (12) into Eq. (7). Finally, we find the form of
aðtÞ as a function of t given by

aðtÞ ¼ a0t
2
3η;

a0 ¼
�
3η

2

� 2
3η

�
8πG
3

ðð1þ α1Þ − 3α1ωÞρ0
� 1

3η

: ð13Þ

The density as a function of t can be readily found from
Eqs. (12)–(13). The explicit form reads

ρðtÞ ¼ ρ0
a3η0

1

t2
: ð14Þ

As usual, this implies that the Hubble parameter H2 ∼ ρ
scales as H ∼ 1=t. As is well known, this, however, is not
true for all possible cosmological scenarios. There is an
important exception. In the vacuum dominance the equa-
tion of state is ω ¼ −1. In this sense from Eq. (11) we see
that η ¼ 0 and _ρ ¼ 0, which implies that H2 ∼ ρ ¼
ρ0 ≡ const. The expansion in this case is exponential
and the solution (13) is replaced by something like
aðtÞ ∼ exp ½ρ1=20 t�.
More precisely, we should address the vacuum scenario

separately. By substituting the equation of state p ¼ −ρ,
recalling that ρ ¼ ρ0, into Eqs. (5)–(6) we find

_a2

a2
¼ 8πG

3
ð1þ 4α1Þρ0 ð15Þ

and

ä
a
¼ 8πG

3
ð1þ 4α1Þρ0 ð16Þ

or simply

_a2

a2
¼ ä

a
: ð17Þ

By using any of these equations we should find the
aforementioned exponential solution

aðtÞ ¼ a0 exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πG
3

ð1þ 4α1Þρ0
r

t

�
: ð18Þ

The above analysis simply shows that the accelerating
regime governed by the exponential expansion (due to
ω ¼ −1) takes places when α1 > −1=4. The case
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α1 < −1=4 is consistent with oscillatory solutions for the
nonflat universe, i.e., k ≠ 0 into (15)—see Ref. [22,23] for
cyclic cosmology in a similar context. The regime for
α1 ¼ −1=4 is special and will be discussed with further
detail in the next section. In the following we shall address
the issues of some special cosmological scenarios.
The matter dominated regime develops under the power

law η ¼ 1 into (12). This gives the relation ω ¼ α1=
ð3α1 þ 1Þ. For α1 ¼ 0 we find the usual solution ω ¼ 0,
as we can easily see from Eqs. (11), (12), and (13). If the
parameter α1 runs for large enough values, we find
ω → 1=3, which mimics the “radiation dominated” equa-
tion of state but with matter dominated behavior. On the
other hand, for 3α1 ≪ 1 we find ω ¼ α1 ≪ 1=3 which may
be related to the dark matter dominated regime.
However, the radiation dominated regime develops

under the power law η ¼ 4=3 into (12). Interestingly
enough, this case gives a unique solution ω ¼ 1=3. In this
case the modified equation of state ωη ¼ η − 1 ¼ 4=3 −
1 ¼ ω ¼ 1=3 coincides with the equation of state of the
radiation dominated regime of the Einstein gravity. We
have more to say about this point in the next section.
The dark energy dominated regime shows up for ω ¼ 0

and α1 ≠ 0, for instance. We can see from Eq. (13) that an
accelerated regime is possible for 2=3η > 1. This is
accomplished as long as α1 > 1=2. Suppose α1 ¼ 1, then
the solution is

aðtÞ ¼ a0t4=3 ∼ t1.3: ð19Þ
In summary, the above and several other regimes such as
stiff fluid and phantom cosmology can also be easily
explored by using the important parameter η given in
Eq. (11) or more explicitly by using the modified equation
of state

ωη ¼ η − 1 ¼ ω − α1 þ 3α1ω

1þ α1 − 3α1ω
: ð20Þ

IV. A SELF-TUNING MECHANISM TO
COSMOLOGICAL CONSTANT PROBLEM

It is worth noting that from Eqs. (5)–(6) one can obtain a
self-tuning mechanism to address the cosmological con-
stant problem, at least in a specific phase of the cosmo-
logical evolution. According to Eqs. (15)–(17), setting
α1 ¼ −1=4 we exclude vacuum dominance in the cosmo-
logical scenarios. Furthermore, with this choice we find the
modified Friedman equations [19]

_a2

a2
¼ 8πG

3

�
3

4

�
ðρþ pÞ ¼ 2πGðρþ pÞ ð21Þ

and

ä
a
¼ −

4πG
3

�
3

2

�
ðρþ pÞ ¼ −2πGðρþ pÞ: ð22Þ

Again, even if the vacuum contribution comes from the
matter sector, that is, for example, if the species are
distributed according to p ¼ pΛ þ pradiation þ pmatter and
ρ ¼ ρΛ þ ρradiation þ ρmatter, being pΛ ¼ −ρΛ the equation
of state of the vacuum, then no one of the above equations
can “see” this vacuum contribution. Now, comparing
Eqs. (21)–(22) we find

_a2

a2
¼ −

ä
a
: ð23Þ

This equation is satisfied by the solution describing the
phase of the radiation of the Universe, i.e.,

aðtÞ ∼ t1=2: ð24Þ
This is not surprising since both equations, (21) and (22),
are consistent with the equation of state p ¼ ωρ for
radiation ω ¼ 1=3 in the Einstein gravity. Let us explore
the solution (24) as follows. By substituting (24) into
Eq. (21) we find

2πGðρþ pÞ ¼ _a2

a2
∼

1

t2
ð25Þ

and that using the equation of state for radiation, i.e.,
p ¼ ð1=3Þρ one finds

ρ ¼ ρ0
a4ðtÞ : ð26Þ

Interestingly enough, notice that for α1 ¼ −1=4 into Eq. (11)
there is no contribution of the original equation of state ω. In
this particular case, we always have η ¼ 4=3 and Eq. (12)
coincides with Eq. (26). We conclude that fixing the
auxiliary parameter as α1 ¼ −1=4, we naturally have a
cosmological scenario in the radiation regime. Furthermore,
no vacuum contribution is present in this regime and no
cosmological constant issues appear during this phase.

V. CONCLUSIONS

In summary we have considered the recently introduced
modified gravity theory through auxiliary fields. This
theory does not present undesirable extra degrees of free-
dom, although some singularities may appear due to the
higher-order derivative matter fields. However, this seems
not to be a problem since some mechanism to solve this
problem has been proposed in Eddington-inspired Born-
Infeld theory which can be seen as a special case of this new
theory under some approximation. In the present study, in
order to address the cosmological scenarios, we considered
just the linear modifications, which were already revealed
to be able to develop a richer cosmological scenario. We
have identified an interesting emergence of a self-tuning
mechanism to the cosmological constant issue in the
radiation dominated regime. For future investigations it
should be interesting to consider higher-order modifica-
tions to see how such a mechanism works.
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