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We discuss cosmological models for an eternal Universe. Physical observables show no singularity from
the infinite past to the infinite future. While the Universe is evolving, there is no beginning and no end—the
Universe exists forever. The early state of inflation is described in two different, but equivalent pictures.
In the freeze frame the Universe emerges from an almost static state with flat geometry. After entropy
production it shrinks and “thaws” slowly from a “freeze state” with extremely low temperature. The field
transformation to the second “big bang picture” (Einstein frame) is singular. This “field singularity” is
responsible for an apparent singularity of the big bang. Furthermore, we argue that past-incomplete
geodesics do not necessarily indicate a singularity or beginning of the Universe. Proper time ceases to be a
useful concept for physical time if particles become massless. We propose to define physical time by
counting the number of zeros of a component of the wave function. This counting is independent of the
choice of coordinates and frames, and applies to massive and massless particles alike.
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I. INTRODUCTION

Can the Universe exist forever, without beginning and
end? Since the failure of steady state cosmologies and the
general acceptance of the big bang it is widely believed
that the Universe must have had some type of “beginning.”
The Friedmann-Lemaître cosmological solution becomes
singular as the big bang is approached. It can therefore not
be extended to an infinite past. Assuming the strong energy
condition Penrose and Hawking have shown the presence
of a past singularity or geodesic incompleteness for rather
arbitrary cosmological solutions [1,2].
With the advent of inflation the strong energy condition

has been abandoned. Still, with the rather mild assumption
that the Universe is expanding in the average (more
precisely, that the average Hubble parameter is positive)
it has been established that geodesics cannot be complete
towards the past [3,4]. From this observation the conclu-
sion was drawn that the Universe becomes singular in the
finite past, or at least cosmology becomes incomplete,
necessitating a beginning. For a wide class of inflationary
models or alternative “pre-big bang models” an extension
to the infinite past seems unfeasible in view of this
argument. This includes [4] large classes of bouncing
[5,6] or oscillating cosmologies or models of chaotic
inflation [7,8]. The present paper points to a weakness
in the physical interpretation of incomplete geodesics. We
clarify by examples that the Universe can be eternal, with
physical time going to minus infinity in the “infinite past,”
and no singularities present.
Indeed, simple models have been proposed recently

[9,10] for which no past singularity occurs. These cosmol-
ogies can be extended to the infinite past. In terms of only
a few parameters these models can describe all present

observations, including inflation, an end of inflation,
radiation—and matter domination and the present transi-
tion to a new dark energy dominated period. They are thus
fully consistent and constitute counter examples to the view
that the Universe must have had a beginning, provided that
the infinite past really corresponds to an infinite physical
time. In contrast to many interesting speculations about pre-
big bang cosmology these models are based on solutions
of field equations that are derived from a simple quantum
effective action, without any periods for which unknown
physics has to be invoked.
The evolution of the Universe is typically very slow in

these models—the characteristic time scale is never much
shorter than the present inverse Hubble parameter
∼1010 yr. The geometry approaches flat space in the
infinite past. All geometrical invariants built from the
curvature tensor and its covariant derivatives, contracted
with the inverse metric, vanish for the infinite past,
t → −∞. In this “freeze picture” it seems rather obvious
that no singularity is encountered, with a cosmological
solution extending to the infinite past. Nevertheless, the
same models can be mapped by a conformal transformation
(Weyl scaling) to an equivalent “big bang picture.” In this
Einstein frame the primordial cosmology is of a standard
inflationary type.
Field relativity [9,11] states that the two pictures are fully

equivalent. The absence or presence of physical singular-
ities should be the same in both pictures. The big bang
picture has a geometry with geodesics that become incom-
plete in the past. If the presence of incomplete geodesics
would really indicate a physical singularity it would be
hard to understand how the freeze picture could be free of
singularities.
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In this paper we address the connections between
incomplete geodesics, curvature singularities, and the
possible existence of physical singularities in the light of
transformations between different frames. This will shed
new light on the role of “singularity theorems.” The
discussion will lead to four central findings:

(i) Field transformations, as the conformal transforma-
tion between different frames, can be singular. A
detected singularity in some frame may therefore
arise from a singularity in the field transformation,
while in some other frame everything is regular.
Such “field singularities” do not reflect a physical
singularity, in analogy to “coordinate singularities”
arising from the choice of a particular coordinate
system. (They are singularities in “field coordi-
nates.”) The absence of physical singularities is
guaranteed if one frame exists where all relevant
physical observables are found to be regular.

(ii) Cosmological solutions can have attractor proper-
ties. As a consequence, after an evolution over a
certain time interval only a restricted range of field
values and their derivatives will be found at some
given time t0. Inversely, if one tries to extrapolate
backwards, with “initial conditions” at t0 outside this
allowed range, one typically encounters a singular-
ity. Even for a regular Universe the most general
solutions with arbitrary initial conditions at t0 will
not remain regular towards the infinite past. In this
case the presence of singular solutions neighboring
a regular solution should not be misinterpreted as a
sign that a “beginning” of the Universe is needed.
For example, an attractive regular isotropic solution
may be surrounded by anisotropic solutions that
become singular in the past.

(iii) Physical time must not only be coordinate inde-
pendent but also frame independent. Frame inde-
pendent quantities are dimensionless, as proper time
multiplied by the particle mass, evaluated on the
trajectory of a massive particle. Proper time by itself
is changed by field transformations. Even dimen-
sionless proper time is no longer a useful physical
clock if the ratio momentum/mass diverges. In this
case a particle behaves like a photon. A reasonable
coordinate and frame independent physical time
may be defined by counting the number of oscil-
lations of a wave function.

(iv) The presence of timelike geodesics that are incom-
plete towards the past does not necessarily indicate
a singularity or incompleteness of cosmology. Par-
ticles behave as massive particles only for a finite
ratio momentum/mass, and only in this case proper
time is a useful measure of time. For finite momen-
tum/mass in the infinite past the allowed velocities
uðt0Þ at some finite time point t0 are restricted.
Past-incomplete geodesics can be precisely those

with uðt0Þ outside the allowed range. In this case
particles behave like photons in the infinite past
and proper time ceases to be a useful measure of
physical time.

We start by specifying our criteria for an eternal
cosmology that is free of singularities from the infinite
past, t → −∞, to the infinite future, t → ∞: (i) The
cosmological solution should be regular for all t. (ii) For
a suitable definition of physical time the time distance to
the infinite past and infinite future should both be infinite.
(iii) For massive particles and in suitable units the proper
time elapsed from some given time t0 to the infinite future
should be infinite. (iv) Also the proper time from the
infinite past to t0 should be infinite if momentum/mass
remains finite. (v) Furthermore, we require that no trajec-
tory of a massive or massless particle encounters a
singularity in the whole range between the infinite past
and future.
A few comments on these criteria are in order: For

momentum=mass → ∞ particles behave as photons and
proper time becomes unsuitable. The condition for the use
of proper time for measurements of physical time may be
weakened by requiring only finite momentum and a finite
suitable time averaged ratio momentum/mass, such that
particles do not behave as photons for most of their history.
Obviously, the “eternity” of the Universe has to be defined
in a coordinate-independent concept as proper time or
“oscillation time.” One can always choose a time coor-
dinate t that covers an infinite range from −∞ toþ∞, even
for a cosmology with a physical singularity.
Our general strategy is rather simple. For a given model

we first consider the freeze frame where it is rather easy to
get convinced that observables remain regular from the
infinite past to the infinite future. The singular map to the
Einstein frame is then used to understand the singularities
of the big bang as an inappropriate choice of time or
geometry. These singularities appear to be field singular-
ities, while physical observables remain regular.
We demonstrate our points with two specific models of

gravity coupled to a scalar field. This field is responsible for
both inflation and late dark energy. A crossover between
two fixed points is responsible for the transition from the
inflationary primordial cosmology to “late cosmology.” In
Sec. II we present our first model which admits asymptotic
solutions where the infinite past corresponds to Minkowski
space with constant scale factor. For t → −∞ the Hubble
parameter vanishes ∼ð−tÞ−3 while particle masses go to
zero with a different inverse power of −t. The geometry is
obviously regular and geodesically complete.
In Sec. III we show that this family of asymptotic

solutions is an attractor for increasing time, to which
neighboring isotropic and homogeneous cosmologies con-
verge. As a consequence, the general solution with arbitrary
integration constants fixed at some finite t0 cannot be
continued to the infinite past—this is only possible for the
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family of attractor solutions. In Sec. IV we address possible
definitions of physical time in this cosmology. We find
that proper time evaluated on the trajectories of massive
particles is not suitable for this purpose. All masses vanish
in the infinite past such that particles with nonzero
momentum behave as photons. We propose to use instead
the counting of the oscillations of the wave function which
works both for massive and massless particles. For this
coordinate- and frame-invariant “physical time” both the
infinite past and future are at infinite distance.
The model is mapped to the Einstein frame in Sec. V,

where our solutions describe power-law inflation. The
conformal transformation of the metric becomes singular
in the infinite past, which is the root of the apparent
singularities in the big bang picture. While particle trajec-
tories are mapped to particle trajectories, this does not hold
for geodesics. Also proper time is not invariant under a
change of frame, while the counting of oscillations remains
the same in all frames. For oscillation time the geometric
singularity remains in the infinite past. In turn, this geo-
metric singularity is due to a particular choice of metric,
while for a different choice the geometry remains regular.
In Sec. VI we turn to our second model which describes

de Sitter inflation in the Einstein frame. In the freeze frame
the scale factor vanishes faster than a power and slower than
an exponential, with vanishing curvature invariants in the
infinite past. For this model singularities in the curvature
invariants are absent in both frames, despite the singularity
of the conformal transformation. We discuss in detail the
interpretation of geodesic incompleteness of de Sitter space.
It is linked to the property that particles with finite momen-
tum become photonlike in the infinite past, such that proper
time is no longer suitable for a definition of physical time.
We demonstrate in Sec. VII that the class of crossover

models to which our two models belong are viable candi-
dates for an inflationary epoch of the Universe. For this
purposewe discuss awhole family ofmodels that interpolate
between the two models of Secs. II and VI. They lead to
realistic scenarios for inflation, typically with large tensor
fluctuations. Ourmodels are therefore not only rather simple
examples for an eternal Universe. They can also be taken as
realistic candidates for the description of our observed
world. Our conclusions are presented in Sec. VIII.

II. CROSSOVER MODEL WITH FLAT SPACE IN
THE INFINITE PAST

Our two models belong to a family of variable gravity
models [11–14] where the effective value of the Planck
mass (or gravitational constant) depends on a scalar
“cosmon” field χ. They are specified by the quantum
effective action

Γ ¼
Z
x

ffiffiffi
g

p �
−
1

2
χ2Rþ 1

2
ðB − 6Þ∂μχ∂μχ þ VðχÞ

�
: ð1Þ

The effective gravitational “constant” is always positive—
no antigravity occurs. A constant B > 0 guarantees stabil-
ity provided V is bounded from below. For the potential
we assume a crossover from a behavior V ∼ χ4−A for χ → 0
to V ¼ μ2χ2 for χ → ∞, namely

V ¼ μ2χ4−A

m2−A þ χ2−A
; 0 ≤ A ≤ 2: ð2Þ

The details of the precise crossover between these limits
are not important for our discussion. For the primordial
cosmology that extends to t → −∞ only the behavior for
χ → 0, V0 ∼ χ4−A, will be needed. The crossover to a
different behavior for χ2 ≫ m2 is required, however, to end
the early inflationary epoch, making a transition to realistic
radiation—and matter domination.
The choice of the potential is partly motivated by the aim

of presenting cosmologies that are as simple as possible in
the infinite past. This helps to demonstrate that no physical
singularity is present. Nevertheless, our model describes a
realistic model of inflation and dark energy, as we will
briefly show in Sec. VII. The idea that cosmology describes
a crossover between two fixed points can be implemented
in a much wider context. In a different field basis we
may alternatively stick to a simple potential V ¼ μ2χ2 and
describe the crossover by a field dependence of B.
For χ2 ≪ m2 we assume that the masses of all particles

are proportional to χ. This also holds for all particles except
neutrinos for χ2 ≫ m2, although with perhaps different
proportionality coefficients.

A. Minkowski space for the infinite past

Our first model takes A ¼ B;A ≪ 1. It has two dimen-
sionless parameters, A and μ=m. We will see that for large
negative t geometry approaches flat Minkowski space, with
Hubble parameter going to zero as

H ¼ −
hμ

ð1 − μtÞ3 : ð3Þ

It seems rather obvious that such a geometry is “past
eternal.”
For a discussion of inflationary primordial cosmology and

the end of inflation we neglect matter and radiation.We have
to solve the field equations for the coupled cosmon-gravity
system that follow from variation of Γ. The modification of
gravity due to the variable Planckmass induces new features,
as a “driving force” for the evolution of χ proportional to the
curvature scalar R. For a (spatially flat) Robertson-Walker
metric with scale factor aðtÞ; H ¼ ∂t lna, and a homo-
geneous cosmon field χðtÞ, the cosmon field equation
reads [13]

̈sþ 3H_sþ 2_s2 ¼ μ2xðAþ 2xÞ
Að1þ xÞ2 ; ð4Þ
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with

s ¼ ln
χ

m
; x ¼

�
χ

m

�
2−A

¼ eð2−AÞs: ð5Þ

Here we have already inserted the curvature scalar R
according to the gravitational field equation. The Hubble
parameter obeys

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2x
3ð1þ xÞ þ

A_s2

6

s
− _s: ð6Þ

For t → −∞ the coupled system of Eqs. (4) and (6)
admits a simple approximate solution [13]

χ

m
¼

� ð2 − AÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 − 2A

p ð1 − μtÞ
�
− 2
2−A
; H ¼ 0; ð7Þ

for which geometry is Minkowski space. This solution
becomes exact if V is approximated by V0 ¼ μ2mA−2χ4−A.
In the infinite past χ approaches zero. There exists another
exact solution χ ¼ 0; H ¼ 0. It is unstable, however, with a
small deviation χ increasing according to Eq. (7).
Due to the crossover form of the potential (2) the

cosmological solution will deviate substantially from the
asymptotic solution (7) once χ is of the order of m, or jtj of
the order μ−1. The leading contribution to H for large
negative t obtains by including the next order in an
expansion of V for small x. We find

x ¼ 2ð6 − AÞ
ð2 − AÞ2

�
1

ð1 − μtÞ2 þ
c

ð1 − μtÞ4
�
; ð8Þ

with

c ¼ 2ð6 − AÞ2ð4 − 3AÞ
Að2 − AÞ2ð10 − 3AÞ : ð9Þ

One infers an asymptotically vanishing negative Hubble
parameter (3) with h > 0,

h ¼ 4ð6 − AÞ2
Að2 − AÞ2ð10 − 3AÞ ; ð10Þ

such that the Universe is slowly shrinking. The scale factor
approaches in the infinite past a constant value ā,

a ¼ ā exp

�
−

h
2ð1 − μtÞ2

�
≈ ā −

āh
2ð1 − μtÞ2 : ð11Þ

B. Regular geometry

For Minkowski space in the infinite past there is no doubt
that geometry is regular. All geodesics are complete
towards the past. Of course, the time distance to the infinite

past should be measured with a concept of time that is
coordinate invariant, rather than a particular time coordi-
nate. For a pure geometrical concept of time we could
take the proper time τ on timelike geodesics. Indeed, the
proper time elapsed since the infinite past is infinite,
τðt → −∞Þ → −∞. For the Robertson-Walker metric the
time coordinate t actually coincides with the proper time for
observers that are at rest in comoving coordinates. With this
interpretation it is a reasonable coordinate-invariant time
unit. (We will discuss below concepts of physical time that
differ from “geometrical time.”) Massless particles move on
lightlike geodesics in the geometry (11).

C. Asymptotic gravity

Despite the vanishing of χ for t → −∞ the long distance
gravitational attraction between massive particles remains
weak in this limit, provided particle masses are sufficiently
small as compared to χ; mp ¼ hpχ, hp ≪ 1. The dimen-
sionless strength of the gravitational interaction between
massive particles is given by m2

p=χ2 ¼ h2p, and therefore
independent of χ.
For a discussion of graviton scattering in the limit χ → 0

we first extend our model by adding to Eq. (1) a term

ΔΓ ¼ −
C
2

Z
x

ffiffiffi
g

p
R2: ð12Þ

The constant C is dimensionless such that ΔΓ is scale
invariant, in accordance with a fixed point at χ ¼ 0. For
χ ¼ 0 only this term survives for the pure gravitational
self-interaction. For the cosmological solution (3) and (8)
the asymptotic ratio

R
χ2

≈
6 _H
χ2

∼
μ2

m2
ð1 − μtÞ−4ð1−AÞ

2−A ð13Þ

vanishes for t → −∞, such that higher order invariants as
R2 or RμνRμν are negligible as compared to χ2R. (Note
H2= _H ∼ ð1 − μtÞ−2 → 0.) The influence of the term (12) on
the cosmological solution can therefore be neglected,
justifying its omission for most parts of this paper.
For graviton-graviton scattering with transferred squared

momentum q2 we have to distinguish two regimes. For
jCq2j ≪ χ2 the contribution of Eq. (12) is subleading and
the cross section is of the form

σ ∼
q2

χ4
for jCq2j ≪ χ2: ð14Þ

(Here q2 denotes generically a combination of transferred
momenta in different channels. For our considerations the
details do not matter—only powers of χ are relevant and
dimensional analysis provides the associated powers of q2.)
On the other hand, for jCq2j ≫ χ2 the contribution from the
term ∼χ2R in Eq. (1) becomes subleading, and χ no longer
appears in the leading contribution to the cross section
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σ ∼
1

C2q2
for jCq2j ≫ χ2: ð15Þ

In the transition region jCq2j ≈ χ2 the expressions (14) and
(15) match. For any finite q2 and χ → 0 graviton-graviton
scattering will be dominated by Eq. (15) and become
independent of χ, in contrast to the diverging expression (14).
These considerations also apply to the gravitational

attraction between massive particles in the limit χ → 0 if
we consider nonzero q2. The appropriate model for the
infinite past describes massless particles coupled to scale
invariant higher order gravity. The precise form of the
gravitational interaction at the fixed point for χ ¼ 0 is not
known. We use the simple form (12) here only in order to
provide for a simple, consistent, and qualitatively correct
picture.
We conclude that our model admits a regular description

for the infinite past. It also remains regular in the infinite
future (see below) and therefore describes an eternal
Universe. The infinite past is characterized by flat space
with χ ¼ 0. For this state all particle masses vanish. One
can, of course, construct dimensionless quantities that
diverge or vanish in the limit χ → 0, as the diverging ratio
V=χ4 or the vanishing dimensionless time interval
d~τ ¼ χdτ. The latter measures time in units of the diverging
inverse particle masses. It seems therefore not surprising
that the distance in ~τ from the infinite past to some finite
time t0 remains finite. For particles that become massless
the inverse particle mass is simply not a very appropriate
time unit. One rather may count oscillations of the wave
function for finite momenta, similar to photons, cf. Sec. IV.
We emphasize that our model is simple, stable (no ghosts

or tachyons) and has attractive gravity. (For a recent debate
on geodesic completeness in models of antigravity [7] see
Refs. [15,16].) The strength of the long distance gravita-
tional attraction between massive particles is time inde-
pendent. We have found no sign of inconsistency of this
model. We will see in Secs. V and VII that despite the
unusual features the primordial cosmology describes the
physics of inflation and generates the primordial density
fluctuations, with spectral index n ¼ 1 − A, and large
tensor ratio r ¼ 8ð1 − nÞ.

III. FOCUS PROPERTY OF PRIMORDIAL
COSMOLOGY

A. General homogeneous isotropic solutions

A one-parameter family of solutions similar to Eqs. (3)
and (8) obtains by constant shifts of t. These solutions are
stable. The most general solution of Eqs. (4) and (6) has
two integration constants, however. For large negative tin
one may specify initial values χin and _χin (or, equivalently,
Hin). For small enough initial values one finds that the
general solution is attracted for increasing t towards
the family of asymptotic solutions (8). This can be seen

in Fig. 1 which shows the time evolution of s for different
initial conditions. Starting at tin with initial values given by
the solution (8) the numerical result is indistinguishable
from the analytic curve (8) in the range shown. For other
initial conditions the solutions are attracted towards this
universal scaling solution (up to a linear shift in t).
The attractor property of the solution (8), which is

characteristic for stable solutions, has an important conse-
quence. At some time t0 > tin the range of values for sðt0Þ
and _sðt0Þ that can be reached for arbitrary initial values
at tin is restricted. The solution of the field equation maps
the range −∞ < sðtinÞ < ∞;−∞ < _sðtinÞ < ∞ to a finite
“allowed region” for the values ðsðt0Þ; _sðt0ÞÞ. We may
associate this with a “focus property” of a system of
differential equations.
Inversely, only values of ðsðt0Þ; _sðt0ÞÞ within the allowed

region can be continued backwards to tin. For all other
values ðsðt0Þ; _sðt0ÞÞ outside the allowed region the solution
must diverge somewhere in the interval tin < t < t0. The
focus property of a regular attractor solution implies that
there exists a region in the space of solutions that must
become singular in the past [13]. On the other hand,
arbitrary values of ðsðt0Þ; _sðt0ÞÞ lead to regular solutions
for the future, t > t0. This asymmetry between the past
and the future is due to the “arrow of time” generated by
the spontaneous breaking of time reversal symmetry by
cosmological solutions [13]. One recognizes this feature for
the “bounce solution” in Fig. 1 (upper curve), for which s
first decreases and subsequently increases. This solution
diverges for t only somewhat smaller than the range shown
in the figure.
Consider now the limit tin → −∞, with initial values

specified in the infinite past. The allowed region for finite t0
is constituted by a “manifold of fixed points.” In our case

t

s

1400 1200 1000 800 600 400 200 0
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FIG. 1 (color online). Focus properties of primordial cosmol-
ogy. We show the scalar field s ¼ lnðχ=mÞ as a function of
cosmic time t for various initial conditions. The second curve
from below is the attractor solution (8). Solutions with arbitrary
initial conditions approach this solution as t increases, provided
the time scale is suitably adjusted by a linear shift in t. Parameters
are A ¼ 0.04; μ ¼ 1.
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this manifold is one dimensional. It consists of the family of
the universal attractor solutions approximated by Eq. (8),
with a shift in t as the free parameter. All initial conditions
at t0 neighboring one of the universal scaling solutions
will lead to solutions diverging in the past. (This holds for
an arbitrarily small but nonzero distance from the family of
attractor solutions.)
The focus property of our isotropic and homogeneous

solutions is likely to extend to anisotropic and inhomo-
geneous solutions. Typically, anisotropies and inhomoge-
neities are “washed out” by an inflationary cosmology. We
have not yet done the stability analysis of our solution in a
more general space of inhomogeneous solutions surround-
ing it. We only remark here that it is well possible that the
focus property is sufficiently strong such that at t0 only
the homogeneous and isotropic solution is allowed in the
limit tin → −∞. In this case we expect that all neighboring
anisotropic and inhomogeneous solutions become singular
in the past. We conclude that in the case of focus properties
of an attractor solution the presence of neighboring solu-
tions that diverge in the past is not a sign for a beginning
of the Universe. It rather reflects the “loss of memory”
characteristic for attractor solutions.

B. Particle trajectories

The focus property of our cosmological solution is also
reflected in the motion of massive particles. The trajectories
xμðτÞ of massive particles obey [17,18]

duμ

dτ
þ Γμ

ρσuρuσ þ ∂μ lnmþ uμuρ∂ρ lnm ¼ 0; ð16Þ

with uμ ¼ dxμ
dτ . The usual geodesic equation is modified by

the two last terms which reflect the χ dependence of the
particle masses

∂0 lnm ¼ _χ

χ
; ∂k lnm ¼ 0: ð17Þ

The nonzero elements of the connection for a Robertson-
Walker metric are Γ0

ij ¼ Hgij ¼ Haδij;Γ
j
0i ¼ Hδji . The

direction of the velocity uk does not change and we denote
by u the length of uk. With u0 ¼ γ and x0 ¼ t the
trajectories of massive particles are given by

∂u
∂τ ¼ −ð2H þ _sÞγu; ∂γ

∂τ ¼ −ðH þ _sÞðγ2 − 1Þ; ð18Þ

where we use the definition of proper time, γ2 ¼ 1þ a2u2.
Proper time is related to the time coordinate in the
Robertson-Walker metric by

dt
dτ

¼ γ: ð19Þ

The varying mass adds substantial complication to the use
of proper time for physical time measurements. Massive

particles behave as photons in the infinite past where their
mass ∼χ vanishes. We will discuss this issue by detailed
solutions of Eq. (18) since it will be crucial for the inter-
pretation of incomplete geodesics in the Einstein frame.
The term _s dominates over H for t → −∞. For the

asymptotic behavior we neglect H and approximate s by
Eq. (7),

_s ¼ 2μ

ð2 − AÞð1 − μtÞ ;
∂u
∂t ¼ −_su: ð20Þ

The solution

uðtÞ ¼ uðtinÞ
�

1 − μt
1 − μtin

� 2
2−A ð21Þ

shows a strong focus property. The increase of the mass
damps velocities by a factor ðt=tinÞ2=ð2−AÞ (for jtj ≫ μ−1Þ.
Since the evolution of a is a subleading effect this extends
to γ,

γ2ðtÞ − 1 ¼ ðγ2ðtinÞ − 1Þ
�

t
tin

� 4
2−A
: ð22Þ

We observe that particles at rest (in comoving coordinates)
are singled out as a fixed point, u ¼ 0; γ ¼ 1. If we start
at tin with some finite maximal value γmax the particle
trajectories are attracted towards this fixed point. For
tin → −∞; γðtinÞ ≤ γmax all particles have come to rest at
finite t0, γðt0Þ ¼ 1.
On the other hand, the physical momentum p ∼ χau

remains constant in leading order, the decrease of u being
canceled by the increase of the mass ∼χ, cf. Eq. (7).
A change of p arises only in next to leading order. As a
consequence of translation symmetry one has a conserved
quantity, ap ¼ a2χu ¼ const, such that p ∼ a−1.

IV. PHYSICAL TIME

A. Proper time on particle trajectories

We may evaluate the proper time on a trajectory of a
massive particle rather than on a timelike geodesics. For
particles at rest these two concepts coincide. For moving
particles, however, one finds on a particle trajectory (22)
ðγin ¼ γðtinÞÞ

dt
dτ

¼ γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2in − 1Þ

�
t
tin

� 4
2−A þ 1

s
: ð23Þ

For γin < γmax and tin → −∞ this yields τ ¼ tþ c, such
that proper time diverges in the infinite past.
In contrast, for particles with nonvanishing momentum

pðtÞ one finds a finite proper time distance to the infinite
past. This reflects that such particles behave as photons in
the infinite past such that proper time is no longer a valid
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concept for physical time (see below). For particles
with constant nonzero momentum p one has γ2in − 1∼
p2=χ2in ∼ t4=ð2−AÞin , such that

dt
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jνtj 4

2−A

q
; ð24Þ

with constant ν ∼ p2. One finds two regimes. As long as
particles are relativistic one has jνtj ≫ 1 and

τ − τin ¼
2 − A
Aν

ðð−νtÞ 4
2−A − ð−νtinÞ 4

2−AÞ: ð25Þ

This difference remains finite for tin → −∞. If particles
become nonrelativistic at tnr due to their increasing mass
they enter the regime jνtj ≪ 1 for which τ − τnr ≈ t − tnr.
Trajectories of particles with nonzero p always belong to
the relativistic regime in the past. Since tnr is finite there
exists always a period where jtj ≫ jtnrj. In consequence,
the proper time elapsed on those trajectories between the
infinite past tin → −∞ and finite t0 remains finite.
If one would measure time intervals in units of the

inverse particle mass, d~τ ¼ χdτ, one would find a finite
distance to the infinite past for all trajectories, including the
ones for particles at rest. This reflects that the inverse
particle mass ∼χ−1 is no longer a suitable time unit for
χ → 0. In order to avoid the complications of a photonlike
behavior the use of proper time for a definition of physical
time should be restricted to trajectories with finite γ and
time units given by μ−1. In this case the distance to the
infinite past turns out to be indeed infinite.

B. Oscillation time

These findings do not indicate the necessity of a
beginning of the Universe. They rather remind us that
proper time is not an appropriate measure of time for
photons. For photons with given comoving wave vector k
(which is proportional to momentum in our case in the limit
t → −∞) a useful coordinate invariant measure of time is
given by the number of oscillations of the field amplitude.
The counting of oscillations is best done by use of
conformal time, ds2 ¼ a2ðηÞð−dη2 þ d~x2Þ; dη ¼ dt=a.
The wave equation for a particle with mass m reads in
conformal time

ð∂2
η þ 2Ha∂η þ k2 þ a2m2Þφk ¼ 0; ð26Þ

where we consider for definiteness a complex scalar field
mode φk with k the comoving wave vector. Using
H ¼ ∂t ln a ¼ a−2∂ηa, one can factor out the Hubble
damping of the amplitude

φk ¼
~φk

a
;

�
∂2
η þ k2 þ a2

�
m2 −

R
6

��
~φk ¼ 0: ð27Þ

Towards the infinite past R vanishes, such that for m ¼ 0
the oscillations are simply given by

~φk ¼ expð−ikηÞ ~φk;0: ð28Þ
The number of oscillations nk is proportional to conformal
time

nk ¼
kη
π
: ð29Þ

Let us define dimensionless oscillation time or “period
time” ~tp by the number of zeros of a given component of
the wave function. (In our case we may take the real part of
φk, for photons it could be a given component of the
electric or magnetic field.) The number of zeros of the wave
function does not depend on the choice of coordinates such
that ~tp is a coordinate-invariant quantity

~tp ¼ nk: ð30Þ
If we associate different clocks to different k modes
they tick with different frequencies. The different dimen-
sionless oscillation times ~tp can be gauged to a common
oscillation time tp with dimension of length by a suitable
normalization (see below). For massless particles the
oscillation time is proportional to conformal time for our
choice of coordinates, tp ∼ η. The distance in oscillation
time diverges towards the infinite past t ∼ η → −∞. Wave
functions have undergone an infinite number of oscillations
since the infinite past.
Oscillation time can be defined for massive particles as

well. In the limit k2 ≪ a2m one has�
∂2
η þ a2

�
m2 −

R
6

��
~φ ¼ 0; ð31Þ

or �
∂2
t þH∂t þm2 −

R
6

�
~φ ¼ 0: ð32Þ

Correcting for the different quantitative role of the Hubble
damping yields�

∂2
t þm2 −

9

4
H2 −

3

2
_H
�
φ̄ ¼ 0; φ̄ ¼ a1=2 ~φ ¼ a

3
2φ:

ð33Þ
For constant m2, and if H2 and _H can be neglected as
compared to m2, one obtains the oscillation

φ̄ ¼ expð−imtÞφ̄0; ð34Þ
with the number of zeros

n ¼ mt
π

¼ ~tp: ð35Þ
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In this limit the oscillation time is proportional to the
proper time for particles at rest (in comoving coordinates).
If mass is constant and the modifications from geometry

ð∼H2; _HÞ are subleading, the oscillation time interpolates
between proper time for massive particles at rest and
conformal time for photons. More generally, oscillation
time is defined for arbitrary k, arbitrary varying scale factor
aðtÞ or varying mass mðtÞ. Furthermore, it can be extended
beyond the isotropic and homogeneous cosmological
solutions to geometries with arbitrary metric and masses
with arbitrary dependence on space and time. The only
requirement for a suitable “clock” for which this time is
defined and measured is the occurrence of “regular zeros”
in the components of the wave function. This holds for all
periodic processes, but strict periodicity is not required.
Clocks can be defined for quantum systems with φ the
wave function, or classical fields as electromagnetic fields.
This universality of oscillation time makes it a robust
candidate for physical time also for situations where
massive particles behave as photons and proper time can
no longer be used.
Oscillation time can be related directly to physical time

measurements. For example, atomic clocks count the
number of oscillations of the nonrelativistic wave function.
(This replaces m effectively by an energy difference for
different atomic levels, which is proportional to the electron
mass m and will vary with m in our type of cosmology.)
Oscillation time keeps a meaning even if observers
performing measurements no longer exist—oscillating
fluctuations still play a role for inflationary cosmology.
A counting of discrete zeros does not depend on the system
of coordinates. Furthermore, field redefinitions by multi-
plication with a nonzero function, as the Weyl scaling
between the freeze and Einstein frames, do not change the
number of zeros. We conclude that ~tp is coordinate and
frame invariant. In the following we will associate the
oscillation time with physical time.
The transition from discrete counting to a continuous

dimensionless time variable is straightforward if the dis-
crete time intervals are small as compared to the elapsed
time. We still need a normalization that multiplies ~tp with
an appropriate length scale. In a translation invariant setting
modes with different k do not mix if the amplitude is small
enough such that the linear field equation (26) applies. For
massless particles we choose the normalization

tp ¼ π~tp
k

; ð36Þ

where k is an arbitrary wave number different from zero.
With this normalization all clocks with arbitrary nonzero k
measure the same time. For photons tp coincides with η in
the infinite past. In turn, with the choice ā ¼ 1, conformal
time η equals t, confirming that the distance in physical
time to the infinite past is indeed infinite.

For massive particles we may take for time intervals the
normalization

dtp ¼ πd~tpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2m2

p ; ð37Þ

which coincides with Eq. (36) for k2 ≫ a2m2. In the
opposite limit k2 ≪ a2m2 it yields an expression that is
independent of m,

dtp ¼ dt
a
; tp ¼ η: ð38Þ

We have formulated the normalization of tp here in a given
coordinate system and frame. It has to be transformed
appropriately to other coordinates or frames. One may try
to find a direct coordinate-invariant expression for the
normalization. This is not of major concern in the present
context, since the most relevant quantity is the coordinate-
and frame-invariant dimensionless time ~tp. For practical
purposes one can often associate physical time tp with
conformal time η, but one should recall that the basic
definition of physical time is the counting procedure for ~tp.

C. Limits for proper time

While the concept of physical time is robust enough to
cover both photons and massive particles, this does not hold
for proper time. Particles with nonzero p always behave as
photons for t → −∞ since the mass vanishes in this limit.
Proper time is therefore not suitable for a time measure-
ment. In other words, the use of proper time for a time
measurement should be restricted to trajectories for which γ
remains finite. These are the ones with finite velocities, or
finite γin for tin → −∞. For those τðt0Þ − τin is indeed
infinite for tin → −∞ and finite t0.
We summarize that a finite distance to the infinite past

occurs only for quantities that do not constitute suitable
time measurements, as proper time τ for trajectories of
particles that become photonlike for t → −∞, or proper
time ~τ in units of the inverse particle mass, d~τ ¼ χdt. In
both cases the clock stops in the infinite past, while better
“physical clocks” continue to show regular and finite time
intervals. It will be precisely those “stopping clocks” that
are reflected by the incomplete geodesics in the Einstein
frame. Wewill see in the next section that proper time is not
a frame-invariant concept.

V. SINGULARITIES IN THE EINSTEIN FRAME

A. Big bang frame and freeze frame

Our family of models (1) and (2) can be described in a
different big bang picture by performing a Weyl scaling to
the Einstein frame,

gμν ¼
M2

χ2
g0μν; σ ¼

ffiffiffiffi
B

p
M ln

χ

M
: ð39Þ
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In the new field coordinates g0μν and σ the effective action
describes a standard setting with constant Planck mass M,

Γ ¼
Z
x

ffiffiffiffi
g0

p �
−
1

2
M2R0 þ 1

2
∂μσ∂μσ þ V 0ðσÞ

�
: ð40Þ

Particle masses m ¼ hpM are constant as well. The poten-
tial, V 0 ¼ ðM4=χ4ÞV, decays exponentially for large σ,

V 0 ¼ μ2M4

m2½expðασMÞ þ expð ~ασMÞ�
;

α ¼ 2ffiffiffiffi
B

p ; ~α ¼ Affiffiffiffi
B

p : ð41Þ

For our first model with B ¼ A we concentrate on small
A < 0.04, such that α > 10; ~α < 0.2. For primordial cos-
mology one has σ → −∞, such that the term involving ~α
dominates in V 0. This potential describes power-law infla-
tion [19], with spectral index n ≈ 1 − ~α2 and large tensor
amplitude r ≈ 8~α2 ¼ 8ð1 − nÞ. In the Einstein frame the
Hubble parameter diverges in the “extreme past” t → 0,

HE ¼ 2

~α2t
;

σ ¼ 2M
~α

�
ln

�
Mμt
m

�
− ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 − 2~α2

~α4

s �
; ð42Þ

such that the curvature scalar R0 and other invariants
diverge. The proper time between the extreme past and
some finite time t0 > 0 is finite, all timelike geodesics are
incomplete towards the past. The geometry becomes
singular for t → 0, and this has led to the judgment that
the Universe of such a model cannot be eternal and must
have had some beginning.
In view of the regularity of our model in the “freeze

frame” (1) and (2) this singularity finds a different
interpretation. It is a pure property of the choice of fields
g0μν; σ which becomes singular for χ → 0, cf. Eq. (39),
rather than being connected to a physical singularity. This
demonstrates our central point (i) on the possible occur-
rence of field singularities. Observations are independent
of the choice of frame. Indeed, the scale factor, Hubble
parameter and proper time in the Einstein and freeze frames
are related by

aE¼
χ

M
af; HE ¼

M
χ

�
Hfþ

_χ

χ

�
; dτE¼

χ

M
dτf; ð43Þ

with time derivative _χ taken in the freeze frame. With these
transformations observables can be mapped from one frame
to the other.
The relations (43) are most easily obtained if we use

conformal time, gμν ¼ a2ðηÞημν. Then the coordinates
ðη; ~xÞ and the scalar field χðηÞ are invariant under the

conformal transformation (39), while the scale factor
transforms according to the first equation (43). The relation
for the Hubble parameters follows by computing
∂ ln a=∂t ¼ a−1∂ ln a=∂η in both frames. Finally, with
invariant ðη; ~xÞ the relation for proper time follows from
the defining relations

dτ2E ¼ a2Eðdη2 − d~x2Þ; dτ2f ¼ a2fðdη2 − d~x2Þ: ð44Þ

We emphasize that proper time is not invariant under Weyl
scaling. Similarly, geodesics in one frame are not mapped
to geodesics in another frame, except for massless particles
and massive particles at (comoving) rest. The last equa-
tion (43), together with the coordinates xk being kept fixed,
yields the frame transformation for the velocity u and
momentum p ¼ mau,

uE¼
M
χ
uf; mE¼

M
χ
mf; pE¼

M
χ
pf; ~pE¼ ~pf: ð45Þ

The momentum divided by mass, ~p ¼ p=m ¼ au, is a
frame-invariant quantity.
The transformation rules (43), together with the invari-

ance of χðηÞ, allow us to transform any cosmological
solution in the freeze frame to the Einstein frame and vice
versa. Equivalently, we may solve the field equations
derived from the effective action (40) without any reference
to the freeze frame. One can then verify that these solutions
are mapped to solutions of the field equations of the freeze
frame by the transformation (43). Equation (45) specifies
how velocity, mass, and momentum on a particle trajectory
are mapped from one frame to the other. We have employed
here the particular conformal transformation (39). For
the general expression one simply replaces M=χ by the
appropriate conformal factor.
We emphasize again that the dimensionless oscillation

time ~tp is based on a discrete counting of zeros which is the
same in all frames. This physical time is frame invariant.
For the frames that we consider in this paper also conformal
time η is frame invariant. This comes in pair with the
(approximate) association of normalized physical time tp
with η in Eqs. (36) and (38).
The extreme past t → 0 in the Einstein frame corre-

sponds to the infinite past t → −∞ in the freeze frame. The
singularity in HE is a simple consequence of the trans-
formation (43). The finite proper time towards the extreme
past in the Einstein frame reflects the finite value of ~τ in the
freeze frame, which we have discussed before. Timelike
geodesics in the Einstein frame are mapped to trajectories
of massive particles in the freeze frame. Physical observ-
ables typically involve dimensionless ratios and do not
depend on the choice of frame. Since we have already
established a frame where observables remain regular from
the infinite past to the infinite future the Universe of this
model is eternal. The Einstein frame is simply poorly
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adapted to the asymptotic situation where the Planck mass
and particle masses vanish. The singularity in the Einstein
frame reflects the inappropriate choice of time or length
measured in units of inverse particle masses. In the
remaining part of this section we discuss this issue in
more detail.

B. Limits for the use of proper time

The explicit map between the freeze and Einstein frames
may be used to develop a new view on the meaning of the
singularities in the Einstein frame. They are not connected
to singularities for physical observables, but rather to
insufficiencies of certain concepts for a definition of useful
physical observables. A first example is the definition of a
physical observable for time. For massive particles, proper
time in units of the inverse particle mass, evaluated on the
particle trajectory, is a frame-invariant concept and there-
fore a priori a reasonable candidate for physical time.
Indeed, one has d~τf ¼ MdτE and particle trajectories in
one frame are mapped to particle trajectories in any other
frame. The use of proper time for a definition of physical
time intervals is restricted, however, to particles with a
nonzero ratio mass/momentum, while it becomes inappro-
priate for photons or a photonlike behavior for which this
ratio vanishes. Following in the Einstein frame the trajec-
tories of massive particles with nonzero momentum
towards the past one finds that the ratio mass/momentum
reaches zero at the singularity. In the vicinity of the
singularity proper time is no longer a valid concept for
physical time.
The inappropriateness of proper time for the vicinity of

the big bang is visible in the Einstein frame without any
reference to the freeze frame. While particle masses are
constant in the Einstein frame, the momentum diverges,
such that the relevant ratio m2=p2 reaches zero for t → 0.
All particles with nonzero pðt0Þ at some nonzero time t0
become photon like for t → 0. For the oscillations of the
associated field (26) one always enters the regime
k2 ≫ a2m2 for t → 0.
In contrast, the definition of physical time by the number

of oscillations of the wave function can be extended to the
singularity. For photons in an isotropic and homogeneous
geometry with a2R → 0 this definition of physical time
coincides with conformal time η, cf. Eq. (36). For the
solution (42) one has ð ~α2 ¼ A < 2Þ

aEðtÞ ¼ cat
2

~α2 ; RE ¼ 36

~α2t2
; ηðtÞ ¼ −cηt

1− 2

~α2 ; ð46Þ

such that a2R indeed vanishes for t → 0. Conformal time
diverges for t → 0; ηðt → 0Þ → −∞. In these oscillation
time units the extreme past t → 0 is at infinite time distance,
as expected for the infinite past in the freeze frame. This
extends to massive particles with nonzero pðt0Þ for which
k2 ≫ a2m2 becomes valid close to the big bang. Physical
time measured by the number of oscillations in their wave

function becomes again proportional to conformal time in
the extreme past. Again the physical time distance diverges
for t → 0, in contrast to proper time.
We conclude that for the power-law inflation in the

Einstein frame (42) proper time is not a valid concept for a
definition of physical time near the big bang, while for
physical time as defined by the number of oscillations in the
wave function no singularity occurs for any finite time
distance in the past. We note that the asymptotic behavior
of the scalar field according to Eq. (42),

χðη → −∞Þ ¼ cχð−ηÞ−
2

2− ~α2 ; ð47Þ

coincides with the one computed in the freeze frame,
Eq. (7), as it should.

C. Ambiguity of geometry

Let us next turn to the geometric singularities present in
the Einstein frame for the extreme past η → −∞. They
occur at infinite distance in physical time, while for any
finite η the geometry remains regular. We should empha-
size, however, that geometry is not a universal concept. It
depends on the choice of the metric—different choices can
lead to very different geometries. A priori it is not clear if
one can single out a “physical geometry” and what should
be the precise criterion for this purpose. This issue concerns
the observation that one can form many combinations of
fields that transform as symmetric second rank tensors and
are therefore candidates for a metric, permitting the con-
struction of an associated geometry. If the nonvanishing
bosonic fields besides the graviton correspond all to
massive particles one may formulate a concept of “uni-
versal geometry” at least for distances larger than m−1

min,
with mmin the smallest boson mass [20]. In general, the
vicinity of the big bang typically involves distances smaller
than m−1

min and the universality of geometry breaks down.
Our models contain an almost massless scalar field such
that a universal geometry cannot even be expected for
distances that are characteristic for late cosmology.
The singularities occur if we construct the curvature

scalar and similar invariants from the Einstein-frame metric
g0μν. One may propose a different geometry, with metric

gμν ¼ exp

�
−

2σ

~αM

�
g0μν: ð48Þ

Employing g0μν ¼ a2EðηÞημν, and

exp

�
σðηÞ
~αM

�
¼ χðηÞ

M
¼ aEðηÞ

ā
; ð49Þ

according to the asymptotic solution (47) and (46), one
finds that the geometry constructed from gμν is flat space,
gμν ¼ ā2ημν. [This corresponds to the lowest order solu-
tion (7) in the freeze frame, gμν and g0μν being related by
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Eq. (39).] The same ambiguity for the choice of metric
exists, of course, if we start from the freeze frame.
Computing the curvature scalar R0 for the metric g0μν ¼
ðχ2=M2Þgμν one finds a diverging R0 for the infinite
past, t ¼ η → −∞.
The choice of metric and geometry is closely linked to

the choice of a unit in which length is measured. The metric
g0μν corresponds to a length unit given by the inverse particle
mass, while gμν uses a fixed scale as μ−1 as a length unit. In
the freeze frame the origin of the singularity in R0 is easily
understandable. If the inverse particle mass χ−1 diverges in
the infinite past, every length measured in this unit shrinks
to zero, such that the geometry becomes singular. Nothing
forces one, however, to employ this singular geometry for
the description of observations. For the infinite past the
regular metric gμν seems better suited for a formulation of
useful geometrical concepts.

D. Physical observables

Physical observables do not depend on the choice of
frame. If expressed in terms of frame-invariant quantities
we can evaluate them in all frames by the same prescrip-
tion. [Otherwise observables have to be transformed under
frame changes, cf. Eq. (43). This is similar to trans-
formations under diffeomorphisms which can also be
formulated as field transformations.] A few frame-invariant
quantities are easily established if the field transformation
does not involve derivatives, as in Eq. (39). In this case
terms in the Lagrangian with different numbers of deriv-
atives are not mixed by the frame transformation. In our
case this concerns the potential term L0 ¼ ffiffiffi

g
p

V ¼
ffiffiffiffi
g0

p
V 0

and the combined kinetic term

L2 ¼
ffiffiffi
g

p �
−
1

2
χ2Rþ 1

2
ðB − 6Þ∂μχ∂μχ

�

¼
ffiffiffiffi
g0

p �
−
1

2
M2Rþ 1

2
∂μσ∂μσ

�
: ð50Þ

In the freeze frame it is obvious that both L0 and L2 vanish
for the infinite past, since χ → 0; V → 0; R → 0;

ffiffiffi
g

p
→ ā4.

The same holds in the big bang frame. Thus no singularity
is present for these frame-invariant quantities.
Of course, many other physical observables beyond the

explicit frame-invariant quantities L0;2 exists. One example
is clocks associated to ~tp. We are not aware of any physical
observable that becomes singular for our cosmological
solution.
We conclude that the geometric singularities of power-

law inflation in the Einstein frame can be interpreted as
field singularities associated with a particular choice of
metric. Physical observables remain regular. In this context
we stress that quantities that diverge proportional to powers
of p2=m2 for m2=p2 → 0 should not be associated with
physical observables in a world for which all particles are

massless at the big bang. Dimensionless physical observ-
ables should not depend on m in this limit.
Since the singularity in the Einstein frame arises from

the singularity of the field transformation for χ ¼ 0 one
can, in principle, obtain pre-big bang cosmologies where
the singularity is crossed smoothly. It is sufficient that a
solution in the freeze frame crosses smoothly the value
χ ¼ 0. We have, however, not found such a solution for
the model (1) and (2) with B ¼ A, at least not within the
investigated homogeneous and isotropic setting. Even if
we start with very small positive χ and very large negative
_χ the evolution of the scalar field is strongly damped, the
decrease of χ stops for χt > 0, and χ increases subsequently
according to the solution (8).

VI. CROSSOVER MODEL FOR de SITTER
INFLATION

For further illustration of our central point (iv) we
discuss a different model [10], namely A ¼ 0;
B ¼ 4=α2 ≪ 1. It describes a crossover between two fixed
points for χ → 0 and χ → ∞. For this model the infla-
tionary epoch in the Einstein frame approaches a de Sitter
solution in the infinite past. Singularities in geometrical
invariants are therefore absent both in the freeze and the
Einstein frame, despite the singularity in the conformal
transformation. In the existing literature de Sitter space is
often called singular for reasons of geodesic incomplete-
ness. Indeed, geodesics of moving massive particles entail
a finite proper time when continued to the infinite past.
Only for massive particles at rest proper time becomes
infinite for t → −∞.
We will show that for a nonvanishing momentum pðt0Þ

at some finite time t0 the momentum pðtinÞ diverges for
tin → −∞ both in the freeze and Einstein frame. This
differs from our first model for which pðtinÞ remains finite
in this limit in the freeze frame. Nevertheless, only
dimensionless quantities as p=m matter for observations,
and this frame-invariant quantity diverges for both models.
It may well be possible to find for our second model a
further frame where pðtinÞ remains finite, and only mðtinÞ
vanishes.
The basic observation that massive particles with pðt0Þ ≠

0 become photonlike for tin → −∞, and proper time
therefore fails to be a good description of physical time,
is the same in both models. The detailed investigation of
two different models will reveal, however, that basic
general properties can appear in rather different forms in
different models.

A. Infinite past

In the freeze frame the attractor solution for primordial
cosmology can again be extended to the infinite past, where
the Hubble parameter vanishes. In contrast to Eq. (11) the
scale factor goes to zero, however,
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aðtÞ ¼ exp

�
−
�
−

ffiffiffi
3

p
μt

2α

�2
3
�
; HðtÞ ¼

�
−
2μ2

9α2t

�1
3

: ð51Þ

The cosmon field χ increases from its vanishing asymptotic
value as

χðtÞ ¼ m
�
−

2ffiffiffi
3

p
α2μt

�1
3 ¼

ffiffiffi
3

p
m

μ
HðtÞ: ð52Þ

The validity of this primordial solution breaks down at the
end of inflation and we only consider t < 0.
The relative time derivatives vanish for t → −∞,

_H
H2

¼ _χ

Hχ
¼

�
−

αffiffiffi
6

p
μt

�
2=3

¼ −
1

3Ht
; ð53Þ

in contrast to our first model. The curvature tensor is then
approximated by

Rμνρσ ¼ H2ðgμρgνσ − gμσgνρÞ: ð54Þ

Invariants formed by contracting n factors of Rμνρσ with 2n
factors of gμν vanish ∼H2n, e.g. R ¼ 12H2. (Subleading
contributions are further suppressed by factors of _H=H2.)
For the covariant derivatives one has

D0Rμνρσ ¼
2 _H
H2

Rμνρσ; DkRμνρσ ¼ 0; ð55Þ

such that all invariants involving powers of covariant
derivatives vanish as well. We conclude that with respect
to all those invariants the limit t → −∞ remains regular and
approaches the properties of flat space.

B. Proper time for particle trajectories and geodesics

For a determination of the “time distance” to the infinite
past we consider first the proper time for massive particles,
evaluated on their physical trajectories. With _χ=χ¼−1=ð3tÞ
these trajectories obey

∂u
dτ

¼ −2Hγuþ γu
3t

;

dγ
dτ

¼
�
1

3t
−H

�
ðγ2 − 1Þ: ð56Þ

Particles at rest define the “static trajectories”
u ¼ 0; γ ¼ 1; τ ¼ t. The proper time elapsed for particles
at rest from the infinite past to some finite t is indeed
infinite.
We next establish that for this model all massive particles

with finite velocity or momentum approach the static
trajectories. The velocity u is damped both by Hubble
damping and the increasing mass

d ln u
dt

¼ −2H þ 1

3t
: ð57Þ

The solution,

uðtÞ ¼ uin

�
t
tin

�1
3
exp

n�
6μ2

α2

	1
3ð−tÞ23

o
exp

n�
6μ2

α2

	1
3ð−tinÞ23

o ; ð58Þ

shows the approach of trajectories with arbitrary finite uin
towards a static trajectory. For the physical momentum
p ¼ mðχÞau ∼ χau one finds again pa ¼ const. If
pðtÞ ≠ 0 for finite t the physical momentum diverges in
the infinite past, jpðtin → −∞Þj → ∞. Thus any finite
pðtinÞ; tin → −∞, is mapped to pðtÞ ¼ 0.
The relation between t and the proper time is determined

by

dτ
dt

¼ 1

γ
¼ ð1þ a2ðtÞu2ðtÞÞ−1

2; ð59Þ

with

a2ðtÞu2ðtÞ ¼ γ2ðtÞ − 1 ¼ ðγ2in − 1Þ a2in
a2ðtÞ

�
t2

t2in

�1
3

: ð60Þ

The proper time difference τ − τin ¼ τðtÞ − τðtinÞ is a
function of γin and tin. We will be interested in the
limit tin → −∞.
The physical momentum of a massive particle, divided

by its mass, is given in our coordinate system by ~p ¼ au,
such that γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~p2

p
. Let us call those particles for

which ~p remains finite in the infinite past “asymptotic
massive particles.” Asymptotic massive particles never
behave as photons. Proper time in units of inverse particle
mass, evaluated on the trajectory, is a reasonable measure
of time. For finite physical momenta in units of particle
mass γ is finite. It is straightforward to show that for
an arbitrarily large finite γin the difference τ − τin diverges
for tin → −∞. The proper time distance to the infinite past
is infinite for asymptotic massive particles [criterion (iv)
in Sec. I]. Asymptotic massive particles have come to rest
at finite time t, uðtÞ ¼ 0. We may also consider finite
momentum p ∼ χ ~p. This implies that ~p increases for
tin → −∞ at most as χ−1, and γin as χ−2 ∼ ð−tinÞ2=3. Our
conclusion remains unchanged if we allow γin to increase
∼ð−tinÞ2=3 [cf. Eq. (60)]. Thus the proper time also diverges
for particles with finite momentum in the infinite past.
In contrast, the proper time distance to the infinite past
remains finite for particles with uðtÞ ≠ 0, similar to our
first model.
Proper time for trajectories of massive particles with

finite momentum at tin behaves differently for tin → −∞ in
our two models. The distance to the infinite past is finite in
the first model ðA ¼ BÞ and infinite in the second model
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ðA ¼ 0Þ. [In both models particles become photonlike
ð ~p → ∞Þ in the infinite past.] For the second model
ðA ¼ 0Þ the time difference tnr − tin for a particle to become
nonrelativistic is finite, such that t − tnr diverges for
tin → −∞. Massive particles behave similar to photons
only for a negligible time. Proper time remains a valid
concept for most parts of the past trajectory. It diverges for
the infinite past. For the first model ðB ¼ AÞ one finds a
diverging interval tnr − tin for tin → −∞, and finite t − tnr.
Particles with finite momentum behave photonlike for most
of their trajectory, and proper time no longer acts as a useful
clock. We recall, however, that finite momentum p is not a
frame-invariant concept. The crucial frame-invariant quan-
tity is ~p. For all trajectories with uðtÞ ≠ 0 for finite t the
dimensionless ~p diverges for the infinite past in both
models. For these trajectories proper time cannot be used
towards the infinite past as physical time. The proper time
distance to the infinite past can be finite for such trajectories
without contradicting the eternity of the Universe.
The proper time for trajectories of massive particles

differs from geodesics due to the χ-dependent mass. If we
would evaluate the proper time along timelike geodesics
the terms ∼1=t in the two equations (56) would be absent.
These terms are subleading for t → −∞, however, sup-
pressed by a factor 1=ðHtÞ as compared to the leading term.
The qualitative conclusion for geodesics is the same as for
particle trajectories. For finite ~pin or finite pin the proper
time elapsed since tin on a geodesic becomes infinite if tin
moves to the infinite past.
In contrast to our first model also the dimensionless

proper time measured in units of inverse particle masses
diverges. For d~τ ¼ χdτ the relation between ~τ and γ reads

d~τ
dγ

¼ χ
dτ
dγ

¼ −
χ

~Hðγ2 − 1Þ ; ð61Þ

with

~H ¼ ∂ lnðaχÞ
∂t ¼ H þ _χ

χ
¼ H −

1

3t
: ð62Þ

In the asymptotic limit t → −∞ one has ~H ≈H such that

χ
~H
≈

ffiffiffi
3

p
m

μ
: ð63Þ

The solution of Eq. (61) reads

~τ − ~τin ¼
ffiffiffi
3

p
m

2μ
ln

�ðγ þ 1Þðγin − 1Þ
ðγ − 1Þðγin þ 1Þ

�
: ð64Þ

For finite ~pin or finite pin the difference ~τ − ~τin diverges in
the limit tin → −∞ since γðtÞ approaches 1 according to
Eq. (60). Again, tin → −∞ corresponds to the infinite past
as measured with the clock ~τ of massive particles. For
particles at rest one finds the explicit expression

~τ ¼
Z

τ

0

dtχðtÞ ¼ −
3m
2

�
2t2ffiffiffi
3

p
α2μ

�1
3

: ð65Þ

C. Infinite physical time

The trajectories of massless particles or photons are
conveniently studied by switching to conformal time,
ds2 ¼ a2ðηÞð−dη2 þ dxkdxkÞ; dt ¼ aðtÞdη. We find an
asymptotic behavior for t → −∞,

ηðtÞ ¼−
1

HðtÞaðtÞ ; tðηÞ ¼−
2αffiffiffi
3

p
μ
ðlnð−μηÞÞ3=2; ð66Þ

such that conformal time diverges in the infinite past,
ηðt → −∞Þ → −∞. Photons travel on straight lines in
arbitrary directions, with jdxj ¼ dη. The distance in
comoving coordinates that they have moved from tin to t
is given by Δxðt; tinÞ ¼ ηðtÞ − ηðtinÞ. For a fixed t it
diverges for tin → −∞;Δðt; tin → −∞Þ → ∞. This is a
similar qualitative behavior as for Minkowski space.
For photons (or photonlike particles) proper time is no

longer available for the definition of a coordinate-invariant
physical time. As mentioned before, we may use instead the
number of oscillations of the amplitude. For our coordinate
system this oscillation time is proportional to conformal
time η in the infinite past. For oscillation time the distance
to the infinite past is therefore divergent, as it should be.
We conclude that the solution (51) and (52) is free of
singularities from the infinite past to the infinite future.

D. Interpretation of geodesic incompleteness
in de Sitter space

In the Einstein frame our second model is given by
Eqs. (40) and (41) with ~α ¼ 0. For small B or large α
primordial cosmology amounts again to an inflationary
epoch. The spectral index depends only on N, n¼ 1−2=N,
and the tensor amplitude is very small, r ¼ 8=ðα2N2Þ
(cf. Sec. VII). The time coordinate of the Robertson-
Walker metric can now be continued to the infinite past,
t → −∞, where geometry approaches de Sitter space,

H ¼ μMffiffiffi
3

p
m
; σ ¼ −

M
α
lnðcσ − α2HtÞ: ð67Þ

In the Einstein frame the particle masses are constant
such that ~p and p or ~τ and τ can be used equivalently.
Massive particles move on timelike geodesics. We recall
that ~τ, evaluated on massive particle trajectories, is a frame-
invariant quantity. Since for the infinite past ~τ becomes
infinite in the freeze frame for asymptotic massive particles,
we expect that the proper time elapsed from the infinite
past to some finite t0 should diverge for asymptotic massive
particles in the Einstein frame as well. This seems to
contrast with arguments that de Sitter space has a past
“singularity” or a “beginning,” based on geodesic
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incompleteness [3,4,21,22]. We will explain this apparent
discrepancy by a careful investigation of the appropriate
limits. This will shed further light on the physical meaning
of incomplete geodesics.
For de Sitter space the Robertson-Walker scale factor

obeys a ¼ expðHtÞ, with constant H > 0. (More precisely
we investigate the geometry spanned by the Robertson-
Walker metric in the range −∞ < t < ∞, as obtained
from the field transformation from the freeze frame where
−∞ < t < ∞. Formally, it is possible in other coordinates
to continue de Sitter space beyond the surface a ¼ 0. In
our setting, however, the geometry of the freeze frame is
mapped precisely to the part of de Sitter space
a > 0; t > −∞.) We want to see if t → −∞ can be
associated with a past-eternal Universe.
Let us consider trajectories of particles with constant

nonzero mass in de Sitter space. They move on geodesics
ðu0 ¼ uðt0Þ etc.),

u ¼ u0 expf−2Hðt − t0Þg;
γ ¼ cothfHðτ − τcÞg: ð68Þ

The condition a2u2 ¼ γ2 − 1 relates τ and t,

t ¼ 2t0 þ
1

H
ln ½u0 sinhfHðτ − τcÞg�: ð69Þ

The difference τ0 − τc obeys

sinhfHðτ0 − τcÞg ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ20 − 1

p ; ð70Þ

and we infer τc < τ0, with τc → −∞ for γ0 → 1.
For τ → τc both γ and u diverge and cosmic time t goes

to minus infinity. Except for γ0 ¼ 1 the difference τ0 − τc
remains finite. Geodesics “stop” at finite proper time τc.
This is called “geodesic incompleteness towards the past.”
At first sight it seems that for most geodesics the limit
t → −∞ is only a finite distance in proper time away.
This is usually interpreted as sign of a beginning, despite
the fact that all invariants built from powers of the curvature
tensor and its covariant derivatives remain finite. The static

trajectory with γ0 ¼ 1, for which t → −∞ is an infinite
distance in proper time away, is somehow discarded as
“being of measure zero.” In contrast, we will argue that
γ0 ¼ 1 is actually the only value for which one is allowed
to use proper time for t → −∞ in a consistent way. Instead
of being an exception, this is the value appropriate for
asymptotic massive particles. As a consequence, the geo-
desics of asymptotic massive particles are complete also
towards the infinite past. For all particles that have started
in the infinite past with finite momentum the proper time
elapsed when they arrive at t0 is infinite.
Due to Hubble damping the (squared) momentum is

always decreasing as time increases. For nonzero momen-
tum γ is larger than one, and ∂γ=∂t ¼ ∂ ln γ=∂τ is always
negative. Thus γ and therefore momentum decreases with
increasing t. Finite momentum is equivalent to a finite value
of γ. We want to compute for finite t0 the allowed range of
γðt0Þ under the condition that the value γðtin → −∞Þ
remains finite. For this purpose we impose
the bound γðtinÞ < γmax with γmax an arbitrarily large but
finite value. For fixed γmax we take the limit tin → −∞,
reflecting the condition of finite momentum in the infinite
past. We use the relation

γ2ðt1Þ − 1 ¼ ðγ2ðt2Þ − 1Þ expf−2Hðt1 − t2Þg; ð71Þ

with t1 ¼ t0 and t2 ¼ tin, in order to establish the bound

γ2ðt0Þ − 1 < ðγ2max − 1Þ expf−2Hðt0 − tinÞg: ð72Þ

For finite γmax the rhs goes to zero as tin → −∞. One
concludes that the condition of finite momentum results
precisely in γ0 ¼ 1. More generally, for fixed γmax and tin
there remains only a restricted range of allowed values
for γ0 due to the damping between tin and t0. This range
depends on tin. It shrinks to a single point γ0 ¼ 1 if
tin → −∞. This behavior constitutes a further example
for the focus property of a differential equation that we have
discussed in Sec. III.
We can compute the proper time elapsed between tin and

t0 for γðtinÞ ¼ γmax. This is the minimum of the proper time
for all particles with γðtinÞ ≤ γmax. From

τ0 − τin ¼ t0 − tin þ
1

H
ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðγ2max − 1Þ expf−2Hðt0 − tinÞg

p
γmax þ 1

�
ð73Þ

one infers the limiting behavior for tin → −∞,

τ0 − τin ¼ t0 − tin −
1

H
ln

�
γmax þ 1

2

�
: ð74Þ

Thus τ0 − τin is smaller than t0 − tin, but only by a finite
amount as long as γmax remains finite. We conclude that the

proper time difference τ0 − τin diverges for tin → −∞ for
any massive particle with finite momentum in the infinite
past. In other words, the infinite past t → −∞ is at infinite
proper time distance for all massive particles with finite
momentum.
The interpretation of the geodesics that are incomplete in

the past for γ0 > 1 becomes now rather simple. All these
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geodesics correspond to infinite momentum in the past.
With

pðtÞ ¼ aðt0Þ
aðtÞ pðt0Þ ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffi
γ20 − 1

q aðt0Þ
aðtÞ ð75Þ

all particles with γ0 > 1 behave as photons, p2=m2 → ∞,
in the infinite past and proper time cannot be used as a
useful measure of time. Only for asymptotic massive
particles proper time remains a useful measure of time.
The corresponding trajectories have all γ0 ¼ 1 and the
proper time elapsed since the infinite past is infinite, as it
should be. The incompleteness of geodesics for γ0 > 1
does not indicate a singularity in space-time or an incom-
pleteness of cosmology. It merely reflects that these geo-
desics cannot be realized by asymptotic massive particles.
We may summarize two key points: (i) Not all timelike
geodesics can be realized by asymptotic massive particles.
(ii) Cosmologies that approach de Sitter space in the infinite
past can be considered as regular. The infinite past in
cosmic time occurs for the infinite past in proper time for all
asymptotic massive particles. All other trajectories become
photonlike in the infinite past and proper time has to be
replaced by a more appropriate concept as oscillation time.
The oscillation time distance to the infinite past is infinite
for all particles.

VII. ETERNAL UNIVERSE AND INFLATION

Cosmologies with de Sitter inflation (geometry
approaching de Sitter space in the infinite past) can describe
an eternal Universe. Known examples are higher dimen-
sional inflation [8] or the models of cosmon inflation
[9,13,23]. There exist many other possibilities for an eternal
Universe. Beyond the examples discussed here an asymp-
totic behavior H ¼ η=ðtc − tÞ approaches flat space in the
infinite past. For our general class of models (1) and (2)
with arbitrary A; B we find indeed the asymptotic behavior
for t → −∞

H ¼ η

tc − t
; η ¼ 2

2 − A

�
B
A
− 1

�
: ð76Þ

[The qualitative behavior H ∼ t−1 has been suggested in
Ref. [24] for the model of Ref. [12], i.e. Eqs. (1) and (2)
with V replaced by V0 ∼ χ4−A. There seems to be no
quantitative agreement of Eq. (76) with Ref. [24], however.
For a model of inflation we need to employ the full
potential (2) since for V0 inflation would not end.]
Varying A and B we find a family of inflation models.
For suitable values of these parameters the spectrum of
primordial scalar and tensor fluctuations is compatible with
observation. We limit the discussion here to the main
aspects, for details (see Refs. [9,13,14,23]).

A. Freeze frame

In the freeze frame we start with the field equations
derived from the effective action (1) and (2) for arbitrary A
and B, generalizing Eqs. (4) and (6),

̈sþ 3H_sþ 2_s2 ¼ μ2xðAþ 2xÞ
Bð1þ xÞ2 ; ð77Þ

with

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2

3ð1þ xÞ þ
B_s2

6

s
− _s: ð78Þ

For the inflationary epoch we neglect matter and radiation
such that primordial cosmology only involves the cosmon
coupled to gravity. The field equations have an exact
solution

χ ¼ 0; H ¼ 0; Rμνρσ ¼ 0; ð79Þ

which is, however, unstable. The early stages of cosmology
are described by the vicinity of this solution. For A < 2 we
can employ x ≪ 1.
For the approach to the infinite past we discuss the

cosmology of a simplified model with potential

V0 ¼ λχ4−A; ð80Þ

where λ ¼ μ2mA−2 sets the overall mass scale. This model
describes the early stages of inflation, while the end of
inflation will need the full potential (2). The field equations
simplify correspondingly,

̈sþ 3H_sþ 2_s2 ¼ μ2A
B

eð2−AÞs;

H2 þ 2H_sþ
�
1 −

B
6

�
_s2 ¼ μ3

3
eð2−AÞs: ð81Þ

For A < 2 we make the ansatz ðt < tcÞ

eð2−AÞs¼ v
μ2ðtc− tÞ2 ; H¼ η

tc− t
;

_s¼ 2

ð2−AÞðtc− tÞ ; s̈¼ 2

ð2−AÞðtc− tÞ2 : ð82Þ

This yields algebraic equations for the constants v and η,
with solution

η¼ 2

2−A

�
B
A
− 1

�
; v¼ 1

ð2−AÞ2
�
12

B2

A2
− 2B

�
: ð83Þ

The positivity of v requires A2 < 6B. (The second solution
with η− ¼ −2=ð2 − AÞ has always negative v.) For the
interesting particular case B ¼ A one finds η ¼ 0 and space
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is flat in lowest order! This case was discussed in Ref. [13]
and corresponds to the model of Sec. II. For B > A the
primordial universe expands, while for B < A it shrinks.
In all cases it approaches flat space in the infinite past for
t → −∞ with an inverse power law for H.
For fixed A and B → ∞ both η and v diverge. This also

happens for fixed B and A → 2. For A ¼ 2 the power law
solution (82) is no longer valid. In this case one finds an
exponential behavior of s with constant H, as discussed
in Ref. [9]. For A > 2 no power-law solution (82) exists
either.
The primordial solution (76) describes only the early

stages of inflation. It gets modified once χ has grown large
enough such that the potential changes its shape to
V ∼ μ2χ2. This can be seen for the numerical solution in
Fig. 1 for t → 0. Inflation ends in this region, as we discuss
next in more detail in the equivalent Einstein frame.

B. Einstein frame

Despite the large variety of different behaviors for
primordial cosmology the observational consequences
for all these models are similar. This is best seen in the
Einstein frame. Performing the Weyl scaling (39) the
effective action becomes a standard inflationary model
with fixed (reduced) Planck mass M and effective action
(40) and (41). The “primordial potential” (80) is trans-
formed to an exponentially decaying potential

V 0
0ðσÞ ¼

μ2M4

m2
exp

�
−
~ασ

M

�
; ~α ¼ Affiffiffiffi

B
p : ð84Þ

The ratio μ2=m2 can be absorbed by a shift in σ, such that
the behavior only depends on ~α. For small enough ~α this
cosmology is a type of power-law inflation. It has, however,
no end since no value of σ is singled out. This holds despite
the appearance of tc in Eq. (82) which naively suggests an
end of inflation for t → tc. In the Einstein frame, however,
this limit corresponds to the infinite future.
For a realistic model of inflation and a computation of

primordial density fluctuations the crossover behavior of
the potential is crucial and we have to consider the full
potential (41)

V 0 ¼ μ2M4

m2
exp

�
−
ασ

M

��
1þ exp

�
−
ðα − ~αÞσ

M

��
−1
;

α ¼ 2ffiffiffiffi
B

p : ð85Þ

For large σ the last bracket approaches 1, such that the
Universe can make a transition to a late cosmology. We
require a large value of α > 10 in order to guarantee a small
fraction of early dark energy. For the full potential the
parameters A; B and μ2=m2 all play a role. They determine

the end of the inflationary epoch and the spectrum of the
primordial density fluctuations.
Let us investigate a possible range of “slow roll infla-

tion” with “slow roll parameters”

ϵ ¼ M2

2

�∂ lnV 0

∂σ
�

2

¼ 1

2

�
~α

1þ x
þ αx
1þ x

�
2

; ð86Þ

and

η ¼ 2ϵþM2
∂2 lnV 0

∂σ2
¼ ~α2ð1 − xÞ − α2xð1 − xÞ þ 4~ααx

ð1þ xÞ2 ; ð87Þ

with

x ¼ exp

�ðα − ~αÞσ
M

�
: ð88Þ

For ~α ¼ 0 one recovers the model of Sec. VI. The slow roll
condition ϵ ≪ 1 is obeyed for small ~α in the region of small
enough x. We may associate the end of inflation with
xf ¼ 1=αðϵ ≈ 1=2Þ. For α≳ 10, as required by the bounds
on early dark energy, the inflationary epoch happens for
small x ≪ 1, where we can approximate

ϵ ¼ 1

2
ð ~αþ αxÞ2; η ¼ ~α2 − α2x: ð89Þ

C. Spectrum of primordial fluctuations

In order to compute the spectral index n and the tensor
amplitude r we need to evaluate x at a time corresponding
to N e-foldings before the end of inflation, when fluctua-
tions of observable scales left the horizon,N ≈ 50–65. With

N ¼
Z

Hdt ¼ −
Z �∂ lnV 0

∂σ
�

−1 dσ
M

¼
Z

1ffiffiffiffiffi
2ϵ

p dσ
M

¼ 1

α − ~α

Z
xf

xðNÞ

dx
~αxþ αx2

ð90Þ

one finds

xðNÞ ≈ ~α

α
½expf ~αðα − ~αÞNg − 1�−1: ð91Þ

The standard relations for the spectral index n and the
tensor to scalar ratio r read

n ¼ 1 − 6ϵþ 2η ≈ 1 − 2α2xðNÞ − ~α2;

r ¼ 16ϵ ¼ 8ð ~αþ αxðNÞÞ2: ð92Þ

Depending on the values of ~α and α one finds two
regimes. For ~αα ≪ 1=N one can expand the exponential in
Eq. (91), leading to
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xðNÞ ¼ 1

α2N
; n ¼ 1 −

2

N
; r ¼ 8

α2N2
: ð93Þ

These are the values found for A ¼ 0 in Ref. [10],
corresponding to the model of Sec. VI. On the other hand,
for ~αα ≫ 1=N one finds

xðNÞ ≪ ~α

α
; n ¼ 1 − ~α2; r ¼ 8~α2: ð94Þ

This corresponds to our first model in Sec. II. Between the
two limits one finds a smooth transition.
We plot in Fig. 2 the spectral index as a function of ~α,

for N ¼ 50; 60; 65. Except for a range of very small ~α the
spectral index is independent of N. Two regions of very
small ~α or ~α near 0.2 are consistent with Planck results
[25]. For the tensor ratio we may neglect the small
contribution from αx ≠ 0 and use for practical purposes
for all ~α

r ¼ 8~α2: ð95Þ
We observe that the allowed region of intermediate
~α could be consistent with the claimed detection of
tensor modes by BICEP [26]. In this region one has the
relation

n ¼ 1 −
r
8
: ð96Þ

The observed amplitude of the primordial fluctuations
fixes the ratio μ=m.

VIII. CONCLUSIONS

In this paper we have put the emphasis on “past
eternity.” “Future eternity” for t → þ∞ is rather generic
for many cosmologies, including the Friedman universe.
For our models (1) and (2) the Universe produces

entropy after the end of inflation [14,23]. The subsequent
radiation- and matter-dominated periods correspond to
the approach to a fixed point for χ → ∞ for which scale
symmetry becomes an exact symmetry which is sponta-
neously broken [12,13]. For χ2 ≫ m2 we assume that the
masses of all particles except for neutrinos scale ∼χ
(typically with different coefficients as for χ2 ≪ m2), and
dimensionless gauge and Yukawa couplings are close to
their constant fixed point values. Bounds on the time
variation of fundamental constants are therefore obeyed.
During radiation and matter domination the Universe
shrinks in the freeze picture, with slowly increasing
temperature and particle masses [9,10]. The scaling
solution predicts a small fraction of early dark energy
[12,27–31], Ωe ¼ n=α2, with n ¼ 4ð3Þ for radiation
(matter) domination. We may assume that for the present
epoch the neutrino masses increase faster than ∼χ (in the
freeze frame), due to a crossover in a sector of heavy
singlets [13]. Neutrinos becoming nonrelativistic trigger
a recent transition to a dark energy dominated epoch,
with present dark energy related to the average neutrino
mass [32,33]. The models are compatible with all present
cosmological observations [9,10]. A measurement of
primordial tensor fluctuations [26] will restrict the
allowed ranges of ~α and α.
In conclusion, we have presented consistent cosmologi-

cal models for which solutions of field equations can
describe an eternal Universe, in contrast to the opinion
based on earlier “no-go theorems.” This does not imply that
the history of the Universe must have followed these
solutions since the infinite past. Since the solutions are
stable attractors, many other possibilities for a primordial
Universe can approach such attractors as time increases.
Information on the primordial state is then largely lost—
predictions for observations will be the same as for a
primordial state following the “eternal attractor solution”
since the infinite past. One could imagine a chaotic
inflation [7,8] primordial state, governed by quantum
fluctuations in flat space. Once a region is homogeneous
enough such that the homogeneous field equations become
valid, it will subsequently follow the inflation history
according to the eternal attractor solution.
Our approach allows for a differentiated view of several

basic cosmological concepts. No big bang singularity is
needed. The big bang picture in the Einstein frame provides
for a very useful description of observations, but may be
inappropriate for a good picture of the regular structure of
the eternal Universe. Gravity needs not to become strong in
the beginning of the universe. The concept of the quantum
effective action assumes a quantum field theory for gravity.
Nevertheless, for our solutions gravity remains always a
weak interaction. The concepts of time and geometry are
ambiguous. This extends beyond the issue of general
coordinate transformations. Field transformations leave
observables invariant, but can map very different

FIG. 2 (color online). Spectral index as a function of the
parameter ~α. We show curves for three different values
N ¼ 50; 60; 65.
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geometries into each other. Apparent singularities in a
given frame may be field singularities associated to a
particular choice of fields, while physical observables
remain regular.
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