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We constrain the parameters of a self-interacting massive dark matter scalar particle in a condensate
using the kinematics of the eight brightest dwarf spheroidal satellites of the Milky Way. For the case of a
repulsive self-interaction, the condensate develops a mass density profile with a characteristic scale radius
that is closely related to the fundamental parameters of the theory. We find that the velocity dispersion of
dwarf spheroidal galaxies suggests a scale radius of the order of 1 kpc, in tension with previous results
found using the rotational curve of low-surface-brightness and dwarf galaxies. The new value is however
favored marginally by the constraints coming from the number of relativistic species at big bang
nucleosynthesis. We discuss the implications of our findings for the particle dark matter model and argue
that while a single classical coherent state can correctly describe the dark matter in dwarf spheroidal
galaxies, it cannot play, in general, a relevant role for the description of dark matter in bigger objects.
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I. INTRODUCTION

The nature of dark matter (DM) remains an open
question. At the fundamental level, DM is expected to
be described in terms of a quantum field theory. At the
effective level, however, a description in terms of classical
particles is usually considered, see e.g. the large literature
onN-body simulations [1]. Most current efforts are focused
on detecting a weakly interacting massive particle (WIMP),
both by direct [2] and indirect [3] searches. In the case of
WIMPs its present-day abundance is fixed at the time when
DM decoupled from the thermal plasma. If the interaction
of DM lies at the weak scale, with a mass of the particle in
the range of 100 GeV (as expected from the supersym-
metric extensions to the standard model), the energy
density of these particles coincides “miraculously” with
the observed one [4]. However, alternatives exist and
deserve careful scrutiny, either to constrain the associated
parameter space, and thus phenomenology, or to dismiss
them as viable candidates.
One such proposal considers that the abundance of DM

is fixed by an asymmetry between the number densities of
particles and antiparticles [5], similarly to the baryons and
leptons in the universe. If the particle interactions in the
early universe are strong enough to guarantee thermal
equilibrium, and DM is further composed of a spin-0
quantum field, the zero mode could have developed a
Bose-Einstein condensate where a description in terms of a
classical field would be warranted. Classical coherent states
can also emerge nonthermally, no asymmetry required, by
means of the vacuum misalignment mechanism [6]. Similar
ideas have been considered previously in the literature
under many different names, such as scalar field [7], BEC
[8], Q-ball [9], fuzzy [10], boson [11], or even fluid [12],
DM; see also Refs. [13–23] for details.

A natural realization of this scenario can be provided
by the axion [14]. Originally introduced to solve the
charge-parity violation problem in QCD [24], the axion
was soon recognized as a promising candidate for DM.
In this case the size of the condensate is so small [25] that,
most probably, DM halos made of axion-balls could not be
distinguished from the ones simulated with N-body codes
by means of galactic dynamics and/or lensing observations
[26]. Another possibility is that with an appropriate choice
of the parameters in the model (see the next two paragraphs
for details), it could be possible to develop single structures
with the size of a galaxy [8,11,15–23].
For practical purposes we will restrict our attention to the

case of a massive, self-interacting, complex scalar field
with an internal Uð1Þ global symmetry satisfying the
Klein-Gordon equation

□ϕ − ðmc=ℏÞ2ϕ − 2λjϕj2ϕ ¼ 0: ð1Þ

Here the box denotes the d’Alembertian operator in four
dimensions, with m the mass of the scalar particle and λ a
dimensionless self-interaction term. As long as the inter-
action between bosons is repulsive, λ > 0, a universal mass
density profile for the static, spherically symmetric, regular,
asymptotically flat, self-gravitating equilibrium scalar field
configurations emerges in the weak field, Thomas-Fermi
regime [8,16–18,27] of the Einstein-Klein-Gordon system
with the following analytic form:

ρðrÞ ¼
�
ρc

sinðπr=rmaxÞ
ðπr=rmaxÞ for r < rmax

0 for r ≥ rmax
: ð2Þ

In the effective description above there are two free
parameters: first, the size of the gravitating objects,
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rmax ≡
ffiffiffiffiffiffiffiffi
π2Λ
2

r �
ℏ
mc

�
¼ 48.93

�
λ1=4

m½eV=c2�
�

2

kpc; ð3Þ

a parameter that, as manifest from the equation,
depends directly on the bare constants of the theory in
the combination m=λ1=4; second, the value of the mass
density at the center of the configuration, ρc ≡ πmQ=
ð4r3maxÞ, a quantity that in principle can vary from galaxy to
galaxy. Here Q is the total charge in the system, that in this
case coincides with the total number of particles, and for
convenience we have defined the dimensionless con-
stant Λ≡ λm2

Planck=4πm
2.

The mass density profile in Eq. (2) describes only the
diluted configurations of a scalar field in a regime of weak
gravity; in terms of particle numbers that translates into
(see e.g. Eq. (25) in Ref. [15])

Λ−1=2 ≪
�

m
mPlanck

�
2

Q ≪ Λ1=2: ð4Þ

The inequalities in Eq. (4) demandΛ ≫ 1; that is guaranteed
if the combination m=λ1=4 for the mass and self-interaction
terms of the scalar boson is well below the Planck scale. It is
precisely the very large value expected for the constant Λ
what makes possible to blow up the Compton wavelength of
the scalar particle, ℏ=mc, up to galactic scales, see Eq. (3)
above. Only configurations with masses M ¼ mQ in the
range from M ≫ λ−1=2mPlanck up to M ≪ λ1=2m3

Planck=m
2

can be described by the expression in Eq. (2). Then, in order
to have an halo model for objects of at least M ∼ 108M⊙
(M ∼ 1012M⊙) we need a scalar DM particle withm=λ1=4 <
70 keV=c2 (m=λ1=4 < 0.7 keV=c2).
The density profile in Eq. (2) was derived under the

assumption that all the DM particles are in a condensate,
while in a more realistic situation probably only a fraction
of them would be represented by the coherent classical
state. (That seems indeed necessary in order to explain the
flattened rotation curves in large spirals, where observa-
tions suggest ρ ∼ 1=r2 at large radii.) Unfortunately, there is
not yet a satisfactory description that includes this effect
(see Ref. [28] for a proposal in this direction). Nevertheless,
this halo model can still be deemed appropriate to test the
self-interacting scalar field DM scenario if we carefully
choose observations that are sensitive only to the mass
contained up to a radius smaller or comparable to rmax,
where the condensate is expected to dominate the distri-
bution of DM. One should then look at the profile in Eq. (2)
not necessarily as a DM halo model for the whole galaxy,
but for the core of the self-gravitating object only.
The dwarf spheroidal (dSph) satellites of the Milky Way

are probably the most promising objects to test DM models
as far as structure formation is concerned. These old,
pressure-supported systems are the smallest and least
luminous known galaxies, and there is strong evidence
that they are DM dominated at all radii, with mass-to-light
ratios as large as [29]

M=LV ∼ 101−2½M=LV �⊙: ð5Þ

The dynamics of these objects, for instance, could allow us
to determine whether DM halos are cored or cuspy: since
the concentration of baryons in these galaxies is so low,
effects such as the adiabatic contraction and/or supernova
feedback cannot alter significantly the shape of the original
halo. Current data do not yet conclusively discriminate
between cuspy and cored profiles [30–33]; however, the
next generation of sky surveys (DES, Gaia, LSST, etc) is
expected to shed new light on this question.
In this paper we use the kinematics of the eight classical

dSph satellites of the Milky Way to determine whether a
self-interacting scalar particle in a condensate is able to
reproduce the galaxies’ internal dynamics and, if so, under
what conditions on the theory input parameters. In this
respect, our study extends previous analyses carried out for
the generalized Hernquist [30] and Burkert [31] profiles
to the DM halo model in Eq. (2). It is important to note,
however, that the purpose of this paper is not to compare the
profile in Eq. (2) with other halo models in the literature, but,
rather, to use dSph dynamics to test the self-consistency
of the scalar field dark matter scenario.
We find that the eight classical dSphs indicate a scale

radius of the order

rmax ∼ 1 kpc; i:e: m=λ1=4 ∼ 7 eV=c2; ð6Þ
a value in tension with previous results found using the
rotation curves of low-surface-brightness (LSB) and dwarf
galaxies [8,16,18,19]; see also Refs. [22,23] for bigger
galaxies. Our findings strongly disfavor a self-interacting
condensate DM halo model or, if one hypothesizes that the
condensate describes only the core of galaxies, they
indicate that the relevance of the coherent state to describe
DM in larger galaxies is, at best, negligible.

II. THE JEANS EQUATION

Dwarf spheroidal galaxies are simple, old systems
composed of a DM halo and of a stellar population.
Rotation in these galaxies is negligible, and the stellar
component is supported against gravity by its random
motion. Therefore the observation that can be used to test
DM models is not rotation curves but, rather, the line-of-
sight velocity dispersions.
Walker et al. [30,34,35] reported updated empirical

velocity dispersion profiles for the eight “classical”
dSphs of the Milky Way: Carina, Draco, Fornax, Leo I,
LeoII, Sculptor, Sextans, and Ursa Minor; see Fig. 1 for
details. Following standard parametric analysis [30,31] (see
Ref. [32] for a different approach), we consider that the
stellar component in each individual galaxy is in dynamical
equilibrium and that it traces the underlying DM distribu-
tion. Assuming further, spherical symmetry, Jeans’s equa-
tion relates the mass profile of the DM halo,
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MðrÞ ¼ Mmax

π

�
sin

�
πr
rmax

�
−

πr
rmax

cos

�
πr
rmax

��
; ð7Þ

where

Mmax ¼ MðrmaxÞ ¼ ð4=πÞρcr3max; ð8Þ

to the first moment of the stellar distribution function,

1

ν

d
dr

ðνhv2riÞ þ 2
βhv2ri
r

¼ −
GM
r2

: ð9Þ

Above, νðrÞ, hv2rðrÞi, and βðrÞ ¼ 1 − hv2θi=hv2ri are the
three-dimensional density, radial velocity dispersion, and
orbital anisotropy, respectively, of the stellar component.
The parameter β quantifies the degree of radial stellar
anisotropy: if all orbits are circular hv2ri ¼ 0, and then
β ¼ ∞; if the orbits are isotropic hv2ri ¼ hv2θi, and β ¼ 0;
finally, if all orbits are perfectly radial, hv2θi ¼ 0, then
β ¼ 1. There is no preference a priori for either radially,
β > 0, or tangentially, β < 0, biased systems; however,
configurations with β ∼ 1 are disfavored due to the very
particular initial conditions they seem to require.
In the simplest scenario with constant orbital anisotropy,

βðrÞ ¼ const, the (observed) projection of the velocity
dispersion along the line-of-sight, σ2losðRÞ, relates the mass
profile, MðrÞ, to the (observed) stellar density, IðRÞ,
through [36]

σ2los ¼
2G
IðRÞ

Z
∞

R
dr0νðr0ÞMðr0Þðr0Þ2β−2Fðβ; R; r0Þ: ð10Þ

Here

Fðβ; R; r0Þ≡
Z

r0

R
dr
�
1 − β

R2

r2

�
r−2βþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − R2

p ; ð11Þ

and R is the projected radius. We adopt a Plummer profile
for the stellar density,

IðRÞ ¼ L
πr2half

1

½1þ ðR=rÞ2Þ�2 ; ð12Þ

where L is the total luminosity of the object and rhalf
(the only single shape parameter) the half-light radius. The
values of these two quantities for each of the eight classical
dSphs are listed in Table I of Ref. [30]. Under the
assumption of spherical symmetry the corresponding
three-dimensional stellar density associated with the
Plummer profile takes the form

νðrÞ ¼ 3L
4πr3half

1

½1þ ðr=rhalfÞ2�5=2
: ð13Þ

We have corroborated that our findings in this paper are not
very sensitive to the profile of the stellar component, and

FIG. 1 (color online). Empirical, projected velocity dispersion profiles for the classical eight dSph satellites of the Milky Way as
reported in Refs. [30,34,35]. Solid lines denote the best fits for the halo model in Eq. (2) when rmax ¼ 1 kpc (red), rmax ¼ 2 kpc (black),
and rmax ¼ 6 kpc (blue).
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similar results are also obtained using a Sersic [37] or a
King profile [38].

A. Maximum likelihood and Monte Carlo analysis

In order to fit the observations, we have three free
parameters per galaxy: two associated with the halo
model, the scale radius rmax and the total mass Mmax,
and one associated with the stellar component, the orbital
anisotropy β. Since the scale radius is a constant in the
theory one could perform a combined analysis for the eight
galaxies keeping this quantity fixed. For the purpose of
this paper, however, this procedure is not warranted; instead
we estimate rmax for each galaxy, and we then compare the
values obtained for the different galaxies. We will also
contrast our results against previous constraints arising
from the study of the rotational curves of LSB and dwarf
galaxies. As we show below, this analysis is sufficient to
uncover strong tension between model and observations at
different scales.
In order to proceed we perform a maximum likelihood–

Markov chain Monte Carlo analysis (we use the EMCEE

code, described in Ref. [39]) to explore the parameter space
and estimate the values of rmax, Mmax and β for each
individual galaxy, together with their corresponding uncer-
tainties. For each galaxy we define the likelihood function

L ¼
YN
i¼1

exp
h
− 1

2

ðσobslos ðRiÞ−σlosðRiÞÞ2
Var½σobslos ðRiÞ�

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πVar½σobslos ðRiÞ�

q : ð14Þ

Here σobslos ðRiÞ is the observed line-of-sight velocity
dispersion at projected radius Ri, σlosðRiÞ is given in
Eq. (10), Var½σobslos ðRiÞ� is the square of the error associated
with the observed value of the velocity dispersion at Ri, and
i is a label for the data bins that runs from 1 to the total
number of bins N. To account for the uncertainties on rhalf

we marginalize over this parameter by sampling it, at each
step of the Monte Carlo, from a normal distribution with a
standard deviation equal to its actual uncertainty.
For the three free parameters we adopt uniform log priors

in the following ranges:

−2.5 < lnðrmax½kpc�Þ < 2.5; ð15aÞ

−7 < lnðMmax½109M⊙�Þ < 7; ð15bÞ
−3 < − lnð1 − βÞ < 3. ð15cÞ

For each galaxy we run 50 chains simultaneously, starting
at random values within the prior range, and allow each
chain to run for 1,000 steps, from which we eliminate the
first 100 steps that correspond to a “burn-in” period.

III. RESULTS

Our results are shown in Fig. 2 where, for three of the
galaxies with more data points, Fornax, Sculptor and
Draco, we plot the one- and two-dimensional posterior
distributions of the parameters rmax, Mmax, and β. As we
can note the posterior distributions are almost symmetric
with respect to the maximum likelihood point (solid lines).
The dashed lines and red ellipses indicate the 1σ (68.2%
C.L.) confidence interval of the different parameters. Some
degeneracy between the scale radius and the total mass, and
the anisotropy, is evident; however, in all cases the chains
converge to a small region of the parameter space.
The values of rmax,Mmax and β for all the galaxies in the

sample, together with their corresponding uncertainties, are
listed in Table I. We have corroborated that similar results
are also obtained when using a Sersic (King) stellar
distribution. In particular, for rmax we obtain a difference
of ∼0.5 kpc (∼0.2 kpc) in the central value, but the error
remains of the same magnitude with respect to that in the
Plummer case.

FIG. 2 (color online). Two-dimensional posterior distributions of Fornax, Sculptor, and Draco using the BEC halo model in Eq. (2).
The histograms correspond to the marginalized posterior distributions of each parameter. The dashed lines and red contours represent the
1σ confidence interval. Solid lines indicates the maximum likelihood point.
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We conclude that the preferred value of the scale radius
inferred from the dynamics of the eight dSphs lies around
rmax ∼ 1 kpc, i.e. m=λ1=4 ∼ 7 eV=c2; this value is indeed
contained within the 3σ (99.7% C.L.) confidence interval of
each galaxy. Moreover, we can exclude at more than 5σ
(99.9% C.L.) values of rmax ≳ 5 kpc. As we will discuss
next in Sec. IV, this implies a strong conflict with previous
constraints on this parameter of the theory.
At this point we would like to stress that, besides the

statistical evidence for small values of the parameter rmax,
there are also physical arguments that support this con-
clusion, which we can draw by looking at the behavior
of the best fit parameters (minimum chi-square) of the
anisotropy, β, and total mass, Mmax, for a fixed value rmax
of the size of the condensate:

(i) Density profiles with scale radii larger than 2 kpc
imply values of the anisotropy parameter β ≳ 0.5;
see Fig. 3. For a scalar field DM model there is no
known connection between the anisotropy in the
stellar distribution and the halo, so that dSphs could
in principle be described as equilibrium systems
even with such large values of the orbital anisotropy.
(It is unclear to us whether large values of the stellar
anisotropy would necessarily develop a radial in-
stability for these halo models.) However, although
these configurations cannot be excluded a priori,
they imply an unnatural preference for radial orbits.

(ii) As the value of the scale radius increases, the total
mass required to fit the data grows drastically,
reaching values as large asMmax ≳ 1010M⊙ in some
cases when rmax ≳ 6 kpc; see Fig. 4. This value is an
order of magnitude larger than what inferred by
previous analysis [30,31,34,40]. An upper limit to
the mass of these objects stems from the requirement
that the dynamical friction decay time not be larger
than the age of the universe [36,41], although there
are no model independent limits on the total mass of
these galaxies.

Finally, it is also interesting to note that observations
suggest a decline in the velocity dispersion profiles at large

projected radii [30,42], whereas the predicted profiles for
large values of the scale radius grow at large radii. Even
though for some galaxies the fit is not drastically worsen
for large values of rmax, if we inspect the overall radial
dependence we can see that large scale radii fail in
describing the outer regions for all galaxies, see the blue
lines in Fig. 1.
From the above considerations the preference of a scale

radius in the range rmax ∼ 0.5–2 kpc (green band in Figs. 3

TABLE I. Estimate of the parameters rmax, Mmax, and β for the
classical dSphs in the Milky Way.

Object rmax½kpc� Mmax½108M⊙� − lnð1 − βÞ
Fornax 1.40.1−0.0 1.1þ0.9

−0.9 0.2þ0.1
−0.1

Sculptor 1.00.1−0.0 1.1þ0.3
−0.2 0.30.2−0.0

Carina 1.1þ0.3
−0.3 0.8þ0.6

−0.3 0.6þ0.3
−0.3

Draco 1.70.4−0.0 5.94.1−2.2 1.8þ0.7
−0.8

Leo I 1.0þ0.4
−0.2 1.7þ1.4

−0.7 0.9þ0.7
−0.5

Leo II 0.6þ0.3
−0.2 0.5þ0.7

−0.3 1.6þ0.9
−0.9

Sextans 0.7þ0.4
−0.3 0.2þ0.2

−0.1 −0.4þ0.4
−0.7

Ursa Minor 0.9þ0.4
−0.3 0.9þ0.9

−0.4 0.1þ0.3
−0.3

FIG. 3 (color online). Preferred orbital anisotropy for the
best fits as a function of the scale radius. The lines at β ¼ 0.5
and β ¼ −1 correspond to hv2ri ¼ 2hv2θi and hv2θi ¼ 2hv2ri,
respectively.

FIG. 4 (color online). Total mass for the best fits as a function of
the scale radius. The line at M ¼ 3 × 109M⊙ corresponds to the
virial mass of Draco (the most massive object in the sample)
obtained from a NFW profile consistent with the observations in
the velocity dispersions [34,40]. The line at M ¼ 1 × 1010M⊙
comes from an upper limit to the mass of this same galaxy as
required from the dynamical friction decay time to be larger than
one Hubble time [36,41].
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and 4) is solid. A common value of rmax larger than 5 kpc is
clearly disfavored by the dynamics of dSphs.

IV. DISCUSSION AND CONCLUSIONS

The viability of the halo model in Eq. (2) has been
studied in several papers mainly employing rotational
curves of galaxies from different surveys, out of which
only the most DM-dominated objects have been selected
[8,16,18,19]; see also Ref. [20,21] for a different approach.
These studies all point to a scale radius that varies from
galaxy to galaxy and ranges from 3 up to 15 kpc (light red
band in Figs. 3 and 4), with only isolated instances
requiring values outside this range, e.g. M81dw, where
rmax ∼ 1 kpc [8], and UGC5005, where rmax ∼ 24.65 kpc
[18]. However, these papers also report mean values in the
narrow range rmax ∼ 5.5–7 kpc [16,18] (red band in Figs. 3
and 4), suggesting the existence of a self-interacting scalar
particle with m=λ1=4 ∼ 2.6–2.9 eV=c2. Such findings have
led to the conclusion that the halo model in Eq. (2) can
describe accurately the dynamics of DM-dominated gal-
axies. The case of Milky Way-like systems, or giant
ellipticals, remains to be studied in detail mainly because
the dynamical interaction between the condensate and
baryons is not well understood there (see however
Ref. [22], where a set of three high-surface-brightness
spirals have been recently considered, e.g. ESO215G39,
where rmax ∼ 50 kpc, and Ref. [23], where values of the
scale radius in the range rmax ¼ 5.6 − 98.2 kpc are reported
for a subsample of galaxies in the THINGS survey). Note
that, contrary to other proposals in the literature, the halo
model in Eq. (2) is not expected to describe galaxy clusters.
The values reported in previous studies are strongly

disfavored by our findings in the present analysis, where we
show that the dynamics of the smallest and least luminous
galaxies is clearly in conflict, along several lines, with
such large scale radii. One could argue that the profile in
Eq. (2) is not appropriate to describe the galaxies in
Refs. [8,16,18,19,22,23] (where in some cases the lumi-
nous matter extends up to 10 kpc), and suggest that a more
elaborated halo model where the condensate represents
only the core of the galaxy would be necessary in order to
understand the dynamics of these systems. However, it is
important to note that a condensate with a scale radius of
the order of 1 kpc does not provide the core expected for
those galaxies used in previous analysis.
Interestingly, the new value of rmax ∼ 1 kpc is favored by

cosmological observations. A homogeneous and isotropic
distribution of matter satisfying the Eq. (1) has two
different regimes depending on the actual value of the
charge density, q ¼ Q=a3; see e.g. Ref. [15]. Here a is the
scale factor and Q the number of particles per unit
volume today, a ¼ 1. When the charge density is high,
q ≫ m3c3=ðλℏ3Þ, the energy density and pressure of the
scalar field dilute with the cosmological expansion like

dark radiation, ρ ¼ 3λ1=3Q4=3cℏ=ð4a4Þ and p ¼ ð1=3Þρ,
whereas at low densities, when q ≪ m3c3=ðλℏ3Þ, like cold
DM, ρ ¼ Qmc2=a3 and p ¼ 0. From the condition that
the transition from dark radiation to DM, fixed at
q ∼m3c3=ðλℏ3Þ, has to occur before the time of equality,
when ρ ∼ 5 × 1013 eV cm−3, we obtain rmax < 80 kpc, i.e.
m=λ1=4 > 0.8 eV=c2. However, the number of extra rela-
tivistic species at big bang nucleosynthesis places tighter
constraints on the parameters of the theory. For a scalar
field, this quantity, defined as the number of extra relativ-
istic neutrino degrees of freedom at big bang nucleosyn-
thesis, takes the form

ΔNeff ¼ 57.83 × ðΩdmh2Þ4=3
�

λ1=4

m½eV=c2�
�

4=3

; ð16Þ

see e.g. Eq. (67) in Ref. [16]. (Note that there is an extra
factor of 1=2 in our expression for ΔNeff with respect to
that in Ref. [16]; this might come from the two helicities of
the neutrino.) Using the latest cosmological data provided
by PLANCKþWPþ highL [43], Ωdmh2 ¼ 0.1142�
0.0035 at 1σ C.L., and PLANCKþWPþ highLþ
ðD=HÞp [44], ΔNeff ¼ 0.23� 0.28, also at 1σ C.L., we
obtain

rmax ≲ 3 kpc; i:e: m=λ1=4 ≳ 4 eV=c2; ð17Þ
Note that this result excludes marginally previous values of
rmax ≳ 5.5 kpc arising from the study of the rotational
curves of LSB and dwarf galaxies [8,16,18,19].
The analysis in this paper applies only for the case of a

self-interacting scalar particle with λ > 0; however, similar
results are expected when λ ≤ 0. Up to our knowledge,
there is no analytic expression for the mass density
profile of the halo model when the self-interaction
term is less than or equal to zero, but e.g. in the case
of λ ¼ 0, the characteristic size and mass of the
equilibrium configurations are found to be [45] of order
R ∼Q−1=2ðmPlanck=mÞðℏ=mcÞ, and M ∼Qm, respectively.
One can fix the number of particles,Q, and mass parameter,
m, in order to describe the dynamics of dSphs, implying
R ∼ 1 kpc and M ∼ 108M⊙, see for instance Ref. [20] for
the case of Ursa Minor, but then configurations heavier than
108M⊙ would be smaller than 1 kpc, whereas those larger
than 1 kpc would result in halos lighter than 108M⊙.
In summary, if we dismiss previous constraints, a

scenario where the DM galactic halos are described by a
single condensate is consistent with the data from the
smallest and most DM dominated nearby galactic systems;
nonetheless, these single objects alone will not be con-
sistent with the description of bigger galaxies.
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