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A relativistic kinetic description for the irreversible thermodynamic process of gravitationally induced
particle production is proposed in the context of an expanding Friedmann-Robertson-Walker geometry. We
show that the covariant thermodynamic treatment referred to as “adiabatic” particle production provoked
by the cosmic time-varying gravitational field has a consistent kinetic counterpart. The variation of the
distribution function is associated to a noncollisional kinetic term of quantum-gravitational origin which is
proportional to the ratio Γ=H, where Γ is the gravitational particle production rate and H is the Hubble
parameter. For Γ ≪ H the process is negligible and as should be expected it also vanishes (regardless of
the value of Γ) in the absence of gravitation. The resulting nonequilibrium distribution function has the
same functional form of equilibrium with the evolution laws corrected by the particle production process.
The macroscopic temperature evolution law is also kinetically derived for massive and massless particles.
The present approach points to the possibility of an exact (semiclassical) quantum-gravitational kinetic
treatment by incorporating backreaction effects in the cosmic background.

DOI: 10.1103/PhysRevD.90.043515 PACS numbers: 98.80.-k, 95.36.+x

I. INTRODUCTION

Many decades ago, Parker and collaborators put forward
a microscopic description to the particle production mecha-
nism due to the time-varying gravitational field of the
expanding Universe [1]. Such studies were based in the
so-called Bogoliubov mode-mixing technique in the con-
text of quantum field theory (QFT) in curved space-time.
Qualitatively, this gravitationally induced quantum

creation mechanism can easily be understood. In the case
of a scalar field evolving in a Friedmann-Robertson-Walker
(FRW) geometry, for example, its effective mass becomes
a time dependent quantity. When the field is quantized,
this leads to particle creation with the energy for the newly
created particles being supplied by the time-varying
gravitational background [2]. In other words, unlike the
Minkowski spacetime, the time-varying geometry behaves
like a “pump,” transforming curvature into particles.
Particle production in the expanding Universe has also

been intensively investigated in the context of inflation, in
particular, during the reheating and preheating stages. The
former is an extreme nonadiabatic process happening just
after the (adiabatic) slow-rolling regime while the latter is
characterized by a highly nonthermal exponential particle
production due to a parametric resonance in the first stages
of the reheating process [3,4]. Indeed, particle production
may also take place even during a possible nonadiabatic

slow-rollover phase as assumed in the so-called warm
inflationary scenarios [5].
On the other hand, although describing rigorously the

particle production process for test fields (scalar, vectorial
or tensorial) evolving in the cosmic background this
approach does not provide a clear recipe of how the created
particles modify the classical Einstein field equations
(EFE). This is the famous quantum backreaction problem,
a subject that although intensively investigated in the
literature has not been properly solved yet.
Later on, the emergence of particles in the spacetime at

the expenses of the gravitational field was also macro-
scopically described by Prigogine and coworkers based on
the nonequilibrium thermodynamics of open systems [6].
Such an approach was rediscussed by some authors [7]
within a manifestly covariant formulation and further
applied to cosmology. Its basic advantage is that back-
reaction is naturally incorporated and constrained by the
second law of thermodynamics.
Nevertheless, it is also an incomplete description in

the sense that the matter creation rate must be calculated
from QFT in the FRW geometry. The difference between
gravitationally induced particle production and the bulk
viscosity mechanism (as phenomenologically suggested
by Zeldovich [8] to describe particle creation) was also
discussed by Lima and Germano [9]. These authors
demonstrated that both scalar dissipative processes (particle
production and bulk viscosity) are able to generate the same
cosmic dynamics but are fully different from a thermody-
namic point of view.
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In the last few years, much attention has been paid for
cosmologies driven by gravitational “adiabatic” particle
production where matter and entropy are generated but the
specific entropy (per particle) remains constant [10–18].
Since the creation process is macroscopically described by
a negative pressure of quantum origin (backreaction), these
models have been investigated as a possibility to unify the
so-called cosmological dark sector. In this case, as sug-
gested long ago, the accelerating stage of the Universe at all
phases (early and late time inflation) becomes a conse-
quence of the induced gravitational particle production
[10]. The connection among warm inflation [5], decayingΛ
models and particle production cosmologies has been
discussed by several authors [19,20].
Along these lines, it should be recalled that Lima et al.

[12] proposed a creation cold dark matter (CCDM) cosmol-
ogy with one free parameter that is equivalent to the ΛCDM
evolution both at the background and perturbative levels [17]
(see, however, [13]). More recently, even a complete
cosmology where the space-time matter evolves between
an early and a late time de Sitter phase driven by particle
production has been proposed and its predictions compared
with the available astronomical data [14]. The consistency of
such a scenario with the generalized second law of thermo-
dynamics was also discussed in detail by Mimoso and Pavón
[15] (see also [18] for a more general analysis).
Indeed, although the scenario has been very successful

at mimicking ΛCDM model predictions, it has also been
recognized since long ago that the lack of a more
fundamental approach for this macroscopic treatment
works like a Damocles sword hanging over the foundations
of any cosmology endowed with continuous gravitationally
induced particle creation.
In this paper, we go one step further by examining the

kinetic basis of the macroscopic description for particle
production at the expenses of the gravitational field in the
framework of the FRW geometry. In order to clarify some
subtleties present in the earlier results, we first rediscuss the
irreversible macroscopic thermodynamic description in the
case of adiabatic particle production.
As we shall see, associated with such thermodynamics

there is a consistent microscopic kinetic description from
which all macroscopic nonequilibrium results are readily
recovered. Unless explicitly stated, in this work we use
units in which the speed of light and the Boltzmann
constant are c ¼ kB ¼ 1.

II. COSMOLOGY, THERMODYNAMICS AND
MATTER CREATION

In what follows we consider that the Universe is
described by an arbitrary FRW geometry

ds2 ¼ dt2 − a2ðtÞ
�

dr2

1 − kr2
þ r2dθ2 þ r2sen2θdϕ2

�
; ð1Þ

where aðtÞ is the scale factor and k ¼ 0;�1 is the curvature
parameter. For the sake of completeness as well as to
specify the kind of creation process discussed here we first
review briefly the thermodynamic description in such a
background.

A. Equilibrium states

Following standard lines, the equilibrium thermody-
namic states of a relativistic simple fluid are characterized
by three independent quantities: a particle current Nμ, an
entropy current Sμ, and an energy momentum tensor Tμν

which satisfy the following conservation laws:

Nμ ¼ nuμ; Nμ;μ ¼ 0; ð2Þ

Sμ ¼ suμ; Sμ;μ ¼ 0; ð3Þ

Tμν ¼ ðρþ PÞuμuν − Pgμν; Tμν;ν¼ 0; ð4Þ

where (;) means covariant derivative, and ρ, P, n and s are
the energy density, pressure, particle number density, and
entropy density, respectively. In the FRW background, the
above conservation laws can be rewritten as (a dot means
comoving time derivative)

_ρþ ðρþ PÞΘ ¼ 0; _nþ nΘ ¼ 0; _sþ sΘ ¼ 0;

ð5Þ

where the scalar of expansion, Θ ¼ 3_a=a≡ 3H (H is the
Hubble parameter). The quantity Θ−1 specify the macro-
scopic time scale of the fluid.
The above thermodynamic quantities (ρ, P, n and s) are

related to the temperature T by the local Gibbs law:

nTd

�
s
n

�
≡ nTdσ ¼ dρ −

ρþ P
n

dn; ð6Þ

where σ is the entropy per particle. In addition, the validity
of the local form of Euler relation [21]

nTσ ¼ Pþ ρ − μn; ð7Þ

where μ is the chemical potential, together with the Gibbs
law, leads to the so-called Gibbs-Duhem relation:

nσdT ¼ dP − ndμ; ð8Þ

showing that there are only two independent thermody-
namic variables, say, n and T. Now, by assuming that
ρ ¼ ρðT; nÞ and P ¼ PðT; nÞ and combining the energy
conservation laws with the thermodynamic identity

T

�∂P
∂T

�
n
¼ ρþ P − n

�∂ρ
∂n

�
T
; ð9Þ
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one obtains the temperature law

_T
T
¼

�∂P
∂ρ

�
n

_n
n
≡ −

�∂P
∂ρ

�
n
Θ: ð10Þ

It should be stressed that the above temperature evolu-
tion law presented here is fully independent of the entropy
function, as well as of the chemical potential μ. In
particular, for radiation or ultrarelativistic particles of mass
m (m ≪ T, ρ≃ 3p), the above temperature evolution law
becomes

_T
T
¼ −

_a
a
: ð11Þ

A direct integration of this expression furnishes aT ¼
a0T0, or equivalently TðzÞ ¼ T0ð1þ zÞ (temperature
Friedmann’s prediction), where z ¼ a0=a − 1 is the red-
shift parameter. As usual, a0 and T0 are, respectively, the
present day values of the scale factor and temperature of
cosmic microwave background radiation (CMBR). Let us
now discuss how this basic formalism is modified in the
presence of gravitationally induced particle production.

B. Nonequilibrium states due to particle creation

Let us now assume that particles are sprung up into the
homogeneous and isotropic expanding Universe due to the
cosmic time-varying gravitational field.
To begin with we recall that the emergence of particles

means that all the balance equilibrium equations (2)–(4)
must be modified. In other words, the divergence of the
basic equilibrium quantities like the particle and entropy
fluxes and energy-momentum tensor are now different from
zero. However, from EFE (Gμν ¼ 8πGTμν), we know that
the total energy-momentum tensor (EMT) must be con-
served. As happens in the case of the classical bulk
viscosity mechanism (or more generally with all transport
processes), this problem is solved by assuming that any
nonequilibrium correction is incorporated in the complete
EMT which is identically conserved.
In the case of a scalar process here represented by a

uniform distribution of emerging particles the new con-
tribution for the EMT is formed by a dynamic nonequili-
brium pressure. However, the definition of the particle and
entropy fluxes are not modified even considering that such
quantities are not conserved.
In the presence of a gravitational particle source, the

balance equation for the particle flux becomes (note that in
the old notation of Refs. [7,9], nΓ≡Ψ)

Nμ;μ ≡ _nþ nΘ ¼ nΓ; ð12Þ

where Γ is the particle production rate (Dim½Γ�≡ time−1).
Defining the total number of particles in the comoving
volume by N ¼ na3, the above balance equation can be
rewritten as

_N
N

¼ Γ; ð13Þ

showing again that Γ drives the particle creation rate in the
comoving volume. Obviously, when compared with Θ this
new microscopic time scale quantifies the efficiency of the
gravitational particle production. In particular, if Γ ≪ Θ the
creation process can safely be neglected.
The entropy flux vector is defined by

Sμ ¼ suμ ≡ nσuμ; ð14Þ

and by taking its divergence one finds

Sμ;μ ¼ n _σ þ σnΓ: ð15Þ

Hence, if the creation process occurs in such a way that the
specific entropy is constant (adiabatic gravitational particle
creation), the divergence of Sμ reduces to (see Refs. [7,9]
for details)

Sμ;μ ¼ nσΓ≡ sΓ: ð16Þ

Note also that in the homogeneous and isotropic case
considered here, σ ¼ S=N, where S ¼ sa3 is the entropy in
a comoving volume. This means that the condition _σ ¼ 0
has a direct physical meaning, namely,

_S=S ¼ _N=N ⇒ S ¼ kBN: ð17Þ

Therefore, unlike the bulk viscosity mechanism, the
entropy growth in the gravitational particle production
process is closely related with the emergence of particles
in the space-time thereby leading to the expected enlarge-
ment of the phase space. Here we are particularly interested
in the kinetic description of this nonequilibrium process.
On the other hand, the energy-momentum tensor for a

fluid endowed with particle production must also be
corrected according to the thermodynamic second law.
In principle we may write

Tμν ¼ Tμν
E þ ΔTμν; ð18Þ

where Tμν
E describes the equilibrium states [see Eq. (4)] and

ΔTμν is a correction describing the effects of particle
production. Invoking the isotropy and homogeneity of
space such a correction must be represented by a scalar
process. In terms of components the possible corrections
have the following forms:

ΔT0
0 ¼ 0 and ΔTi

j ¼ −Pcδ
i
j; ð19Þ

where the first condition is the constraint removing the
ambiguity on the energy density for nonequilibrium states
(ρ is the same function in the absence of “dissipation”), and
Pc is the dynamic (creation) pressure which describes
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macroscopically the emergence of particles in the space-
time. In a manifestly covariant description we can write

ΔTμν ¼ −Pcðgμν − uμuνÞ≡ −Pchμν; ð20Þ

where hμν is the projector onto the rest frame of uμ.
Naturally, ΔTμν works like a source term for the equilib-
rium EMT which can be incorporated to describe the
process through a conserved EMT as required by the
Einstein field equations. Actually, the divergence of
the above correction reads

uμΔT
μν
;ν ¼ PcΘ; ð21Þ

whereas the energy conservation law for the complete EMT

Tμν ¼ ðρþ Pþ PcÞuμuν − ðPþ PcÞgμν; ð22Þ

becomes

uμT
μν
;ν ¼ _ρþ Θðρþ Pþ PcÞ ¼ 0; ð23Þ

so that if Pc is zero (no particle production), the equilibrium
energy conservation law [the first of Eqs. (5)] is recovered.
What about the form of Pc? From Eq. (16) we know that

the positivity of the entropy production is already obeyed.
On other hand, the local equilibrium principle implies that
the local Gibbs relation (6) remains valid even for processes
out of equilibrium. Differentiating it under the guise of
_σ ¼ 0 we obtain with the help of (12)

_ρ

ρþ P
¼ _n

n
¼ Γ − Θ; ð24Þ

and inserting the above relation into (23), one gets the
adiabatic creation pressure formula (see [7] for a more
general deduction including _σ ≠ 0)

Pc ¼ −ðρþ PÞ Γ
Θ
: ð25Þ

An important point to keep in mind here is that the presence
of the creation pressure in this macroscopic description is
not the result of collisional processes as happens, for
instance, with the bulk viscosity mechanism.
How is the temperature evolution law modified by the

creation process? It is easy to show that the temperature
evolution for a system with matter creation reads [7,9]

_T
T
¼ −

�∂P
∂ρ

�
n
Θ −

PcΘþ nΓð∂ρ=∂nÞT
Tð∂ρ=∂TÞn : ð26Þ

Therefore, if _σ ¼ 0, we may insert (25) in the above
equation, leading to

_T
T
¼

�∂P
∂ρ

�
n

_n
n
¼

�∂P
∂ρ

�
n
ðΓ − ΘÞ; ð27Þ

which reduces to the equilibrium law in the limit Γ → 0
[see Eq. (10)]. Now, for ultrarelativistic particles or
radiation, the above temperature evolution law yields

_T
T
¼ −

_a
a
þ Γ

3
; ð28Þ

which clearly departs from Friedmann’s law (T ∝ a−1) for
Γ ≠ 0 [cf. Eq. (11)].
It is widely believed that the cosmological creation of

photons in the expanding Universe is not allowed because
the blackbody form of the spectrum is destroyed [22].
However, as discussed long ago by one of the authors [23],
the blackbody form of the CMB spectrum is also preserved
when the production of photons happens under adiabatic
conditions. In other words, the particles spring up into
space-time with the same temperature of the already
existing ones as a consequence of the condition _σ ¼ 0.
Physically, this happens because the form of equilibrium
temperature law as a function of the thermodynamic
variables is preserved during the expansion [see the first
equality in Eq. (27) and discussion below Eq. (64)].
More recently, using a phenomenological expression for

Γ [23,24], different authors have discussed some conse-
quences of the above law based on the Sunyaev-Zeldovich
effect and other cosmological observations [25].
In the nonrelativistic limit, ρ≃ nmþ 3nT=2 and

P ¼ nT. In this case the temperature law (27) assumes
the form

_T
T
¼ −2

_a
a
þ 2

3
Γ; ð29Þ

which for Γ ¼ 0 reduces to the standard result, T ∝ a−2.
The general integration of (28) and (29), as well as a brief

discussion of some specific models, will be postponed to
Sec. V with the same temperature laws from which it will
be deduced based on the kinetic approach.
At this point, we would like to stress that a consistent

kinetic treatment describing the gravitationally induced
particle production process as discussed here must recover
Eqs. (12), (16), (25), (28) and (29). This is the main aim of
the next sections.

III. BOLTZMANN’S EQUATION AND
GRAVITATIONAL PARTICLE PRODUCTION

Let us now discuss the kinetic counterpart for the above
irreversible description of gravitationally induced particle
production. We will start by investigating a new possible
form for the extended Boltzmann equation when the
referred process is taken into account.
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A. The kinetic noncollisional term

First we recall that the one particle distribution function
fðxμ; pμÞ for nonequilibrium processes must be described
by an extension of the standard relativistic Boltzmann
equation [26,27]. The first attempt to incorporate gravita-
tional particle production was discussed long ago by
Triginer et al. [28]. Following these authors we started
by writing the modified Boltzmann equation in the form

LðfÞ≡ pμ ∂f
∂xμ − Γμ

αβp
αpβ ∂f

∂pμ ¼ CðfÞ þ Pgðxμ; pμÞ;
ð30Þ

where fðxμ; pμÞ is the distribution function, Γμ
αβ are the

Cristoffel symbols, and CðfÞ is the standard collisional term
which for an expanding uniform gas is responsible for the
bulk viscosity mechanism.
The new source term, Pg, is an unknown noncollisional

contribution of gravitational-quantum origin. It encodes the
gravitationally induced creation process associated with the
time-varying gravitational field of the cosmic expanding
Universe.
In what follows we fully neglect CðfÞ for two distinct

reasons: (i) its consequences have already been extensively
investigated in the literature, and, more importantly,
(ii) unlike the standard collisional contributions, the new
Pg term has an unknown quantum (noncollisional) nature,
and, as such, its existence requires an alternative treatment
which, in principle, is conceptually different from the
standard Boltzmann approach.
It is alsoworth noticing that the Boltzmann equation (30),

including collisional and gravitational production terms,
is a general one in the sense that the mass shell condition
has not been imposed. When dealing within the mass shell
[a physical constraint implying that f ≡ fðxμ; piÞ] the
above Boltzmann’s equation (neglecting the standard colli-
sional term) can be written as

pμ ∂f
∂xμ − Γi

αβpαpβ ∂f
∂pi ¼ Pg; ð31Þ

where the possible contributions to Pg are also restricted to
the mass shell (the latin index take values i ¼ 1, 2, 3).
Before we proceed further, it is useful to rewrite the

Boltzmann’s equation in terms of the physical momentum.
From now on, in order to simplify matters we assume a flat
FRW geometry

ds2 ¼ dt2 − a2ðtÞðdx2 þ dy2 þ dz2Þ; ð32Þ
for which the non-null Cristoffel symbols are [22]

Γ0
00 ¼ Γi

jk ¼ 0;

Γi
0j ¼

_a
a
δij;

Γ0
ij ¼ −

_a
a
gij: ð33Þ

The physical momentum (p̄i) is related to the comoving
momentum (pi) by p̄i ¼ api. The Boltzmann’s equation in
terms of physical momentum and coordinates reads

dfðx̄μ; p̄iÞ
dλ

¼ p̄μ ∂f
∂x̄μ þ

∂f
∂p̄i

dp̄i

dλ
¼ Pg; ð34Þ

where dp̄i

dλ is related with the geodesic equation by

dp̄i

dλ
¼ a

dpi

dλ
þ pi da

dλ
¼ a

dpi

dλ
þ _apip0: ð35Þ

The comoving momenta obey the geodesic equation

dpi

dλ
¼ −Γi

αβpαpβ; ð36Þ

and inserting these results into (34), we find

p̄μ ∂f
∂x̄μ − ðaΓi

αβpαpβ − _apip0Þ ∂f∂p̄i ¼ Pg: ð37Þ

In this case, the Boltzmann’s equation (31) assumes the
final form adopted here:

p̄0
∂f
∂t −

_a
a
p̄0p̄i ∂f

∂p̄i ¼ Pg: ð38Þ

How Pg can be modeled? Firstly, we know that the
particles are created from the gravitational field, and, as
such, the new term must take into account gravity. In
particular, this means that the net effect must vanish
identically in the flat space-time (when the metric tensor
takes the global Minkowskian form). Secondly, we know
that the intensity of the process depends on the ratio Γ=Θ.
Therefore, we model Pg assuming only two conditions:

(i) Pg ∝ Γi
αβ so that the particle production (as de-

scribed in the mass shell) is forbidden in the absence
of gravity.

(ii) Pg ∝ Γ=Θ, a condition naturally suggested by the
macroscopic irreversible approach [see Eqs. (12),
(15), (18) and (20)].

Hence, Pg must be proportional to the product of
both quantities, and the simplest ansatz satisfying such
requirements is

Pg ¼ −λ
Γ
Θ
Γi

αβp̄αp̄β ∂f
∂p̄i ; ð39Þ

where λ is a pure number whose specific value can be fixed
in order to reproduce exactly the adiabatic macroscopic
approach for all corrections appearing in the basic quan-
tities. A simple algebra for the particle flux shows that
λ ¼ 1=2, and, as such, it will be henceforth universally
adopted.
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It is worth notice that the above form of the gravitational
production creation term has a rather different conception of
the one proposed in Ref. [28]. There a separation of Pg (H in
their notation), somewhat inspired by the standard collisional
approach, was proposed [see their equation (37)].
In what follows we will work only with the physical

momenta and for convenience overbars will be dropped.
Using the fact that f is isotropic, the extended Boltzmann’s
equation takes the final form

∂f
∂t ¼ H

�
1 −

Γ
Θ

�
p
∂f
∂p : ð40Þ

IV. ADIABATIC PARTICLE PRODUCTION:
KINETIC FORMULATION

In this section we derive the results presented in Sec. II B
based on the kinetic theory for a comoving observer. For
this end, we use the standard definitions of the macroscopic
quantities

Nμ ¼
Z

fpμ d
3p
p0

; ð41Þ

Sμ ¼ −
Z

ðf ln f − fÞpμ d
3p
p0

; ð42Þ

Tμν ¼
Z

fpμpν d
3p
p0

; ð43Þ

observing that due to the space isotropy the only non-
vanishing components of Nμ and Sμ are given by

N0 ¼ n ¼
Z

fd3p; ð44Þ

S0 ¼ s ¼ −
Z

ðf ln f − fÞd3p; ð45Þ

while the energy momentum has a diagonal form with
energy density ρ ¼ uμuνTμν ≡ T00. This means that any
isotropic correction ΔTμν to the equilibrium states must
have ΔT00 ¼ 0 [see discussion below Eq. (18)].
Now, with the help of the particle production

Boltzmann’s operator (40), the divergences of the thermo-
dynamic fluxes will be explicitly calculated.

A. Particle Flux

Nμ
;μ ≡ 1

a3
∂
∂xμ

�
a3

Z
fpμ d

3p
p0

�
¼ 1

a3
∂
∂t

�
a3

Z
fd3p

�

¼ 3HnþH

�
1 −

Γ
Θ

�Z
p
∂f
∂pd3p; ð46Þ

where Eq. (40) was used in the last step. The integral of the
last term is easily computed by parts. We find

Z
p
∂f
∂pd3p ¼ 4π

Z
p3

∂f
∂pdp ¼ −3

Z
fd3p ¼ −3n;

ð47Þ

and inserting this result into (34) we obtain the expected
result [see Eq. (12)]

Nμ
;μ ¼ nΓ: ð48Þ

B. Entropy Flux

Sμ;μ ≡ −
1

a3
∂
∂xμ

�
a3

Z
ðf ln f − fÞpμ d

3p
p0

�

¼ −
1

a3
∂
∂t

�
a3

Z
ðf ln f − fÞd3p

�
; ð49Þ

or equivalently,

Sμ;μ ¼ 3sH −
Z ∂f

∂t ln fd
3p

¼ 3sH −H

�
1 −

Γ
Θ

�Z
p
∂f
∂p ln fd3p: ð50Þ

The last integral term above can be rewritten in a more
convenient way (after a simple integration by parts):

Z
p
∂f
∂p ln fd3p ¼ 4π

Z
p3

∂f
∂p ln fdp

¼ −3
Z

ðf ln f − fÞd3p: ð51Þ

Inserting this result into (38) we obtain

Sμ;μ ¼ −Γ
Z

ðf ln f − fÞd3p; ð52Þ

and using again definition (44) one gets the macroscopic
form [see Eq. (16)]

Sμ;μ ¼ sΓ: ð53Þ

Similarly to what happens in the macroscopic description
of adiabatic particle production (in the sense that _σ ¼ 0),
the above result also suggests that the distribution function
of our problem must have the same form of equilibrium,
that is, fðt; pÞ ¼ eαðtÞ−βðtÞE. Therefore, from now on such
distribution function (the solution of our problem) will be
termed the adiabatic distribution function. In Appendix A,
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we provide an alternative deduction of the above result
using this adiabatic form.

C. Energy-Momentum Tensor

Let us now calculate the divergence of the total energy-
momentum tensor projected onto uμ. It involves a rather
delicate and subtle aspect from a kinetic viewpoint since the
Einstein field equations require a divergenceless energy-
momentum tensor and we know that the creation pressure
has a noncollisional origin. In addition, like the bulk
viscosity, we are aware that the creation pressure is also
negative for an expanding Universe [see Eq. (25)].
However, we recall that unlike the energy density there
are no constraint conditions to the kinetic pressure for states
out of equilibrium [27]. In this way, we can also assume
here (like in the macroscopic approach) the existence of
a noncollisional corrective pressure term. Now, for the
sake of generality, we assume that it takes the form Δ ~Ti

j ¼
− ~Pδij, or equivalently, Δ ~Tμν ¼ − ~Phμν ( ~P is an unknown
creation pressure which is not necessarily equal to the
macroscopic value). In this case we can write

uμTμν
;ν ≡ uμ

�
1

a3
∂
∂xν ða

3TμνÞ þ Γμ
αβT

αβ

�
; ð54Þ

with Tμν ¼ Tμν
coll þ Δ ~Tμν, where Tμν

coll is given by Eq. (43).
Now, by summing over the repeated indices and using (33)
it becomes

uμTμν
;ν ≡ 1

a3
∂
∂t ða

3T00
collÞ þ Γ0

ijðTij
coll þ Δ ~TijÞ

¼ 1

a3
∂
∂t

�
a3

Z
fEd3p

�
þ 3

_a
a
ðPþ ~PÞ

¼ 3Hðρþ Pþ ~PÞ þH
�
1 −

Γ
Θ

�Z
Ep

∂f
∂pd3p

¼ 3Hðρþ Pþ ~PÞ − 3H

�
1 −

Γ
Θ

�
ðρþ PÞ

¼ 3H ~Pþ ðρþ PÞΓ: ð55Þ

Therefore, we obtain a divergenceless total energy mom-
entum-tensor, as required by the Einstein gravitational
equations, only if the creation pressure ~P is given by

~P ¼ −ðρþ PÞ Γ
Θ
≡ Pc; ð56Þ

in complete agreement with the macroscopic expression
[see Eq. (25)].
An alternative simplified kinetic deduction of the

above expression can be seen in Appendix B (see also
comment [29]).

V. TEMPERATURE EVOLUTION LAW

Let us now proceed to calculate the temperature evolu-
tion for cosmic fluids endowed with adiabatic gravitational
particle production based on our kinetic approach. In this
section we assume that the adiabatic distribution function is
given by the same equilibrium form (see previous section
and Appendix A),

f ¼ eαðtÞ−βðtÞE; ð57Þ

where αðtÞ is a scalar function and βðtÞ can be interpreted
as the inverse of temperature. Inserting this adiabatic form
into the Boltzmann’s equation (40) we obtain

_α − _βEþ βH

�
1 −

Γ
Θ

�
p2

E
¼ 0: ð58Þ

This equation has a trivial solution given by _α ¼ _β ¼ 0 and
Γ ¼ Θ ¼ 3H. It represents an eternal exponential de Sitter
solution since from Eq. (B4) we find _ρ ¼ _n ¼ 0.
Physically, it means that the matter creation rate has exactly
the value that compensates for the dilution of particles due
to expansion. Such a solution was macroscopically derived
long ago by Lima et al. [24].
Now, for Γ ≠ Θ, the above differential equation has also

two extreme limiting solutions. The ultrarelativistic or
negligible mass limit (m ≪ T, E≃ p), and the nonrelativ-
istic limit (m ≫ T, E≃mþ p2

2m). Let us now determine the
solutions for such limits.

A. m ≪ T

In this case the above equation becomes

_α
_β
¼ E

�
1 −

�
1 −

Γ
Θ

�
_a
a
β
_β

�
; ð59Þ

which has the solution _α ¼ 0 with the solution for β ¼ 1=T
recovering the nonequilibrium thermodynamic result
[see Eq. (28)]

_T
T
¼ −

_a
a
þ Γ

3
⇔

1

aT
dðaTÞ
dt

¼ Γ
3
: ð60Þ

By fixing the constant at the present time, the general
solution of the above equation can be written as

T ¼ T0

�
a0
a

�
e
1
3

R
to
t

Γðt0Þdt0 : ð61Þ

In the simplest but interesting case, the creation rate Γ
remains constant for a given cosmic time interval. This kind
of situation may happen at the early inflation phase or at
late times of the evolution. By defining Δt ¼ tf − ti one
finds the general solution:
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Tf ¼ Ti

�
ai
af

�
e
Γ
3
ðtf−tiÞ: ð62Þ

Now, in terms of the redshift, the general solution (61)
for the CMB fluid endowed with adiabatic photon creation
is given by [see also discussions below (11) and (28)]

T ¼ T0ð1þ zÞe1
3

R
z

0
Γðz0Þ dt

dz0dz
0
; ð63Þ

and, as should be expected, for Γ ¼ 0, the same equilibrium
result is recovered.
It is also useful to show how the above temperature law

(60) for effectively massless particles (m ≪ T) or radiation
determines the energy density. By eliminating Γ from
Eqs. (60) and (B4) we find

_ρ

ρ
¼ 4

_T
T
⇒ ρ ∝ T4: ð64Þ

The above equation was first determined based on thermo-
dynamics, but now it has been recovered from a kinetic
approach. It means that under adiabatic conditions particles
are created but the energy density as a function of the
temperature is given by the same expression of equilibrium.
Indeed, by using this result one may show that the spectrum
of radiation is also preserved in the course of the cosmic
evolution [23].

B. m ≫ T

In this limit, the equation becomes

_α
_β
−m ¼ p2

m

�
1

2
−H

β
_β

�
1 −

Γ
Θ

��
; ð65Þ

and has the solution α −mβ ¼ const and

_T
T
¼ −2

�
_a
a
−
Γ
3

�
; ð66Þ

which is the same macroscopic law as given by (29).
As one may check, in terms of the redshift, the general

solution TðzÞ for a nonrelativistic fluid endowed with
adiabatic particle creation reads

T ¼ T0ð1þ zÞ2e1
3

R
z

0
Γðz0Þ dt

dz0dz
0
: ð67Þ

As an illustration of the developed formalism we may
consider the phenomenological law Γ ¼ 3βH often dis-
cussed in the literature [10,25]. In this case it is easy to see
from (53) and (57), as well as from the general solutions in
terms of the redshift parameter [see Eqs. (55) and (58)], that
the temperature relations become

T ¼ T0ð1þ zÞ1−β for m ¼ 0; ð68Þ

while for nonrelativistic particles the result is

T ¼ T0ð1þ zÞ2ð1−βÞ; for m ≫ T: ð69Þ

Naturally, when β ¼ 0 (no production), the usual results are
recovered.

VI. CONCLUDING REMARKS

In this paper we have investigated the thermodynamic
and kinetic properties of the irreversible gravitationally
induced particle production process in the framework of
homogeneous and isotropic FRW geometries.
We showed that the macroscopic process named adia-

batic particle production has a consistent kinetic counter-
part which can also be termed adiabatic in the sense that
the entropy increases but the specific entropy remains
constant [7].
In this way, all the results obtained in the macroscopic

approach were recovered by the new kinetic treatment
proposed here. The temperature law was determined for
two important limits, namely, the ultrarelativistic (m ≪ T)
and nonrelativistic (m ≫ T) domains. It was shown that
the energy density of massless or ultrarelativistic particles
is also proportional to T4 as demonstrated long ago based
on the macroscopic approach. In particular, this means that
the early proof showing that the CMB spectrum is not
destroyed when the cosmic creation process happens under
adiabatic conditions [23] has now been confirmed based
on the relativistic Boltzmann equation including particle
production as modeled here. In this connection, it is worth
mentioning that the gravitationally induced production of
massless particles is forbidden during the radiation phase of
FRW models described in the context of general relativity.
However, this is not true for alternative theories, as recently
discussed in the context of F(R) cosmologies [30], and, as
such, it should also be interesting to investigate the kinetic
creation process in a more general gravitational framework.
It should be stressed that the creation kinetic treatment

has been discussed here only in the case of a flat geometry.
The unified general case (k ¼ 0, �1), including a multi-
component fluid, will be published elsewhere. In principle,
by adopting a reasonable ansatz on the creation rate Γ, the
extension of the Boltzmann equation proposed here can be
implemented by computational codes for physical cosmol-
ogy (like CMBFAST) in order to discuss the anisotropies of
CMB in the presence of gravitationally induced particle
production. In this connection, we notice that the kinetic
counterpart of the so-called creation cold dark matter
(CCDM) cosmology proposed earlier based on the macro-
scopic approach was presented in Appendix D.
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APPENDIX A: ON THE DIVERGENCE OF
THE ENTROPY FLUX

In Sec. IV no restrictions to the distribution function
were done to show that the divergence of the entropy flux is
Sμ;μ ¼ sΓ. Now, we will show that when the adiabatic form
of the distribution function is adopted the same result is
obtained. By inserting f ¼ e

μ
T−

E
T into (42), doing the

identifications, α ¼ μ
T and β ¼ 1

T, and calculating the
divergence it follows that

Sμ;μ ¼ −3H
Z

ðf ln f − fÞd3p −
Z ∂f

∂t ln fd
3p: ðA1Þ

Hence, by noting that s ¼ −
R ðf ln f − fÞd3p and using

(40), we obtain

Sμ;μ ¼
�
ρþ P − nμ

T

�
Γ ¼ sΓ; ðA2Þ

as should be expected. Note that in the last step we have
used the local form of Euler’s relation (7).

APPENDIX B: ON THE NONCOLLISIONAL
CREATION PRESSURE

Here we show the simplest manner to obtain kinetically
the creation pressure. Firstly, we multiply by E the
extended Boltzmann equation (40) and integrate it over
the momentum space to obtainZ

E
∂f
∂t d

3p −H

�
1 −

Γ
Θ

�Z
Ep

∂f
∂pd3p ¼ 0: ðB1Þ

Now, by integrating the above equation term by term we
find

_ρþ Θðρþ PÞ − Γðρþ PÞ ¼ 0; ðB2Þ
or equivalently,

_ρþ Θðρþ Pþ PcÞ ¼ 0⇔Pc ¼ −ðρþ PÞ Γ
Θ
; ðB3Þ

which is the energy conservation including the definition of
the creation pressure as given by (23) and (25).
It is also interesting that integrating the extended

Boltzmann equation (40) over d3p and combining it with
the result (B2) one obtains

_ρ

ρþ P
¼ _n

n
≡ Γ − Θ; ðB4Þ

which reproduces the macroscopic constraint given by (24).

APPENDIX C: KINETIC CCDM COSMOLOGY

As remarked in the introduction, the alternative scenario
mimicking ΛCDM model, usually referred to as creation
cold dark matter cosmology [12], was proposed based on
the macroscopic irreversible covariant approach discussed
in Sec. II B. Now we show that it can also be formulated
based on a kinetic theoretical framework. First we assume
that baryons are conserved and that the ratio Γ=Θ takes
the form

Γ
3H

¼ α
ρco
ρdm

; ðC1Þ

where α is a constant parameter, and ρco is the present day
value of the critical density.
Now, combining the Friedman equation,

8πGðρdm þ ρbÞ ¼ 3H2; ðC2Þ

with the energy conservation law for both components one
finds

�
H
H0

�
2

¼ Ωmeffð1þ zÞ3 þ α; ðC3Þ

where the effective nonrelativistic matter density parameter,
Ωmeff ¼ Ωdm þΩb − α≡ 1 − α, describes the clustered
matter. Now, comparing with the cosmic concordance
prediction,

�
H
H0

�
2

¼ Ωmð1þ zÞ3 þ ΩΛ; ðC4Þ

we see that the creation dimensionless parameter in (C3)
plays the role of an effective density parameter (α≡ ~ΩΛ)
associated with the effective Λ term ( ~Λ≡ 3αH2

0). Like in
the standard flat ΛCDM model, it should be noticed that α
is the only dynamic free parameter (for more details see
Refs. [12] and [17]).
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