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We present simple expressions for the relativistic first and second order fractional density perturbations
for Friedmann-Lemaître cosmologies with dust, in four different gauges: the Poisson, uniform curvature,
total matter and synchronous-comoving gauges. We include a cosmological constant and arbitrary spatial
curvature in the background. A distinctive feature of our approach is our description of the spatial
dependence of the perturbations using a canonical set of quadratic differential expressions involving an
arbitrary spatial function that arises as a conserved quantity. This enables us to unify, simplify and extend
previous seemingly disparate results. We use the primordial matter and metric perturbations that emerge at
the end of the inflationary epoch to determine the additional arbitrary spatial function that arises when
integrating the second order perturbation equations. This introduces a non-Gaussianity parameter into the
expressions for the second order density perturbation. In the special case of zero spatial curvature we show
that the time evolution simplifies significantly, and requires the use of only two nonelementary functions,
the so-called growth suppression factor at the linear level, and one new function at the second order level.
We expect that the results will be useful in applications, for example, studying the effects of primordial non-
Gaussianity on the large scale structure of the Universe.
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I. INTRODUCTION

The increasingly accurate observations of the cosmic
microwave background (CMB) and the large scale structure
(LSS) of the Universe that are becoming available are
stimulating theoretical developments in cosmology. The
analysis of these observations is based on cosmological
perturbation theory, with the bulk of the work to date using
linear perturbations of Friedmann-Lemaître (FL) cosmol-
ogies. However, the study of possible deviations from
linearity, for example, how primordial non-Gaussianity
affects the anisotropy of the CMB and the LSS, necessitates
the use of nonlinear perturbations (see for example [1–3]).
Much of the theoretical work on nonlinear perturbations

has dealt with flat FL cosmologies with dust (a matter-
dominated universe; see for example [4,5]) and more
recently also with a cosmological constant (a ΛCDM
universe; see for example [6–9]). One aspect of the work
is to provide an expression for the second order fractional
density perturbation ð2Þδ which is needed when analyzing
observations of the LSS, and this is the focus of the
present paper.
The analysis of the LSS is based on galaxy redshift

surveys, which record the fluctuation of the number count
of galaxies on the past light cone of the observer as a
function of redshift and angular direction. On the other

hand the fractional density perturbation, calculated using
cosmological perturbation theory, is based on constant time
slices in the Universe; i.e. it depends on a choice of
temporal gauge. Thus in relating observations to theory
one has to take into account both gauge effects and light
cone effects. This has been done in detail in linear
perturbation theory (see, for example, [10–14]), and more
recently in second order theory [15]. These papers derive a
formula that relates the observed fractional galaxy number
overdensity as a function of redshift z and direction n to the
fractional density perturbation as a function of spatial
position and time in an appropriate gauge. In the present
paper we focus on one aspect of this whole process by
deriving simple explicit expressions for the relativistic first
and second order fractional density perturbations for FL
cosmologies with dust, and investigating how the choice of
gauge affects the structure of the expressions.
In a recent paper [16], here referred to as UW, we derived

a general expression for ð2Þδ using the Poisson gauge, also
including the effects of spatial curvature, but subject to the
restriction that the perturbation at linear order is purely
scalar.1 This expression for ð2Þδ contains the integral of a
complicated quadratic source term involving two arbitrary
spatial functions, which makes it difficult to obtain a clear
physical understanding. If one assumes that the decaying
mode of the scalar perturbation at the linear order is zero,
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1For the motivation for imposing this restriction, we refer to
[3], p. 4.
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however, then the scalar perturbation depends on only one
such function. In this case we showed that the temporal and
spatial dependence of ð2Þδ can be displayed explicitly, in a
form that provides direct physical insight.
In the present paper we investigate what effect the choice

of gauge has on the form of ð2Þδ. Specifically, we first derive
a new expression2 for ð2Þδ in the Poisson gauge by solving
the second order perturbation equations as given in UW. We
then use the change of gauge formulas in Appendix B to
calculate ð2Þδ in three other commonly used gauges: the
uniform curvature, the total matter3 and the synchronous-
comoving gauges. Before continuing, we digress briefly to
motivate our choice of gauges.4 The two most commonly
used gauges in cosmological perturbation theory are the
synchronous-comoving gauge and the Poisson gauge. For
linear perturbations of dust cosmologies the total matter
gauge is the same as the synchronous-comoving gauge. For
second order perturbations, however, this is no longer the
case. Hence we chose the total matter gauge as one of the
four gauges. Finally we decided to use the uniform curvature
gauge because we noticed that for this gauge the second
order fractional density perturbation has an interesting
property; namely the superhorizon part is a conserved
quantity.5 We note that this result plays a key role in the
process of simplifying the expressions for the second order
fractional density perturbation that we give in this paper.
We will use the notation ð2Þδ• for the fractional density

perturbation, where the bullet identifies the gauge. Our first
main result is that ð2Þδ• has the following common structure
for the Poisson, the uniform curvature and the total matter
gauges:

ð2Þδ• ¼ A1;•ζ
2 þ A2;•DðζÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

the superhorizon part

þ 2

3
m−2xg½A3;•ðDζÞ2 þ A4;•D2DðζÞ þ A5;•D2ζ2�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

the post-Newtonian part

þ 4

9
m−4x2g2½B3D2ðDζÞ2 þ B4D4DðζÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

theNewtonian part

: ð1Þ

Here m is a constant and the coefficients Ai;•, i ¼ 1;…; 5,
B3 and B4 are functions of the scale factor x, while the

spatial dependence is determined by the conserved
quantity ζðxiÞ, which appears in seven quadratic differential
expressions:

ζ2; DðζÞ; ðDζÞ2; D2DðζÞ; D2ζ2;

D2ðDζÞ2; D4DðζÞ:
ð2Þ

The spatial differential operators in (1) and (2) are
defined in Appendix A. We will refer to the group of
terms in (1) whose differential expressions have zero
weight in the spatial differential operator Di as the super-
horizon part. The intermediate group of terms having
weight two in Di (coefficient m−2) is referred to as the
post-Newtonian part. Finally, we refer to the group of terms
in (1) having weight four in Di (coefficient m−4) as the
Newtonian part.
The common structure for ð2Þδ• in these three gauges is

due to the fact that they all use the same spatial gauge. The
differences thus depend on different temporal gauges,
which affect the coefficients Ai;•, i ¼ 1;…; 5, but not B3

and B4. On the other hand, the synchronous-comoving
gauge uses a different spatial gauge, which has the effect of
adding a term to the Newtonian part with spatial depend-
ence given by ðD2ζÞ2, thereby adding a new quadratic
differential expression to the set (2). For this reason we will
treat this case separately in the paper.
The evolution of ð2Þδ in the Poisson gauge is determined

by eight functions of time that are written as integrals,
and these are the main source of the complexity of the
expression. Our second main result is to show that if the
background spatial curvature is zero, then seven of these
integral functions can be written in an explicit form. This
fact enables us to give simple expressions for ð2Þδ in all four
gauges under consideration when the spatial geometry
is flat.
The outline of the paper is as follows. In the next section

we give a unified expression for the first order fractional
density perturbation in the four gauges. In Sec. III we
derive the corresponding second order results and address
the issue of initial conditions. Section IV deals exclusively
with the spatially flat case K ¼ 0. We show that the time
dependence simplifies significantly and then give a detailed
comparison with previous work dealing with this case.
Section V contains the concluding remarks. Finally, in
Appendix A we define the various spatial differential
operators and in Appendix B we derive the transformation
laws that relate the density perturbations for the four gauges
under consideration.

II. THE DENSITY PERTURBATION
AT FIRST ORDER

The background cosmology is a FL universe with scale
factor a, Hubble scalar H and curvature parameter K,
containing dust with background matter density ð0Þρm and a

2This expression differs from the one in UW referred to above
in the way the time dependence is represented, which facilitates
the subsequent analysis.

3The total matter gauge is referred to by Hwang and co-
workers as the comoving gauge (see for example [17,18]). We
also used this terminology in an earlier paper [19]. Here, however,
we have chosen to follow the conventions and nomenclature of
Malik and Wands [20]; see their Secs. 7.4 and 7.5.

4We give the definition of the gauges in Appendixes B 5 and B 7.
5This generalizes the known result for the linear fractional

density perturbation in the uniform curvature gauge.
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cosmological constant Λ. We introduce the usual density
parameters6:

Ωm ≔
ð0Þρm
3H2

; Ωk ≔ −
K
H2

; ΩΛ ≔
Λ

3H2
; ð3Þ

which satisfy

Ωm þΩk þ ΩΛ ¼ 1: ð4Þ
We use the dimensionless scale factor x ≔ a=a0, normal-
ized at some reference epoch t0, as a time variable.7 The
conservation law shows that a3ð0Þρm is constant, which we
write in terms of Ωm and the dimensionless Hubble scalar
H ≔ aH as

H2xΩm ¼ m2: ð5Þ
Setting x ¼ 1 shows that the constant m is given by
m2 ¼ H2

0Ωm;0. It follows that

H2 ¼ H2
0ðΩΛ;0x2 þΩk;0 þ Ωm;0x−1Þ: ð6Þ

Equations (3)–(6) determine H, Ωm, Ωk and ΩΛ explicitly
in terms of x.
The gauge invariants8 that describe the scalar linear

perturbations of the metric and matter in the Poisson gauge
are the Bardeen potentials ð1ÞΨp and ð1ÞΦp, the velocity
potential ð1Þvp and the fractional density perturbation ð1Þδp.
In the special case when the decaying mode of the scalar
perturbation is set to zero we have the following expres-
sions9:

ð1ÞΨp¼ ð1ÞΦp ¼ gðxÞζðxiÞ; Hð1Þvp¼−
2

3
Ω−1

m fgζ; ð7aÞ

ð1Þδp ¼ −2Ω−1
m ðf þ ΩkÞgζ þ

2

3
m−2xgD2ζ; ð7bÞ

where10

gðxÞ ≔ 3

2
m2

H
x2

Z
x

0

dx̄
Hðx̄Þ3 ; fðxÞ ≔ 1þ g−1x∂xg:

ð8Þ

Here the arbitrary spatial function ζðxiÞ equals the con-
served quantity that we introduced in [19], denoted by ζv,
which can be written in the form11

ζv ¼
�
1þ 2

3
ΩkΩ−1

m

�
ð1ÞΨp −Hð1Þvp: ð9Þ

We emphasize that ζv is exactly conserved for dust [see
[21], Eq. (B2), and [19], Eqs. (69)–(A1)]. The fact that
ζ ¼ ζv was established in UW [see Eqs. (21)–(24)]. We
note in passing that if the background spatial curvature is
zero (Ωk ¼ 0), then ζv is the comoving curvature pertur-
bation, often denoted by R [see [20], Eq. (7.46) in
conjunction with (7.6) and (7.8)].
We can use (9) to simplify the expression for ð1Þδp, as

follows. On substituting for ð1ÞΨp and ð1Þvp from (7a) into
(9) the function ζ cancels as a common factor and we obtain
the following algebraic constraint relating f to g:

ð3Ωm þ 2Ωk þ 2fÞg ¼ 3Ωm: ð10Þ
Using this we can simplify the expression (7b) to obtain

ð1Þδp ¼ −3ð1 − gÞζ þ 2

3
m−2xgD2ζ: ð11Þ

By combining this equation with the transformation for-
mulas (B28a), (B32a) and (B42) in Appendix B, we can
give a unified expression for ð1Þδ•, the gauge invariant
associated with the first order density perturbation in the
four gauges that we are considering in this paper:

ð1Þδ• ¼ A•ζ þ
2

3
m−2xgD2ζ; ð12aÞ

where

Ap ¼ −3ð1 − gÞ; Ac ¼ −3;

Av ¼ As ¼ −2Ω−1
m Ωkg:

ð12bÞ

Here the subscripts p, c, v and s identify the Poisson,
uniform curvature, total matter and synchronous-comoving
gauges, respectively.
The first term of ð1Þδ• in (12), which has zero weight in

the spatial differential operator Di, is referred to as the
superhorizon term, while the second term, which has
weight two, is referred to as the Newtonian term. We note
that the superhorizon term is gauge dependent, while the
Newtonian part is gauge independent for these four
gauges.12

Finally the form of the superhorizon term in ð1Þδc, as
given by (12), deserves comment: it is independent of time.

6We use units such that 8πG ¼ 1 ¼ c.
7When t0 is the present time, x ¼ ð1þ zÞ−1, where z is the

redshift. We note that x is related to the conformal time η, which
we shall sometimes use, according to ∂η ¼ Hx∂x.

8These gauge invariants are introduced in Appendix B. Our
strategy for working with gauge invariants is described in the first
paragraph of that Appendix.

9See Eqs. (19b) and (30)–(32) in UW.
10We note in passing that the function gðxÞ, defined up to a

constant factor, is sometimes referred to as the growth suppres-
sion factor. See for example [7], in the text following Eq. (2.3).
Our function fðxÞ equals their function fðηÞ in Eq. (2.9), on
noting that g0ðηÞ ¼ Hx∂xgðxÞ.

11Referring to UW, use Eqs. (11) and (12) to rewrite Eq. (21).
12Clearly the Newtonian part is not universally gauge inde-

pendent since for the uniform density gauge it is zero.
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This is to be expected since the quantity ζρ ≔ − 1
3
ð1Þδc

satisfies the “conservation law” ∂ηζρ ¼ 1
2
D2vp, which

suggests that ð1Þδc will be constant in a regime in which
spatial derivatives can be neglected.13

The expressions for the gauge invariants at first order
given by Eqs. (7)–(9) provide the foundation for general-
izing to second order perturbations. In particular the
constraint (10) will be used frequently in simplifying the
expressions for the second order fractional density
perturbation.

III. THE DENSITY PERTURBATION
AT SECOND ORDER

In this section we derive explicit expressions for
the second order fractional density perturbation ð2Þδ• in
the Poisson, uniform curvature, total matter and synchro-
nous-comoving gauges, subject to the following restric-
tions: (i) the perturbations at linear order are purely scalar,
and (ii) the decaying mode of the scalar perturbation
is zero.

A. The Poisson gauge

The gauge invariants14 that describe the scalar second
order perturbations of the metric and matter in the Poisson
gauge are the Bardeen potentials ð2ÞΨp and ð2ÞΦp, the
velocity potential ð2Þvp and the fractional density perturba-
tion ð2Þδp. The governing equations that determine these
gauge invariants in the case of dust cosmologies are given
in a concise form in Eqs. (14)–(16) in UW. A particular
solution for ð2ÞΨp is given by Eq. (26) in UW:

ð2ÞΨpðx; xiÞ ¼
H
x2

Z
x

0

x̄Ωm

H
Sðx̄; xiÞdx̄; ð13aÞ

where

Sðx; xiÞ ≔ m−2
Z

x

0

Sð~x; xiÞd~x; ð13bÞ

and the source term S is given by Eq. (70a) in UW.15

We can obtain a simple expression for the time derivative
of ð2ÞΨp by differentiating (13a) with respect to x and using
(34a) and (34b):

∂xðxð2ÞΨpÞ ¼ −
�
3

2
Ωm þ Ωk

�
ð2ÞΨp þ ΩmS: ð14Þ

On using this equation, the second order governing
equations, given in UW as Eqs. (15) and (16),16 lead
directly to the following expressions for ð2Þδp and ð2Þvp:

ð2Þδp ¼
2

3
m−2D2ðxð2ÞΨpÞ þ 3ð2ÞΨp − 2Sþ Sδ; ð15aÞ

Hð2Þvp ¼
�
1þ 2

3
ΩkΩ−1

m

�
ð2ÞΨp −

2

3
Sþ Sv; ð15bÞ

where

Sδ ¼ SD þ 3SV − 2ðDð1ÞvpÞ2; ð16aÞ

Sv ¼ SV − 2Si½ðð1Þδp − ð1ÞΨpÞDiðHð1ÞvpÞ�; ð16bÞ

and the source terms SD and SV are given by Eqs. (70b) and
(70c) in UW. For the reader’s convenience we quote these
expressions17:

SD ¼ 2

3
ðHΩmÞ−1½4ðD2 þ 3KÞΨ2

p − 5ðDΨpÞ2�

þ 6SiðΨpDiHvpÞ þ
9

2
ΩmðHvpÞ2; ð17aÞ

SV ¼ 2

3
Ωm

−1½Ψ2
p þ 4DðΨpÞ�

þ 2½SiðHvpDiΨpÞ þ 2DðHvpÞ�: ð17bÞ

We note that the mode extraction operator Si, which is
defined by (A3), satisfies SiDif ¼ f, for any spatial
function f; i.e. Si is the inverse operator of Di. For brevity
we have omitted the superscript (1) on the gauge invariants
on the right side of Eqs. (17).
The next step is to obtain explicit expressions for ð2ÞΨp,

ð2Þδp and ð2Þvp by substituting the first order solution (7)
into Eqs. (13) and (15). We begin by following UW in
obtaining an explicit expression for the source term
Sðx; xiÞ in (13b). The result is18

Sðx;xiÞ¼m2ðT1ζ
2þT2DðζÞþm−2½T3ðDζÞ2þT4D2DðζÞ�Þ;

ð18Þ

where

13See [19], Eqs. (65) and (66) specialized to a barotropic
perfect fluid (Γ̄ ¼ 0). See also [22], Eq. (18) in conjunction with
(7)–(9).

14These gauge invariants are introduced in Appendix B.
15We have modified Eq. (26) in UW by using the constraint

xH2Ωm ¼ m2 to replaceH2 in the first integral and have rescaled
S by a factor of m−2. In addition we choose xinitial ¼ 0, which is
possible since we have set the decaying mode to zero.

16The gauge invariants with symbols Ψ, v and δ all refer to the
Poisson gauge, which we indicate here with a subscript p. Also
note that ð∂η þHÞð2ÞΨ ¼ Hx∂xðxð2ÞΨÞ on changing time
derivative.

17We have replaced the scalar A by A ¼ 3H2Ωm, using
Eq. (12) in UW.

18UW, Eqs. (A4) and (B1). We have rescaled the TA by
multiplying by m−2 and have used Eqs. (4) and (5) in this paper.
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T1ðxÞ ≔ ðxΩmÞ−1g2ððf − 1Þ2 − 4ΩkÞ; ð19aÞ

T2ðxÞ ≔ −8ðxΩmÞ−1g2
�
ðf − 1Þ2 − 1

2
ð1 − ΩmÞ

þ Ωk

�
1þ 2

3
Ω−1

m f2
��

; ð19bÞ

T3ðxÞ ≔ −
1

3
g2
�
1 −

4

3
Ω−1

m f2
�
; ð19cÞ

T4ðxÞ ≔
4

3
g2
�
1þ 2

3
Ω−1

m f2
�
: ð19dÞ

Substituting (18) in (13b) leads to

Sðx; xiÞ ¼ T̂1ζ
2 þ T̂2DðζÞ þm−2½T̂3ðDζÞ2 þ T̂4D2DðζÞ�;

ð20aÞ

where

T̂AðxÞ ≔
Z

x

0

TAðx̄Þdx̄; A ¼ 1;…; 4: ð20bÞ

Next, on substituting (20a) in (13a) we obtain

ð2ÞΨp ¼ gðB1ðxÞζ2 þ B2ðxÞDðζÞ
þm−2½B3ðxÞðDζÞ2 þ B4ðxÞD2DðζÞ�Þ; ð21aÞ

where

BAðxÞ ≔
H
x2g

Z
x

0

x̄Ωm

H
T̂Aðx̄Þdx̄; A ¼ 1;…; 4: ð21bÞ

At this stage it is convenient to rescale the coefficients and
write Eqs. (21a) and (20a) in the form

ð2ÞΨp ¼ g

�
B1ζ

2 þ B2DðζÞ þ 2

3
m−2xg½B3ðDζÞ2

þ B4D2DðζÞ�
�
; ð22aÞ

S ¼ T 1ζ
2 þ T 2DðζÞ þ 2

3
m−2xgðT 3ðDζÞ2 þ T 4D2DðζÞÞ;

ð22bÞ

where

B1;2 ≔ B1;2; B3;4 ≔
�
2

3
xg
�

−1
B3;4: ð23aÞ

T 1;2 ≔ T̂1;2; T 3;4 ≔
�
2

3
xg

�
−1
T̂3;4: ð23bÞ

We can now calculate ð2Þvp and ð2Þδp by substituting (22)
into (15) and using the first order solution (7) to calculate
the source terms (17) and (16).19 The results are as follows.
For ð2Þvp we obtain

Hð2Þvp ¼ V1ζ
2 þ V2DðζÞ

þ 2

3
m−2gx½V3ðDζÞ2 þ V4D2DðζÞ�; ð24aÞ

where

VAðxÞ ≔ −
2

3
T A þ

�
1þ 2

3
ΩkΩ−1

m

�
gBA þ 2

3
Ω−1

m gVA;

ð24bÞ

with

V1 ¼ gð1 − 2Ω−1
m fðf þ Ωm þ ΩkÞÞ; ð24cÞ

V2 ¼ 4g

�
1þ 2

3
Ω−1

m fðf −ΩkÞ
�
; ð24dÞ

V3 ¼ −
1

3
f; V4 ¼

4

3
f: ð24eÞ

For the density perturbation ð2Þδp we obtain (1) with
• replaced by p, with the coefficients Ai;p having the
following form:

A1;p ¼ −2T 1 þ 3gB1 þ 2Ω−1
m g2ðð1 − fÞ2 − 4ΩkÞ; ð25aÞ

A2;p ¼ −2T 2 þ 3gB2 þ 8Ω−1
m g2

�
1þ 2

3
Ω−1

m f2
�
; ð25bÞ

A3;p ¼ −2T 3 þ 3gB3 − g

�
5þ 4

3
Ω−1

m f2
�
; ð25cÞ

A4;p ¼ −2T 4 þ 3gB4 þ B2; ð25dÞ

A5;p ¼ B1 þ 4g: ð25eÞ

It should be noted that these coefficients give a particular
solution for ð2Þδp that corresponds to the particular solution
(13) for ð2ÞΨp. We will give the general solution in
Sec. III E. The Einstein–de Sitter background arises as a
special case (Ωm ¼ 1, ΩΛ ¼ 0, Ωk ¼ 0). It follows from
(8), in conjunction with (5) and (6), that g ¼ 3

5
, f ¼ 1. The

definition (23) then yields B1 ¼ B2 ¼ 0, B3 ¼ 1
21
, B4 ¼ 20

21

19Use (3) to express K in terms of Ωk and then use (5)
to eliminate H2. In order to simplify the term in (16b) contain-
ing the mode extraction operator Si it is necessary to use the
identity (A4c).
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and T 1 ¼ T 2 ¼ 0, T 3 ¼ 1
10
, T 4 ¼ 2. The expression for

ð2Þδp reduces to Eq. (44) in UW.

B. The uniform curvature and total matter gauges

The second order density perturbations ð2Þδc and ð2Þδv in
the uniform curvature and total matter gauges are related to
ð2Þδp according to Eqs. (B28b) and (B32b) in Appendix B,
which we for the reader’s convenience repeat here:

ð2Þδc ¼ ð2Þδp − 3ð2ÞΨp þ Sδ½ð1ÞZc;p�; ð26aÞ
ð2Þδv ¼ ð2Þδp − 3Hð2Þvp þ Sδ½ð1ÞZc;p�: ð26bÞ

The source terms Sδ½ð1ÞZc;p� and Sδ½ð1ÞZc;p� are given by
(B30) and (B34) in terms of ð1ÞΨp, ð1Þvp and ð1Þδp, which in
the case of zero decaying mode are given by (7). It follows
that the source terms are a linear combination of the
expressions for ζ in (2) of weights zero and two in Di,
as are ð2ÞΨp and ð2Þvp which are given by (22a) and (24).
Equations (26) thus imply that ð2Þδc and ð2Þδv are of the
canonical form (1), with the Newtonian terms being
unaffected by the change of gauge. The coefficients Ai;c
and Ai;v are obtained by appropriately collecting terms on
the right side of Eqs. (26), leading to

A1;c¼−2T 1þ2Ω−1
m g2

�
1þ4fþf2þ2Ωkþ

3

2
Ωm

�
; ð27aÞ

A2;c ¼ −2T 2 þ 8Ω−1
m g2

�
1þ 2

3
Ω−1

m f2
�
; ð27bÞ

A3;c ¼ −2T 3 þ g

�
1 − 2f −

3

2
Ωm −

4

3
Ω−1

m f2
�
; ð27cÞ

A4;c ¼ −2T 4 þ B2 þ
3

2
gΩm; ð27dÞ

A5;c ¼ B1 þ gð1þ fÞ; ð27eÞ

and

A1;v ¼ 2κxg

�
B1 −

2

3
Ω−1

m gðf2 − 3f − 6ΩmÞ
�
; ð28aÞ

A2;v ¼ 2κxg
�
B2 −

8

3
Ω−1

m gf
�
; ð28bÞ

A3;v ¼ 2κxgB3 −
5

3
Ω−1

m gð2f þ 3ΩmÞ; ð28cÞ

A4;v ¼ 2κxgB4 þ B2 −
8

3
Ω−1

m gf; ð28dÞ

A5;v ¼ B1 −
2

3
Ω−1

m gðf2 − 3f − 6ΩmÞ: ð28eÞ

Here we have used the fact that

ΩkΩ−1
m ¼ −κx; ð29aÞ

where the constant κ is given by

κ ≔
K
m2

: ð29bÞ

C. The synchronous-comoving gauge

The second order density perturbation ð2Þδs in the
synchronous-comoving gauge is related to ð2Þδv according
to Eq. (B42) in Appendix B, which we repeat here:

ð2Þδs ¼ ð2Þδv −
4

3
xm−2ðDiδvÞðDiΨpÞ: ð30Þ

On evaluating the source term using (7a), (12) and the
identity (A4c) in Appendix A, and noting that ð2Þδv has the
general form (1), we obtain

ð2Þδs ¼ A1;vζ
2 þ A2;vDðζÞ

þ 2

3
m−2xg½A3;sðDζÞ2 þ A4;sD2DðζÞ þ A5;vD2ζ2�

þ 4

9
m−4x2g2

��
B3 þ

1

3

�
D2ðDζÞ2 þ

�
B4 −

4

3

�
D4DðζÞ þ 2ðD2ζÞ2

�
; ð31aÞ

where

A3;s ¼ A3;v − 4κxg; ð31bÞ
A4;s ¼ A4;v −

8

3
κxg; ð31cÞ

and the Ai;v coefficients are given by (28). Note the appearance of the additional quadratic differential expression ðD2ζÞ2 in
the Newtonian part. Equations (12) and (31) highlight important similarities and differences between the total matter gauge
and the synchronous-comoving gauge for dust perturbations; namely, at first order the fractional density perturbations are
the same while at second order only the superhorizon parts coincide.
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D. A second order conserved quantity ð2Þδc
We have shown earlier that the superhorizon term in

ð1Þδc is independent of time. This reflects the fact that
ζρ ≔ − 1

3
ð1Þδc satisfies a conservation law that reduces to

∂ηζρ ¼ 0when spatial derivative terms can be neglected. At
second order, we conjecture that ð2Þζρ ≔ − 1

3
ð2Þδc has a

similar property, in other words that the superhorizon terms
in ð2Þδc, namely A1;c and A2;c, as given by (27a) and (27b),
are independent of time. We can confirm this by showing
directly that

∂xA1;c ¼ 0; ∂xA2;c ¼ 0: ð32Þ

This calculation uses the fact that ∂xT 1;2 ¼ T1;2, the
constraint (10) and the following derivatives20:

x∂xΩm ¼ ð2q − 1ÞΩm; ð33aÞ

x∂xg ¼ gðf − 1Þ; ð33bÞ

x∂xf ¼ ð1þ fÞðq − 2 − fÞ þ 2f þ 3 − Ωk; ð33cÞ

where the deceleration parameter q is defined by21

x∂xH ¼ −qH: ð34aÞ

It follows from (B25) that for dust

q ¼ 3

2
Ωm þ Ωk − 1: ð34bÞ

We can then determine the constant values of A1;c and A2;c

by evaluating the limit of the expressions (27a) and (27b) as
x → 0, leading to

A1;c ¼
27

5
; A2;c ¼

24

5
: ð35Þ

When these values are substituted into (27a) and (27b) we
obtain

T 1 ¼ Ω−1
m g2

�
1þ 4f þ f2 þ 2Ωk þ

3

2
Ωm

�
−
27

10
; ð36aÞ

T 2 ¼ 4Ω−1
m g2

�
1þ 2

3
Ω−1

m f2
�
−
12

5
: ð36bÞ

We have thus shown that ð1Þδc and ð2Þδc are conserved
quantities in the sense that the superhorizon part is constant
in time. These conserved quantities are in fact closely

related to the quantities introduced by Malik and
Wands22:

ð1Þζmw ≔ −ð1ÞΨρ; ð2Þζmw ≔ −ð2ÞΨρ; ð37Þ

which we shall use in the following section. At first order
we have the simple relation ð1ÞΨρ ¼ − 1

3
ð1Þδc, as follows

from (12) and (42a). At second order these conserved
quantities are related through their superhorizon terms:

ðð2ÞΨρ − ð1ÞΨ2
ρÞjsuperhorizon ¼ −

1

3
ð2Þδcjsuperhorizon; ð38Þ

as follows from (35), (40) and (42b).

E. Initial conditions

The solution (13) for ð2ÞΨp is a particular solution that
satisfies limx→0

ð2ÞΨp ¼ 0. The general solution for
ð2ÞΨp for a zero decaying scalar mode at the linear level
is given by

ð2ÞΨpjgen ¼ ð2ÞΨp þ CðxiÞgðxÞ; ð39Þ

where CðxiÞ is an arbitrary function. Note that the second
term on the right side of (39) is the general solution of the
homogeneous equation for ð2ÞΨp [see UW, Eq. (37)]. The
corresponding general expression for ð2Þδ• for the Poisson,
the uniform curvature, the total matter and the synchro-
nous-comoving gauges is given by

ð2Þδ•jgen ¼ ð2Þδ• þ A•Cþ 2

3
xgm−2D2C; ð40Þ

where A• is the coefficient in the expression (12) for ð1Þδ•.
Note that the extra terms on the right side of (40) take the
same form as the first order density perturbation, but with
ζðxiÞ replaced by the arbitrary function CðxiÞ.
In applications the arbitrary function CðxiÞ is usually

determined by using the metric and matter perturbations at
the end of inflation as initial conditions. Various theories of
inflation predict that these perturbations will not be purely
Gaussian; i.e. there will be a certain level of primordial non-
Gaussianity. It is convenient to use the first and second
order conserved quantities given by (37) to parameterize
this primordial non-Gaussianity on superhorizon scales.
Specifically, it is assumed that

ð2Þζmw ¼ 2anlðð1ÞζmwÞ2; ð41Þ

20Equation (8) gives (33b), apply ∂x to (5) and use (34a) to get
(33a), and finally apply ∂x to (10) to get (33c).

21This is equivalent to q ¼ − äa
ð _aÞ2.

22See [20], Eqs. (7.61) and (7.71). The subscript ρ stands for
the uniform density gauge, and the subscript mw stands for
Malik-Wands. The gauge invariant ð2Þζmw was first defined in
[23] [see Eq. (4.18)]. We note that Langlois and Vernizzi [24]
derived an analogous conserved quantity at second order using
the 1þ 3 approach to perturbations [see Eq. (50)].
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where anl is a parameter that depends on the physics of the
model of inflation.23 It has been shown that primordial non-
Gaussianity in the CMB temperature anisotropy at second
order is represented by the quantity ð2Þζmw − 2ð1Þζ2mw [[25],
Eq. (8)]. It follows that the absence of primordial non-
Gaussianity corresponds to anl ¼ 1.
It follows from Eqs. (B36) in Appendix B in conjunction

with (7a) and (12) that the gauge invariants ð1ÞΨρ and ð2ÞΨρ

in (37) are given by

ð1ÞΨρ ¼ ζ −
2

9
xgm−2D2ζ; ð42aÞ

ð2ÞΨρ ¼ −
1

5
½4ζ2 þ 8DðζÞ� þ CðxiÞ

þ ðDi terms up to order 6Þ: ð42bÞ

These equations and the restriction (41) determine the
arbitrary function CðxiÞ in terms of ζ and DðζÞ. The
resulting function is denoted by Cnl:

CnlðxiÞ ¼
4

5

��
1 −

5

2
anl

�
ζ2 þ 2DðζÞ

�
: ð43Þ

We will denote the density perturbation ð2Þδ• corresponding
to this choice of initial condition, which is determined by
substituting the expression (43) into (40), by ð2Þδ•jnl:

ð2Þδ•jnl ¼ ð2Þδ• þ A•Cnl þ
2

3
xgm−2D2Cnl: ð44Þ

It follows from (1), (44) and (43) that the coefficients Ai;•jnl
are given by

A1;•jnl ¼ A1;• þ
4

5

�
1 −

5

2
anl

�
A•; ð45aÞ

A2;•jnl ¼ A2;• þ
8

5
A•; ð45bÞ

A3;•jnl ¼ A3;•; ð45cÞ

A4;•jnl ¼ A4;• þ
8

5
; ð45dÞ

A5;•jnl ¼ A5;• þ
4

5

�
1 −

5

2
anl

�
; ð45eÞ

where A• is given by (12).

IV. THE SPECIALIZATION TO A
FLAT BACKGROUND

In the previous section we showed that the time
dependence of ð2Þδ• is determined by the linear perturbation
function gðxÞ and the background functions Ωm and H,
either algebraically, or as the integrals BA given by (21b)
and (23a), and T A given by (20b) and (23b), with
A ¼ 1;…; 4. Subsequently, we showed that T 1 and T 2

could be written algebraically, as in (36). In this section we
show that if the spatial curvature is zero, a significant
simplification occurs: only one integral function is
required.

A. The flatness conditions

We here show that if the background is flat, then T 3;4 and
B1;2 are algebraic expressions in g and Ωm, and in addition
B3 þ B4 ¼ 1. For convenience we define

T3 ≔ T 3 −
1

2
gþ 3

4
Ωmg−1ð1 − gÞ2; ð46aÞ

T4 ≔ T 4 − 3þ 2g −
3

4
Ωmg−1ð1 − gÞ2; ð46bÞ

B1 ≔ B1 −
1

5
þ g −

3

2
Ωmg−1ð1 − gÞ2; ð46cÞ

B2 ≔ B2 −
12

5
þ 4g; ð46dÞ

B3þ4 ≔ xgðB3 þ B4 − 1Þ: ð46eÞ

Then the result can be expressed as follows: ifΩk ¼ 0, then
T3;4 ¼ 0, B1;2 ¼ 0, and B3þ4 ¼ 0.
These results can be proved by differentiation, as

follows. First we show that if K ¼ 0, then
∂xðxgT3;4Þ ¼ 0. This calculation requires ∂xðxgT 3;4Þ ¼
3
2
T3;4, as follows from (20b) and (23b), and also

Eqs. (33b) and (33a). It follows that xgT3;4 ¼ C3;4, a
constant. Since T3;4 is bounded as x → 0 we conclude
that C3;4 ¼ 0, which gives the desired result.
Second we show that ifK ¼ 0, then the quantitiesB1,B2

and B3þ4 satisfy

x∂xB• ¼ −
3

2
Ωmg−1B•; lim

x→0
B• ¼ 0; ð47Þ

Since g > 0 it follows from (47) that ðB•Þ2 is monotone
decreasing or identically zero. The limit condition then
implies that B• ≡ 0, which gives the desired relations
B1;2 ¼ 0, and B3þ4 ¼ 0. This calculation requires

∂xðx2gH−1BAÞ ¼ xΩmH−1T̂A;

∂xðx2gH−1Þ ¼ 3

2
xΩmH−1: ð48Þ

23See for example [25], p. 4, and [8], Eq. (9), and references
given in these papers. When making comparisons with CMB
observations it is customary to use a nonlinearity parameter fnl,
which takes into account that the nonlinear gravitational dynam-
ics after inflation contributes to the non-Gaussianity. This
parameter has the form fnl ¼ 5

3
ðanl − 1Þ þ � � �, whereþ � � � refers

to terms that describe the effect of the postinflation nonlinear
gravitational dynamics on the primordial non-Gaussianity. See
for example [25], Eq. (9), [8], Eq. (31) and [1], Sec. 8.4.2.
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The first of these follows from (21b), together with the
definitions (23a) and (23b). The second follows from (33a),
(34a) and (10). Note that the constraint (10) can be written
in the form 2gðf þ qþ 1Þ ¼ 3Ωm, using (34b).

B. Alternate expressions for ð2Þδ•
We now cast the expressions for ð2Þδ• into a form in

which the role played by the spatial curvature becomes
clear. We use (36) to eliminate T 1;2 in the expressions for
ð2Þδ• and use (46) to express T 3;4 and B1;2 in terms of T3;4
and B1;2. We also use the constraint (10) to eliminate f in
favor of g, and use (45) to introduce the non-Gaussianity
initial condition. The coefficients Ai;• in Eqs. (25), (27) and
(28) assume the form

A1;p ¼ 3ð1 − gÞ
�
1þ 2anl − 4gþ 3

2
Ωmð1 − gÞ

�
þ 3gB1;

ð49aÞ
A2;p ¼ 12gð1 − gÞ þ 3gB2; ð49bÞ

A3;p ¼ 3gðB3 − 2Þ − 3

2
Ωmg−1ð1 − gÞ2

þ 4Ωk

�
1 − gþ 1

3
κxg

�
− 2T3; ð49cÞ

A4;p ¼ −2þ 3gB4 −
3

2
Ωmg−1ð1 − gÞ2 − 2T4 þ B2; ð49dÞ

A5;p ¼ 1 − 2anl þ 3gþ 3

2
Ωmg−1ð1 − gÞ2 þB1; ð49eÞ

A1;c ¼ 3ð1þ 2anlÞ; ð50aÞ

A2;c ¼ 0; ð50bÞ

A3;c ¼ −
3

2
Ωmg−1 þ 2Ωk

�
2 − gþ 2

3
κxg

�
− 2T3; ð50cÞ

A4;c ¼ −2 −
3

2
Ωmg−1ð1 − 2gÞ − 2T4 þB2; ð50dÞ

A5;c ¼ 1 − 2anl þ
3

2
Ωmg−1ð1 − gÞ −Ωkgþ B1; ð50eÞ

A1;v ¼ 2κxg

�
B1 þ

16

5
þ 2κxg

�
1þ 1

3
Ωk

�
þ 2Ωkð1− gÞÞ

�
;

ð51aÞ

A2;v ¼ 2κxg

�
B2 −

8

5
−
8

3
κxg

�
; ð51bÞ

A3;v ¼ 2κxg

�
B3 −

5

3

�
− 5; ð51cÞ

A4;v ¼ 2κxg

�
B4 −

4

3

�
þ B2; ð51dÞ

A5;v ¼ 2ð2 − anlÞ þ 2κxg

�
1þ 1

3
Ωk

�
þ 2Ωkð1 − gÞ þB1;

ð51eÞ

where the constant κ is defined by (29). For the synchro-
nous-comoving gauge it follows from (31) that

ðA1; A2; A3; A4; A5Þs ¼ ðA1; A2; A3; A4; A5Þv
− 4κxg

�
0; 0; 1;

2

3
; 0

�
; ð52Þ

with the Newtonian part unchanged.

C. Zero spatial curvature

In the case of zero spatial curvature we have Ωk ¼ 0,
κ ¼ 0, T3;4 ¼ 0, B1;2 ¼ 0 and B3 þ B4 ¼ 1. We write
B3 ¼ B and B4 ¼ 1 − B and can express the scalar B as
a standard integral involving g, Ωm and H:

BðxÞ ¼ HðxÞ
2x3gðxÞ2

Z
x

0

x̄2Ωm

H

�
g2 −

3

2
Ωmð1 − gÞ2

�
dx̄;

ð53Þ

where g, Ωm and H inside the integral are functions of x̄.
This result follows from Eqs. (21b) and (23) with A ¼ 3,
when one uses the expression for T 3 given by (23b) and
(46a) with T3 ¼ 0.
With these simplifications the expressions (49)–(51) for

the coefficients in ð2Þδ• for the Poisson, uniform curvature
and total matter gauges reduce to those in [26], where
the present results for zero curvature are summarized.
The full expression is given by (1), with the Newtonian
part given by

ð2Þδ•jNewtonian ¼
4

9
m−4x2g2½BD2ðDζÞ2 þ ð1 − BÞD4DðζÞ�:

ð54Þ

For the reader’s convenience, we give the coefficients
Ai;p in the Poisson gauge when K ¼ 0, obtained by
specializing (49):

A1;p ¼ 3ð1 − gÞ
�
1þ 2anl − 4gþ 3

2
Ωmð1 − gÞ

�
; ð55aÞ

A2;p ¼ 12gð1 − gÞ; ð55bÞ

A3;p ¼ 3gðB − 2Þ − 3

2
Ωmg−1ð1 − gÞ2; ð55cÞ
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A4;p ¼ −2þ 3gð1 − BÞ − 3

2
Ωmg−1ð1 − gÞ2; ð55dÞ

A5;p ¼ 1 − 2anl þ 3gþ 3

2
Ωmg−1ð1 − gÞ2: ð55eÞ

We also give the full expression for the synchronous-
comoving gauge:

ð2Þδs ¼
2

3
m−2xg½−5ðDζÞ2 þ 2ð2 − anlÞD2ζ2�

þ 4

9
m−4x2g2

��
B þ 1

3

�
ðD2ðDζÞ2

−D4DðζÞÞ þ 2ðD2ζÞ2
�
; ð56Þ

as follows from (51) and (52).

D. Relation with the literature

In the course of doing the research reported in this paper
we made a detailed comparison of our expressions for ð2Þδ•
with those in the literature, which deal solely with the case
where the background spatial curvature is zero. In addition
the expressions for ð2Þδ• with Λ > 0 are restricted to the
synchronous-comoving and Poisson gauges. In [26] we
gave a brief overview of the results in the literature. In this
section we describe in detail the relation between our
results and the papers in the literature, focusing in particular
on the work of Tomita [6] and Bartolo and collaborators [8].
Comparing the different results is not straightforward since

there are many different ways of representing the spatial
dependence in the expression for ð2Þδ•, which involves an
arbitrary spatial function and the spatial differential operator
Di. We thus begin by describing the various quadratic
differential expressions that have been used in the literature
and showing how they are related to our canonical set (2).

1. Spatial quadratic differential expressions

In discussing our canonical set of quadratic differential
expressions (2) we note that the operator DðAÞ, as defined
by (A2) and (A3), plays a key role. We begin with the zero
order derivative expressions ζ2 andDðζÞ that determine the
superhorizon terms in ð2Þδ•. Two of the three second order
derivative expressions that determine the post-Newtonian
terms are obtained by acting with D2 on the zero order
expressions, while the third, ðDζÞ2 ≡DiζDiζ, is a new
expression. Finally, the two fourth order derivative expres-
sions that determine the Newtonian terms are obtained by
acting with D2 on two of the second order expressions.
Before continuing we mention that the appearance of DðζÞ
in the second order density perturbation has its origin in the
quadratic source term in the evolution equation for the
second order Bardeen potential ð2ÞΨp [see Eqs. (61b) and
(61f) in [27]], through the use of the mode extraction
operator Sij, as defined by (A3).

We now list the various other spatial quadratic differ-
ential expressions that have appeared in the literature:

AD2A; DiDjðDiADjAÞ; ðDiDjAÞðDiDjAÞ; ð57aÞ

ðDiAÞðDiD2AÞ; DiðDiAD2AÞ; DiDjðADiDjAÞ;
ð57bÞ

sometimes with D−2 acting on the left. Each of these
expressions can be written as a linear combination of our
canonical set (2) augmented by the terms ðD2AÞ2 and D4A2

using the identities (A4) in the Appendix A. Here we use
the generic symbol A ¼ AðxiÞ to denote the arbitrary spatial
function. Although there is no consensus for this function
the various choices differ only by an overall numerical
factor.
A quantity closely related to our DðAÞ in (A2) has been

defined by several authors as follows. Let

Ψ0 ≔
1

2
λD−2ðDiDjADiDjA − ðD2AÞ2Þ; ð58aÞ

Θ0 ≔ D−2
�
Ψ0 −

1

3
λðDAÞ2

�
; ð58bÞ

where λ is a numerical factor that we have introduced to
accommodate different scalings. It follows from (A4d) that

Ψ0 ≔ −
1

3
λðD2DðAÞ − ðDAÞ2Þ; Θ0 ¼ −

1

3
λDðAÞ:

ð59Þ

This makes clear that Θ0 corresponds to our DðAÞ, while
Ψ0 is closely related to our D2DðAÞ. These quantities were
used in [4,5] with A ¼ φ ¼ 3

5
ζ and λ ¼ 1 [see Eqs. (4.36)

and (6.6) in [4], and following Eq. (9) in [5]]. They were
also used in [6] with A ¼ F ¼ −2ζ and λ ¼ 9

100
[see

Eq. (4.11), noting that a factor of D−2 is missing in the
first equation]. Furthermore, Bartolo et al. [8] come close to
introducing our DðAÞ. They define [see their Eq. (18)]

α0 ≔ D−2ðDφ0Þ2 − 3D−4DiDjðDiφ0Djφ0Þ; ð60Þ

where φ0 ¼ 3
5
ζ. It follows from (A4b) that

α0 ¼ −2Dðφ0Þ: ð61Þ

2. Synchronous-comoving gauge with K ¼ 0, Λ ≥ 0

The first expression for ð2Þδs with Λ > 0 was given by
Tomita [6] [see his Eq. (2.22)]. The time dependence in his
expression is described by two functions PðηÞ and QðηÞ
that satisfy second order differential equations24:

24Here η denotes conformal time. Note that ∂η ¼ Hx∂x.
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ð∂2
η þ 2H∂ηÞP ¼ 1; ð∂2

η þ 2H∂ηÞQ ¼ P −
5

2
ð∂ηPÞ2;

ð62Þ

and the spatial dependence is described by a function FðxiÞ
and its first and second partial derivatives, including the
following quadratic differential expressions:

FD2F; DiDjFDiDjF; ð63Þ

in addition to the ones in our canonical list (2). We use the
identities (A4a) and (A4d) to relate these expressions to our
canonical expressions. To match the density perturbations
requires

g ¼ 1 −H∂ηP; FðxiÞ ¼ −2ζðxiÞ; ð64aÞ

at linear order and

P ¼ 2

3
m−2xg; ð64bÞ

∂ηQ ¼ 1

3
m−2 x

H

�
21g2B − gð9g − 2Þ þ 21

2
Ωmð1 − gÞ2

�
;

ð64cÞ

at second order. With these equations it follows that
Tomita’s expression (2.22) is transformed into our expres-
sion for ð2Þδs given by (56), but with anl ¼ 0.

3. Poisson gauge with K ¼ 0, Λ ≥ 0

The first expression for ð2Þδp with Λ > 0 was given by
Tomita [6] [see his Eq. (4.16)]. As with ð2Þδs the time
dependence is described by P and Q and the spatial
dependence is described by the quadratic differential
expressions in our canonical list (2) together with the
expressions (63) and

ðDiFÞD2DiF: ð65Þ

In particular the combinations Ψ0 and Θ0, as defined by
(58a) and (58b), are used with F ¼ −2ζ and λ ¼ 9

100
. We

write these combinations in the form (59), and use the
identity (A4c) for the expression in (65). Using Eqs. (64)
we can now show that Tomita’s expression (4.16) with a
few minor typos corrected25 is transformed into our
expression for ð2Þδp given by (1), (54) and (55), but
with anl ¼ 0.
An expression for ð2Þδp with Λ > 0 has more recently

been derived by Bartolo and collaborators [8] [see their

Eq. (29)]. In order to make a comparison with our expression
which has the general form (1), we first consider their linear
perturbation. The time dependence of the linear perturbation
is described by a function g, which we denote by gb to
distinguish it from our g, and the spatial dependence is
described by a function φðxiÞ which is a constant multiple of
our ζ. Since gb ¼ 1 and g ¼ 3

5
when Λ ¼ 0 it follows by

comparing their Eq. (11) with our (7a) that

gb ¼
5

3
g; φ0 ¼

3

5
ζ: ð66Þ

We next consider the Bardeen potential ð2ÞΨp [Eq. (20) in
[8]] whose time dependence is described by gb and four
functions BA, A ¼ 1, 2, 3, 4. Our expression for ð2ÞΨp,
including the non-Gaussianity initial condition, is given by
Eqs. (22a), (39) and (43). In order to match the spatial
dependence terms we note that their α0 is given by (61). We
also need to use the identities (A4a) and (A4b). Comparing
the two expressions for ð2ÞΨp leads to the following relation
between our BA and the quantities BA in [8]:

ðB1; B2; B3; B4Þ

¼ 9

25
g−1

�
B1;−2B2; m2

�
1

3
B3 þ B4

�
;
2

3
m2B3

�
: ð67Þ

To establish consistency we need to show that the
definition of the BA in [8] [see Eqs. (22)–(26)] translates
into our definition of the BA in (21b) under the trans-
formation (67). The definitions of the BA in [8] can be
collectively written in the form26

9

25
g−1BA ¼

�
5

3
g0

�
H
x2g

Z
x

0

ðIðxÞ − Iðx̄ÞÞgðx̄Þ2TAðx̄Þdx̄;

ð68Þ

where IðxÞ is expressed in terms of gðxÞ by (8). The
functions TA are related to our functions TA according to

m2ðT1; T2; T3; T4Þ

¼ g2
�
T 1;−2T2; m2

�
1

3
T3 þ T 4

�
;
2

3
m2T 3

�
; ð69Þ

where we note that our variable f coincides with the f in
[8]. On the other hand our Eq. (21b) expressing BA in
terms of TA can be written in the equivalent form27

25In line 2 in Tomita’s Eq. (4.16), − 2a0
a PP0 should be − a0

2a PP
0,

in line 3, − 1
2
P0 should be −P0, and in line 4, − 1

2
P should be −P.

In addition the sign of Q, which appears in lines 1 and 4, should
be reversed.

26Here we have used (10) and m2 ¼ Ωm;0H2
0 to write the

equation ~BA ¼ H2
0ðf0 þ 3

2
Ωm;0ÞBA in [8] in the form

~BA ¼ 3
2
m2g−10 BA.

27Equation (21b), together with (20b), is an iterated integral.
Use xΩmH2 ¼ m2 in the integrand, reverse the order of integra-
tion and make use of the definition of IðxÞ.
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BA ¼ H
x2g

Z
x

0

ðIðxÞ − Iðx̄ÞÞm2TAðx̄Þdx̄;

IðxÞ ≔
Z

x

0

dx̄
Hðx̄Þ3 : ð70Þ

The common structure of (67) and (69) ensures that (68)
translates into Eq. (70), provided that g0 ¼ 3

5
.

We are now in a position to show that the expression for
ð2Þδp in [8] can be transformed into our expression. We first
convert the quadratic differential expressions in [8] in φ0

into our canonical expressions (2) in ζ using (A4a), (A4b),
(61) and (66). We then express gb and BA in the time-
dependent coefficients in terms of g and BA, using (66) and
(67). It is necessary to use (14) in order to eliminate the
derivatives ∂xBA. We find agreement except with the
coefficient of ζ2, which corresponds to the coefficient of
φ2 in Eq. (29) in [8]. We conclude that the term ðf−1Þ2−1
in this coefficient should be replaced by 2ðf − 1Þ2. The φ2

term then correctly specializes to − 8
3
ð1 − 2

5
anlÞφ2 when

one restricts consideration to the Einstein–de Sitter universe
(Λ ¼ 0), in agreement with Eq. (8) in [5].

V. CONCLUDING REMARKS

The results in this paper fall under three headings. First,
we have presented exact expressions for the second order
fractional density perturbation for dust, a cosmological
constant and spatial curvature in a simple and physically
transparent form in four popular gauges: the Poisson, the
uniform curvature, the total matter and the synchronous-
comoving gauges. Our results unify and generalize all
the known results in the literature, which are confined to the
case of zero spatial curvature and, when Λ > 0, to the
Poisson and synchronous-comoving gauges. Our approach
has two novel features. We have introduced a canonical
way of representing the spatial dependence of the pertur-
bations at second order which makes clear how the choice
of gauge affects the form of the expressions. In addition we
have formulated the time dependence in such a way that the
dynamics of the perturbations and the effect of spatial
curvature can be read off by inspection. In particular, in the
special case of zero spatial curvature we have shown that
the time evolution simplifies dramatically and requires the
use of only two nonelementary functions, the so-called
growth suppression factor g that arises at the linear level,
and one new function B at the second order level. We
emphasize that the assumption of zero decaying mode
underlies the simple expressions for ð2Þδ• that we have
presented. This assumption is usually made in cosmologi-
cal perturbation theory, presumably on the grounds that the
decaying mode will become negligible. However, if Λ > 0,
the name “decaying mode” is a misnomer since this mode,
after decaying in the matter-dominated epoch (Ωm ≈ 1),
increases when ΩΛ becomes significant and contributes to
the density perturbation on an equal footing with the

growing mode in the de Sitter regime. This is made clear
by the asymptotic expressions given in UW [see Eq. (66a)].
Into the past the decaying mode grows without bound on
approach to the initial singularity. On the other hand, if the
decaying mode is set to zero, the perturbations remain finite
into the past and one is essentially considering perturba-
tions in a universe with an isotropic singularity [28].
Second, we have made a detailed comparison of our

results with the known expressions for ð2Þδ in different
gauges when the background spatial curvature is zero.
Our canonical representation of the spatial dependence has
enabled us to unify seemingly disparate results, while at the
same time revealing a number of errors in the expressions in
the literature. For example, two expressions for ð2Þδp with
Λ > 0 have been given. The first, by Tomita [6], was
derived by solving the perturbation equations at second
order in the synchronous-comoving gauge and then trans-
forming to the Poisson gauge. The second, by Bartolo et al.
[8], was derived by solving the perturbation equations
directly in the Poisson gauge. The two expressions appear
to be completely different. However, by simplifying the B
functions of Bartolo and introducing our canonical repre-
sentation of the spatial dependence we have been able to
show, after correcting some typos, that both of these
expressions can be written in our canonical form for
ð2Þδp, which is given by (1), (54) and (55).
Third, we have given a systematic procedure for perform-

ing a change of gauge for second order perturbed quantities.
The derivation of our expressions for ð2Þδ• relied on solving
the perturbation equations in the Poisson gauge as done in
UW and then using our change of gauge procedure to
calculate ð2Þδ• in the other gauges. The procedure is easy to
implement in this application since the change of gauge
induces a simple change in the time-dependent coefficients
Ai;• in (1) while preserving the overall structure of ð2Þδ•.
However, we anticipate that the generality of our procedure
will make it useful in other contexts.
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APPENDIX A: SPATIAL
DIFFERENTIAL OPERATORS

The definitions of the spatial differential operators that
we use are as follows. First, the second order spatial
differential operators are defined by

D2 ≔ γijDiDj; Dij ≔ DðiDjÞ −
1

3
γijD2; ðA1Þ
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where Di denotes covariant differentiation with respect to
the conformal background spatial metric γij. Second, we
use the shorthand notation

ðDAÞ2≔ ðDkAÞðDkAÞ; DðAÞ≔SijðDiAÞðDjAÞ; ðA2Þ

whereA is a scalar field andSij is defined in (A3). Finally, we
define the mode extraction operators [see [27], Eq. (B11)]:

Si ¼ D−2Di; Sij ¼ 3

2
D−2ðD2 þ 3KÞ−1Dij; ðA3aÞ

Vj
i ¼ δji −DiSj; Vjk

i ¼ ðD2 þ 2KÞ−1Vhj
i D

ki; ðA3bÞ

T ij
km ¼ δhki δ

mi
j −DðiVjÞkm − DijSkm: ðA3cÞ

If some expression LðDiÞ involving Di scales as LðλDiÞ ¼
λpLðDiÞ under a rescaling of coordinates xi → λ−1xi,
η → λ−1η, we say that LðDiÞ has weight p in Di. It follows
that the canonical differential expressions in (2) have the
following weights28: ζ2;DðζÞ are of weight zero,
ðDζÞ2;D2DðζÞ;D2ζ2 are of weight two and
D2ðDζÞ2;D4DðζÞ are of weight four.
We now give identities involving the spatial differential

operators that we use to relate results in the literature to our
results:

AD2A ¼ 1

2
D2A2 − ðDAÞ2; ðA4aÞ

DiDjðDiADjAÞ ¼
1

3
D2½ðDAÞ2 þ 2ðD2 þ 3KÞDðAÞ�;

ðA4bÞ

DiðDiAD2AÞ¼−
1

6
D2½ðDAÞ2−4ðD2þ3KÞDðAÞ�; ðA4cÞ

ðDiDjAÞðDiDjAÞ ¼
2

3
½ðD2 − 3KÞðDAÞ2

− ðD2 þ 3KÞD2DðAÞ� þ ðD2AÞ2;
ðA4dÞ

DiDjðADiDjAÞ ¼ −
1

6
D2½2ðDAÞ2 þ 4ðD2 þ 3KÞDðAÞ

− 3ðD2 þ 2KÞA2�: ðA4eÞ

APPENDIX B: TRANSFORMATION LAWS FOR
GAUGE INVARIANTS

The first purpose of this Appendix is to define the gauge
invariants that are associated with the perturbed metric and
matter distribution. We do not, however, write out the

expressions for the gauge invariants in terms of gauge-
variant quantities since our strategy is to work solely with
gauge invariants. First we require the governing equations
that determine the gauge invariants in the Poisson gauge,
and these are given in UW. Second we require a framework
for determining how gauge invariants transform under a
change of gauge at second order. For example, given ð2Þδp
(Poisson gauge) how can one calculate ð2Þδc (uniform
curvature gauge) efficiently? The framework that we
present in this Appendix is based on the transformation
law for the perturbations of a given tensor field up to second
order under a gauge transformation, first given by Bruni
et al. [29]. This transformation law has been used for this
purpose in a number of specific cases (for example,
synchronous-comoving to Poisson [4,6], Poisson to uni-
form curvature [30], synchronous-comoving to total matter
[9] and Poisson to total matter [31].) Our goal is to give a
general framework that is valid for a specific gauge
invariant and two chosen gauges. In the body of the paper
we consider pressure-free matter, but in this Appendix we
assume that the matter content is a perfect fluid with
equation of state p ¼ wρ, w ¼ const, in order to increase
the applicability of the results.

1. Gauge invariants associated with an
arbitrary tensor field

In cosmological perturbation theory a second order
gauge transformation can be represented in coordinates
as follows:

~xa ¼ xa þ ϵð1Þξa þ 1

2
ϵ2ðð2Þξa þ ð1Þξa;bð1ÞξbÞ; ðB1Þ

where ð1Þξa and ð2Þξa are independent dimensionless back-
ground vector fields. We consider a one-parameter family
of tensor fields AðϵÞ, which we assume can be expanded in
powers of ϵ, i.e. as a Taylor series:

AðϵÞ ¼ ð0ÞAþ ϵð1ÞAþ 1

2
ϵ2ð2ÞAþ � � � ; ðB2Þ

where ð0ÞA is called the unperturbed value, ð1ÞA is called
the first order (linear) perturbation and ð2ÞA is called the
second order perturbation of AðϵÞ. Such a transformation
induces a change in the first and second order perturbations
of AðϵÞ according to

ð1ÞA½ξ� ¼ ð1ÞAþ £ð1Þξ
ð0ÞA; ðB3aÞ

ð2ÞA½ξ� ¼ ð2ÞAþ £ð2Þξ
ð0ÞAþ £ð1Þξð2ð1ÞAþ £ð1Þξ

ð0ÞAÞ; ðB3bÞ

where £ is the Lie derivative [see [29], Eqs. (1.1)–(1.3)].
One fixes a gauge by requiring some components of the
perturbations of some tensor fields ðrÞA½ξ�, ðrÞB½ξ�, etc., with
r ¼ 1, 2, to be zero, thereby determining unique values for28Note that H → λH and K → λ2K.
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ð1Þξa and ð2Þξa which we denote by ð1Þξa• and ð2Þξa• . Since
there is no remaining gauge freedom, the nonzero compo-
nents ðrÞ ~A½ξ•�, obtained by replacing ξ by ξ• in (B3), are
gauge invariants. We refer to Malik and Wands [20] (see
pp. 18–20) for an illustration of this process using the
Poisson gauge. When uniquely determined, the vector
fields ð1Þξa• and ð2Þξa• will be referred to as gauge fields.29

In order to derive a transformation law for gauge
invariants under a change of gauge we consider two gauge
fields ðrÞξa• and ðrÞξao and define

ð1ÞZa½ξ•; ξo� ≔ ð1Þξa• − ð1Þξao; ðB4aÞ
ð2ÞZa½ξ•; ξo� ≔ ð2Þξa• − ð2Þξao þ ½ð1Þξ•; ð1Þξo�a: ðB4bÞ

We now consider (B3) with ξ ¼ ξ• and ξ ¼ ξo and form the
difference of the two sets of equations. This leads to the
following transformation law relating the gauge invariants
ðrÞA½ξ•� and ðrÞA½ξo�:
ð1ÞA½ξ•� ¼ ð1ÞA½ξo� þ £ð1ÞZ

ð0ÞA; ðB5aÞ

ð2ÞA½ξ•� ¼ ð2ÞA½ξo� þ £ð2ÞZ
ð0ÞAþ £ð1ÞZð2ð1ÞA½ξo� þ £ð1ÞZ

ð0ÞAÞ;
ðB5bÞ

where ðrÞZ≡ ðrÞZa½ξ•; ξo�. We shall refer to the functions
ðrÞZa½ξ•; ξo�, which are gauge invariants, as the transition
functions. They are determined by the conditions that
specify the gauge fields ðrÞξa• and ðrÞξao. We note the formal
similarity between (B3) and (B5). In going from (B3) to
(B5) one replaces gauge-variant quantities by gauge-
invariant quantities: ðrÞA½ξ� by ðrÞA½ξ•� ¼ ðrÞA•, ðrÞA by
ðrÞA½ξo� ¼ ðrÞAo and ðrÞξ by ðrÞZ.

a. Shorthand notation for gauge invariants and
transition functions

The full notation for the first and second order gauge
invariants associated with a tensor AðϵÞ is ðrÞA½ξ•�, r ¼ 1, 2,
where ξ• is a gauge field. If there is no danger of confusion,
we will use a subscript notation:

ðrÞA• ≡ ðrÞA½ξ•�: ðB6aÞ

The full notation for the transition functions is ðrÞZa½ξ•; ξo�,
where ξ• and ξo are the two gauge fields. In general we will
use the kernel Z as shorthand for Z½ξ•; ξo�. If specific gauge
fields are used, for example, ξ• ¼ ξc and ξo ¼ ξp, we will
use subscripts:

Z≡ Z½ξ•; ξo�; Zc;p ≡ Z½ξc; ξp�: ðB6bÞ

The source terms in the transformation laws, which have
the general form F ½ð1ÞZ� or S½ð1ÞZ�, are quadratic in first
order gauge invariants. Specific source terms of the form
F ½ð1ÞZ•;p� or S½ð1ÞZ•;p� are quadratic in the first order gauge
invariants ð1ÞΨp, ð1Þδp and ð1Þvp. We will omit the super-
script (1) and the subscript p when there is no danger of
confusion.

2. The metric gauge invariants

The gauge invariants ðrÞgab½ξ� associated with the metric
gab are given by (B3) with the arbitrary tensor A chosen to
be gab. Since a−2gab is dimensionless we can define
dimensionless gauge invariants by

ðrÞfab½ξ� ≔ a−2ðrÞgab½ξ�: ðB7Þ

We choose the tensor A in Eq. (B5) to be gab and use (B7)
to obtain the following transformation law for ðrÞfab½ξ�:
ð1Þfab½ξ•� ¼ ð1Þfab½ξo� þ a−2£ð1ÞZða2γabÞ; ðB8aÞ

ð2Þfab½ξ•� ¼ ð2Þfab½ξo� þ a−2£ð2ÞZða2γabÞ þ F ab½ð1ÞZ�;
ðB8bÞ

where

F ab½ð1ÞZ� ≔ a−2£ð1ÞZð2a2ð1Þfab½ξo� þ £ð1ÞZða2γabÞÞ:
ðB8cÞ

Here γab is the conformally related background metric,
given by ð0Þgab ¼ a2γab.
We now perform a mode decomposition of ðrÞfab½ξ� as

follows30:

ðrÞf00½ξ� ¼ −2ðrÞΦ½ξ�; ðB9aÞ

ðrÞf0i½ξ� ¼ Di
ðrÞB½ξ� þ ðrÞBi½ξ�; ðB9bÞ

ðrÞfij½ξ� ¼ −2ðrÞΨ½ξ�γij þ 2DiDj
ðrÞC½ξ�

þ 2DðiðrÞCjÞ½ξ� þ 2ðrÞCij½ξ�: ðB9cÞ

We can apply the mode extraction operators defined in
Eqs. (A3) in Appendix A to (B8) to obtain the trans-
formation laws for the individual gauge invariants on the
right side of (B9), obtaining3129In previous papers [19,27,32] and UW, influenced by the

approach of Nakamura [33,34] to cosmological perturbations, we
used the kernel −X to denote a gauge field. Here we use the
kernel ξ but with a subscript, to indicate that the arbitrary vector
field ξa has been uniquely determined, thereby fixing a gauge.

30We use notation that is compatible with the notation in [27].
See Eqs. (24) and (B14).

31Here η is conformal time, and ∂η ¼ Hx∂x.
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ðrÞΦ½ξ•� ¼ ðrÞΦ½ξo� þ ð∂η þHÞðrÞZ0 −
1

2
F 00½Z�; ðB10aÞ

ðrÞB½ξ•� ¼ ðrÞB½ξo� − ðrÞZ0 þ ∂η
ðrÞZþ SiF 0i½Z�; ðB10bÞ

ðrÞΨ½ξ•� ¼ ðrÞΨ½ξo� −HðrÞZ0

−
1

6
ðF k

k −D2SijF̂ ijÞ½Z�; ðB10cÞ

ðrÞBi½ξ•� ¼ ðrÞBi½ξo� þ ∂η
ðrÞ ~Zi þ Vj

iF 0j½Z�; ðB10dÞ

ðrÞC½ξ•� ¼ ðrÞC½ξo� þ ðrÞZþ 1

2
SijF̂ ij½Z�; ðB10eÞ

ðrÞCi½ξ•� ¼ ðrÞCi½ξo� þ ðrÞ ~Zi þ Vjk
i F̂ jk½Z�; ðB10fÞ

ðrÞCij½ξ•� ¼ ðrÞCij½ξo� þ
1

2
T ij

kmF̂ km½Z�; ðB10gÞ

where r ¼ 1, 2. The source terms F ab½Z�, which are given
by (B8c), do not appear when r ¼ 1. We will give explicit
expressions for them later. Here we have decomposed the
transition functions ðrÞZa ≡ ðrÞZa½ξ•; ξo� according to

ðrÞZa ¼ ððrÞZ0; ðrÞZiÞ; ðrÞZi ¼ DiðrÞZþ ðrÞ ~Zi;

Di
ðrÞ ~Zi ¼ 0: ðB11Þ

3. Density gauge invariants

We choose A ¼ ρ, the matter density scalar in Eq. (B5).
On evaluating the Lie derivatives we obtain

ð1Þρ½ξ•� ¼ ð1Þρ½ξo� þ ð1ÞZ0ð0Þρ0; ðB12aÞ
ð2Þρ½ξ•� ¼ ð2Þρ½ξo� þ ð2ÞZ0ð0Þρ0

þ ðð1ÞZ0∂η þ ð1ÞZiDiÞð2ð1Þρ½ξo� þ ð1ÞZ0ð0Þρ0Þ;
ðB12bÞ

where 0 denotes differentiation with respect to conformal
time η. Here and in the rest of this section the kernel Z is
shorthand for Z½ξ•; ξo�. We introduce dimensionless gauge
invariants by normalizing with the inertial mass density:

ðrÞδ½ξ� ≔
ðrÞρ½ξ�

ð0Þρþ ð0Þp
; ðB13Þ

which in the case of dust is just the usual fractional density
perturbation. Then (B12) leads to the following trans-
formation law for the density gauge invariants:

ð1Þδ• ¼ ð1Þδo − 3Hð1ÞZ0; ðB14aÞ
ð2Þδ• ¼ ð2Þδo − 3Hð2ÞZ0 þ F δ½ð1ÞZ�; ðB14bÞ

where

F δ½ð1ÞZ� ≔ ðZ0ð∂η − 3ð1þ wÞHÞ
þ ZiDiÞð2δ½ξo� − 3HZ0Þ; ðB14cÞ

and we are using the shorthand notation (B6). Here we have
dropped the superscript (1) on the first order quantities on
the right-hand side of this equation. In deriving Eqs. (B14)
we used the following background equations for a perfect
fluid:

ð0Þρ0 ¼ −3Hðð0Þρþ ð0ÞpÞ; ð0Þp0 ¼ wð0Þρ0; ðB15Þ

where w is the constant equation of state parameter.

4. Velocity gauge invariants

The gauge invariants ðrÞua½ξ� associated with the covar-
iant unit vector field ua are given by (B3) with the arbitrary
tensor A chosen to be ua. Since a−1ua is dimensionless we
can define dimensionless gauge invariants by

ðrÞva½ξ� ≔ a−1ðrÞua½ξ�: ðB16Þ
Equation (B5), with the tensor A chosen to be ua, in
conjunction with (B16), then leads to the following trans-
formation law for ðrÞva½ξo�:
ð1Þva½ξ•� ≔ ð1Þva½ξo� þ a−1£ð1ÞZðað0ÞvaÞ; ðB17aÞ
ð2Þva½ξ•� ≔ ð2Þva½ξo� þ a−1£ð2ÞZðað0ÞvaÞ þ ðF vÞa½ð1ÞZ�;

ðB17bÞ

where

ðF vÞa½ð1ÞZ� ≔ a−1£ð1ÞZð2að1Þva½ξo� þ £ð1ÞZðað0ÞvaÞÞ;
ðB17cÞ

and að0Þva ≡ ð0Þua. Evaluating the Lie derivatives and
restricting to the spatial components yields the following:

ð1Þvi½ξ•� ¼ ð1Þvi½ξo� − Di
ð1ÞZ0; ðB18aÞ

ð2Þvi½ξ•� ¼ ð2Þvi½ξo� − Di
ð2ÞZ0 þ ðF vÞi½ð1ÞZ�; ðB18bÞ

where

ðF vÞi½ð1ÞZ� ≔ 2Z0ð∂η þHÞvi½ξo� − 2Φ½ξo�DiZ0

−
1

2
Dið∂η þ 2HÞðZ0Þ2 −DiðZjDjZ0Þ

þ 2ðZjDjvi½ξo� þ ðDiZjÞvj½ξo�Þ: ðB18cÞ

We now mode decompose ðrÞvi½ξ� into a scalar and vector
part according to vi ¼ Div þ ~vi,Di ~vi ¼ 0. On restricting to
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the purely scalar case at linear order (i.e. vi ¼ Div,
Zi ¼ DiZ), (B18) reduces to32

ð1Þv• ¼ ð1Þvo − ð1ÞZ0; ðB19aÞ
ð2Þv• ¼ ð2Þvo − ð2ÞZ0 þ F v½ð1ÞZ�; ðB19bÞ

where

F v½ð1ÞZ� ¼ 2SiðZ0ð∂η þHÞDiv½ξo� − Φ½ξo�DiZ0Þ

−
1

2
ð∂η þ 2HÞðZ0Þ2 − ðDjZÞDjðZ0 − 2v½ξo�Þ;

ðB19cÞ

and we are using the shorthand notation (B6).

5. Transformation laws between the Poisson, the
uniform curvature and the total matter gauges

The Poisson, uniform curvature and total matter gauges
all satisfy the following conditions on the metric gauge
invariants:

ðrÞC½ξ� ¼ 0; ðrÞCi½ξ� ¼ 0; ðB20Þ

for r ¼ 1, 2, where ξ is any of the gauge fields ξp, ξc and ξv.
It follows from (B10e) and (B10f) with r ¼ 1 that the
spatial part of the first order transition function ð1ÞZa

relating these three gauges will be zero:

ð1ÞZ½ξ•; ξ� ¼ 0; ð1Þ ~Zi½ξ•; ξ� ¼ 0; ðB21Þ
where ξ• and ξ can be chosen to be any two of the gauge
fields ξp, ξc and ξv. On the other hand, these three gauges
are distinguished by the specification of the temporal
gauge, as follows:

ðrÞB½ξp� ¼ 0; ðrÞΨ½ξc� ¼ 0; ðrÞv½ξv� ¼ 0; ðB22Þ
for r ¼ 1, 2, respectively.
We now give the components of the source terms F ab½Z�

in the transformation laws (B10), assuming that the linear
metric perturbation is purely scalar and that the conditions
(B20) and hence (B21) are satisfied. We calculate the Lie
derivatives in (B8c), making use of (B9), (B20) and (B21),
which leads to

F 00½ð1ÞZ� ¼ −2½Z0ð∂η þ 2HÞ þ 2ð∂ηZ0Þ�½ð∂η þHÞZ0 þ 2Φ½ξ��; ðB23aÞ

F 0i½ð1ÞZ� ¼ −½Z0ð∂η þ 2HÞ þ ð∂ηZ0Þ�DiðZ0 − 2B½ξ�Þ − 2ðDiZ0Þðð∂η þHÞZ0 þ 2Φ½ξ�Þ; ðB23bÞ

F k
k½ð1ÞZ� ¼ 6Z0ð∂η þ 2HÞðHZ0 − 2Ψ½ξ�Þ − 2ðDkZ0ÞDkðZ0 − 2B½ξ�Þ; ðB23cÞ

F̂ ij½ð1ÞZ� ¼ −2DhiðZ0 − 2B½ξ�ÞðDjiZ0Þ; ðB23dÞ

where Z0 ≡ Z0½ξ•; ξ�, and ξ• and ξ can be chosen to be any
two of the gauge fields ξp, ξc and ξv.
When evaluating the source terms (B14c), (B19c) and

(B23) in the following sections it is convenient to eliminate
the temporal derivatives of the first order gauge invariants
δ, v and Ψ in the Poisson gauge. To do this we use the
linearized conservation equations for a perfect fluid in the
following form33:

x∂xðδp − 3ΨpÞ þH−2D2ðHvpÞ ¼ 0; ðB24aÞ

Hðx∂x þ 1Þvp þΨp þ wðδp − 3HvpÞ ¼ 0; ðB24bÞ

and the velocity equation in the form

ðx∂x þ 1ÞΨp ¼ −
A
2H2

ðHvpÞ ðB24cÞ

[see Eqs. (15b) and (16b) in UW]. Here the scalar A is
given by

A ¼ 2ð−∂ηHþH2 þ KÞ ¼ 3ð1þ wÞH2Ωm; ðB25Þ

the second equality holding for a perfect fluid with linear
equation of state.34 In addition (B24b) and (B25) lead to

x∂xðHvpÞ ¼ −
A − 2K
2H2

ðHvpÞ −Ψp − wðδp − 3HvpÞ;
ðB26Þ

on noting that ∂η ¼ Hx∂x.
32Apply the mode extraction operator Si to the second of

Eqs. (B18) to get the second of Eqs. (B19). We introduce the
shorthand notation F v ≡ SiðF vÞi.33Choose ξ ¼ ξp in Eq. (43) in [19], and specialize to a perfect
fluid by setting Γ̄ ¼ 0, Ξ̄ ¼ 0 and noting that Φp ¼ Ψp. Also note
that Vp ¼ vp and D≡ δv ¼ δp − 3Hvp.

34See Eqs. (16) and (36) in [19], noting that the background
Einstein equations imply AG ¼ AT, or Eq. (6) in UW, but note
the typo: the signs on H0 and H2 are reversed.
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a. Transforming from the Poisson to the uniform
curvature gauge

The transition quantities ðrÞZ0
c;p ≡ ðrÞZ0½ξc; ξp� are

obtained by choosing ξ• ¼ ξc and ξo ¼ ξp in (B10c) and
using the second of Eqs. (B22). This leads to

Hð1ÞZ0
c;p ¼ ð1ÞΨp; ðB27aÞ

Hð2ÞZ0
c;p ¼ ð2ÞΨp −

1

6
ðF k

k − D2SijF̂ ijÞ½ð1ÞZc;p�: ðB27bÞ

Next, we substitute (B27) in (B14) with • and o replaced by
c and p, respectively, and obtain

ð1Þδc ¼ ð1Þδp − 3ð1ÞΨp; ðB28aÞ
ð2Þδc ¼ ð2Þδp − 3ð2ÞΨp þ Sδ½ð1ÞZc;p�; ðB28bÞ

where

Sδ½ð1ÞZc;p� ≔
1

2
ð2F δ þ F kk −D2SijF̂ ijÞ½ð1ÞZc;p�: ðB28cÞ

We now use (B14c), (B23), the first of Eqs. (B22), and
(B27a) to show that

Sδ½ð1ÞZc;p� ¼ 3Ψ½ð1þ 3wÞΨ− 2ð1þwÞδ� þ 2Ψx∂xðδ− 3ΨÞ
−H−2½ðDΨÞ2 −D2DðΨÞ�; ðB29Þ

where we for brevity drop the subscript p on the first order
quantities in the source terms. Finally we use (B24a) to
eliminate the temporal derivative, obtaining

Sδ½ð1ÞZc;p� ¼ 3Ψ½ð1þ 3wÞΨ − 2ð1þ wÞδ�
−H−2½2ΨD2ðHvÞ þ ðDΨÞ2 −D2DðΨÞ�:

ðB30Þ
In summary, Eq. (B28b), with the source term given by
(B30), is the transformation law that relates ð2Þδc to ð2Þδp.

b. Transforming from the Poisson
to the total matter gauge

The transition quantities ðrÞZ0
v;p ≡ ðrÞZ0½ξv; ξp� are

obtained by replacing • and o with v and p, respectively,
in (B19) and using the third of Eqs. (B22). This leads to

ð1ÞZ0
v;p ¼ ð1Þvp; ðB31aÞ

ð2ÞZ0
v;p ¼ ð2Þvp þ F v½ð1ÞZc;p�: ðB31bÞ

It follows from (B14) that ðrÞδv is related to ðrÞδp according to

ð1Þδv ¼ ð1Þδp − 3Hð1Þvp; ðB32aÞ
ð2Þδv ¼ ð2Þδp − 3Hð2Þvp þ Sδ½ð1ÞZv;p�; ðB32bÞ

where

Sδ½ð1ÞZv;p� ≔ ðF δ − 3HF vÞ½ð1ÞZv;p�: ðB32cÞ

Then we use (B14c), (B19c), the first of Eqs. (B22), and
(B31a) to calculate an explicit expression for the source term:

F δ½ð1ÞZv;p� ¼ Hvðx∂x − 3ð1þ wÞÞð2δ − 3HvÞ; ðB33aÞ

F v½ð1ÞZv;p� ¼ 2Si½HvDiðx∂xvÞ − ΦDiv� −Hvx∂xv:

ðB33bÞ

Eliminating the time derivatives using Eqs. (B24) and (B26)
and making use of (3) and (B25) we obtain

Sδ½ð1ÞZv;p� ¼ Hv

�
−6δþ 3

�
3 −

3

2
ð1þ wÞΩm þ Ωk

�
Hv

− 2H−2D2ðHvÞ
�
− 6wSiðδDiðHvÞÞ: ðB34Þ

In summary, Eq. (B32b),with the source termgiven by (B24),
is the transformation law that relates ð2Þδv to ð2Þδp.

6. Transforming from the Poisson to the uniform
density gauge

The uniform density gauge is defined by

ðrÞδ½ξρ� ¼ 0; ðB35Þ

with the spatial part of the gauge field fixed as for the
Poisson gauge in (B20). We specialize (B10c) by choosing
ξ• ¼ ξρ and ξ ¼ ξp, which relates ðrÞΨρ to ðrÞΨp.
Substituting Eq. (B35) in (B14) with • and o replaced
by ρ and p, respectively, yields expressions for the required
transition quantities ðrÞZ0

ρ;p ≡ ðrÞZ0½ξρ; ξp�, which when
substituted in (B10c) lead to

ð1ÞΨρ ¼ ð1ÞΨp −
1

3
ð1Þδp; ðB36aÞ

ð2ÞΨρ ¼ ð2ÞΨp −
1

3
ð2Þδp þ SΨ½Zρ;p�; ðB36bÞ

where

SΨ½Zρ;p� ≔ −
1

6
ð2F δ þ F k

k −D2SijF̂ ijÞ½Zρ;p�: ðB36cÞ

Finally it follows from (B14c), (B23) and (B24a) that
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SΨ½Zρ;p� ¼
1

9
δðð1þ 3wÞδþ 12ΨÞ

þ 1

27
H−2ððDδÞ2 −D2DðδÞ þ 6δD2HvÞ:

ðB36dÞ

7. Transforming from the total matter to the
synchronous-comoving gauge

In cosmological perturbation theory when considering
perturbations of FL universes containing pressure-free
matter that is irrotational one can specialize to the
synchronous-comoving gauge.35

In our notation this gauge is defined by the following
conditions:

ðrÞB½ξs� ¼ 0;
ðrÞΦ½ξs� ¼ 0;
ðrÞv½ξs� ¼ 0;

r ¼ 1; 2; ðB37Þ

where the subscript s stands for synchronous-comoving.
We have to determine the transition quantities ðrÞZ0

s;v ≡
ðrÞZ0½ξs; ξv� and ð1ÞZs;v ≡ ð1ÞZ½ξs; ξv�, where the subscript v
refers to the total matter gauge. First, since ðrÞv½ξv� ¼ 0, it

follows from (B37) and (B19) with ξ• ¼ ξs and ξ ¼ ξv that
the temporal parts are zero:

ð1ÞZ0
s;v ¼ 0; ð2ÞZ0

s;v ¼ 0; ðB38Þ

unlike in the previous cases. The spatial part is determined
as follows. Since ð1ÞB½ξs� ¼ 0 Eq. (B10b) with r ¼ 1
leads to

xH∂xðð1ÞZs;vÞ ¼ −ð1ÞBv ¼ ð1Þvp: ðB39Þ

Noting that in the case of dust we have Ax ¼ 3m2, which
follows from (5) and (B25), we can write (B24c) in the form

ð1Þvp ¼ −xH
�
2

3
m−2∂xðxð1ÞΨpÞ

�
: ðB40Þ

A comparison with (B39) leads to an exact temporal
differential, which when integrated yields a spatial function.
Setting this function to zero fixes the residual gauge freedom
in the synchronous-comoving gauge and leads to a one-to-
one gauge-invariant relationship with the total matter gauge
determined by

ð1ÞZs;v ¼ −
2

3
m−2xð1ÞΨp: ðB41Þ

Using (B38) and (B41) it follows from (B14) that

ð1Þδs ¼ ð1Þδv; ð2Þδs ¼ ð2Þδv −
4

3
xm−2ðDiδvÞðDiΨpÞ:

ðB42Þ
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