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We revisit the computation of logarithmic corrections to black holes with N ≥ 2 supersymmetry. We
employ an on-shell method that takes advantage of the symmetries in the AdS2 × S2 near horizon
geometry. For bulk modes interactions are incorporated through the spectrum of chiral primaries that we
derive afresh. The spectrum of boundary states is computed explicitly by analyzing gauge variations.
Elementary heat kernels in four and two dimensions then give the logarithmic corrections to the black hole
entropy. Our computation represents a streamlined and simplified derivation that agrees with the results
recently found by A. Sen.
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I. INTRODUCTION

The microscopic understanding of black hole quantum
states gives counting formulas that encode numerous
corrections to the standard Bekenstein–Hawking area
law. Among such corrections the logarithmic ones have
particular significance because these are independently
computable from the effective low energy theory in the
vicinity of the black holes [1–3]. The logarithmic correc-
tions therefore allow a sensitive check on any proposed
microscopic model. Conversely, in cases where no micro-
sopic model is available, the logarithmic corrections
provide a robust clue that may lead to the construction
of such a model [4,5].
The computation of logarithmic corrections from the low

energy theory is straightforward in principle [6]: determine
the quadratic fluctuations around the black hole back-
ground and then compute the resulting functional deter-
minant using standard techniques. However, in practice
these steps can be quite laborious. The theories of interest
in string theory generally have elaborate matter content that
results in many distinct contributions to quantum correc-
tions. Gauge symmetries (including diffeomorphism invari-
ance) further complicate the situation by introducing ghost
sectors that can be quite nontrivial. The logarithmic
corrections to black holes were developed in many recent
works including [7–11].
The goal of this paper is to present a simplified

computation of logarithmic corrections to the black hole
entropy. The streamlined procedure we present promotes
transparency and makes it realistic to address more com-
plicated settings. In this paper we limit ourselves to BPS
black holes which have AdS2 × S2 near horizon geometry.
In this context important aspects of our strategy are these:

(i) The spectrum of chiral primaries: a large number of
interactions between different fields generally leads
to unwieldy matrices at intermediate stages of the
computation. We diagonalize the interactions by first
computing the spectrum of chiral primaries. This
spectrum encodes all information about the inter-
actions that is needed.
To highlight the origin of these simplifications in
symmetry principles, we give a self-contained der-
ivation of the black hole spectrum. Our method is
indirect, but it is efficient and new to this context.
Further, our independent computation of the spec-
trum identifies several details that have previously
been overlooked.

(ii) Simplified functional determinants: we reduce the
field content of the four-dimensional (4D) theory to
a set of fields on AdS2 and its boundary. The only
functional determinants we need are those for
massless scalars and fermions in AdS2. The addi-
tional data that are special to each field we consider
are encoded in a discrete sum over masses. This
organization of the computation represents a sim-
plification because it does not require measures and
contours for continuous complex eigenvalues. We
also do not need explicit wave functions.

(iii) Gauge-fixing and ghosts: we compute quantum
corrections by summing over contributions from
physical fields only. The unphysical sector compris-
ing pure gauge modes, longitudinal modes, and
ghosts ultimately cancel in the physical quantities
of interest. We use an on-shell method in which
these quantities are not needed in intermediate stages
of the computation.

(iv) Boundary modes: gauge symmetries (including
supersymmetry and diffeomorphism invariance)
give rise to physical modes that localize on the
boundary. We determine the quantum numbers of
these modes by analyzing the action of the relevant

*keelerc@umich.edu
†larsenf@umich.edu
‡plisbao@umich.edu

PHYSICAL REVIEW D 90, 043011 (2014)

1550-7998=2014=90(4)=043011(16) 043011-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.043011
http://dx.doi.org/10.1103/PhysRevD.90.043011
http://dx.doi.org/10.1103/PhysRevD.90.043011
http://dx.doi.org/10.1103/PhysRevD.90.043011


symmetry. Their contribution is then computed by
treating them as two-dimensional (2D) fields on
the S2.

The physical modes that contribute to the one-loop
functional determinant are the 4D bulk modes, the 2D
boundary modes, and the zero-dimensional zero-modes.
Adding the contributions together, our final result for
logarithmic corrections to extremal black hole entropy in
theories with N ≥ 2 supersymmetry (SUSY) becomes

S¼ 1

4
AHþ 1

12
½23−11ðN −2Þ−nV þnH� logAH: ð1:1Þ

This final result agrees perfectly with those reported by A.
Sen and collaborators [2,12,13]. Some important special
cases of the formula are as follows:

(i) TheN ¼ 4 theory: Such theories have nV ¼ nH þ 1
because one N ¼ 2 vector is part of the N ¼ 4
supergravity multiplet, while each N ¼ 4 matter
multiplet is composed of one N ¼ 2 vector and one
N ¼ 2 hyper multiplet. In this case the logarithmic
correction vanishes independently of the number of
N ¼ 4 matter multiplets.

(ii) The N ¼ 6 theory: nV ¼ 7 and nH ¼ 4 so that the
logarithmic correction is δS ¼ −2 logAH.

(iii) The N ¼ 8 theory: nV ¼ 15 and nH ¼ 10
so δS ¼ −4 logAH.

We evaluate the functional determinants using heat
kernel techniques. In 4D the leading term in the heat
kernel is a double pole. These double poles cancel in each
N ¼ 2 multiplet by itself. This corresponds to vanishing
cosmological constant in 4D and is due to the degeneracy
of bosons and fermions in the on-shell SUSY multiplets.
The simple pole in the heat kernel receives contributions

from the 2D boundary modes that are nontrivial since there
is not the same number of bosonic and fermionic sym-
metries. It also receives a contribution from mixing
between the bulk modes. It is a consistency check on
our computations that the sum of these terms vanish for any
theory with at least N ¼ 4 [14]. For the more general
theories, we consider the coefficient of the pole in the heat
kernel is nontrivial. This part of our result can be inter-
preted as the renormalization of the gravitational coupling
constant.
The logarithmic corrections to the black hole entropy are

encoded in the constant term of the heat kernel so
contributions from both bulk modes and boundary modes
must be computed with sufficient precision that the con-
stant is determined. Additionally, there are contributions
from zero modes.
The indirect methods we pursue in this paper stress the

origin of particle spectra in symmetry, but at times they
leave room for suspicion. In a companion paper, we will
present the explicit mode expansions that underpin the
physical spectrum [15].

This paper is organized as follows. In Sec. II we
determine the spectrum of chiral primaries using an indirect
argument that exploits symmetries. We resolve a discrep-
ancy with results reported in the literature. In Sec. III we
review the simple heat kernels we need. We provide a self-
contained presentation in order to highlight the complete
absence of advanced techniques. In Sec. IV we apply the
heat kernels to the physical spectrum determined in Sec. II.
We thus compute the contribution to the heat kernel from
all bulk modes. In Sec. V we discuss gauge symmetries and
use them to determine the spectrum of boundary modes.
This yields an additional contribution to the heat kernel. In
Sec. VI we briefly review the correction to the heat kernel
due to zero modes on the boundary. Finally, in Sec. VII we
add the various contributions to the heat kernel, and we
discuss the relation to trace anomalies. This gives the
logarithmic correction to the black hole entropy (1.1).

II. CLASSICAL MODES

The spectrum of the black hole is the set of quantum
numbers for fluctuations around the black hole background.
In this section we use symmetry principles to determine the
BPS part of the spectrum, that is, the part that saturates the
Bogomol’nyi–Prasad–Sommerfield (BPS) bound.
We consider a 4D theory with (at least) N ¼ 2 SUSY.

We further focus on the near horizon region of black holes
that preserve at least some of the supersymmetry. This
geometry always takes the form AdS2 × S2. The attractor
mechanism ensures that gravity and the graviphoton are the
only fields turned on in the near horizon geometry of the
black hole [16].
Fields in the AdS2 × S2 background are classified by the

quantum numbers of the SLð2Þ × SUð2Þ isometries. We are
particularly interested in the lowest weight representations,
which we denote by ðh; jÞ. Here h is the lowest eigenvalue
of the L0 generator of SLð2Þ, and j refers to the SUð2Þ
representation. The ðh; jÞ representation thus has degen-
eracy ð2jþ 1Þ from its SUð2Þ representation and also an
infinite tower of states with L0 values h; hþ 1; hþ 2;….
The BPS spectrum of the black hole is a list of the ðh; jÞ
that are realized by fluctuations in the background.
Themassless field content of a general theorywithN ≥ 2

SUSY can be decomposed into a set of N ¼ 2 multiplets:
(i) A supergravity multiplet.
(ii) N − 2 (massive) gravitino multiplets (because two

of the N gravitinos are in the N ¼ 2 supergravity
multiplet).

(iii) nV vector multiplets.
(iv) nH hyper multiplets.

A. Determination of BPS spectra

It is useful to organize the particle content of N ¼ 2
multiplets according to their helicity content. Suppose that
the maximum helicity state in a givenN ¼ 2multiplet is λ.
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Upon action with one of the two SUSY generators, we then
find two states with helicity λ − 1

2
, and, upon action with

both of them, we find a single state with helicity λ − 1. This
universal structure gives the helicity content of eachN ¼ 2
multiplet:

Supergravity multiplet∶ λ ¼ �2;� 3

2
× 2;�1;

Gravitino multiplet∶ λ ¼ � 3

2
;�1 × 2;� 1

2
;

Vector multiplet∶ λ ¼ �1;� 1

2
× 2; 0 × 2;

Hypermultiplet∶ λ ¼ � 1

2
× 2; 0 × 4: ð2:1Þ

The notation ×2 indicates a multiplicity of 2. In the first
three kinds of multiplets, we included the CPT conjugate
states with negative helicity as one must in field theory
realizations. The hypermultiplet was automatically CPT
invariant, but we double its field content anyway. With this
convention the hypermultiplet is a “full” hypermultiplet
with four real scalars and two Weyl spinors.

The field equations for quadratic fluctuations are
linear. Moreover, we can introduce global flavor sym-
metries unique to each type of N ¼ 2 supermultiplet, and
this ensures that there is no mixing between different
types of N ¼ 2 supermultiplets. We can therefore consider
the supergravity multiplet, the (massive) gravitino
multiplets, the vector multiplets, and the hypermultiplets
independently.
The expansion of 4D fields in partial waves on S2 gives

an effective 2D theory on AdS2. The SUð2Þ representations
that appear are determined by the general rules that govern
Kaluza–Klein reduction on homogeneous spaces [17]. In
the case of the coset S2 ¼ SUð2Þ=Uð1Þ, the quantum
number under Uð1Þ can be identified with the helicity λ,
and the SUð2Þ representations that appear in the reduction
are precisely those where λ appears in the decomposition of
SUð2Þ with respect to Uð1Þ. Thus, the allowed angular
momentum quantum numbers for a helicity mode λ are
j ¼ jλj; jλj þ 1;…. Starting from the helicity content of the
fields (2.1), we can therefore present the SUð2Þ content in
terms of towers,

Supergravity multiplet∶ j ¼ ðkþ 2Þ × 2;

�
kþ 3

2

�
× 4; ðkþ 1Þ × 2;

Gravitino multiplet∶ j ¼
�
kþ 3

2

�
× 2; ðkþ 1Þ × 4;

�
kþ 1

2

�
× 2;

Vector multiplet∶ j ¼ ðkþ 1Þ × 2;

�
kþ 1

2

�
× 4; k × 2;

Hypermultiplet∶ j ¼
�
kþ 1

2

�
× 4; k × 4; ð2:2Þ

with k ¼ 0; 1;….
The BPS spectrum of the black hole amounts to the

specification of the value of the AdS2 energy h for each of
these SUð2Þmultiplets. These energies depend on couplings
between the fields. The simplification captured by the
enumeration in Eq. (2.2) is that these couplings respect the
partial wave expansion: only fields with the same j can mix.
The actual value of the AdS2 energy h is determined by

supersymmetry as follows. The AdS2 × S2 geometry pre-
serves the supergroup SUð2j1; 1Þ. This supergroup has
eight SUSY charges, the same as the number in N ¼ 2
SUSY in four dimensions. These generators can be repre-
sented in terms of two component spinors QA (A ¼ 1; 2)
and their conjugates. The corresponding charges all have
quantum numbers h ¼ 1=2 and j ¼ 1=2. They transform as
doublets of the global SUð2Þ symmetry acting on the
A ¼ 1; 2 index. We will suppress reference to this global
SUð2Þ in the following in order to avoid confusion with the
SUð2Þ rotation group. Since SUSY is preserved by the
background, fluctuating fields must organize themselves

into supermultiplets after the mixing is taken into account.
Starting from a lowest weight state ðh; jÞ, a supermultiplet
is obtained by acting with the supercharges that function as
creation operators.
The fields we consider will all be in chiral multiplets of

the form

ðk; kÞ; 2
�
kþ 1

2
; k −

1

2

�
; ðkþ 1; k − 1Þ; ð2:3Þ

with the possible values of k ¼ 1
2
; 1; 3

2
;…. In the special

case where k ¼ 1
2
, the SUð2Þ quantum number j ¼ − 1

2
of

the final term in Eq. (2.3) should be interpreted as an empty
representation.
The chiral multiplets (2.3) are short multiplets. They are

special in two (related) ways: the lowest weight state has
h ¼ j, and also the supercharges always act in a manner
that lowers the spin. A generic long representation would
have four active supercharges so that the span of spins in a
single multiplet would be two. Such representations are
therefore too large for our purpose.
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There is a unique way to organize the fields with SUð2Þ content (2.2) into chiral multiplets of the form (2.3). This gives
the list of fields:

Supergravity multiplet∶2
�
ðkþ 2; kþ 2Þ; 2

�
kþ 5

2
; kþ 3

2

�
; ðkþ 3; kþ 1Þ

�
;

Gravitino multiplet∶2
��

kþ 3

2
; kþ 3

2

�
; 2ðkþ 2; kþ 1Þ;

�
kþ 5

2
; kþ 1

2

��
;

Vector multiplet∶2
�
ðkþ 1; kþ 1Þ; 2

�
kþ 3

2
; kþ 1

2

�
; ðkþ 2; kÞ

�

Hypermultiplet∶2
��

kþ 1

2
; kþ 1

2

�
; 2ðkþ 1; kÞ;

�
kþ 3

2
; k −

1

2

��
: ð2:4Þ

As before k ¼ 0; 1…. This is the complete spectrum of the
black hole. In particular the spectrum is determined entirely
by symmetries.

B. Explicit computations

The determination of the on-shell spectrum using sym-
metry constraints illuminates its group theory origin.
However, the indirect nature of the method may leave
some conceptual unease. It is therefore worthwhile to
consider an alternative, the explicit diagonalization of
the action expanded to quadratic order. This approach
was carried out over a decade ago for the case of pure
N ¼ 2 SUGRA [18] and for the maximally supersym-
metric theory with N ¼ 8 SUSY [19,20]. Combination of
the final tables in these references yields towers of
multiplets that can be compared with our results (2.4) that
apply to the slightly more general case in which N ¼ 2
SUGRA is coupled toN − 2 (massive) gravitini multiplets,
nV vector multiplets, and nH hypermultiplets. The results in
the references agree precisely with Eq. (2.4) with one
exception: all previous works report an additional chiral
multiplet. In our notation the additional states that were
reported correspond to the extension of one of the two
supergravity multiplet towers in Eq. (2.4) to include the
mode k ¼ −1. Thus, the primary states reported in
Refs. [18–20] but absent from our analysis are

ð1; 1Þ; 2
�
3

2
;
1

2

�
; ð2; 0Þ: ð2:5Þ

It is instructive to find the origin of this discrepancy.
As a starting point for this specific purpose, it is

sufficient to consider 4D Einstein gravity coupled to a
Uð1Þ gauge field,

L4 ¼
1

16πG

�
Rð4Þ −

1

4
FIJFIJ

�
: ð2:6Þ

We use 4D indices I; J;…; AdS2 indices μ; ν;…; and S2

indices α; β;…. One solution to this theory is the AdS2 × S2

geometry supported by the magnetic monopoleFαβ ¼ 2ϵαβ.

With this normalization the AdS2 and S2 radii are both 1.
The Freund–Rubin reduction on S2 is realized by the 4D
geometry,

ds2 ¼ gμνdxμdxν þ XdΩ2
2; ð2:7Þ

where gμν andX are arbitrary functions of the 2Dcoordinates
xμ, μ ¼ 1; 2. The effective 2D Lagrangian becomes

L2 ¼
1

4G

�
XRð2Þ þ 2 −

2

X
þ ð∇XÞ2

2X

�
: ð2:8Þ

Theequationsofmotion are obtaineduponvariationofL2 by
the scalar X,

Rð2Þ þ 2

X2
þ ð∇XÞ2

2X2
−
1

X
∇2X ¼ 0; ð2:9Þ

and by the metric gμν,

X

�
Rð2Þ

μν −
1

2
gμνRð2Þ

�
þ 1

2X

�
∇μX∇νX −

1

2
gμνð∇XÞ2

�

− gμν

�
1 −

1

X

�
þ gμν∇2X −∇μ∇νX ¼ 0: ð2:10Þ

Recall that the Riemann tensor has just a single component

in two dimensions so after contractions Rð2Þ
μν ¼ 1

2
gμνRð2Þ

identically for any 2D geometry, not just for symmetric
geometries. The first term in Eq. (2.10) therefore vanishes
identically.Wewrite this termtemporarilybecause it reminds
us thatEq. (2.10) is theEinsteinequationwhileEq. (2.9) is the
equation of motion for the 2D matter field X. As a check on
Eqs. (2.9) and (2.10), note that the AdS2 geometry satisfies
theseequationswithRð2Þ ¼ −2andX ¼ 1.Thiscorresponds
to AdS2 and S2 radii equal to 1.
The Einstein equation (2.10) decomposes into the trace,

∇2X ¼ 2

�
1 −

1

X

�
; ð2:11Þ

and [upon use of Eq. (2.11)] the traceless equation
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�
∇μ∇ν −

1

2
gμν∇2

� ffiffiffiffi
X

p
¼ 0: ð2:12Þ

Taking Eq. (2.11) in isolation, we find that small variations
δX around the background X ¼ 1 satisfy a Klein–Gordon
equation with m2 ¼ 2. In AdS2 scalar excitations with this
mass have conformal weight h ¼ 2. The excitations
described by the Freund–Rubin compactification (2.7)
are spherically symmetric (j ¼ 0), so this mode would
have quantum numbers ðh; jÞ ¼ ð2; 0Þ. Comparison with
Eq. (2.5) shows that this is exactly the mode that the explicit
analyses recognize as physical, but our indirect analysis
does not. We will show that the discrepancy is due to the
constraints expressed by Eq. (2.12).
For perspective on the discrepancy, recall the elementary

counting of degrees of freedom. Perturbative 2D gravity is
described by the symmetric tensor δgμν ¼ hμν with three
components. Diffeomorphisms δξhμν ¼ ∂μξν þ ∂νξμ
impose equivalences that render two components of hμν
redundant. The equations of motion resulting from varia-
tions of those two components further impose two con-
straints, so the net number of degrees of freedom in pure 2D
gravity is -1. This awkward counting is special to two
dimensions where it is indeed well known for theories such
as dilaton gravity (see, e.g., Ref. [21]). It implies that the
combination of 2D gravity (described by hμν) and a scalar
field (in the present context the 2D scalar field X) will have
no degrees of freedom.
There are several known exceptions to this simple type

of counting: there may be important quantum effects
(captured by a class of matrix models), or there may be
classical degrees of freedom in less than two dimensions. In
the present context, there are indeed one-dimensional
boundary states, but they should not be confused with
bulk degrees of freedom, which is where we differ from
previously reported results.
To make the general discussion on the counting of

degrees of freedom more explicit, we fix the gauge gzz ¼
1; gzt ¼ 0 and so consider the 2D geometry in the form

ds2 ¼ −e2ρdt2 þ dz2; ð2:13Þ

where ρ ¼ ρðt; zÞ is an arbitrary function. In this gauge we
can represent the background AdS2 as either just the
Poincaré patch (with e2ρ0 ¼ e2z) or global AdS2 (with
e2ρ0 ¼ cosh2 z) or as an AdS2 black hole (with
e2ρ0 ¼ sinh2z). For any of these backgrounds, the zz and
zt components of Eq. (2.12) give

ð∂2
z − 1ÞδX ¼ 0;

∂zðe−ρ0∂tδXÞ ¼ 0 ð2:14Þ

after linearization. The first equation was simplified using
Eq. (2.11). These equations are constraints on fluctuations
δX. If δX were a propagating field, we would be able to

specify δX and its time derivative ∂tδX for all z at an initial
time and then use the equations of motion to find δX at later
times. The constraints (2.14) show that this is impossible;
once we have given δX and ∂tδX for large z, initial
conditions are specified for all z. Thus, δX is in fact a
boundary degree of freedom.
We have not yet analyzed the equation of motion (2.9),

which relates the curvature Rð2Þ to the scalar field X. The
Ricci curvature of Eq. (2.13) is

Rð2Þ ¼ −2e−ρ∂2
zeρ; ð2:15Þ

so Eq. (2.9) can be recast as

2δX ¼ ∇2δX ¼ −
1

2
δRð2Þ ¼ e−ρ0ð∂2

z − 1Þδρ: ð2:16Þ

This demonstrates that perturbations δρ with ∂2
zδρ ¼ 1 are

independent degrees of freedom.
In summary, in this subsection we analyzed the spheri-

cally symmetric sector of gravity comprising the 2D metric
hμν and the scalar field X encoding the size of the S2. We
find that after taking gauge fixing and constraints into
account the bulk theory has no physical states but two
boundary degrees of freedom remain.

C. Boundary modes

The table (2.4) enumerates all bulk modes of the black
holes. In addition to these modes, there are boundary
modes. The boundary modes are closely associated with
gauge symmetries of the theory. Each component of a
gauge symmetry allows the removal of one component
field. Additionally, the equation of motion for the compo-
nent thus removed ceases to be dynamical; it becomes a
constraint. As discussed in the previous subsection, con-
straints limit the dynamics of the theory by restricting the
independent initial data. In the context of AdS2, each
constraint gives rise to one boundary mode.
We first consider the supergravity multiplet. The per-

turbation hIJ of the 4D metric has 10 components.
Diffeomorphisms δξhIJ ¼ ∂IξJ þ ∂JξI are generated by
the vector field ξI with four components. Thus, the graviton
has six components subject to four constraints. This yields
a net of two physical degrees of freedom in the bulk, as it
should. But in addition the boundary data on the four
constraints give rise to four boundary degrees of freedom.
These boundary degrees of freedom have the quantum
numbers of the diffeomorphism generator ξI. In particular,
they have helicity content λ ¼ �1; 0; 0.
A chiral gravitino ΨI has six components after the

Rarita–Schwinger constraint γIΨI ¼ 0 is taken into
account. After gauge fixing of local supersymmetry
(generated by a chiral spinor with two components), it
has four components subject to two constraints. This yields
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a net of two physical degrees of freedom but also two
boundary degrees of freedom.
Finally, the graviphoton AI has four components. The

Uð1Þ gauge symmetry removes one component, so three
components remain, which are subject to one constraint.
This gives two physical components for the graviton in the
bulk but also a single boundary degree of freedom.
Proceeding similarly for the (massive) gravitino multi-

plet and the vector multiplet, the helicity content of all
physical boundary modes becomes

Supergravity multiplet∶ λ ¼ �1;� 1

2
× 2; 0 × 3;

Gravitino multiplet∶ λ ¼ � 1

2
; 0 × 2;

Vector multiplet∶ λ ¼ 0: ð2:17Þ

The hypermultiplet is not mentioned since it does not have
any gauge degrees of freedom and therefore no boundary
states. The helicity content (2.17) in turn determines the
SUð2Þ content of the boundary modes as

Supergravitymultiplet∶ j¼ðkþ1Þ×2;

�
kþ1

2

�
×4;k×3;

Gravitinomultiplet∶ j¼
�
kþ1

2

�
×2;k×2;

Vector multiplet∶ j¼k; ð2:18Þ

with k ¼ 0; 1;….
Our discussion of boundary states here focuses on gauge

invariance. As such it is based on the off-shell (unphysical)
components of the various fields. The on-shell supersym-
metry realized by the fields we consider does not extend a
simple way to these off-shell degrees of freedom. In the
absence of further data, it is therefore not possible to
compute the conformal weights of these fields from super-
conformal invariance alone.
Two of the three j ¼ 0 fields in the supergravity

multiplet are the δρ and δX discussed explicitly in the
previous subsection. Similar computations for the remain-
ing fields determine the full spectrum of boundary states
[15]. In Sec. V we determine the spectrum of boundary
states by exploiting symmetries.

III. HEAT KERNEL EXPANSION:
ELEMENTARY EXAMPLES

This section reviews the basics of the heat kernel
method [6,22,23]. We introduce notation and also give
elementary evaluations of the key examples that later will
be generalized.

A. Functional determinants and the heat kernel

One-loop quantum corrections are encoded in Euclidean
path integrals taking a Gaussian form, which we present
schematically as

e−W ¼
Z

Dϕe−ϕΛϕ ¼ 1ffiffiffiffiffiffiffiffiffiffi
detΛ

p : ð3:1Þ

The kinetic operator generally includes a mass term
Λ ¼ −Δþm2. We suppress the indices on ϕ that enumer-
ate components of the field such as those that incorporate
Lorentz structure.
After UV regulation the effective action W becomes

W¼ 1

2
ln detΛ¼ 1

2

X
i

ln λi ¼−
1

2

Z
∞

ϵ2
ds

DðsÞ
s

; ð3:2Þ

where fλig are the eigenvalues of Λ and the heat kernel

DðsÞ ¼ Tre−sΛ ¼
X
i

e−sλi : ð3:3Þ

We use a notation where the eigenvalues λi are assumed
discrete even though in practice they may be continuous.
Also, in cases where the fields are fermionic, the determi-
nant in Eq. (3.1) should be in the numerator instead, and
then the contribution to the effective action (3.2) will enter
with the opposite sign.
The heat kernel terminology arises because it is often

useful to express DðsÞ as

DðsÞ ¼
Z

dDxKðx; x; sÞ; ð3:4Þ

where the Green’s function satisfies the heat equation

ð∂s þ ΛxÞKðx; x0; sÞ ¼ 0; ð3:5Þ

with the boundary condition Kðx; x0; sÞ ¼ δðx − x0Þ at
s ¼ 0. The Green’s function can be expanded on a
complete basis as

Kðx; x0; sÞ ¼
X
i

e−sλifiðxÞf�i ðx0Þ; ð3:6Þ

where ffig are the normalized eigenfunctions of Λ with
eigenvalues fλig. Inserting this expansion in Eq. (3.4) and
using the normalization condition, we do indeed re-
cover Eq. (3.3).
As an example, in flat space with D Euclidean dimen-

sions, the eigenfunctions of the kinetic operator are plane
waves eikx, and the eigenvalues are k2 þm2. The expres-
sion (3.6) becomes a Gaussian integral, which upon
integration gives the Green’s function
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Kflatðx; x0; sÞ ¼
�

1

4πs

�D
2

e−
1
4sðx−x0Þ2−m2s: ð3:7Þ

Inserting this expression in Eq. (3.4), we find the heat
kernel for a massless scalar field:

DflatðsÞ ¼
�

1

4πs

�D
2

Vol: ð3:8Þ

This expression gives the leading asymptotic behavior for
small s (small distance) in any geometry. A standard
approach to curved space examples is to correct the flat
space result (3.8) perturbatively (see, e.g., Ref. [22]). This
gives an expansion in small s with coefficients that are
scalars formed from the curvature. For example, for a
minimally coupled scalar field,

KsðsÞ ¼
�

1

4πs

�D
2

�
1þ s

6
Rþ s2

360
ð5R2 − 2RIJRIJ

þ 2RIJKLRIJKLÞ þ � � �
�
: ð3:9Þ

Similar expansions apply to other fields.
In our computations we will actually not employ the heat

equation (3.5), and, related to that, we will avoid the
explicit eigenfunctions. Instead we will compute DðsÞ
directly from Eq. (3.3) by explicit summation over eigen-
values. In the homogeneous spaces, we focus on the
corresponding heat kernel density given by

KðsÞ ¼ 1

Vol
DðsÞ: ð3:10Þ

For a sphere S2 with radius a, the volume is simply
VolS ¼ 4πa2. For AdS2 the volume diverges, but it can
be regulated near the boundary

VolA ¼ 2πa2
Z

ρmax

0

dρsinhρ¼ 2πa2ðcoshρmax−1Þ: ð3:11Þ

In the context of AdS/CFT, it is often appropriate to remove
the cosh ρmax by adding terms that are intrinsic and local on
the boundary. This gives VolA ¼ ð−2πa2Þ for the renor-
malized volume of AdS2. We do not use this value since a
positive volume makes it easier to track signs for fermions
and bosons. The dependence of the actual (regulated)
volume (3.11) on a cutoff will anyway cancel in physical
results, so we can effectively take VolA ¼ þ2πa2 when an
explicit volume is needed.
Although our strategy is to compute DðsÞ using the sum

(3.3), we will quote results in terms of KðsÞ using the
relation (3.10). This practice will facilitate comparison with
the literature.

B. Scalar on S2

The heat kernel on the 2-sphere S2 is of special
importance to us since it will serve as the building block
for all our computations.
The determination of this heat kernel is particularly

simple because the eigenvalue problem of the Laplacian on
S2 has been studied by all physics students since their first
course in quantum mechanics. The possible eigenvalues of
−∇2 are lðlþ 1Þ with each value of the orbital angular
momentum l ¼ 0; 1;… appearing with degeneracy 2lþ 1
corresponding to the possible azimuthal quantum numbers
m ¼ −l;…; l. The corresponding eigenfunctions are the
spherical harmonics Ylm. These basic facts immediately
give the heat kernel (density) for a minimally coupled
scalar field on S2:

Ks
SðsÞ ¼

1

4πa2
X∞
k¼0

e−skðkþ1Þð2kþ 1Þ: ð3:12Þ

We can expand for small s using the Euler–MacLaurin
formula in the form simplified for functions with
fðnÞð∞Þ ¼ 0:

X∞
k¼0

fðkÞ ¼
Z

∞

0

dkfðkÞ þ 1

2
ðfð0Þ þ fð∞ÞÞ þ

X∞
n¼1

B2n

ð2nÞ! ðf
ð2n−1Þð∞Þ − fð2n−1Þð0ÞÞ

¼
Z

∞

0

dkfðkÞ þ 1

2
fð0Þ − 1

12
f0ð0Þ þ 1

720
f000ð0Þ þ � � � ð3:13Þ

The sum (3.12) then gives

Ks
SðsÞ ¼

1

4πa2

�Z
∞

0

dke−skðkþ1Þð2kþ 1Þ þ 1

2
−

1

12
ð2 − sÞ þ 1

720
ð−12sÞ þOðs2Þ

�

¼ 1

4πa2s

�
1þ 1

3
sþ 1

15
s2 þ � � �

�
: ð3:14Þ
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C. Fermion on S2

Relativistic fermions on S2 transform in the
2jþ 1-dimensional representations of the rotation
group with half-integral values j ¼ 1

2
; 3
2
;…. The square

of the Dirac operator is a scalar, so it commutes
with the angular momentum operator. Indeed, these
operators are essentially the same (see, e.g., Ref. [24]):

−D2
F ¼ ~J2 þ 1

4
: ð3:15Þ

The eigenvalues needed for the heat kernel are thus
jðjþ 1Þ þ 1

4
¼ ðjþ 1

2
Þ2. Introducing the integer k ¼ j −

1
2
¼ 0; 1;… we write the analog of Eq. (3.12) for one

fermionic degree of freedom:

Kf
SðsÞ ¼

1

4πa2
X∞
k¼0

e−sðkþ1Þ2ð2kþ 2Þ ¼ 1

2πa2
X∞
k¼0

e−sk
2

k:

ð3:16Þ
We evaluate this expression using the Euler–MacLaurin
formula (3.13):

Kf
SðsÞ ¼

1

4πa2

�Z
∞

0

dke−sk
2

2kþ
�
−

1

12
· 2þ 1

720
ð−12sÞ þOðs2Þ

��
¼ 1

4πa2s

�
1 −

1

6
s −

1

60
s2 þ � � �

�
: ð3:17Þ

We employ the convention that the heat kernel for the
spinor on the sphere has the same sign as a scalar. Fermion
statistics will of course ultimately change the sign of the
contribution to the one-loop determinant, but we will take
this into account manually when needed.

D. Scalars and fermions on AdS2

The expansion of the heat kernel in curvature invariants
has the structure (3.9) for all fields. The only local distinction
between S2 andAdS2 is the sign of the curvature. Further, by
dimensional analysis each power of curvature is accompa-
nied by one power of the expansion parameter s. Thus, we
can find the heat kernels on AdS2 from the S2 results by
changing the sign of s. The overall sign of the heat kernel is
such that the asymptotics (3.7) apply for small s.
Applying the s → −s rule to the scalar on S2 (3.14), we

find

Ks
AðsÞ ¼

1

4πa2s

�
1 −

1

3
sþ 1

15
s2 þ � � �

�
; ð3:18Þ

for the massless scalar on AdS2. The fermion on S2 (3.17)
similarly gives

Kf
AðsÞ ¼ −

1

4πa2s

�
1þ 1

6
s −

1

60
s2 þ � � �

�
ð3:19Þ

for each fermionic degree of freedom on AdS2. We take
fermion statistics into account through the overall sign
in Eq. (3.19).
The s → −s rule relates the local terms in the heat

kernels on S2 and AdS2, but there are no correspondingly
simple continuations of individual eigenvalues and eigen-
functions [25]. For example, the scalar spectrum on S2 is
λS ¼ lðlþ 1Þ with l ¼ 0; 1;…. The scalar spectrum AdS2
similarly includes a discrete branch for which λA ¼ −m2 ¼
−hðh − 1Þ with h ¼ 1; 2;…. These highest weight type
modes are important as they correspond to massive on-shell
particles (in the Lorentzian signature). However, the

quantum fluctuations on AdS2 are encoded in an unrelated
continuous branch with λA ¼ p2 þ 1

4
with p ∈ R. These are

strictly off-shell modes, which correspond to conformal
weights h ¼ 1

2
þ ip and “mass” m2 ≤ − 1

4
below the

Breitenlohner–Freedman bound (for p ≠ 0).
The expression (3.3) for a heat kernel as a “sum” over

eigenvalues in the case of AdS2 becomes an integral. For a
scalar field [26,27],

Ks
AðsÞ ¼

1

2πa2

Z
∞

0

e−ðp2þ1
4
Þsp tanh πpdp

¼ 1

4πa2s

�
1 −

1

3
sþ 1

15
s2 þ � � �

�
: ð3:20Þ

The Plancherel measure μðpÞ ¼ p tanh πp arises as the
eigenvalue space dual of the real space measure

ffiffiffiffiffiffi−gp ¼
sinh ρ on AdS2. This agrees with Eq. (3.18) as it should.
The leading term for small s agrees with the flat space result
(3.7) both in magnitude and in sign even though this is not
manifest in the prefactor of Eq. (3.20) [related to AdS2
volume (3.11)].

E. AdS2 × S2

For minimally coupled fields, the kinetic operator on the
product space is a sum of kinetic operators on the factors. In
this situation the eigenfunctions on the full space are
products of eigenfunctions on each factor space, and so
the eigenvalues on the product space are equal to the sum of
eigenvalues on each factor. The full Green’s function (3.7)
therefore becomes a product of contributions from each
factor, and this result descends to the heat kernel.
The heat kernel of a minimally coupled boson on

AdS2 × S2 is thus

Ks
4ðsÞ¼Ks

SðsÞKs
AðsÞ¼

1

16π2a4s2

�
1þ 1

45
s2þ���

�
; ð3:21Þ

where the individual factors were copied from Eqs. (3.14)
and (3.18). Similarly the heat kernel of a minimally coupled
Dirac fermion on AdS2 × S2 becomes
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Kf
4ðsÞ ¼ 4Kf

SðsÞKf
AðsÞ ¼ −

1

4π2a4s2

�
1 −

11

180
s2 þ � � �

�
;

ð3:22Þ
where the individual factors were taken from Eqs. (3.17)
and (3.19). The overall factor of 4 counts the number of
fermionic degrees of freedom. In our conventions the
overall minus sign came from AdS2 (3.19) but not from
the S2 (3.17). This correctly accounts for statistics
on AdS2 × S2.
An important benchmark in the following section will be

the heat kernel of a full hypermultiplet with no couplings
taken into account. This is the heat kernel of four scalars
and one Dirac fermion (with four fermionic degrees of
freedom), all minimally coupled:

Kmin
4 ðsÞ ¼ 4Ks

4ðsÞ þ Kf
4ðsÞ ¼

1

4π2a4s2
·
1

12
s2: ð3:23Þ

In this case the divergences cancel to two leading orders,
both of order s−2 and of order s−1. Thus, quantum
corrections do not induce a cosmological constant nor a
renormalization of the Newton constant. The leading non-
trivial term in the heat kernel is constant, corresponding to a
marginal operator in the action. This order is responsible
for the logarithmic corrections to black hole entropy that
we are interested in.

IV. QUANTUM CORRECTIONS TO
N ¼ 2 MULTIPLETS

The supergravity fields propagating in the AdS2 × S2

background interact with each other, in addition to the
interaction with the background. This modifies their heat
kernels from the canonical values such as those given in
Eqs. (3.21) and (3.22). In this section we combine the
quantum numbers computed in Sec. II with the elementary
methods from Sec. III to determine the quantum corrections
with interactions taken into account.

A. Hypermultiplet

The classical spectrum in Eq. (2.4) gives the eigenvalues
of scalars in the hypermultiplet as four towers with ðh; jÞ ¼
ðkþ 1; kÞ with k ¼ 0; 1;…. From the AdS2 point of
view, these are on-shell particles with mass level m2 ¼
hðh − 1Þ ¼ kðkþ 1Þ and degeneracy 2kþ 1 from an
SUð2Þ quantum number.
The AdS2 heat kernels presented in Eqs. (3.18) and

(3.19) are for massless particles (h ¼ 1) with unit degen-
eracy, but AdS2 mass and degeneracy due to SUð2Þ spin j
present a minimal modification:

KAðh;j;sÞ¼KAðh¼ 1;j¼ 0;sÞe−hðh−1Þsð2jþ1Þ: ð4:1Þ
The heat kernel for the four towers with ðh; jÞ ¼ ðkþ 1; kÞ
therefore becomes

KH;b
4 ðsÞ ¼ 4 · Ks

AðsÞ ·
1

4πa2
X∞
k¼0

e−skðkþ1Þð2kþ 1Þ

¼ 4Ks
AðsÞ · Ks

SðsÞ

¼ 1

4π2a4s2

�
1þ 1

45
s2 þ � � �

�
: ð4:2Þ

The sum over particles in AdS2 reduced to Eq. (3.12),
which was evaluated already in Eq. (3.14), where it was
interpreted as the heat kernel in S2.
Although in this section we take an AdS2 perspective,

the final result (4.2) agrees with Eq. (3.21) for four massless
scalars in AdS2 × S2. This is expected because the scalar
fields in hypermultiplets interact only minimally with the
background. The absence of scalar couplings in turn is well
known from the fact that the attractor mechanism in the
AdS2 × S2 background applies to scalars in vector multip-
lets but not to those in hypermultiplets [16].
The fermions in a hypermultiplet are more complicated

because couplings to the graviphoton background introdu-
ces effective masses. For a fermion the dictionary between
conformal weight and spacetime mass is m2 ¼ hðh − 1Þ þ
1
4
¼ ðh − 1

2
Þ2 with the shift of 1

4
the SLð2Þ analog of the

SUð2Þ shift in Eq. (3.15). The AdS2 heat kernel for the two
towers of hypermultiplet fermions in Eq. (2.4) then gives

KH;f
4 ðsÞ¼Kf

AðsÞ ·
1

4πa2
X∞
k¼0

ðe−sk2ð2kþ2Þþe−sðkþ1Þ22kÞ

¼Kf
AðsÞ ·

1

2πa2

�X∞
k¼0

e−sðkþ1Þ2ð2kþ2Þþ1

�

¼Kf
AðsÞ ·

1

2πa2s

�
1−

1

6
s−

1

60
s2þ���þs

�

¼−
1

4π2a4s2

�
1−

11

180
s2þ���þs

�
1þ1

6
s
�
þ���

�
:

ð4:3Þ
The second line was obtained by a simple shift of indices,
and the third line used the summation formula (3.16)–(3.17).
In the final line, we used the AdS2 heat kernel (3.19). We
refrained fromcollecting all terms in the final result in order to
stress that the first set of terms are the “kinematical” (not due
to interactions) contributions present even for noninteracting
fermions [as in Eq. (3.22)], while the second set of terms can
be attributed to the interactions between the fermions.
The heat kernel for the full hypermultiplet is obtained

by the addition of contributions from bosons (4.1) and
fermions (4.3):

KH
4 ðsÞ ¼

1

4π2a4s2

�
1

12
s2 −

�
sþ 1

6
s2
�
þ � � �

�

¼ 1

4π2a4

�
−
1

s
−

1

12
þ � � �

�
: ð4:4Þ

In the first form, we recognize the first term as the canonical
(noninteracting) result (3.23), and so the second one can be
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attributed to the interactions. In the context of logarithmic
corrections to the area law, we focus on the constant term
in Eq. (4.4). It is amusing that the role of the interactions
for this term is precisely to change the sign of the
quantum corrections. Such an effect could conceivably go
unnoticed in some circumstances. Our result agrees (of
course) with that reported by A. Sen [2].

B. Vector multiplet

For the N ¼ 2 vector multiplet, it is well known that the
bosonic degrees of freedom are sensitive to the interactions;

the attractor mechanism determines the horizon values
of the scalar fields in terms of the charges of the vector
fields. Thus, the excitations of the scalar fields in vector
multiplets acquire a mass in AdS2. This should be con-
trasted with the scalar fields in hypermultiplets, which
remain freely specifiable in the near horizon region as they
are moduli.
The effect of interactions on the heat kernel for the

bosons in the vector multiplet are captured again by the
spectrum (2.4), which we take into account using Eq. (4.1).
This gives

KV;b
4 ðsÞ ¼ 2 · Ks

AðsÞ ·
1

4πa2
X∞
k¼0

ðe−skðkþ1Þð2kþ 3Þ þ e−sðkþ1Þðkþ2Þð2kþ 1ÞÞ

¼ 2 · Ks
AðsÞ ·

1

2πa2

�X∞
k¼0

e−skðkþ1Þð2kþ 1Þ þ 1

2

�

¼ 2 · Ks
AðsÞ ·

1

2πa2s

�
1þ 1

3
sþ 1

15
s2 þ � � � þ 1

2
s

�

¼ 1

4π2a4s2

�
1þ 1

45
s2 þ � � � þ 1

2
s

�
1 −

1

3
s

�
þ � � �

�
: ð4:5Þ

The second line was obtained by a simple shift of summation indices, and the third line used the evaluation of Eq. (3.12)
given in Eq. (3.14). The heat kernel for a scalar in AdS2 was given in Eq. (3.18).
According to Eq. (2.4) the four fermionic degrees of freedom are, in contrast to the bosons, minimally coupled. The

contribution of the fermions to the heat kernel is therefore captured by the AdS2 × S2 result (3.22):

KV;f
4 ðsÞ ¼ −

1

4π2a4s2

�
1 −

11

180
s2 þ � � �

�
: ð4:6Þ

Adding Eqs. (4.5) and (4.6), we find the result for the N ¼ 2 vector multiplet:

KV
4 ðsÞ ¼

1

4π2a4s2

�
1

12
s2 þ 1

2
s

�
1 −

1

3
s

��
¼ 1

4π2a4

�
1

2s
−

1

12

�
: ð4:7Þ

Again the “ 1
12
s2” is the benchmark contribution that one gets from four fermions and four bosons in the AdS2 × S2

background before interactions are taken into account. The “1
2
sð1 − 1

3
sÞ” can thus be attributed to the couplings between the

bosons in the vector multiplet, the same interactions that give rise to the attractor mechanism for N ¼ 2 black holes. The
effect of interactions on the constant term in the heat kernel is to flip its sign.

C. Gravitino multiplet

Combining the spectrum of the fermions in Eq. (2.4) with the rule (4.1), we find the heat kernel

K3=2;f
4 ðsÞ ¼ 2 · Kf

AðsÞ ·
1

4πa2
X∞
k¼0

ðe−sðkþ1Þ2ð2kþ 4Þ þ e−sðkþ2Þ2ð2kþ 2ÞÞ

¼ 2 · Kf
AðsÞ ·

1

2πa2
X∞
k¼0

e−sðkþ1Þ2ð2kþ 2Þ

¼ 2 · Kf
AðsÞ ·

1

2πa2s

�
1 −

1

6
s −

1

60
s2 þ � � �

�

¼ −
1

4π2a4s2

�
1 −

11

180
s2 þ � � �

�
: ð4:8Þ
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The summation is the same as for the minimal fermion (3.17). There are contributions from interactions in intermediate
steps, but they ultimately cancel each other.
The quantum numbers of the bosons in Eq. (2.4) are shifted relative to free bosons. The effect of this shift is to remove the

leading term in the sum over modes on the sphere, which is easily taken into account:

K3=2;b
4 ðsÞ ¼ Ks

AðsÞ ·
1

4πa2
X∞
k¼1

e−skðkþ1Þð2kþ 1Þ

¼ Ks
AðsÞ ·

1

4πa2

�X∞
k¼0

e−skðkþ1Þð2kþ 1Þ − 1

�

¼ Ks
AðsÞ ·

1

4πa2s

�
1þ 1

3
sþ 1

15
s2 þ � � � − sþ � � �

�

¼ 1

4π2a4s2

�
1þ 1

45
s2 þ � � � − s

�
1 −

1

3
s

�
þ � � �

�
: ð4:9Þ

The “−sð1 − 1
3
sÞ” can be attributed to the couplings between components of a vector field relative to those of scalar degrees

of freedom.
Adding Eqs. (4.8) and (4.9), we find the heat kernel for a complete N ¼ 2 multiplet for a massive gravitino:

K3=2
4 ¼ 1

4π2a4s2

�
1

12
s2 − s

�
1 −

1

3
s

��
¼ 1

4π2a4

�
−
1

s
þ 5

12

�
: ð4:10Þ

D. Graviton multiplet

The quantum numbers ðh; jÞ ¼ ðkþ 5
2
; kþ 3

2
Þ from Eq. (2.4) give the contribution from the four fermion degrees of

freedom as

Kgrav;f
4 ðsÞ ¼ 4 · Kf

AðsÞ ·
1

4πa2
X∞
k¼0

e−sðkþ2Þ2ð2kþ 4Þ

¼ 4 · Kf
AðsÞ ·

1

4πa2

�X∞
k¼0

e−sðkþ1Þ2ð2kþ 2Þ − 2e−s
�

¼ 4 · Kf
AðsÞ ·

1

4πa2s

�
1 −

1

6
s −

1

60
s2 − 2se−s

�

¼ −
1

4π2a4s2

�
1 −

11

180
s2 þ � � � − 2s

�
1 −

5

6
s

�
þ � � �

�
: ð4:11Þ

As in previous cases, the “−2sð1 − 5
6
sÞ” can be attributed to the couplings between components of a gravitino field relative

to those of a free fermion.
Finally, inserting the quantum numbers (2.4) for bosons in the supergravity multiplet into Eq. (4.1), we find

Kgrav;b
4 ðsÞ ¼ Ks

AðsÞ ·
1

4πa2
X∞
k¼0

ðe−sðkþ2Þðkþ1Þð2kþ 5Þ þ e−sðkþ3Þðkþ2Þð2kþ 3ÞÞ

¼ Ks
AðsÞ ·

1

4πa2

�
2
X∞
k¼0

e−sðkþ2Þðkþ1Þð2kþ 3Þ − e−2s
�

¼ Ks
AðsÞ ·

1

2πa2

�X∞
k¼0

e−sðkþ1Þð2kþ 1Þ − 1 −
1

2
e−2s

�

¼ Ks
AðsÞ ·

1

2πa2s

�
1þ 1

3
sþ 1

15
s2 þ � � � − 3

2
sþ s2 þ � � �

�

¼ 1

4π2a4s2

�
1þ 1

45
s2 þ � � � − 3

2
sþ 3

2
s2 þ � � �

�
: ð4:12Þ
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Adding Eqs. (4.11) and (4.12), the complete result for the heat kernel of the N ¼ 2 gravity multiplet becomes

Kgrav
4 ðsÞ ¼ 1

4π2a4s2

�
1

12
s2 −

3

2
s

�
1 −

1

3
s

�
þ 2s

�
1þ 1

6
s

��

¼ 1

4π2a4s2

�
1

12
s2 þ

�
1

2
s −

1

6
s2
��

¼ 1

4π2a4

�
1

2s
−

1

12

�
: ð4:13Þ

E. Summary

In summary we have computed the contributions to heat
kernels of the N ≥ 2 theory from physical nonzero modes.
The result is

Knzm ¼ 1

4π2a4

��
1

2s
−

1

12

�
þ ðN − 2Þ

�
−
1

s
þ 5

12

�

þ nV

�
1

2s
−

1

12

�
þ nH

�
−
1

s
−

1

12

��
: ð4:14Þ

The notation “nzm” is a reminder that at this point
interactions have been taken into account but the focus
was on nonzero modes. Corrections due to zero modes will
be considered in the next two sections.

V. BOUNDARY STATES

As we have stressed, the spectrum (2.4) enumerates
physical modes only. In particular, gauge conditions have
been imposed that fix the gauge symmetry. These con-
ditions remove all unphysical states except that, for each
continuous gauge symmetry, a single physical boundary
mode remains. We discussed the mechanism for this in
some detail in Sec. II.
The physical boundary states contribute to the quantum

corrections to black holes just like all other physical states.
In this section we compute their contributions to the heat
kernel.

A. Localization on the boundary

A 4D gauge symmetry reduces to a tower of 2D gauge
symmetries in AdS2. Each entry in the tower gives rise to a
single mode on the boundary of AdS2. These towers were
presented as a list in Eq. (2.18).
The contribution from each entire tower will amount to a

field on the S2 that is localized on AdS2. We need to find
the spectrum of these fields on S2. This can be accom-
plished by considering the structure of gauge transforma-
tions. This introduces gauge dependence at intermediate
stages, but our final result is gauge invariant.
In the following we consider the boundary modes for

each N ¼ 2 multiplet in turn.

1. Vector multiplet

Modes that are pure gauge from the 4D point of view
take the form of a gauge variation,

δAI ¼ ∇IΛ; ð5:1Þ

where Λ is the Uð1Þ gauge parameter. Among these modes
those that preserve the Lorentz gauge condition,

∇IAI ¼ 0; ð5:2Þ

are

−∇IδAI ¼ −∇2Λ ¼ 0; ð5:3Þ

just like a massless scalar from the 4D point of view. From
the 2D point of view, there is a tower of fields in AdS2 with
masses given by

m2 ¼ kðkþ 1Þ; ð5:4Þ

with k ¼ 0; 1;…. Each field is pure gauge, so its contri-
bution to physical processes cancels with the corresponding
unphysical mode. This cancellation is imperfect and leaves
the AdS2 zero mode ∇2

AΛ ¼ 0. We interpret this mode as a
physical mode on the AdS2 boundary. As we recombine all
2D fields k ¼ 0; 1;…, we find a physical scalar field on S2.
The quantum corrections due to these physical states are
computed by the scalar determinant on the sphere (3.14)
and give

KV
bndy ¼

1

2πa2
·

1

4πa2s

�
1þ1

3
s

�
¼ 1

4π2a4

�
1

2s
þ1

6

�
: ð5:5Þ

The overall factor is the volume of AdS2. The sign is the
one appropriate for a physical boson. The simple pole in the
parameter s is mild for a 4D field but entirely standard for a
2D field.

2. Gravitino multiplet

The gauge symmetry of a gravitino is the SUSY
variation

δΨI ¼ ∇Iϵ: ð5:6Þ

The SUSY transformation that preserves the Lorentz gauge
condition on the gravitino,

γIδΨI ¼ 0; ð5:7Þ

satisfies the Weyl equation
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γI∇Iϵ ¼ 0: ð5:8Þ
The physical boundary state that remains is therefore a
Weyl fermion on S2. Our previous computation of the heat
kernel for a single fermionic degree of freedom (3.17) then
gives

Kð3=2Þ
bndy ¼ −

1

2πa2
·

1

4πa2s
· 2

�
1 −

1

6
s

�

¼ 1

4π2a4

�
−
1

s
þ 1

6

�
: ð5:9Þ

An explicit factor of 2 counted the two components of the
Weyl fermion. The overall minus sign is appropriate for a
physical fermion.
The gravitino supermultiplet also includes two vector

multiplets. Each realizes a standard Uð1Þ gauge symmetry
and gives rise to a boundary mode that contributes (5.5) to
the heat kernel. The total boundary contribution to the
gravitino supermultiplet therefore becomes

Kð3=2Þ
bndy ¼ 1

4π2a4
·
1

2
: ð5:10Þ

There is no pole in s because the boundary states in this
multiplet fill out a super multiplet with an equal number of
fermions and bosons on the boundary.

3. Graviton multiplet

The gauge symmetries of gravity are the 4D diffeo-
morphisms ξI acting on gravitational perturbations as

δhIJ ¼ ∇IξJ þ∇JξI: ð5:11Þ
The coordinate transformations that preserve the Lorentz
(harmonic) gauge condition

∇IhfIJg ¼ ∇IðhIJ þ hJI − gIJhKKÞ ¼ 0 ð5:12Þ

satisfy

ðgIJ∇2 þ RIJÞξJ ¼ 0: ð5:13Þ
The Ricci curvature is Rμν ¼ −gμν on AdS2 and Rαβ ¼
þgαβ on the S2.
The diffeomorphisms ξα generate vector modes on S2, so

the angular momentum of the corresponding boundary
modes is restricted to k ¼ 1; 2;…. The Ricci curvature
gives a contribution Δm2 ¼ −1 to the effective mass, and
the dualization to a scalar field gives an identical contri-
bution. The spectrum of the two scalar boundary modes
with ∇2

Aξ
α ¼ 0 therefore becomes

m2
S ¼ kðkþ 1Þ − 2; ð5:14Þ

with k ¼ 1;…. The mass-shift Δm2 ¼ −2 is such that the
leading AdS2 boundary mode is massless also on the S2.

The pure gauge modes generated by ξμ decompose into
an AdS2 scalar ∇μξ

μ, an AdS2 vector ∇μξν −∇νξμ, and an
AdS2 traceless tensor. The AdS2 scalar mixes with the pure
gauge mode from the graviphoton such that all three of
these are independent even though ξμ has only two
components. The AdS2 zero modes of the scalar and the
traceless tensor both give rise to physical boundary states
with the spectrum (5.4) of a standard scalar field on S2.
However, the AdS2 vector has zero modes that generate a
tower of boundary modes with the shifted effective mass,

m2
S ¼ kðkþ 1Þ þ 2: ð5:15Þ

These three towers all have k ¼ 0;…. The leading terms
with vanishing angular momentum j ¼ k ¼ 0 are essen-
tially the boundary states denoted δX and δρ in Sec. II A
except that here the gauge is different and the graviphoton
is taken into account.
The sum of contributions from all five bosonic boundary

modes yields

Kgrav; b
bndy ¼ 2 ·

1

4π2a4
·
1

2

�
1

s
−
2

3

�
e2s þ 2 ·

1

4π2a4
·
1

2

�
1

s
þ 1

3

�

þ 1

4π2a4
·
1

2

�
1

s
þ 1

3

�
e−2s

¼ 1

4π2a4
·
5

2

�
1

s
þ 1

3

�
: ð5:16Þ

Despite the various shifts of masses and angular momen-
tum quantum numbers, this is identical to the heat kernel of
five free scalars on the S2.
The N ¼ 2 supersymmetry acts on the two gravitini in

the graviton multiplet as

δΨA
I ¼

�
δAB∇I −

1

4
F̂ϵABγI

�
ϵB; ð5:17Þ

where the background graviphoton field strength
F̂ ¼ 1

2
FJKγ

JK ¼ ϵαβγ
αβ. This differs from a generic grav-

itino (5.6) by the dependence on the graviphoton back-
ground. It is because of this dependence thatN ¼ 2 SUSY
is preserved. The field strength contributions to Eq. (5.17)
are such that the AdS2 ground state energy ð−∇μ∇μÞ of the
two fermions adds to Δm2 ¼ −1. This gives a shift in the
effective fermion mass on S2 such that

m2 ¼ ðkþ 1Þ2 − 1: ð5:18Þ
The first term is the standard effective mass (3.15) on S2,
sometimes written as jðjþ 1Þ þ 1

4
¼ ðjþ 1

2
Þ2 with j taking

half-integer values. The tower j ¼ 1
2
; 3
2
;… is parametrized

here by k ¼ 0; 1;…. The mass shift Δm2 ¼ −1 is such that
the leading AdS2 boundary mode is massless also on the S2.
The heat kernel for a single standard fermion on S2 was

given in Eq. (3.17). Four fermionic boundary degrees of
freedom with effective mass (5.18) then give
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Kgrav;f
bndy ¼ −4 ·

1

4π2a4
·
1

2

�
1

s
−
1

6

�
es ¼ −

1

4π2a4

�
2

s
þ 5

3

�
:

ð5:19Þ

Adding the bosonic contribution (5.16), we have

Kgrav
bndy ¼

1

4π2a4

�
1

2s
−
5

6

�
; ð5:20Þ

for the complete contribution of boundary states to the heat
kernel of the N ¼ 2 supergravity multiplet.

4. Summary

In summary, the contribution to the heat kernel of the
N ¼ 2 theory from boundary modes is

Kbndy ¼
1

4π2a4

��
1

2s
−
5

6

�
þðN −2Þ ·1

2
þnV

�
1

2s
þ1

6

��
:

ð5:21Þ

We can add this to the bulk contribution (4.14) and find

Kphys ¼
1

4π2a4

��
1

s
−
11

12

�
þ ðN − 2Þ ·

�
−
1

s
þ 11

12

�

þ nV

�
1

s
þ 1

12

�
þ nH

�
−
1

s
−

1

12

��
: ð5:22Þ

As a nontrivial consistency check on Eq. (5.22), note that
the coefficient of 1=s is the same for each type of N ¼ 2
multiplet, except that the sign alternates as the spin of the
SUSY multiplet changes. This is precisely the property
needed to ensure that these terms cancel in any theory with
N ¼ 4 SUSY, as they should.
Another interesting special case is the pure N ¼ 3

theory, which is scale invariant at this level [28]. The
N ¼ 3matter multiplets have nH ¼ nV ¼ 1, so an arbitrary
number of those can be added without violating scale
invariance.

VI. ZERO MODES

The boundary states are zero modes from the AdS2 point
of view, but they are generally nontrivial on the S2. The true
4D zero modes are the boundary states that are also zero
modes on the S2. These zero-mode contributions require
special considerations.
The zero-mode content of each multiplet can be read off

from the spectrum of boundary states. The vector multiplet
has one bosonic zero mode from gauge symmetry: the k ¼
0 entry in Eq. (5.4). The gravitino multiplet has two bosonic
zero modes, both from gauge symmetry. The gravity
multiplet also has two bosonic zero modes: the k ¼ 1
entry in Eq. (5.14). These both have angular momentum

j ¼ 1. Finally, the gravity multiplet also has four fermionic
zero modes: the k ¼ 0 entry in Eq. (5.18).
For the zero modes, we cannot use the Euclidean path

integral (3.1) (repeated here for easy reference)

e−W ¼
Z

Dϕe−ϕΛϕ ¼ 1ffiffiffiffiffiffiffiffiffiffi
detΛ

p ; ð6:1Þ

since they correspond to vanishing eigenvalues of the
matrix Λ. However, each zero mode is just a field in zero
dimensions, so in this sector the path integral reduces to an
ordinary integral. The scale dependence of N0 zero modes
with scaling dimension Δ is

e−W ¼
Z

Dϕ0 ¼ Vol½ϕ0� ∼ ϵ−N0Δ: ð6:2Þ

In contexts where Eq. (6.1) applies, it is understood that the
dependence on physical parameters is encoded in ratios of
integrals of this general form. The scale dependence due to
a single zero-mode is similarly computed from ratios of
integrals (6.2) computed at different scales.
The naive inclusion of N0 zero modes in the heat

kernel (3.3),

DðsÞ ¼
X
i

e−sλi ¼
X
λi≠0

e−sλi þ N0; ð6:3Þ

corresponds to a term W ¼ N0 ln ϵ in the effective action
according to Eq. (3.2). Thus, the correct zero-mode con-
tribution W ∼ ΔN0 ln ϵ from Eq. (6.2) is larger than the
naive result by a factor of the scaling dimension Δ. After
generalization to multiple fields with either bosonic or
fermionic statistics, we have

Kzm ¼ 1

8π2a4
X
i∈B

N0;iðΔi − 1Þ − 1

8π2a4
X
i∈F

N0;ið2Δi − 1Þ

ð6:4Þ
for the correction to the heat kernelKðsÞ due to zero modes.
Each fermionic zero mode counts with double weight
because of the leading spin degeneracy in Eq. (3.16).
Vector fields have dimension Δ1 ¼ 1, so they were

already taken correctly into account in the naive heat
kernel. Since the zero modes in the vector and (massive)
gravitino multiplet are all due to vector fields, these
multiplets do not get corrected. It is only the supergravity
multiplet that is corrected due to zero modes.
Disregarding the vector, the bosonic zero modes in the

gravity multiplet are just k ¼ 1 in Eq. (5.14). Each of these
two states has angular momentum j ¼ 1, so there are Nb

0 ¼
2 · ð2jþ 1Þ ¼ 6 bosonic zero modes in the path integral.
These fields have scaling dimension Δ2 ¼ 2. Similarly,
Eq. (5.18) gives Nf

0 ¼ 4 fermionic zero modes in the
path integral. They have scaling dimension Δ3=2 ¼ 3

2
.

The zero-mode contribution to a general N ¼ 2 theory
simply becomes
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Kzm ¼ 1

8π2a4
· ð6 · ð2 − 1Þ − 4 · ð3 − 1ÞÞ

¼ 1

4π2a4
· ð3 − 4Þ ¼ 1

4π2a4
ð−1Þ: ð6:5Þ

A. Summary

The sum of contributions to the heat kernel from nonzero
modes (4.14), boundary modes (5.21), and zero modes
(6.5) is

Ktot ¼
1

4π2a4

��
1

s
−
23

12

�
þ ðN − 2Þ

�
−
1

s
þ 11

12

�

þ nV

�
1

s
þ 1

12

�
þ nH

�
−
1

s
−

1

12

��
: ð6:6Þ

This is the main result of our computations.

VII. LOGARITHMIC CORRECTIONS TO THE
BLACK HOLE ENTROPY

In this section we give a brief but self-contained review
of the relation between the heat kernel and the quantum
corrections to the black hole entropy.

A. Trace anomaly

The trace of the energy momentum tensor including
quantum corrections can be divided into a divergent term
and a finite (renormalized) term:

Tμ
μ;tot ¼ Tμ

μ;div þ Tμ
μ;ren: ð7:1Þ

Each of these terms is related to an analogous term in the
effective action as

Tμ
μ ¼ 2ffiffiffiffiffiffi−gp gμν

δW
δgμν

: ð7:2Þ

In even dimensions the heat kernel takes the form

DðsÞ ¼ sing:þD0 þOðsÞ; ð7:3Þ

where “sing.” indicates terms with poles at s ¼ 0 while D0

is the constant that encodes the trace anomaly. According to
Eq. (3.2), the constant D0 corresponds to the logarithmi-
cally divergent term

Wdiv ∼
1

2
D0 ln ϵ2 ð7:4Þ

in the effective action.

In theories with classical scale invariance, Tμ
μ;tot ¼ 0, and

so

Tμ
μ;ren ¼−Tμ

μ;div¼−
2ffiffiffiffiffiffi−gp gμν

δWdiv

δgμν
¼ 2

Vol
∂Wdiv

∂ lnϵ2 ¼
1

Vol
D0:

ð7:5Þ
We can still use this result for the anomaly in theories
without classical scale invariance. Of course such theories
have, in addition, a classical (nonanomalous) contribution
to the trace of the energy momentum tensor. The volume
factor is again the regulated volume exhibited in Eq. (3.11).

B. Black hole entropy

For extremal black holes, the entropy S ¼ −Wren, and so
the logarithmic dependence of the entropy is determined by

∂S
∂ ln AH

¼−
∂Wren

∂ ln a2
¼−

1

2

Z
dDxTμ

μ;ren ¼−
1

2
D0: ð7:6Þ

The dependence on the physical scale ln a and the UV
cutoff scale ϵ has the opposite sign. The result for the
logarithmic correction to the entropy therefore becomes

δS ¼ 1

2
D0 ln AH ¼ 4π2a4K0 ln AH; ð7:7Þ

where K0 is the constant term in the heat kernel den-
sity (3.10).
The relation (7.6) between the trace anomaly and the

logarithmic correction to the entropy is interesting and
quite general. It is corrected only by the treatment of zero
modes. Our formula (6.4) for the zero-mode contribution to
the heat kernel was constructed precisely so that the
entropy formula (7.7) would be maintained for this con-
tribution as well.
The constant term in the heat kernel expansion K0 is

easily read off from the total heat kernel (6.6). The relation
(7.7) then gives the logarithmic correction, so the entropy

δS ¼ 1

12
ð23 − 11ðN − 2Þ − nV þ nHÞ lnAH: ð7:8Þ

This is the final result advertised in the introduction
as Eq. (1.1).
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