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A new cellular automaton (CA) model is presented for the self-organized criticality (SOC) in recurrent
bursts of soft gamma repeaters (SGRs), which are interpreted as avalanches of reconnection in the
magnetosphere of neutron stars. The nodes of a regular dodecahedron and a truncated icosahedron are
adopted as spherically closed grids enclosing a neutron star. It is found that the system enters the SOC state
if there are sites where the expectation value of the added perturbation is nonzero. The energy distributions
of SOC avalanches in CA simulations are described by a power law with a cutoff, which is consistent with
the observations of SGR 1806–20 and SGR 1900þ 14. The power-law index is not universal and depends
on the amplitude of the perturbation. This result shows that the SOC of SGRs can be illustrated not only by
the crust quake model but also by the magnetic reconnection model.
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I. INTRODUCTION

Self-organized criticality (SOC), proposed by Bak et al.
[1,2], has revealed a wide range of mechanisms of complex
behavior occurring in nature. According to the concept of
SOC, a nonequilibrium open system evolves spontaneously
into a critical state characterized by a power-law distribu-
tion of its physical quantity. One of the most well-known
examples of an SOC system is earthquakes, where the
energy supplied by plate motion is dissipated in the crust.
The SOC of earthquakes has been illustrated with a sand-
pile model, and an empirical power-law relation between
the size and frequency of seismic events has been dem-
onstrated [3,4]; a related model for the propagation of
brittle failure had previously shown power laws [5].
SOC models fit some properties of astrophysical phe-

nomena, for instance, solar flares [6]. The recurrent bursts
of soft gamma repeaters (SGRs) have event energy dis-
tributions well fitted with a power law [7–9]. It is currently
thought that SGRs are associated with ultrastrongly mag-
netized neutron stars (≳1014 G). They generally undergo
the recurrent emission of soft gamma rays with a short
duration (∼0.1 s). These bursts have been suggested to be
due to neutron star crust fractures driven by the stress of an
evolving magnetic field [10], which are called starquakes.
Recently, however, Link [11] pointed out that it is difficult
to reproduce the typically observed rise time of emission
(≲10 ms) if the energy is deposited deep in the crust or
deeper. The trapped seismic energy takes seconds to
minutes to reach the stellar surface and cause burst
emissions. As a corollary, the energy should be released
not inside the star but in the magnetosphere [12–16].

In this paper, we present a new cellular automaton (CA)
model that mimics SOC avalanches in SGRs. We first
follow the CA model for solar flares proposed by Lu and
Hamilton [17], which is expressed as discretized magneto-
hydrodynamic (MHD) equations [18]. In their model, solar
flares are interpreted as avalanches of many small magnetic
reconnections. Similarly, we assume that the energy is
released in the magnetosphere of neutron stars through
MHD instabilities, such as the tearing mode [13,15]. In the
original model by Lu and Hamilton, a three-dimensional
Cartesian coordinate grid of points is used. However, a
neutron star may be sufficiently small for the size of
avalanches to be comparable to the system size. In fact,
since the energy of a magnetic field B in a region of volume
L3 is E ¼ B2L3=8π, the length scale is L ∼ 104 cm with
B ¼ 1014 G and E ¼ 1038 erg, which is the lowest
observed energy of short bursts [7,8]. Note that the radius
of neutron stars is typically R ∼ 106 cm. Furthermore, the
perturbation rule in the original model by Lu and Hamilton
tends to increase the magnetic field in a certain direction.
Here, we use the grid with a closed geometry and modify
the perturbation rule to satisfy a conservation law for
magnetic field.

II. CELLULAR AUTOMATON MODEL

A. Grids

We introduce “spherically” closed grids for our CA
model to map the surface enclosing a neutron star. To avoid
grid anisotropy, we require that (i) the shape is nearly
spherical, (ii) all edges are of equal length and (iii) all
nodes are equivalent. Among the polyhedra which satisfy
these conditions, a regular dodecahedron with n ¼ 20
nodes and a truncated icosahedron (the shapes of a soccer
ball and fullerene C60) with n ¼ 60 nodes are adopted as*nakazato@rs.tus.ac.jp
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our grids. They have a closed geometry, in marked contrast
to CA models for SOC systems studied so far. Incidentally,
Schein and Gayed [19] recently presented the techniques to
construct the icosahedral Goldberg polyhedra, which are
nearly spherical grids with more nodes. These grids satisfy
conditions (i) and (ii) but not (iii). Although the inves-
tigation with more nodes is interesting, we defer it to
future work.
In the CA simulation, we assign the values of Bi for the

ith site of the grids, which represent the deviation of the
radial component of the magnetic field from the unper-
turbed background configuration. We set Bi ¼ 0 for all
sites at the initial time.

B. Step 1: Perturbations

As the first step of our CA rule, we add perturbations
to Bi. This perturbation corresponds to the bending of
magnetic field lines outward because Bi is the deviation of
the radial component. Since the CA simulation is carried
out on the closed surface (S) in our model, the magnetic
field should be perturbed to satisfy a conservation law,

I
S
B · ndS ¼ 0 ⇒

Xn
i¼1

Bi ¼ 0; ð1Þ

where n is the outward-pointing unit normal vector of the
surface S. Therefore, we choose two neighboring sites and
add a positive perturbation (þΔB) to one and a negative
perturbation (−ΔB) to the other. The perturbation, ΔB, is
given as

ΔB ¼ hΔBijσj; ð2Þ
where σ is a random number obeying a Gaussian distri-
bution with zero mean and unit variance. The amplitude
of the perturbation, hΔBi, is a model parameter, as
discussed later.
The sites where the perturbation is added are chosen as

follows: In our model, we assume the bending of magnetic
field lines outward similarly to the rise of the magnetic field
line on the surface of the Sun. Then positive and negative
perturbations appear at the footpoints of the magnetic
field line. For simplicity, we deal with two cases for the
unperturbed background configuration, namely poloidal
and toroidal magnetic fields, and randomly choose one of
the edges considered to be along the background field lines.
The perturbations are added to the sites corresponding to
both ends, and the polarity of the magnetic field line is
reflected in the sign of the perturbations. This procedure is
illustrated in Fig. 1.
The edges along the background field lines are deter-

mined as below: At first, for the poloidal case, we choose
edges connecting nodes with different latitude. The number
of such edges is 20 for a regular dodecahedron with
30 edges, and it is 60 for a truncated icosahedron with

90 edges. Then the polarity is assigned for the end points of
each edge reflecting their latitudes. Next, for the toroidal
case, we choose the edges to construct the circuits. In this
process, the edges connecting nodes with the same longi-
tude are not chosen, and the number of edges considered is
set to be the same as with the poloidal case. For a regular
dodecahedron, circuits with 5 edges, 10 edges, and 5 edges
are constructed as shown in the bottom right of Fig. 1. For
a truncated icosahedron, circuits with 5 edges, 15 edges,
20 edges, 15 edges, and 5 edges are constructed.

C. Step 2: Reconnections

The second step of our CA rule is reconnection. We
define the magnetic field stress, which is the difference
between the local magnetic field and the average of its three
nearest neighbors Bnn, as

dBi ¼ Bi −
1

3

X
nn

Bnn: ð3Þ

The site is unstable to reconnection when the absolute value
of its magnetic stress exceeds some critical valueBc [17,20],

jdBij > Bc: ð4Þ
This criterion is reasonable because a large magnetic stress
favors magnetic reconnection [20]. If a reconnection insta-
bility occurs, themagnetic field stress is canceled as follows:

Bi → Bi −
3

4
dBi; Bnn → Bnn þ

1

4
dBi; ð5Þ

FIG. 1 (color online). Schematic diagrams of poloidal and
toroidal magnetic field lines in the magnetosphere of neutron
stars and their mapping on a regular dodecahedron (n ¼ 20) grid.
Positive (þΔB) and negative (−ΔB) perturbations are added at
the start points and end points of the edges shown as thick lines,
respectively.
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resulting in dBi → 0. If the nearby sites become unstable
owing to the reconfiguration expressed by (5), additional
reconnection events occur, leading to a large avalanche in
some cases.

D. Step 3: Event Energy

When all instabilities in the grid have been relaxed, we
return to the first step of adding perturbations. The energy
released during the avalanche is defined as

E ¼
Xn
i¼1

jBð0Þ
i j2 −

Xn
i¼1

jBð1Þ
i j2; ð6Þ

where the superscripts (0) and (1) denote the values before
and after the avalanche, respectively.
Note the dimensionless quantities in our CA model. The

threshold for the reconnection instability is fixed at Bc ¼ 4
in this study. Since the cases with same values of hΔBi=Bc
are equivalent, we only investigate the dependence on
hΔBi. If a reconnection event occurs at a single site i,
the released energy is 3

4
jdBij2. Therefore, the minimum

released energy in our CA model is Emin ¼ 12 for Bc ¼ 4.

III. RESULTS

A. Poloidal Versus Toroidal

Now we move on to the results of our CA simulations.
In Fig. 2, cumulative energy distributions of avalanches,
Nð>EÞ, are plotted for the case of hΔBi ¼ 0.2. As can be
seen, the models with perturbations under poloidal
and toroidal fields have considerably different profiles.
In the models with poloidal perturbations, large avalanches
with the size of the system occur, which is one of the

characteristic features of SOC. In contrast, the models with
toroidal perturbations do not reach the SOC state. There are
very few bursts with energy ≳3Emin, while small bursts
occur accidentally. In the toroidal models, the time average
of the random perturbations is zero at each site (see Fig. 1).
This result is consistent with that of Lu and Hamilton [17],
where SOC was not found with the random perturbation
being symmetric about zero. However, in the poloidal
models, the system reaches the critical state while the
spatial average of the perturbations is zero. In this case, the
time average of each node depends on the latitude. It is
positive for one hemisphere but negative for the other
hemisphere. This is because, as already stated, the polarity
is assigned reflecting the latitude.
Here, we investigate the mixed case of poloidal and

toroidal fields. In step 1 of the CA rule, we choose the
poloidal perturbation or toroidal perturbation randomly,
and the probability of poloidal is set to fpl. Thus the purely
poloidal and toroidal cases correspond to fpl ¼ 1 and
fpl ¼ 0, respectively. The dependence of fpl is shown in
Fig. 3 for the cases of hΔBi ¼ 0.2 and the truncated
icosahedron model with n ¼ 60 nodes. As already men-
tioned, in our CA model, bursts with ≲3Emin happen even
if the system does not reach the SOC state. Thus, the
distributions with E≲ 3Emin may include a contamination,
and we pay attention to the events with ≳3Emin. For
the case with fpl ¼ 0.5, where the poloidal and toroidal
fields are regarded as comparable, large avalanches are still
observed. On the other hand, for the dominantly toroidal
case (fpl ¼ 0.1), it is hard to find the SOC feature.

B. Parameter Dependence

Hereafter, we focus on the purely poloidal models. The
cumulative distributions appear to decrease rapidly at high
energies owing to finite-size effects. In fact, the cutoff

FIG. 2 (color online). Cumulative burst energy distributions,
Nð>EÞ, for the case of hΔBi ¼ 0.2. Thick and thin lines
represent the models with poloidal and toroidal perturbations,
respectively. Dashed and solid lines represent the models with the
regular dodecahedron (n ¼ 20) grid and truncated icosahedron
(n ¼ 60) grid, respectively.

FIG. 3 (color online). Same as Fig. 2, but for the models with
the truncated icosahedron (n ¼ 60) grid. Solid, dashed, dot-
dashed, and dotted lines correspond to the cases with fpl ¼ 1
(purely poloidal), 0.5, 0.1, and 0 (purely toroidal), respectively.
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energy of the truncated icosahedron model with n ¼ 60
nodes is higher than that of the regular dodecahedron model
with n ¼ 20. A cutoff feature was also found in the
observations of SGR 1806–20 and SGR 1900þ 14 [9].
While the statistical significance of the observed cutoff is
not high, bursts with the highest energy may correspond to
avalanches enclosing the central neutron star. On the other
hand, the distributions of the truncated icosahedron model
and regular dodecahedron model are similar at low ener-
gies, where finite-size effects are negligible.
We show the dependence on the amplitude of perturba-

tion hΔBi in Fig. 4, where the cumulative distributions are
plotted for the models with the truncated icosahedron
(n ¼ 60) grid and poloidal perturbations. We find that
the distributions with E≳ 3Emin are well fitted with power
laws. The power-law index, γ, of the differential distribu-
tions dN ∝ E−γdE is related to the power-law fit of the
cumulative distributions as Nð>EÞ ∝ E1−γ . According to
the observations of SGR 1806–20 and SGR 1900þ 14,
the energy distributions of bursts have been fitted with
γ ¼ 1.43–1.76 [7,8] and γ ∼ 1.55 [9]. In our CA simula-
tion, γ depends on the value of hΔBi, and it is 1.44, 1.57,
and 1.74 for hΔBi ¼ 0.1, 0.2, and 0.4, respectively. Here,
Kolmogorov-Smirnov probabilities of the fitting in the
range of 3Emin < E < 100Emin are > 0.999, > 0.999, and
0.964 for hΔBi ¼ 0.1, 0.2, and 0.4, respectively. On the
other hand, in the range of E > 3Emin, Kolmogorov-
Smirnov probabilities are 0.000 for all models due to the
cutoff.
From Fig. 5, we can see that the power-law index γ

increases with the amplitude of perturbation hΔBi. The
most natural interpretation for this is that, for large hΔBi,
the perturbation of one site can grow exclusively, and the

site tends to become unstable before accumulating pertur-
bations of other sites. As a result, the number of large
avalanches, i.e. with a large energy, is reduced. The lack of
universality of the power-law index is an interesting feature
that was also observed in the model of Olami et al. [4].

IV. CONCLUSION AND DISCUSSION

In conclusion, we have shown the SOC behavior of a
new CA model with spherically closed grids so as to
demonstrate the recurrent bursts of SGRs. We adopted the
nodes of a regular dodecahedron and a truncated icosahe-
dron as our CA grids. Perturbations were added to satisfy a
conservation law (1), and the sign was determined from
the polarity of the unperturbed background magnetic field
line. For the configuration of the unperturbed field, both
poloidal and toroidal cases were considered. We found that
the SOC state is reached only for the poloidal case, owing
to the existence of sites where the expectation value of the
added perturbation is nonzero.
The cumulative burst energy distribution has a cutoff at

high energies owing to finite-size effects. Similarly, the
cutoff found in the observations of SGRs may be attributed
to the compactness of the magnetosphere of neutron stars.
In addition to the recurrent bursts, giant flares with
enormous energy (∼1044–1047 erg) and long duration
(∼100 s) are occasionally observed from SGRs [21–25].
The energy release in the magnetosphere of neutron stars
was proposed early on as an explanation of a giant flare
[12]. Taking the large difference in emission energies into
account, it is difficult for our CA model to describe the
giant flares, which might be produced by global field
reconfiguration [26].

FIG. 4 (color online). Same as Fig. 2, but for the models with
the truncated icosahedron (n ¼ 60) grid and poloidal perturba-
tions. Thick dot-dashed, thick solid, and thick dashed lines
correspond to the cases with hΔBi ¼ 0.1, 0.2, and 0.4, respec-
tively. Thin lines are power laws Nð> EÞ ∝ E1−γ with γ ¼ 1.44
(dot-dashed), 1.57 (solid), and 1.74 (dashed).

FIG. 5. Power-law index γ as a function of the amplitude of
perturbation hΔBi for the models with the truncated icosahedron
(n ¼ 60) grid and poloidal perturbations.
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The power-law index, γ, found in our CA model depends
on the amplitude of perturbation, hΔBi, and ranges from
1.2 to 1.8. This value is consistent with the observations.
According to Prieskorn and Kaaret [9], there is no differ-
ence between the power-law indices observed in high- and
low-burst-rate regimes. This result may appear to contradict
our CA model with hΔBi dependence, but we found that
cases with the same values of hΔBi=Bc are equivalent. If
the amplitude of perturbation and the criterion for recon-
nection depend on the unperturbed background magnetic
field likewise (for instance, they are linearly related),
hΔBi=Bc and γ may be almost insensitive to the environ-
ment. In any case, further investigation of the relation
between the power-law index and burst rate is important.
Comparing with the original model by Lu and Hamilton

[17], the grid and the perturbation rule for magnetic field
are modified in this study. On the other hand, the CA rule
of reconnection is identical with that in Lu and Hamilton
model, while the number of nearest neighbors is different.
This CA model relates to the induction equation,

∂B
∂t ¼ ∇ × ðV × BÞ þ η∇2B; ð7Þ

where V and η are the plasma velocity and the resistivity,
respectively [18,20]. Note that the Laplacian of the
magnetic field ∇2B corresponds to the right-hand side of
equation (3) while the sign is opposite. Thus, if the

reconnection occurs, the variation of Bi is proportional
to −dBi as in equation (5). On the other hand, the
perturbation of this CA model is interpreted as the con-
vective term ∇ × ðV × BÞ. As already mentioned, this CA
model was originally proposed for solar flares. In contrast,
we have applied it to recurrent bursts of SGRs. The
modifications for SGRs, such as the relativistic forms of
the MHD equations and QED effects, will be interesting
issues.
In this paper, we have shown that the SOC of SGRs can

be illustrated not only by the crust quake model but also
by the magnetic reconnection model. To mimic magnetic
reconnections, other CA rules have been examined in the
context of solar flares [27–30]. Incidentally, we have
revised the CA rule for the redistribution from equation (5)
to that proposed by Lu et al. [27], but the qualitative
features remained unchanged. It would also be interesting
to study the distributions of other SOC parameters (ava-
lanche size, waiting time, and so forth) [6,31], which will
be presented elsewhere.
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