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We explore the impact of modified gravity on B-modes, identifying two main separate effects: lensing
and propagation of tensor modes. The location of the inflationary peak of the BB spectrum depends on the
speed of gravitational waves; the amplitude of the lensing contribution depends on the anisotropic stress.
We single out these effects using the quasistatic regime and considering models for which the background
and the growth of matter perturbations are standard. Using available data we obtain that the gravitational
wave speed is compatible with the speed of light and constrained to within about 10%.
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I. INTRODUCTION

The cosmic microwave background (CMB) is a powerful
tool to probe the early universe and the cosmological
evolution that followed. Temperature fluctuations have
been very well measured by independent experiments
[1,2], including the first cosmological data released by
the Planck Collaboration [3]. The data are in agreement
with the Lambda cold dark matter (ΛCDM) model,
although still compatible with scenarios beyond the stan-
dard framework (see for example [4]). For this reason, it is
important to study the potential of new observables that can
help to discriminate different models and constrain them
further. An obvious possibility are CMB B-modes.
Thomson scattering in the presence of primordial fluctua-
tions affects not only the temperature of the CMB but also
its polarization. B-modes generated by gravitational lensing
of the CMB by large-scale structure (LSS) have been
observed by two independent teams [5,6]. In addition, the
BICEP2 Collaboration has recently claimed the detection
of a B-mode signal in the CMB (around l ∼ 80), inter-
preted by the team as the imprint of primordial gravitational
waves from inflation [7]. Whether this is indeed the case
will depend on the analysis of independent probes, the
cross correlation of data at different frequencies and a
careful check of foregrounds of polarized dust emis-
sion [2,8,9].
Cosmological models in which gravity is modified

with respect to Einstein’s general relativity (GR) affect
the CMB spectra in several ways [10], for example through
the late integrated Sachs-Wolfe (ISW) effect [11] and
CMB lensing of the temperature spectrum [12,13]. In this
paper we study how modified gravity (MG) affects B-mode
spectra and identify two main observable effects.
The first effect concerns the lensing contribution to

B-modes and is generated by the anisotropic stress that
characterizes modified gravity theories. Gravitational
lensing of the CMB by the LSS affects temperature
anisotropies and its “electric” (E) and “magnetic” (B)

polarized components [14]. The presence of anisotropic
stress in MG generically affects the lensing potential and
changes the TT, EE and BB spectra (and the cross spectra)
with respect to those predicted by GR and ΛCDM.
The second effect is related to the speed cT of gravita-

tional waves, which can change the peak position of
primordial B-modes because cT determines their epoch
of horizon crossing. Once foreground emission will be
under control, these two effects will give a novel handle for
using future B-mode measurements as a tool to test MG.
There are important difficulties that arise in trying to test

these two effects. First of all, most MG models affect at the
same time the lensing potential and the matter Poisson
equation, thereby a change in the polarization spectra will
typically appear associated to a modification of the growth
rate of scalar perturbations. Since the latter begins to be
considerably constrained by the current data (see e.g. [15])
and the temperature spectrum of scalar perturbations in the
CMB is very well determined [16], it could be naively
expected that a substantial modification of the BB spectrum
would also imply a large imprint in the growth of structures
or the TT spectrum. In addition, there is a large variety of
MGmodels (see for example [17–19]) and adapting a CMB
Boltzmann code for a significant fraction of them is a
daunting task. Conversely, restricting the analysis to a
narrow subset of cases would reduce the appeal of a study
of B-modes in MG.
In this paper we propose to bypass these problems by

adopting a radical strategy. We will focus on MG models
with a single extra scalar degree of freedom in the linear
quasistatic (QS) regime, i.e. taking the large k limit and
neglecting the time derivatives of the potentials. This
reduces considerably the complexity of vast classes of
models. Concretely, this can be applied to the entire class of
Horndeski Lagrangians [20,21], which comprises most
viable modified gravity models based on a scalar field,
and bimetric gravity models [22]. Furthermore, we assume
that the modification of the Poisson equation is negligible,
effectively selecting those models whose effect on the
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CMB is essentially due to lensing and the propagation of
gravitational waves. We also assume that the background
behavior is the one of ΛCDM. In other words, we assume
that MG only affects those observables related to gravita-
tional lensing and gravitational waves. This choice allows
us to test the effects of the anisotropic stress and the sound
speed of gravitational waves with a prescription that can be
easily implemented in Boltzmann codes.
MG effects are in general time dependent. We can

therefore test their impact at various epochs during the
history of the Universe (e.g. at decoupling time or at later
times). Lensing effects are mostly generated at a redshift of
order unity, while the speed of gravitational waves affects
the CMB at decoupling time and, to a minor extent, at or
before reionization. In the following we will thus treat
separately the following cases: MG effects present at all
times, only at decoupling, or only at low redshift.

II. MODIFIED GRAVITY IN
THE QUASISTATIC LIMIT

Linear perturbations in MG models are often studied in
the QS limit, obtained for wave numbers k that are large
compared to the inverse sound horizon, and in which the
additional degrees of freedom with respect to GR (e.g. a
scalar field or a second spin-2 field) do not propagate
significantly but rather can be well described by constraint
equations (such as the Poisson equation). The existence of a
valid QS approximation is not always guaranteed and
should be checked on a case by case basis. For instance,
it may happen that the scales at which the limit can be
attained are well outside the linear regime, or it may occur
that the validity of the limit depends on the specific initial
conditions for the perturbations. In addition, the QS limit
has to be properly defined in order to avoid spurious scale
dependencies [23].
Working with a perturbed flat FLRW metric in

Newtonian gauge

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ð1þ 2ΦÞdxidxi; ð1Þ

the effects of MG in the QS limit can be generally encoded
in two functions [24] that reduce to Y ¼ η ¼ 1 in ΛCDM:

Yðk; aÞ≡ −
2k2Ψ

3H2Ωmδm
; ηðk; aÞ≡ −

Φ
Ψ
; ð2Þ

whereH ¼ aH is the conformal Hubble function, δm is the
matter density contrast and Ωm is the background matter
energy density relative to the critical one. In Eq. (2) the
perturbation variables are meant to denote the standard
deviations of the respective quantities; therefore Y; η are
deterministic functions. The function Y gives an indication
of how the growth of matter perturbations is altered with
respect to the standard one in GR for large k. The function η

depends on the two Newtonian gravitational potentials and
therefore effectively on the anisotropic stress.
It has been shown that Y and η take a particularly simple

form in broad classes of MG models in which the equations
of motion for the perturbations are of second order (for
instance, in the Horndeski Lagrangian or in bimetric
gravity) [24–27]:

Y ¼ h1
1þ ðk=HÞ2h5
1þ ðk=HÞ2h3

; η ¼ h2
1þ ðk=HÞ2h4
1þ ðk=HÞ2h5

: ð3Þ

Here h1−5 are functions that depend only on time and can
be obtained directly from the Lagrangian of the model (see
Appendix). Several types of Hordenski Lagrangians that
have been studied in detail (see e.g. references in [23])
provide specific examples for which the expressions (3) can
be applied.
As discussed in the Introduction, we will focus our

attention on models such that Y ¼ 1 but η ≠ 1. With this
choice we ensure that scalar perturbations obey the stan-
dard Poisson equation for large k: therefore on scales below
the sound horizon, the growth of scalar perturbations
follows the usual one in ΛCDM. This can occur if
h1 ¼ 1 and h3 ≃ h5 (see the Appendix). To simplify our
task further, we will also assume that the three remaining
h-functions (h2, h4 and h5) can be treated as constants. This
amounts to say that their time variation is slow in one
Hubble time and it is a reasonable approximation for
studying first order scale dependent effects. With this
simplification, a very large class of MG models is mapped
into three real constants that encode the possible effects of
the anisotropic stress. As crude as they may seem, these
approximations are a significant improvement with respect
to earlier studies of linear perturbations in MG, in which Y
and η were often assumed to be pure constants.
The lensing effect of MG can then be easily described by

the deviation of η with respect to unity, which we para-
metrize as follows:

1þ η ¼ 2a1
1þ a2ðk=kpÞ2
1þ a3ðk=kpÞ2

; ð4Þ

where a1; a2; a3 will be assumed to be constant and we will
take kp ¼ 0.1h=Mpc.1

III. TENSOR MODES PROPAGATION SPEED

If the anisotropic stress is nonstandard (i.e. η ≠ 1), it can
be shown that the tensor modes propagate in a nonstandard
way. As discussed earlier, this will modify the CMB spectra
and, in particular, the B-modes. The general form of the
propagation equation for the transverse-traceless amplitude

1As usual, h here is the reduced Hubble constant h ¼ H0=100,
whereH0 is the present rate of expansion expressed in km/s/Mpc.
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h in Hordenski Lagrangians can be written (see [23,28] and
also [29] for a generalization) as2

ḧþ ð3þ αMÞH _hþ c2T
k2

a2
h ¼ 0; ð5Þ

where dots represent derivatives with respect to cosmic
time and αM; cT are functions of time that depend on the
specific model; in the standard case one has αM ¼ 0 and the
gravitational waves speed cT equals the speed of light,
cT ¼ 1. Notice that the tensor equation is valid in general,
not just in the QS limit. In the notation of [23,24] one has

αM ¼ _w1=w1H; ð6Þ

c2T ¼ w4=w1; ð7Þ

where w1; w4 are in general time-dependent functions
explicitly defined in the Appendix that depend on the
MG model. Although in principle they can be both non-
zero, in the specific case we are investigating here (see
Appendix), one has αM ¼ 0 and

c2T ¼ w1 ¼
1

2a1 − 1
: ð8Þ

A decrease of cT moves the horizon crossing of tensor
modes to later times and smaller scales; as a consequence,
the BB spectrum tensor mode first peak moves to higher ls,
as we show later on. The position of the tensor B peak is
therefore a measure of the gravitational speed at decou-
pling time.
The speed of gravitational waves can be constrained also

with the gravi-Cherenkov effect (see e.g. [30–32]), which
gives an extremely tight lower limit but no upper limit.
Other possible ways to constrain the graviton speed are
reviewed in [33]. However, all these methods apply only
locally (or at most within the distance scale of cosmic rays)
and/or at the present time; therefore, they are complemen-
tary to the observation of B-modes. For other recent
analysis on quantum gravity effects see for example [34].
The theoretical BB spectrum shows another peak at

l ≈ 5, still to be detected, due to the effects of tensor modes
on the scattering during reionization. Also this peak gets
shifted for cT ≠ 1 as we show below. Its detection, for
instance with the proposed satellite mission LiteBIRD3

[35], could therefore put constraints on the gravitational
wave speed before and during reionization.

IV. WEAK LENSING AND CMB SPECTRA

In order to compute the weak lensing of the CMB by LSS
in a flat universe, we define the lensing potential ψ from the

Weyl potential ~Ψ≡ ðΨ − ΦÞ=2 as follows [14] [note that we
are using a different signature for the metric in Eq. (1)]:

ψðn̂Þ ¼ 2

Z
χ�

0

dχ ~Ψðχn̂; τ0 − χÞ χ� − χ

χ�χ
: ð9Þ

In this expression, n̂ is a unit vector in three-space that gives
the (non-deflected) direction of propagation of a CMB
photon, τ0 − χ is the conformal time at which the photon
was at position χn̂ and χ� is the conformal distance to the last
scattering surface (assuming it is instantaneous).
The deflection angle with respect to the trajectory that

the photon would have in a perfectly homogeneous uni-
verse is given by the angular derivative of the lensing
potential α ¼ ∇n̂ψðn̂Þ. The lensed CMB temperature ΘL
measured in the direction n̂ corresponds to the unlensed
temperature Θ in the direction n̂þ∇n̂ψ , i.e.

ΘLðn̂Þ ¼ Θðn̂þ∇n̂ψÞ: ð10Þ

With the definitions (2) we can write

~Ψ ¼ 1

2
ð1þ ηÞΨ ð11Þ

and use this relation to express the lensing potential (9) in
terms of Ψ and η. We can then write P ~Ψ ¼ ð1þ ηÞ2PΨ=4
where the power spectrum (and similarly the transfer
function) of ~Ψ is written in terms of the one of Ψ, which
is related to the matter one by the Poisson equation (2). As
noticed before, since the main contribution to CMB lensing
comes from a short range in z, peaked around z ∼ 1
[12,13,36,37], the assumption of constant values for
a1;2;3 is justified. We can then modify a Boltzmann code
to include the effect of MG in the computation of the
lensing potential with these approximations.
The power spectrum Cψ

l of the lensing potential at a
given n̂ is

hψ lmψ l0m0 i ¼ δll0δmm0Cψ
l ; ð12Þ

where ψ lm are the coefficients of the expansion of ψ in
spherical harmonics: ψ ¼ P

lmψ lmYlm. This power spec-
trum can be expressed as [14]:

Cψ
l ¼ 16π

Z
dk
k
PRðkÞ

�Z
χ�

0

dχT ~Ψðk;τ0−χÞjlðkχÞ
χ�−χ

χ�χ

�
2

;

ð13Þ

where P ~Ψ ¼ PRT ~Ψ and jlðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
π=2r

p
Jlþ1=2ðrÞ, being

JlðrÞ is the lth Bessel function of the first kind. The transfer
function T ~Ψðk; τ0 − χÞ propagates the lensing potential (9)
forward in time. PRðkÞ denotes the power spectrum of the
primordial curvature perturbation R at the last scattering
surface. Following Eq. (11), we can then account for the
effect of MG by introducing a ð1þ ηÞ=2 factor inside

2We thank M. Kunz, I. Saltas, and I. Sawicki for discussing
with us the structure of this equation.

3http://litebird.jp/.
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the χ integral of (13). Again, for η ¼ 1, the integral is
the standard one.
Before doing the full calculation with a Boltzmann code,

we can get some insight of the MG effect in the region of
relevance for the expected primordial B-mode peak for
large scales ðl ≪ 1000Þ [14]. In this limit and at lowest
order in Cψ

l , the lensed B-mode spectrum ~CB
l is approx-

imately independent of l [14]:

~CB
l ≃ 1

4

Z
dl0l05Cψ

l0C
E
l0 ; ð14Þ

where CE
l is the unlensed E-mode spectrum. Since Cψ

l
enters linearly in (14), we see that in modified gravity the
lensing contribution to the B-mode spectrum gets enhanced
at large scales by ð1þ ηÞ2=4, with respect to ΛCDM.
Since we are deriving the lensing MG effects in the QS

limit, i.e. at subhorizon scales, it is necessary to check
the consistency of our assumption. A comoving mode k
translates through the Limber approximation into a
multipole

l ≈ πrðzÞk: ð15Þ

One finds that for a standard ΛCDM background, k=H >
10 up to z ¼ 7, and k=H > 5 up to z ¼ 20, assuming
l ≥ 100, which is where most of the BB lensing signal is
expected. Since the lensing effect comes from z of a few at
most [14], we expect the quasistatic approximation to be
acceptable.
As we already mentioned, we are neglecting the impact

of MG on the ISWeffect. Although Y ¼ 1 means that there
is no effect on the matter perturbation growth, there will be
a change in the ISW due to the fact that photons see both
potentials Ψ;Φ, just as in the lensing case. However,
contrary to lensing, the ISW has a non-negligible impact
on the temperature CMB fluctuations at superhorizon
scales, where our quasistatic approximation is not reliable.
We can obtain a rough estimate of the MG effect on the
low-l TT spectrum by considering that the ISW contri-
bution is negligible at l > 30. Then we find that it amounts
to less than 20% (see e.g. [38]) at l > 10, and rises up to
50% for l ¼ 2. The MG effects are again proportional to
ð1þ ηÞ2, although at these scales the form of η is no longer
given by the QS expression. Nevertheless, assuming a1 ≈
1.3 (see our best fit case below), we see that the ISW should
be increased by 69%, which means the total TT spectrum
should increase by 14% at l ≈ 10, and up to 35% at the
quadrupole. This is a non-negligible effect but it is well
within the cosmic variance. Moreover, it might be possible
to absorb it by slight adjustments of other cosmological
parameters, although we are not going to explore this
possibility in depth in this paper.
Let us just briefly point out what would be the effect of

the MG model we consider on the determination of

neutrino masses and the total number of relativistic species.
As it is well known (see e.g. [39]), the effect of small
neutrino masses on the CMB power spectrum takes place
via secondary anisotropies and is multipole dependent. In
standard ΛCDM, a total neutrino mass of the order ofP

mν ≃ 0.5 eV reduces the CMB Cl with respect to the
case

P
mν ¼ 0 by at most ∼8% for 10 < l < 20, due to

the late time ISW. For larger values of l, the early time ISW
decreases the Cl by smaller amount (around 2% up to
l ∼ 100) and then increases it by approximately 1% (for
100 < l < 500). As we have just explained the ð1þ ηÞ2
factor introduced in the ISW by the modification of gravity
we consider in this work tends to enhance the Cl with
respect to ΛCDM for all l. Therefore, for small multipoles
(l < 100) it would go on the opposite direction as that ofP

mν, whereas it would enhance the effect of massive
neutrinos for 100 < l < 500 (where the early time ISW
introduced by

P
mν is rather small). If a ð1þ ηÞ2 factor

was present in the CMB, the net overall effect would be an
increased ISW that could be approximately compensated
by a higher value of

P
mν.

On the other hand, the main CMB effect of a larger
number of effective relativistic species Neff with respect to
its standard value of 3.046 is due to a delayed time of
matter-radiation equality, which results in a vertical shift
of the CMB peaks with respect to the first one [40].
Concretely, it introduces a shift of the order of
ΔCl=Cl ≃ −0.072ΔNeff . This means that a ð1þ ηÞ2
ISW change can have a similar effect as that of a reduced
number of relativistic species. In conclusion, the kind of
MG that we consider can affect the determination of both
the total neutrino mass and the number of relativistic
species. A detailed study of the degeneracies of these
effects could be the object of future work.
In any case, in order not to bias our results, we decided to

bypass this problem in the data analysis below by cutting
all the multipoles l < 100 in the TT and TE spectra. This
slightly enlarges our errors but avoids using the incorrectly
modeled low-l tail of the temperature spectrum. We
conclude this paragraph by noting that also weak lensing
of the matter power spectrum can be used to test modified
gravity models [41] and should be seen as a complementary
probe with respect to the lensing on B-mode polarization.
On the other hand, we have checked that the corresponding
TT and EE spectra are very little affected by the kind of
modification of gravity that we study, so that the main
contribution of MG is on B-modes.

V. RESULTS

In order to test how modified gravity affects the CMB
spectra, we have modified the publicly available Boltzmann
code CAMB.4 Given the assumptions described in Sec. II,

4http://camb.info/.
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we do not need to modify the background, which is
assumed to be ΛCDM. Within CAMB, we apply two sets
of corrections to perturbations, which can be activated
separately or simultaneously:

(i) we modify the lensing potential as described in
Eq. (11), which then depends on the a1; a2; a3
parameters;

(ii) we modify the tensor propagation equation as
described in Eq. (5). This modification only depends
on a1.

We have included the three new parameters in COSMOMC

[42]. Both CAMB and COSMOMC used for this paper are the
ones from the March 2014 version. After checking that for
a1 ¼ 1 and a2 ¼ a3 we recover standard ΛCDM, we have
then tested separately three cases: when MG effects are

present at all times and therefore both on lensing and on the
gravitational wave speed (we refer to this case as
“CTþ lensing”), when they are present only at decoupling
and therefore only on the tensor speed (CT), or only at low
redshift (“lensing”).
To illustrate the effects of MG on the BB polarization we

show its spectrum in Figs. 1–3 for various choices of a1
while we always fix a2 ¼ a3, just for illustration.
In Fig. 1 we plot the BB spectrum for the three effects

(lensing, CT, CTþ lensing). The top panels refer to the
lensing case for a tensor-to-scalar ratio r0.05 ¼ 0 and
r0.05 ¼ 0.2 respectively. The ΛCDM is also shown for
reference for both values of r0.05. As expected, increasing
the value of a1 effectively increases η and therefore the
integrand in Eq. (13): the lensing contribution therefore
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FIG. 1 (color online). BB power spectrum for MG models. In the top panels we show the effect of a lensing correction for r ¼ 0 and
r ¼ 0.2 respectively. In the bottom left panel we plot the case in which the “CT’” correction on the speed of gravitational waves is active
(while the lensing is standard). In the bottom right panel we activate both effects. In all cases for simplicity we assume a2 ¼ a3 and
different values of the a1 parameter. The corresponding values of c2T are written in the bottom left panel and are related to a1 via Eq. (8).
For comparison, the predictions for ΛCDM with r ¼ 0 (short dashed, blue) and r ¼ 0.2 (solid, blue) are also shown. The black dots are
the data points from BICEP2.
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increases in amplitude and extends to smaller multipoles
than expected for the corresponding ΛCDM. The position
of the primordial peak is however not affected (although
its amplitude also receives a contribution from MG). The
bottom left panel shows the BB spectra when only the CT
effect is active: in this case, the speed of gravitational
waves changes with the inverse of a1 as described in
Eq. (8): a value of a1 smaller (larger) than one increases
(decreases) the speed of gravitational waves with respect
to ΛCDM and shifts the expected position of the primor-
dial peak to smaller (larger) multipoles. When both effects
are active, as in the bottom right panel, both the lensing
amplitude and the shift in peak position can occur. In all
panels we also overplot for reference the recently released
data points of BICEP2.5 We note that the corresponding
TT and EE spectra are very little affected by these
changes, so that in our model the main contribution of
MG is on B-modes. In Fig. 5 we replot the lensing case, as
in Fig. 1 top left panel, for r0.05 ¼ 0 and a wider range in
scales, up to l ¼ 2000, to show how the lensing pre-
dictions for MG compare with the available data from
POLARBEAR,6 although we do not use them in our
analysis. Notice that if we took BICEP2 data at face value,
while the “bump” around l ∼ 80 is best rendered by a
nonzero tensor-to-scalar ratio (r ¼ 0.2) in ΛCDM, the
location of the upper points is qualitatively in good
agreement with a modification of gravity represented
by a1 ≈ 1.5.

Finally, in Fig. 3, we zoom in the low-l region in
order to emphasize the effect of a change in cT on the
reionization peak. Interestingly, future measurements of
the reionization peak by experiments like those in
Refs. [43–47] could be used to discriminate MG theories.
For example, the satellite mission LiteBIRD [35] would
have a sensitivity to characterize the tensor-to-scalar ratio
r with an uncertainty of δr ∼ 0.001. At these scales the
lensing contribution is negligible and the only modifica-
tion comes from the correction in the speed of gravita-
tional waves.
We then proceed with Monte Carlo simulations using

available data to test the parameters of our implementa-
tion of MG. We use WMAP9 data [48], ACT [49] +SPT
[50] and the data from BICEP2 [7] on B-modes polari-
zation. We enforce the inflationary consistency relation
nt ≃ −r=8 for the tensor spectral index nt. We perform
different runs, including the three cases illustrated
before: lensing modification, CT, CTþ lensing modifi-
cations. Results are illustrated in Table I. As the values
for a2 and a3 can in principle span several orders of
magnitude, we use for convenience the logarithm of
these quantities. The parameters a2 and a3 play no role
in CT and are essentially unconstrained also including
the lensing MG effect. Provided that the foreground
contributions are under control, B-modes polarization
will be however a very good probe to test the a1
parameter, i.e. the anisotropic stress and the speed of
gravitational waves.
In Fig. 4 we show 1D posterior contours for a selection

of cosmological parameters and different runs. Here it
becomes clearer that a1 is mainly constrained by the
lensing contribution, while CT gives much larger
uncertainty. This can be seen intuitively from Fig. 1: CT
influences both the amplitude and the position of the

lensing
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a1 = 1,    r0.05 = 0
a1 = 1.5, r0.05 = 0
a1 = 2,    r0.05 = 0

FIG. 2 (color online). The theoretical predictions of Fig. 1, first
panel, are shown here for a larger l range with a log scale. The
horizontal error bars associated to the BICEP2 data points
correspond to the interval ðlmin;lmaxÞ from the data currently
available from the BICEP2 Collaboration. For reference,
although not used in this analysis, we also overplot data from
POLARBEAR (magenta, triangular points). The third of these
points is given as an upper limit at 2 standard deviations.

CT
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FIG. 3 (color online). Zoom at low multipoles of the BB
spectrum of Fig. 1, bottom left panel. A CT effect, i.e. a change in
the speed of gravitational waves, is expected to modify the
reionization peak in B-modes.

5http://bicepkeck.org/B2_3yr_bandpowers_20140314.txt.
6http://lambda.gsfc.nasa.gov/product/suborbit/polarbear_prod_

table.cfm.
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TABLE I. Mean values� standard deviation for a selection of parameters. Both columns refer to the combination
of data sets WMAPþ HighLþ BICEP2. For logða2Þ and logða3Þ parameters we write the 95% upper limit; these
parameters are essentially not constrained.

Data sets: WMAP9þ HighLþ BICEP2

Parameter ΛCDM MG (lensing) MG (CT) MG (CTþ lensing)

a1 � � � 1.30� 0.16 2.89� 1.21 1.28� 0.15
log10 a2 � � � <0.30 � � � < −1.12
log10 a3 � � � <0.37 � � � < −0.11
r0.05 0.21� 0.05 0.19� 0.05 0.35� 0.11 0.21� 0.05
r0.002 0.23� 0.06 0.21� 0.06 0.43� 0.17 0.23� 0.07
H0 72.0� 2.2 73.7� 2.4 73.0� 2.4 73.9� 2.4
ns 0.998� 0.013 1.000� 0.014 1.012� 0.016 1.006� 0.015
− logL 4146 4142 4145 4143

FIG. 4 (color online). One-dimensional posterior contours for a selection of cosmological parameters. We compare the three cases in
which: lensing is modified (solid, black line), CT is modified (dotted magenta line), CT and lensing are both modified (light solid, green
line). We overplot also the case of ΛCDM for comparison (dot dashed, blue line).
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FIG. 5 (color online). One-dimensional posterior contours for a selection of cosmological parameters. For the case in which both CT
and lensing are both modified, we compare the constraints obtained using all multipoles (solid, green line), to the case in which we cut
all multipoles l < 100 in TT and TE (dash-dotted, light green).

FIG. 6 (color online). 2D posterior contours for a selection of cosmological parameters and the three cases in which lensing only is
modified (green contours), CT only is modified (orange/light contours), CT and lensing are both modified (blue/darker contours). The
case including CT only does not depend on a2 and a3 parameters. As before, we consider the data combination
WMAPþ HighLþ BICEP2.
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BB spectrum and is able to fit the data for a larger range
in a1.
In order to check the validity of the QS limit, we test the

effect of the incorrectly modeled low-l part of the TT
spectrum by redoing the MCMC simulation cutting the first
100 multipoles in the TT and TE spectra. A comparison of
the run with and without cut is shown in Fig. 5. As we see,
while parameters like ns and H0 are affected by the cut,
constraints on a1 do not depend on the cut; i.e. they do not
depend much on the low-l multipoles in the temperature
spectra. This is reassuring as it shows that the QS limit and
its simplest numerical implementation may be sufficient to
test MG theories.
In Fig. 6 we show the comparison of the 2D posterior

contours for the three effects. In addition to the consid-
erations already done above, we notice here that a2 and a3
are degenerate and tend to align along the direction
a2 ¼ a3. This particular direction removes any scale
dependence in the expression for η in (4).
In Fig. 7 we redo Fig. 3 for a1 ¼ 1.30, corresponding to

the mean (and best fit) of modified gravity, for the lensing
case shown in the plot.
Finally, we remap the constraints obtained for the various

runs on a1 into cT , the speed of gravitational waves. The
resulting 1D contours are shown in Fig. 8. We find that
cT ¼ 0.8� 0.07 from CTþ lensing. Using CT alone the
constraint is much weaker: cT ≳ 0.4 at 2σ. The reason for
this behavior can be understood by looking at Fig. 6. In the
central panel one can see that a1 (or equivalently cT) is

quite degenerate with r0.05 if lensing is not taken into
account. This is because a shift of the tensor peak towards
higher ls can be partially compensated by an increase of
r0.05. In other words, a1 (or cT) could be determined by the
tensor peak position (see the bottom-left panel of Fig. 1)
which is not firmly established by the current data.
However, cT changes the lensing amplitude in a significant
way (see Fig. 1, top-right panel) and is therefore well
measured by lensing alone.

VI. CONCLUSIONS

The polarized light from the last scattering surface
carries important information in addition to the temperature
anisotropy. Not only it helps constraining the cosmological
parameters but it also allows us to separate the effects of
primordial gravitational waves from scalar perturbations,
both predicted by inflationary models. Current experiments
[6,7,51] are already providing results which will soon be
cross tested by Planck. Future observations [43–47] will
keep improving our knowledge of CMB polarization.
B-modes, once foregrounds are accounted for, are particu-
larly important in this context since they contain both the
imprint of primordial gravitational waves and the one from
gravitational lensing induced by large-scale structure. In a
sense, B-modes are the ultimate test of gravity at cosmo-
logical scales since they probe two genuinely general
relativistic effects.
Modifications of gravity have been mainly proposed to

describe the late time acceleration of the universe (see e.g.
[52] for a review) but they have also been studied as a
possibility for driving primordial inflation (e.g. [53–56]). In
any case, it is conceivable that some extra degrees of
freedom affect gravity at early times, see for instance [57].
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ΛCDM , r0.05 = 0.2
a1 = 1.30, r0.05 = 0.19

FIG. 7 (color online). Best fits from Table 1. MG with r ≠ 0 is
shown (dash-dotted, orange) together with ΛCDM assuming also
r ≠ 0 (dashed, blue). For comparison we also show ΛCDM with
r ¼ 0 (blue). As in Fig. 2, we show the data points of POLAR-
BEAR (magenta triangles) in addition to those of BICEP2. The
error in the abscissa associated to the BICEP2 data points
corresponds to the interval ðlmin;lmaxÞ from the release by the
BICEP2 team. The third point from POLARBEAR is plotted as
an upper limit at 2 standard deviations. We recall that POLAR-
BEAR data are not used in the analysis and are only shown here
for reference.
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FIG. 8 (color online). Speed of gravitational waves, as obtained
remapping the constraints on a1 for the three different effects
considered in this paper: lensing (dark solid, black line), CT
(dotted magenta), CTþ lensing (lighter solid, green). c2T ¼ 1
corresponds to the standard value.
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In this paper we investigated how B-modes can be
employed to test gravity at early times and at cosmological
scales. Both lensing and gravitational wave propagation
depend on the features of gravity and one can use them to
constrain its properties. It is remarkable that both effects
depend on the amount of anisotropic stress η, which in
general differs from the standard value of unity in modified
gravity. To simplify our study, we single out the effects that
depend on η alone by selecting models in which the
background and the matter perturbation growth are exactly
standard. Moreover, we work in the quasistatic limit, in
which all the modified gravity effects can be embodied in
just two arbitrary functions of time and space. In a vast
class of models (the Horndeski Lagrangian [20] and in
bimetric gravity [22]), these two functions take a particu-
larly simple form, given by Eq. (3).
We show by a Monte Carlo analysis with real data that it

is indeed possible to constrain the anisotropic stress and the
gravitational wave speed with B-modes. Although the
particular values we obtain here are to be taken with great
caution because the B-mode available data are still under
close scrutiny, future data has great potential for providing
tight constraints on MG.
Several of the assumptions we adopted for simplicity

in this work can be lifted relatively easily: one can
for instance remove the assumption of constant MG
parameters and work with the full equations rather than
with their quasistatic limit. This will be addressed in
future works.
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APPENDIX: ANISOTROPIC STRESS WITHOUT
MODIFIED GROWTH

One may wonder whether taking η ≠ 1 and Y ¼ 1 at the
same time is consistent since it can be expected that a
general modification of gravity would induce a change in
both Poisson’s equation and the relation between the metric
potentials, Ψ and Φ. Although this is indeed the general
case, it is possible to find situations in the QS limit that
produce an anisotropic stress component, but do not
modify Newton’s constant. We will illustrate this with an
example.
The action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
Rþ Lx þ Lm

�
ðA1Þ

describes the behavior of matter (with Lagrangian density
Lm) in a modification of GR given by Lx. In the case of
Hordenski MG theories, the modification of GR is given by
a scalar field ϕ with Lx ¼

P
5
i¼2 Li, where

L2 ¼ Kðϕ; XÞ; ðA2Þ

L3 ¼ − G3ðϕ; XÞ□ϕ; ðA3Þ

L4 ¼ G4ðϕ; XÞRþ G4;X½ð□ϕÞ2 − ð∇μ∇νϕÞð∇μ∇νϕÞ�;
ðA4Þ

L5 ¼ G5ðϕ; XÞGμν∇μ∇νϕ

−
G5;X

6
½ð□ϕÞ3 − 3ð□ϕÞð∇μ∇νϕÞð∇μ∇νϕÞ

þ 2ð∇μ∇αϕÞð∇α∇βϕÞð∇β∇μϕÞ�: ðA5Þ

The functions K and Gi are in principle arbitrary and X ¼
−∂μϕ∂μϕ=2 is the standard kinetic term.
The QS limit of the equations of motion derived from

this action are characterized by the functions hi appearing
in Eq. (3). They can be expressed as

h1 ≡ w4

w2
1

¼ c2T
w1

; h2 ≡ w1

w4

¼ c−2T ;

h3 ≡ H2

2XM2

2w2
1w2H − w2

2w4 þ 4w1w2 _w1 − 2w2
1ð _w2 þ ρmÞ

2w2
1

;

h4 ≡ H2

2XM2

2w2
1H

2 − w2w4H þ 2w1 _w1H þ w2 _w1 − w1ð _w2 þ ρmÞ
w1

;

h5 ≡ H2

2XM2

2w2
1H

2 − w2w4H þ 4w1 _w1H þ 2 _w1
2 − w4ð _w2 þ ρmÞ

w4

; ðA6Þ

being
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w1 ≡ 1þ 2ðG4 − 2XG4;X þ XG5;ϕ − _ϕXHG5;XÞ;
w2 ≡ −2 _ϕðXG3;X − G4;ϕ − 2XG4;ϕXÞ þ 2Hðw1 − 4XðG4;X þ 2XG4;XX −G5;ϕ − XG5;ϕXÞÞ − 2 _ϕXH2ð3G5;X þ 2XG5;XXÞ;
w3 ≡ 3XðK;X þ 2XK;XX − 2G3;ϕ − 2XG3;ϕXÞ þ 18 _ϕXHð2G3;X þ XG3;XXÞ − 18 _ϕHðG4;ϕ þ 5XG4;ϕX þ 2X2G4;ϕXXÞ

− 18H2ð1þ G4 − 7XG4;X − 16X2G4;XX − 4X3G4;XXXÞ − 18XH2ð6G5;ϕ þ 9XG5;ϕX þ 2X2G5;ϕXXÞ
þ 6 _ϕXH3ð15G5;X þ 13XG5;XX þ 2X2G5;XXXÞ;

w4 ≡ 1þ 2ðG4 − XG5;ϕ − XG5;Xϕ̈Þ; ðA7Þ

and

M2 _ϕ ¼ 3HðPx;ϕ þ ρx;ϕÞ þ _ρx;ϕ ðA8Þ

ρx ¼ 3H2ð1 − w1Þ þ 2XK;X − K − 2XG3;ϕ þ 6 _ϕHðXG3;X −G4;ϕ − 2XG4;ϕXÞ
þ 12H2XðG4;X þ 2XG4;XX −G5;ϕ − XG5;ϕXÞ þ 4 _ϕXH3ðG5;X þ XG5;XXÞ;

Px ¼ −ð3H2 þ 2 _HÞð1 − w1Þ þ K − 2XG3;ϕ þ 4XG4;ϕϕ þ 2 _ϕHw1;ϕ − 4X2H2G5;ϕX

þ 2 _ϕXH3G5;X þ ϕ̈ðw2 − 2Hw1Þ= _ϕ: ðA9Þ

We see from Eq. (2) that in order to get η ≠ 1 and Y ¼ 1
in the QS limit we must impose

h3 ¼ h5 ðA10Þ

h1 ¼ 1: ðA11Þ

The condition (A11) enforces

w4 ¼ w2
1: ðA12Þ

Then, the condition (A10) becomes a relation between the
Hubble parameter H and the functions w1 and w2:

_w1 ¼ w1

�
w2

2
−H

�
: ðA13Þ

If we impose

G3;X ¼ 0 G4;ϕ ¼ 0 G5;X ¼ 0; ðA14Þ

the equations w2 ¼ 2H and w4 ¼ w2
1 are equivalent to

G4 þ Xð3G5;ϕ − 4G4;X − 4XG4;XXÞ ¼ 0 ðA15Þ

2ðG4 − XG4;XÞ2 þ X2ð9þ 8G4 − 8XG4;XÞG4;XX

þ 8X4G2
4;XX ¼ 0: ðA16Þ

Under these conditions, the function w1 takes the form

w1 ¼ 1þ 4

3
ðG4 − XG4;X þ 2X2G4;XXÞ: ðA17Þ

Then, if G5 ∝ ϕ and the field evolves keeping X
constant, Eqs. (A15) and (A16) become algebraic con-
straints and w1 can be different from 1 (as required to
have a nontrivial η). With this choice, Y ¼ 1 and η ¼
1=w1 and constant.
Assuming that the matter component has zero pressure

and ρm energy density, the equations of motion in the
background (the Friedmann equations) are in this case

ρm − K þ 2XK;X − 2XG3;ϕ ¼ 3H2 ðA18Þ

ηð−K þ 2XG3;ϕÞ ¼ 3H2 þ 2 _H: ðA19Þ

Notice that if only matter is present, we recover the
standard equations ρm ¼ 3H2 and 3H2 þ 2 _H ¼ 0.
Equations (A18) and (A19) can be combined into

dH2

d ln a
þ 3ð1þ ηÞH2 ¼ ηðρm − 2K þ 2XK;XÞ; ðA20Þ

which allows us to get H for a given ρm and Kðϕ; XÞ. In
particular, a ΛCDM evolution for the background can be
obtained provided that the matter density today is

Ω0
m ¼ 1 −

2ηðXK;X − KÞ
3ð1þ ηÞ ; ðA21Þ

and that

2ð1þ ηÞXG3;ϕ ¼ 2K;XX þ Kðη − 1Þ: ðA22Þ

Since η is constant, these conditions can be achieved
if G3 is linear in ϕ, K depends only on X and the field
evolves keeping X constant. We have to check also the
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Klein-Gordon equation for ϕ (see [28]), which under these
conditions takes the following form:

d
d ln a

ða3JÞ ¼ 0; ðA23Þ

where

J ¼
ffiffiffiffiffiffi
2X

p
ðK;X − 2G3;ϕ þ 6H2ðG4;X þ 2XG4;XX −G5;ϕÞÞ:

ðA24Þ

We obtain that (A23) is satisfied if J ∝ a−3 which, for a
ΛCDM background, implies

K;X − 2G3;ϕ ¼ 6ðΩm0 − 1ÞðG4;X þ 2XG4;XX −G5;ϕÞ:
ðA25Þ

Therefore, we see that the background evolution is exactly
ΛCDM, the effective Newton constant has the standard
value (i.e. Y ¼ 1) but the anisotropic stress can be different
from unity.

Let us finally give a specific case for which these
conditions are satisfied. If, for instance, we take

K ¼ βemX; G3 ¼ 0; G4 ¼ α
1þ Xn

1þX
; G5 ¼ 0;

ðA26Þ

where X is in units of H2
0 and α, β, n and m are constants,

Eqs. (A15), (A16), (A21), (A22) and (A25) can be
simultaneously solved, provided X is suitably chosen.
For instance, if we choose α ¼ −0.286; X ¼ 1.082; n ¼
1.360 and put Ω0

m ¼ 1=3 we obtain β ¼ −1.70; m ¼
−0.251 and cT ≈ 0.8 as in our best fit, with the anisotropic
stress different from unity and equal to η ≈ 1.55. Although
this is just a minimal toy model without any special
physical significance, it nevertheless shows that a MG
model with the properties we have employed in this paper is
indeed possible. More general cases in which, for instance,
G3; G5 are not zero and η is time and scale dependent also
exist. Many other examples in which Y ¼ 1þOð10−NÞ,
where N is large, can be constructed as well.
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