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Renormalizable toy model of massive spin-two field and new bigravity
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In this paper, we propose a toy model of the renormalizable theory describing a massive spin-two
field. Although the model is renormalizable, we show that the model contains ghosts. The coupling of the
theory with gravity can be regarded as a new kind of bimetric gravity or bigravity. We show that the massive
spin-two field plays the role of the cosmological constant.
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I. INTRODUCTION

After the establishment of the free theory of massive
gravity by Fierz and Pauli [1] (for a recent review, see
Ref. [2]), a consistent interacting theory has not been found
during the past three quarters of a century. One of the reasons
is the appearance of the Boulware-Deser ghost [3,4] in
general, and another is the appearance of the van Dam—
Veltman—Zakharov (vDVZ) discontinuity [5] in the mass-
less limit m — 0, although the discontinuity can be screened
by the Vainstein mechanism [6] (see, for example, Ref. [7]).

After the elapse of seventy-five years from the work by
Fierz and Pauli [1], there has been remarkable progress in
the study of nonlinear massive gravity, and the ghost-free
models, which are called the de Rham, Gabadadze, and
Tolley (dRGT) models, have been found in Refs. [§-10].
These models have a nondynamical background metric, but
they have been extended to the models with a dynamical
metric [11-13], which are called bigravity models. After
that, cosmology was studied in the massive gravity models
[14] in the decoupling limit, where the models reduce to
scalar-tensor theories, and several activities in the massive
gravity models [15-18] and in the bimetric gravity models
[19-26] have followed after that.

The absence of ghosts was shown in the Hamiltonian
analysis [13] by using the Arnowitt-Deser-Misner (ADM)
formalism, where the metric is assumed to be

goo = —N* + g N;N;, 90 = N, 9ij = gij- (1)
Here i, j = 1,2, 3; N is called the lapse function; and N; is
called the shift function. We denote the inverse of g;; by g".
In the dRGT models, after the redefinition of the shift
function N;, the Hamiltonian becomes linear to the lapse
function N, and in the expression of the new shift function
given by solving the equation obtained from the variation of
the new shift function, the lapse function N does not appear.
Therefore, the variation of N gives a constraint on g;; and
their conjugate momenta. By combining this constraint
with the secondary constraint derived from the constraint,
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an extra degree of freedom corresponding to the ghost is
eliminated. Because the existence of the Boulware-Deser
ghost may depend on initial conditions, the Boulware-
Deser ghost in three-dimensional bigravity model was
studied in Ref. [27] by using the Hamiltonian analysis.

Recently in Ref. [28], possibilities have been proposed
of new nonlinear ghost-free derivative interactions in
massive gravity. After that, however, in Ref. [29], it has
been shown that a class of the derivative interactions
includes ghosts, and a kind of no-go theorem prohibiting
the derivative interactions has been claimed. In this paper,
we show the existence of the nonlinear derivative inter-
actions which are not included in Ref. [29], although such
derivative interactions generate ghosts, unfortunately.

Motivated by such analyses, we propose a power-
counting renormalizable model describing the massive
spin-two field. The model could not be, however, really
renormalizable, because the projection operators included
in the propagator generate nonrenormalizble divergences.
This problem is, however, solved by adding a term where a
vector field couples with the massive spin-two field.
Although the model could be renormalizable by investigat-
ing the spectrum of this model, we find that ghosts could
appear, and therefore the model cannot be a realistic one but
rather a kind of toy model. Because the gravity is not
renormalizable, we may consider the coupling of the
power-counting renormalizable model, which could not
be really renormalizable, with gravity. The model can be
regarded as a new kind of bigravity.

II. STILL NEW DERIVATIVE INTERACTION
IN MASSIVE GRAVITY?

In Ref. [28], by using the perturbation £, from the flat
metric

h;w = 9w —Mw (2)

as a dynamical variable, new ghost-free interactions were
proposed. The interaction terms have the following form:
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‘Cd,() ~ l’]”'yl"'””y" hﬂl”l .. 'hllnl’n' (3)

Or, in terms including d derivatives, which are called pseudolinear terms (see also Ref. [30]):

‘Cd,n ~ nﬂlylﬂ'ﬂnynaﬂla h

vyt

.0, 0, h,, h

Va-1""HaVa" "Ha+1Vav1 " " 'hlln+d/zl/n+d/2 : (4)

Here n/1*1--#:¥n is given by the product of n 7, and antisymmetrizing the indexes vy, v,, ..., and v, for example:

Vil — v v 1% v
,1#1 1MV = ;7141 1;7M2 2 _nl‘l 2;/]ﬂ2 L

V1ol i3l; — v v 1% v v 1% v 1% v 1% v v v v 1% 1% v v
,7141 1MV H3V3 — ;7141 171142 2,1#3 3 _]/Iﬂ] 1;7142 37]M3 2+ ;7.“1 21’]”2 3,7143 1 — ;/,ﬂl 2;7M2 1;1H3 3 _|_,7ﬂ1 3;7142 1;7ﬂ3 2 — 11”1 3,7142 z;/lﬂs 1, (5)

It is evident that these terms are linear with respect to A,
which could be a perturbation of the lapse function N in the
Hamiltonian, and there do not appear terms which include
both hgy, and hg,;. Therefore, the variation of hg, gives a
constraint for h;; and their conjugate momenta z;;, and
therefore the ghost could be eliminated, although we may
need more careful Hamiltonian analysis.

The nonlinear counterparts for Eq. (3) are nothing but the
mass terms and the interaction terms in the dRGT models:

;/I.ulyl-“ﬂnynh”lb] "'hﬂnl/n ~ \/__ggﬂll/l---ﬂnl’n[C”]D] “.}C#nyn' (6)

Here IC,, is defined by

’Cﬂy = 5;¢U - g_lf s (7)

and f,, is the fiducial metric and often chosen to
be fi = M-
In D = 4 space-time dimensions, a possible nontrivial
term with two derivatives is given by
£2,2 ~ nﬂl”lﬂzl/zﬂ3v3aﬂla h h (8)

Vi Y,
and

[:2,3 ~ bt aﬂl a1/1 hﬂzbz hﬂzbz hﬂ3U3 : <9)
The nonlinear counterpart of Eq. (8) could be nothing but
the Einstein-Hilbert term. In case of massive gravity, there
is another candidate of the nonlinear counterpart for Eq. (8)
[31], which is

/_ggﬂ1D1”2U2”3v3Rulﬂzulyzlcyyq' (10)

The nontrivial, fully nonlinear counterpart of Eq. (9) could
be also given by

U HaUp HI3U3 4L,
/_gg/ll 1Mo V2 H3V3 4 4R;t1ﬂzulvzlc/43u3lcﬂ4v4' (11)

Here g#1*1--#%n is, as in the definition of ##1*1--#:*» given by
the product of n g, and antisymmetrizing the indexes
vy, Uy, ..., and v,,.

In Ref. [29], however, it has been shown that the
nonlinear terms [Eqs. (10) and (11)] could generate the
ghost by using the mini-superspace, where

N=N(1). N;=0, gj=a(t)n;. (12)

In fact, in the mini-superspace [Eq. (12)], the terms in
Egs. (10) and (11) have the following form [29]:

/— 1V1Hah H3l3
gg” Rﬂ|ﬂzV|U2]CM3V3
a? a? n a?
a2N2 d3N2 a2N3 ’

~Nd® [2 (13)

/— 1V oV H3V3 4Ly
ggﬂ Rﬂlﬂz”l”zlcm%lcmw

J& @ @ &
~Na 2N} BN? + @N?  &@N3|

(14)

The expressions (13) and (14) tell that in the Hamiltonian,
the terms in Egs. (10) and (11) generate the terms which are
not linear with respect to the lapse function N. Therefore,
the equation given by the variation of N can be solved with
respect to N and does not give any constraint on g;; or their
conjugate momenta, which tells us that the ghost could not
be eliminated.

We should note that the terms in Eqgs. (10) and (11) are
not unique terms reproducing Eqgs. (8) and (9), respectively.
Another candidate reproducing Eq. (8) is

/_ggﬂll/lﬂzl/zllzbs (vm VD] Kﬂzvz)lcml/a , (15)
and a candidate for Eq. (9) is

/_g¢1V1ﬂ2”2ﬂ3’/3/44V4 (vﬂl VDI ,Cﬂzl/z )]C K

H3V3 " Y paly "

(16)

In the mini-superspace [Eq. (12)], these terms can be
expressed as

\/__g WRIas (vﬂl vl/l ]Cﬂzvz)lcllsl/S ~ Na3 |:aa
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H3V3" Y4y

\/_—ggmmﬂszﬂsUs”W“ (V,,l vul Kﬂz’/z)

d2

~N& [— (18)

P
SN —N} :
From the above expressions (17) and (18), however, we
find that the terms in Egs. (15) and (16) could also generate
the ghost. The ghost could not be eliminated even if we
consider the combinations in Egs. (13), (14), (15), (17),
and (18).

We should note that there is another candidate to
reproduce Eq. (8):

Pl el ]I

vV _gng rpee fy v vylcpp’ vv",Caa’ . (19)

Here f#** = »**. In the mini-superspace, however, this term
has the following form:

,_ggw’pp’aa’fv’v” vv,Cpp’ vl/” IC()‘D"
6a*>  6a° 6&2}

oy Tav TN (20)

~ Na3 [_

Q

\/__96ﬂ| [U15ﬂ2V25ﬂ31/3];7ﬂ108y] ]Cﬂzyz p}Cﬂ3y3
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and therefore the ghost could not be eliminated even if we
consider any combination with other terms.

Then we consider the possibility of other classes of the
no-ghost interactions by relaxing the assumption in
Ref. [29]. In the argument so far, we have considered
the terms which have invariance under the general coor-
dinate transformation if the fiducial metric f,, could be a
dynamical tensor. We may relax this condition and require
only the Lorentz invariance. Then we may consider the
term given by replacing the covariant derivatives V, in
Eq. (19) with the partial derivative 0,

vV _ggyy/pp/adf vV avlcpp’ 81/’ ,Crm’ . (21)

In the mini-superspace [Eq. (12)], this term is surely linear
with respect to N. Then we check if the term in Eq. (21)
could give interactions without ghosts by using the full
ADM formalism. Explicitly, the term in Eq. (21) has the
following form:

= —9[—(30 g‘lnii)2+2<3i 9‘17700)(&- g‘lnkk)+(& g‘lnjj)@i g‘lnkk>
—(00 9‘1110)(8[ g‘lnjj>+<8,- 9‘1f7i0)<8o g“njj)—(a,- g‘lnij)(c?,- g‘lnoo)
—(& g_lnij><af g_lnkk>+(a°\/ﬁoi)<af g_l"ij)+<ai g_l”i0>(8f 9_1"01')
—(& g‘lnlj (30 g"njo>+<8i 9‘1nlj)(8k g"njk)+(ao g‘lnl)(@o g“njl.)
—2<3,~ g“noj)(f)i g"njo)—@i g"njk>(8i g‘lnkj>+ 0o 9_177[]->(8j g“rloi)
+ (/) (o) = (/o) (oofotn ) + (oo ) (onotn )
= (9 g“nj.> (&- g“nol +(8f g“r/jj) (80 g“nl())—(ai g“n00> (3, g“nij)
)

/N /N
<~

So that a ghost cannot appear, the term should be given in
the form where the time derivative of the lapse and shift
functions do not appear. This kind of form might be
obtained by the cancellations between several terms after
the partial integration. Because this kind of cancellation
should occur between the terms including the same number
of time derivatives, we now consider the following terms:

\/—_9[_ (50\/5[)2 * (ao\/ﬂi,/') (80\/Eji)]

(23)

(22)

As in Ref. [10], for convenience, we use the redefined shift
function n’, which is given by
Ni = (5} —i—NDij)nf. (24)

The definition of D'; is given by solving the following
equation [10]:

(V1 —=nTIn)D = \/(J/_l — Dnn"DT)I,

I=05 | (25)

je
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: i : T . 1 '
By using n', we rewrite /g~ '/, as follows: A Bl=nl. Ci = \/(y_l —Dnn? DT

vl—nTIn7 !

i (28)
\/g‘lnzﬁfH—B. (26)

By using Eq. (28), v/¢g~'%f, can be rewritten as

Here I A/N AB's;/N
gn,= <—ABf/N —-B'B*3;/N +C'; )’ (29)
A= ; < ! n'l > and 0, \/ﬂi ; can be expressed as follows:
V1—=nTIn \-n -nn"l)’

i B'B*§,;N B'B*s,; B'B*s,; ..

B = 0 0 (27) o\ g'n . = zk] - Nk]— Nk]+C’j.
0 /(y'=Dnn"DN)I J N 0
30

In order to simplify the notation, we define the following  Therefore, by using ADM variables, Eq. (23) has the

quantities: following form:
|

o)+ o) ()

2B B i, ABB)C BB )NC,
= NV7 |- = () - j
\[{ (Cp+ = e
7B Bk(sk C] N 2(BléllB )(B 611 ) 2BlBk5k]C]1 _ZBlBk5k]C]t Ci Cj 31
5,0 2 N 0,0, ) &

From expression (31), we find that the time derivatives of the lapse and shift functions cannot be canceled, and therefore
ghosts could appear.

III. RENORMALIZABLE MODEL OF MASSIVE SPIN-TWO FIELD

We now propose a power-counting renormalizable model of the massive spin-two field, whose Lagrangian density is
given by

2

1 m
'ChO = — 5;7%41111/&1/2/431/3 (8 61/1 huzuo) s + 7;7141”1/421/2 hﬂl”l hllzl/z
H Ao
— 3_ ;/]ﬂllflllzbzllsl/s hﬂl”] hllzl/z h#}”z a0 77} 1V1 oV H3V3 gy hﬂ]y] hﬂzyz hmv3 hM4V4
1
) (hOh — W*Ohy,, — ho* " hy,, — h,, 0# 0" h + 2h, O h,,,)
mZ 2 U H 3 yn vl Pl 1
+7(h = hyh )_Q(h —3hh, h* +2h, h, h,*)
A
I (h* — 6h2hﬂ,,h”” + 8hh,"h, h,! — 6h, h,Ph,"ht + 3(hm,h””)2). (32)
|
Here m and p are parameters with the dimension of We should note, however, that the propagator is given by
mass, and 4 is a dimensionless parameter. Therefore, the | )
model given by the Lagrangian is power-counting ) 5 — { pm Pm + P Pm —-Zprpm }
renormalizable. The model could be also free from e 2(p*+m?) U ‘ 3
ghosts. (33)
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pub
P, =y, + ’,;12,/. (34)

Then when p? is large, the propagator behaves as Des o ™

O(p?) due to the projection operator Plr,, which makes the
behavior for large p> worse, and therefore the model should
not be renormalizable.

There is a similar problem in the model of the massive

vector field, whose Lagrangian density is given by

1 1
L= (0,4, = 0,A,)(0"A = D A") = mPA¥A,.. (35)

The propagator D, of the massive vector is given by

1

= —mPI’Z,, (36)
which is the inverse of
O = —(p* +m* "™ + p"p*, (37)
that is,
o*D,, =&,. (38)

The expression (36) tells us that for large p2, D,, behaves
as O(1), and therefore the model in Eq. (35) could not be
renormalizable. If the vector field, however, couples only
with the conserved current J, which satisfies the conser-
vation law 9*J,, = 0, the term b r"n’,’ in the projection operator
Py, drops, and the propagator behaves as D, ~ O(1/p?),
and therefore the model may become renormalizable.
Instead of imposing the conservation law, we may add

the following term to the action:

2a¢pdrA,, (39)

and consider the inverse of the operator

[ o  —iapt
Opp = (iapy 0 ) (40)

which is given by

71 2 P -1 17»7

p+m* VP ap
DA(/, = ( 2 2 ), (41)

ap? o p?

7

P =g — p l; , (42)
OxsD <5M” O> (43)

AT\ o 1)

The projection operator P, is equal to the projection
operator P, on shell, p? = —m?, but their behavior for

PHYSICAL REVIEW D 90, 043006 (2014)

large p* becomes different from each other. As a result, the
propagator between two A,’s behaves as O(1/ p?), and
therefore the model could become renormalizable if the
interaction terms are also renormalizable. We should note
that by construction, we are assuming that the interactions
are given by A,, and the interactions do not include the
scalar field ¢. This tells us that in the internal lines of
the loops in the Feynmann diagrams, the propagators of
the two vector fields A appear, but the propagators between
two scalars ¢ and those between the vector field A, and
the scalar field ¢ do not appear. Therefore, although the
propagator between the vector field A, and the scalar field
¢ behaves as O(1/p) instead of O(1/p?), this behavior
could not generate non-renormalizable divergence.

As we will see, however, the term (39) generates a ghost.
The total Lagrangian density, Eq. (35) with Eq. (39), can be
diagonalized by redefining the vector field A, by a new
vector field B, which is given by

20

A = B/t —_ Waﬂgl'), (44)

i

and we obtain
L= ! d,B,—0,B,)(0'B" — O"B* ! BB
__Z(ﬂ v— Y ﬂ)( - )_Em u
2 2
+ %aﬂgﬁ?ﬂd). (45)

The propagator of the redefined vector field is given by
Eq. (36), and therefore this propagator might appear to
generate non-renormalizable divergences. We should also
note that there appear non-renormalizable derivative inter-
actions of the scalar field, which include 9,¢. The non-
renormalizable divergences generated by the derivative
interactions should be canceled by the non-renormalizable
divergences coming from the propagator [Eq. (36)] of the
redefined vector field B,, and there could remain only
renormalizable divergences. The cancellation is consistent
with the renormalizability given by the propagator in
Eq. (41). An important point is the following: We assume,
by construction, that the interactions are not given in terms
of the redefined vector field B, but in terms of A,,, which is
the vector field before the redefinition [Eq. (44)], and
the interactions do not include the scalar field ¢, either.
Therefore, in the internal lines of the loops in the Feynmann
diagrams, the propagators of the two vector fields always
appear in the form of the propagators between the two
vector fields A, in Eq. (41), and therefore there could
not appear non-renormalizable divergences coming from
the projection operator [Eq. (34)] in the propagator
[Eq. (36)].

We should note, however, that the + sign in front of the
kinetic term of the scalar field tells us that the scalar field is
a ghost, which generates the negative norm states in the
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quantum theory, and therefore the model given here is not
consistent as a quantum theory.

Anyway, we may consider deformation of the model
similar to that in Eq. (39) by adding the following new term
to the Lagrangian density [Eq. (32)]:

PHYSICAL REVIEW D 90, 043006 (2014)
L=Ly+ 4aA”(9"h}w, (46)

and consider the following equation:

. Orv.ap _l'a(pﬂ,]av + pv,]aﬂ) ap.po —iE(;,(,/,» _ %(5}4[)506 + 5”0:5’//3) 0 ' (47)
la(paﬂ”ﬁ + pﬁr]ﬂ(l) 0 apo Fo 0 &,
We should note that O**% is given by
O;w,(l/)’ — _ {% (P;mPy/} + Pﬂ/}Pua) _ P;wPa/)’}(pZ + mZ)
1 m?
_ {2 (papupyﬂ + pﬁpﬂPD(I + papuPy/i + p/}pyPﬂa) _ pﬂpypa/i _ pap/}P;w} ? . (48)

Then we find

1
Da/},/m’ = _W{P(lﬂpﬂﬂ + Pao'Pﬁ/) - Pa/}P/)rf}’
(49)
g - [ » p . MPa_,  PaPpPo
a.pa_w pp ao‘+pa ap_z(p2+m2) po T p2 ’
(50)
2 3 4

Foo = Wpao + 8(,12([72)2(}72 T mz) PaPs-
Because the propagator between two h,,’s behaves as
O(1/p?), the model could become renormalizable.

We should note that the coupling of 4, with the energy-
momentum tensor 7, K2 W*T,,, which appears in general
relativity, breaks the renormalizability because x has the
|

1

[

dimension of length. The coupling with a scalar field ¢
or the Rarita-Schwinger field w, can be, however,
renormalizable:

¢nﬂl”l/‘2”2/"3”3 , h””lf/”l//w (52)

which may appear when we supersymmetrize the action of
Egs. (32) or (46).

IV. HAMILTONIAN ANALYSIS AND SPECTRUM

It is not so clear what could be physical degrees of
freedom in the Lagrangian [Eq. (46)]. Then in this section,
we count the physical degrees of freedom by using the
Hamiltonian analysis (for example, see Ref. [2]). After that,
we diagonalize the free part and find what could be the
physical degrees of freedom.

The free part £, of the Lagrangian [Eq. (46)] is given by

1 1
Ly = —Eaihﬂ,,aﬂh”” + 0,h,;0"h** — 0, O, h + 5aihaih - §m2(h,whw — h%) +4aA,0,h". (53)

We now investigate the structure of the constraints for the free Lagrangian in Eq. (53). With integration by parts, the free

Lagrangian [Eq. (53)] can be rewritten as follows:

Lo = F(hij. hij. hop) + hooG(hij) + 2aA,0," — 2a0,A, ", (54)
. 1, 1., . .
F(hijs hijs hoi) = Ehij - Ehjk.i + 2h;jihoj — hjoihioj + Rjkihicj — 2hoihig, — hijihie
1. 1 m?
- ihz‘zi T3 hiij* 4 hoji* = - [=2ho* + hii? = hii?), (55)
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G(hyj) = = hyjij + b jj — m*hy;. (56)

Then the conjugate momenta are given by

Tog = % = Z(XAO’ o = % = —Z(XAi,
Ohgg Ohy;
oL . .
”ij = —0 = hij - hkkéij - aihjo - ajl’li() + 28/(]’10/(51']',
aL, dL,
Ty = —— = —2athg, 7w, = —— = 2ahy,. 57
0 E)AO 00 GA, 0 ( )

Then we find
. 1
hij = JTij - Eﬂ'kk(sij + 8,‘]’[]'0 + ajh'iO' (58)

Equations in Eq. (57) give the following primary

PHYSICAL REVIEW D 90, 043006 (2014)

The nonvanishing components of the Poisson brackets
between the constraints are given by

{#'(2).9°(3)} = —4ad(x - 7).
{d7(3). 7 ()} = 4ad,;5(x - ). (60)

This tells det{¢,¢p} #0, and we can determine the
Lagrange multipliers, and we find there are no secondary
constraints. Then we have a total of eight constraints in the
phase space. Because the symmetric tensor has ten degrees
of freedom and the vector has four, we have originally
28 degrees of freedom in the phase space. By subtracting
eight degrees of freedom from the constraints, there remain
20 degrees of freedom in the phase space—that is, ten
degrees of freedom in the coordinate space.

We now investigate what could be the ten physical
degrees of freedom. We should also note that the free part
L, of the Lagrangian [Eq. (46)] can be diagonalized as in
Eq. (45) by the redefinition

constraints:
b (x) = 1,(x) +4a | d*yD™ (x —y)OPA° 61
2w s, w3) = (u3) + 4 [ @D (x=)PA) (61)
$* = 7o + 2ahy, ¢? = 7; — 2ahj. (59) as follows:
|
1
Ly=— 3 (01 =i, = 10001, — 1, 000" 1 + 21,,0F0*1,,)
m? 3 4o 160> U .,
+ 7(12 —1,0") - W{A”DA,, + (B”Aﬂ)z} + ) oA, (1 - W)E) A,. (62)

In Eq. (61), D" (x —

Hv.po

y) is the propagator expressed by the coordinates x and y and defined by

1 1
<]/I/“/]/I/76|:| — 5 (]/Iﬂpnl’g + ’/Iﬂaﬂl/p)lj —_ ﬂ”vapao- — npga’lavl + E (ﬂﬂpayaa + ;/Iﬂo-a’/ap + nl’paﬂaa + ]/I’/gaﬂap)

1 A 1
2 (1 = S04 ) ) ) D3 =3) = 8y 4 53 )00 =), (63)
which is given by the Fourier transformation of Dy in Eq. (33):
~m d4p m ip(x—y
Dﬂu,pa(x - y) = /WDaﬁ.poe i ))’ (64)
Then we find
2a 2 , 4 ,
h/w(x) = l/w(x) - W auAy(x) + ayAu(x) - gnyvapA/ (x) - WayauapA/ (x) ’ (65)
which gives
4a )
h=nh',= l+ﬁ(2D + m*)0,A”. (66)
m
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The Lagrangian in Eq. (62) is the sum of the Lagrangian
of the Fierz-Pauli massive gravity and the vector field
A, except for the last term. The last term might be regarded
to be a gauge-fixing term. The higher-derivative part
can be further rewritten by using a new vector field V,,
as follows:

0
A, (1 - —2> A, ~ PAA, + 'V, A,
m

PHYSICAL REVIEW D 90, 043006 (2014)

In fact, the variation of V, gives V, = —%aﬂamy. By
substituting the expression of V,, we obtain the original
expression. We now define a propagator A,, by

1
(n””D + 38”8”) A,(x=y)=¢,0x-y). (68)

Then, redefining A, by

2
Aﬂ = Bu - 3/d4yAup(x - y)aparrva(y)’ (69)
2
m
-— V'V, 67
4 K (67) the Lagrangian density [Eq. (62)] can be rewritten as
|
1
Ly=— 3 (01 =Ly, — 10001, — 1,001 + 21,,0F0"1,,,)
m? 40? 16a° 40? 40?
+ (PP =1,0") - 3 {B*OB, + ("B,)*} + I (0"B,)* — P (0"V,)? - = V"V (70)

The Lagrangian density is the sum of the Lagrangian of the
Fierz-Pauli massive spin-two field /,, and the vector field
B, with a gauge-fixing term and the action of an exotic
vector field V,. V;’s are not dynamical, but V, is dynami-
cal, because there is no term including the derivative of V;’s
with respect to time. Therefore, V, contains only one
degree of freedom. Because A, has four degrees of freedom
after the gauge fixing, we have ten degrees of freedom in
all, including the massive graviton /,,, which is consistent

with the previous Hamiltonian analysis.
In the Lagrangian density [Eq. (70)], the sign in front of
the kinetic term of the vector field is not canonical, and
|

— %gﬂl”lﬂzl/zﬂﬂ/} h h

M1V oV T3S

which can be regarded as a new bigravity model because
there appear two symmetric tensor fields g,, and h,,. We
should note that 4, is not the perturbation in g,,, but A, is
a field independent of g,,. Because the gravity is not
renormalizable, we forget about the renormalizability and
drop the last term in Eq. (46), where the vector field A,
couples with £, .

V. SUMMARY

In summary, we considered the nonlinear derivative
interactions which are not included in Ref. [29], but
unfortunately we have shown that such derivative inter-
actions could generate ghosts. We also investigated the

1
S:/d4x /_g{_igﬂlblﬂzbzllzlavﬂlvy]hﬂzyzhmm

— %gﬂl”lﬂzl/zﬂzl’sﬂzxwh h h h

|
therefore the vector field is a ghost. Although the model
contains ghost fields, the model could be renormalizable,
and therefore the model proposed in this paper might be
regarded as a kind of toy model. If we could extend the
model to have a local symmetry, some physical state
condition may select physical states where no ghost state
appears.

The bigravity model can be regarded as a model where a
massive spin-two field couples with gravity. Then we may
consider the model where %, whose Lagrangian is given
by Eq. (32), couples with gravity:

(S LS i1

1
+§ngﬂl”]ﬂ2’/2h h

(71)

M1V ol T3S ﬂ4”4}’

|
possibility of other classes of the no-ghost interactions by
only requiring the Lorentz invariance.

Motivated by the above analyses, we proposed a power-
counting renormalizable model describing the massive
spin-two field, which could not be really renormalizable
because the projection operators included in the propagator
generate non-renormalizble divergences. We solved this
problem by adding a new term where a vector field A,
couples with the massive spin-two field 4,,. By investigat-
ing the spectrum of this model, it was shown that
there could appear ghosts, and therefore the model cannot
be a realistic one, but we can regard this model as a kind of
toy model, which may be a candidate of the renormaliz-
able model.
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Because the gravity is not renormalizable, we may
consider the coupling of the power-counting renormaliz-
able model, which could not be really renormalizable, with
gravity. The model can be regarded as a new kind of
bimetric gravity or bigravity. In the Appendix, we show that
the field of the massive spin-two field plays the role of the
cosmological constant. It is easy to see that a vacuum
solution like the Schwarzschild solution or Kerr solution in
the Einstein gravity becomes a solution of the new
bigravity model.
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APPENDIX: COSMOLOGY BY NEW BIGRAVITY

We may consider the cosmology given by the action in
Eq. (71) with the Einstein-Hilbert action:

1

SEH == W d4X\/—gR. (Al)

We assume the solution of equations given by the actions
(71) and (A1) is given by

hy,, = Cgyy. (A2)
Here C is a constant. We can directly check that Eq. (A2)
satisfies the field equation given by the variation of £, and

also the Einstein equation by properly choosing C. By
substituting Eq. (A2) into the action (71), we find

PHYSICAL REVIEW D 90, 043006 (2014)

S—— / dx =GV (C),

V(C) = —6m>C + 4uC? + 1C*. (A3)
We should note that V,g,, = 0. The constant C can be
determined by the equation V'(C)=0. We now para-
metrize m”> and u by

" = —%C]CZ, . —g(c] G (A4)
Then the solutions of V/(C) are given by
C=0,C,,C,, (A5)
and we find
V(C)) = %C?(—Cl +2Gy),
V(C) =5 -G, +20). (6)

Then we find that V(C) plays the role of the cosmological
constant. Let assume 0 < C; < C, and C, < 2Cy. Then
V(C,) is a local maximum and V(C,) >0 is a local
minimum. Then V(C, ) or V(C,) might generate the inflation.
It has been shown that the causality could be broken in the
previous bigravity models [32] due to the existence of the
superluminal mode. We should note that in the model given
by the actions (71) and (A1), the superluminal mode does not
appear, and therefore the causality could not be broken.
We should also note that under the assumption of
Eq. (A2), we can construct black hole solutions as in the
standard bigravity model (see, for example, Refs. [33,34]).
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