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Massive white dwarfs endowed with ultrastrong magnetic fields have been recently proposed as the
progenitors of overluminous type Ia supernovae. In our previous work, we have shown that such stars
would become unstable against electron captures if the magnetic field is too strong. Using a more realistic
model of dense matter taking into account electron-ion interactions and allowing for ionic mixtures, we
estimate the strength of the magnetic field for the onset of electron captures in the core of the most massive
white dwarfs. We have considered various compositions and lattice structures. The possibility of
pycnonuclear fusion reactions and their impact on the stellar magnetic fields are also discussed. The
strongest magnetic fields we find are considerably lower than those previously assumed in putative
super-Chandrasekhar white dwarfs.
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I. INTRODUCTION

White dwarfs are the stellar remnants of low and inter-
mediate mass stars [1] (i.e., with a mass ≲10M⊙,M⊙ being
the mass of our Sun). Predicted in 1947 by Blackett [2],
the existence of white dwarfs with strong magnetic fields
B≳ 106 G was confirmed in 1970 by Kemp [3] (for a brief
historical review, see, e.g., Ref. [4]). Since then, several
hundred magnetic white dwarfs already have been found
[5]. Surface magnetic field strengths up to about 109 G have
been inferred from Zeeman spectroscopy and polarimetry, as
well as cyclotronspectroscopy(see, e.g.,Ref. [6] for a review).
About 10% of isolated white dwarfs have surface magnetic
fieldsstronger than106 G[7,8], andabout25%ofcataclysmic
variables are magnetic [6]. Among the latter, polars or AM
Herculis systems have magnetic field strengths in the range
107–108 Gwhile intermediate polars orDQHerculis systems
have weaker fields < 107 G. The population of strongly
magnetized white dwarfs might also include some soft
gamma-ray repeaters and anomalous x-ray pulsars [9–13],
though it is widely believed that these objects are not white
dwarfs butmagnetars [14,15] (see e.g. Ref. [16] for a review).
The origin of strong magnetic fields in white dwarfs is

still a matter of debate. According to the fossil field
hypothesis, the magnetic field was generated at an earlier
stage of the stellar evolution and was subsequently

amplified during the formation of the white dwarf assuming
that the magnetic flux was conserved (see, e.g., Ref. [17]).
Chemically peculiar Ap and Bp stars have long been
thought to be the progenitors of magnetic white dwarfs.
However, this scenario has been challenged by population
synthesis calculations [18]. Alternatively, the magnetic
field in white dwarfs could be generated through dynamo
action (see, e.g., Refs. [19,20] and references therein).
Although the strongest observed surface magnetic fields

are of the order 109 G, much stronger fields may exist in the
core of white dwarfs [21]. It has been proposed that very
massive so called super-Chandrasekhar white dwarfs (with
a mass ≳2M⊙) endowed with ultrastrong magnetic fields
B ≫ 1013 G could be the progenitors of overluminous type
Ia supernovae [22–27]. Although some recent works
have cast doubt on the existence of such stars [28–30],
the question arises of how strong the magnetic field in
white dwarfs could be. This question has been generally
assessed using the virial theorem [31]: for a stellar
configuration to be stable, the magnetic energy
(Gaussian cgs units are used throughout this paper),

Emag ¼
1

8π

Z
M

0

B2

ρ
dm; ð1Þ
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has to be lower than the absolute value of the gravitational
energy,

Egrav ¼
1

2

Z
M

0

Φdm; ð2Þ

where Φ is the gravitational potential, ρ the average mass
density, dm an infinitesimal mass element, andM the mass
of the star. Considering a spherical star of radius R with a
uniform magnetic field leads to

B < 2.2 × 108
M
M⊙

�
R⊙
R

�
2

G; ð3Þ

where R⊙ is the radius of the Sun. For typical white-dwarf
masses and radii, the strongest magnetic field thus obtained
is of the order ∼1013 G. However, this estimate should be
taken with a grain of salt since a uniform magnetic field in a
star is unstable [32]. Moreover, the global structure of the
star may depend on the magnetic field configuration, which
is not a priori known. Consequently, ultrastrong magnetic
fields B ≫ 1013 G in white-dwarf cores cannot be ruled
out: the global stability condition Emag < jEgravj might still
be fulfilled assuming that the magnetic field strength in
the star decreases outwards. On the other hand, we have
recently shown that the strength of the magnetic field in the
most massive white dwarfs is limited by the onset of
electron captures, independently of the global configuration
of the star [28].
In this paper, we estimate the strength of the magnetic

field above which the most massive white dwarfs would
become unstable against electron captures using a more
realistic model of dense matter, which takes into account
electron-ion interactions and allows for mixtures of two
different ionic species.

II. MODEL OF DENSE MATTER
IN WHITE-DWARF CORES

The model we adopt here was initially developed for
describing the outer crust of strongly magnetized neutron
stars [33] (see also Ref. [34] for a recent development). The

core of magnetic white dwarfs is assumed to be made of
fully ionized atoms arranged in a regular crystal lattice. We
shall consider both homogeneous crystalline structures
made of only one type of ions, and heterogeneous crys-
talline structures made of an admixture of two ionic species
(typically carbon and oxygen) following the work of
Ref. [35] in the neutron-star context. In addition, we
suppose that thermal effects are negligibly small, and we
set the temperature to zero for simplicity.
The pressure P at the center of the star is thus given by

the sum of the electron degeneracy pressure Pe and the
lattice pressure PL arising from the interactions between
electrons and ions. According to the Bohr-van Leeuwen
theorem [36], the lattice pressure is independent of the
magnetic field apart from a small contribution due to
quantum zero-point motion of ions [37], which we neglect.
The lattice is composed of two types of ions: A

ZX with
proton number Z and mass number A, and A0

Z0X0 with proton
number Z0, and mass number A0. The crystal structures we
shall consider are illustrated in Fig. 1. The fraction of the
ion A

ZX will be denoted by ξ, so that the fraction of the ion
A0
Z0X0 will be given by ξ0 ¼ 1 − ξ. The fractions correspond-
ing to the different lattice types are indicated in the caption
of Fig. 1. For point-like ions embedded in a uniform
electron gas with number density ne, the lattice pressure is
simply given by

PL ¼ EL

3
; ð4Þ

where the lattice energy density EL is given by [35]

EL ¼ Ce2n4=3e fðZ; Z0Þ; ð5Þ

fðZ; Z0Þ ¼ Z̄−4=3½ηZ2 þ ζZ02 þ ð1 − η − ζÞZZ0�; ð6Þ

with the mean proton number Z̄ ¼ ξZ þ ξ0Z0, e being the
elementary electric charge. The lattice constants C, η and ζ
are given in Table I for different crystal lattice types. Note
that in the limiting case of homogeneous crystal structures,
fðZ; ZÞ ¼ Z2=3 is independent of η and ζ.

fcc bccsc hcp

FIG. 1. Heterogeneous crystal structures with ion species A
ZX (black circles) and A0

Z0X0 (white circles) : simple cubic lattice (sc), face-
centered cubic lattice (fcc), body-centered cubic lattice (bcc), and hexagonal close-packed (hcp). The fractions of ions A

ZX and A0
Z0X0 are

equal to ξ ¼ 1=2 and ξ0 ¼ 1=2, respectively, in all but the fcc lattice. In this latter case, these fractions are ξ ¼ 3=4 and ξ0 ¼ 1=4.
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In the presence of a strong magnetic field, the electron
motion perpendicular to the field is quantized into Landau
levels (see, e.g., chapter 4 from Ref. [38]). Ignoring the
small electron anomalous magnetic moment (see, e.g.,
Section 4.1.1 from Ref. [38] and references therein), and
treating electrons as a relativistic Fermi gas, the energies of
Landau levels are given by

ϵν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2

z þm2
ec4ð1þ 2νB⋆Þ

q
ð7Þ

ν ¼ nL þ 1

2
þ σ; ð8Þ

where me is the electron mass, c is the speed of light, nL is
any non-negative integer, σ ¼ �1=2 is the spin, pz is the
component of the momentum along the field, and B⋆ ¼
B=Bcrit with the critical magnetic field Bcrit defined by

Bcrit ¼
m2

ec3

eℏ
≈ 4.4 × 1013 G: ð9Þ

For a given magnetic field strength B⋆, the number of
occupied Landau levels is determined by the electron
number density ne,

ne ¼
2B⋆

ð2πÞ2λ3e
Xνmax

ν¼0

gνxeðνÞ; ð10Þ

xeðνÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2e − 1 − 2νB⋆

q
; ð11Þ

where λe ¼ ℏ=mec is the electron Compton wavelength, γe
is the electron chemical potential in units of the electron
rest mass energy, that is,

γe ¼
μe

mec2
; ð12Þ

with μe ¼ dEe=dne (Ee being the electron energy density),
while the degeneracy gν is gν ¼ 1 for ν ¼ 0 and gν ¼ 2 for
ν ≥ 1. The electric charge neutrality condition implies that
the mass density can be expressed as ρ ¼ nem=ye where ne
is the electron number density, ye ¼ Z̄=Ā the mean electron
fraction, Ā ¼ ξAþ ξ0A0 the mean mass number, and m the

average mass per nucleon (approximated here by the
unified atomic mass unit).
The electron energy density Ee and corresponding

electron pressure Pe are given by

Ee ¼
B⋆mec2

ð2πÞ2λ3e
Xνmax

ν¼0

gνð1þ 2νB⋆Þψþ

�
xeðνÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νB⋆

p
�
; ð13Þ

and

Pe ¼
B⋆mec2

ð2πÞ2λ3e
Xνmax

ν¼0

gνð1þ 2νB⋆Þψ−

�
xeðνÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νB⋆

p
�
; ð14Þ

respectively, where

ψ�ðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
� ln

�
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p �
: ð15Þ

Amagnetic field is strongly quantizing if only the lowest
level ν ¼ 0 is filled, or equivalently whenever ne < neB,
where (see Appendix A)

neB ¼ B3=2⋆ffiffiffi
2

p
π2λ3e

: ð16Þ

To the electron density (16) corresponds the mass density

ρB ¼ m
yeλ3e

B3=2⋆ffiffiffi
2

p
π2

: ð17Þ

Conversely, for a given mass density ρ the strongly
quantizing regime corresponds to magnetic field strengths

B⋆ >

�
ρyeλ3e

ffiffiffi
2

p
π2

m

�2=3

≈ 180ð2yeρ10Þ2=3; ð18Þ

where ρ10 ¼ ρ=ð1010 g cm−3Þ.

III. MAGNETIC FIELD STRENGTH
IN WHITE DWARFS

The equilibrium configuration of a white dwarf with a
strongly magnetized core is determined from the magneto-
hydrostatic equation (see, e.g., Ref. [1])

∇P ¼ −ρ∇Φþ 1

4π
∇ × B × B; ð19Þ

where the gravitational potential Φ obeys Poisson’s equation

∇2Φ ¼ 4πGρ; ð20Þ

G being the gravitational constant. Since the pressure
depends not only on the density ρ but also on magnetic
field strength B, Eq. (19) can be written as

TABLE I. Lattice constants for different types of heterogeneous
crystal structures: simple cubic (sc), body-centered cubic (bcc),
face-centered cubic (fcc), and hexagonal close-packed (hcp).
Taken from Ref. [35].

Structure C η ζ

sc −1.418649 0.403981 0.403981
bcc −1.444231 0.389821 0.389821
fcc −1.444141 0.654710 0.154710
hcp −1.444083 0.345284 0.345284
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∂P
∂ρ

����
B
∇ρþ ∂P

∂B
����
ρ

∇B ¼ −ρ∇Φþ 1

4π
∇ × B × B: ð21Þ

Let us consider that the magnetic field is locally uniform,
as in Refs. [22–27]. The magnetohydrostatic equation (21)
thus reduces to

∂P
∂ρ

����
B
∇ρ ¼ −ρ∇Φ: ð22Þ

Therefore, the star is mechanically unstable against gravi-
tational collapse whenever ∂P=∂ρ ¼ 0: in such case, the
matter pressure force could not resist the huge gravitational
pull. As shown in Appendix A, this situation occurs at the
density ρB. The corresponding pressure is given by

PB ¼ PeðneBÞ þ PLðneB; Z; Z0Þ: ð23Þ

The most massive magnetic white dwarfs are thus expected
to have central densities close to ρB.
As shown in our previous work [28], the stability of such

stars is further limited by the onset of electron captures
in their core, whereby the nucleus A

ZX (similarly for the
nucleus A0

Z0X0) transforms into a nucleus A
Z−1Y with proton

number Z − 1 and mass number A with the emission of an
electron neutrino νe:

A
ZX þ e− → A

Z−1Y þ νe: ð24Þ

This reaction is generally almost immediately followed by
a second electron capture on the daughter nucleus Y.
During this process, the pressure does not change and
since P ≈ PeðneÞ the electron density remains approxi-
mately constant. On the contrary, the mass density
increases from ρ ≈ nemĀ=Z̄ to ρ ≈ nemĀ=ðZ̄ − 2ξÞ. As
a result, electron captures soften the equation of state and
make the star unstable. The nuclei A

ZX and A0
Z0X0 will be

stable against electron captures in the dense matter of the
stellar core at pressure P if the Gibbs free energy per
nucleon g is lower than those of their daughter nuclei.
The Gibbs free energy per nucleon is defined by

g ¼ E þ P
n

; ð25Þ

where n is the average nucleon number density, and E is the
average energy density given by

E ¼ nXMðZ; AÞc2 þ nX0MðZ0; A0Þc2 þ Ee þ EL − nemec2;

ð26Þ

where nX and nX0 are the number densities of nuclei AZX and
A0
Z0X0, respectively, MðZ; AÞ and MðZ0; A0Þ are their mass
(including the rest mass of nucleons and Z electrons). The
average nucleon density and the fraction ξ are given by

n ¼ AnX þ A0nX0 ; ð27Þ

ξ ¼ nX
nX þ nX0

: ð28Þ

The number densities of nuclei can thus be conveniently
expressed as nX ¼ ξn=Ā and nX0 ¼ ξ0n=Ā. From the
electric charge neutrality, we obtain

ne ¼ ZnX þ Z0nX0 : ð29Þ

Using the thermodynamic identity Ee þ Pe ¼ neμe and
Eq. (4), the Gibbs free energy per nucleon can be written as

g ¼ mc2 þ ξ
EðA; ZÞ

Ā
þ ξ0

EðA0; Z0Þ
Ā

þ ye

�
μe −mec2 þ

4

3

EL

ne

�
; ð30Þ

EðA; ZÞ ¼ MðA; ZÞc2 − Amc2 andEðA0; Z0Þ ¼ MðA0; Z0Þc2
−A0mc2 being the mass excesses of the nuclei AZX and A0

Z0X0,
respectively. Note that the nucleon number is conserved
during electron captures so that neither A nor A0 change.
Likewise, the fractions ξ and ξ0 remain constant since they
are completely determined by the lattice structure. On the
contrary, the electron density does change. The electron
density before and after the captures will be denoted by n−e
and nþe , respectively. These densities are not independent
because the pressure P has to remain constant. Before the
capture, the pressure can be written as

P ¼ Peðn−e Þ þ PLðn−e ; Z; Z0Þ: ð31Þ
For clarity, we have indicated explicitly the dependence on
the electron densities and proton numbers. After the capture,
the pressure can be expressed as

P ¼ Peðnþe Þ þ PLðnþe ; Z − ΔZ; Z0 − ΔZ0Þ; ð32Þ

where ΔZ and ΔZ0 denote the changes in Z and Z0 (e.g.,
ΔZ ¼ 1 and ΔZ0 ¼ 0 if the nuclei AZX capture electrons).
Note that n−e ≈ nþe since PL ≪ Pe. Let us write n�e ¼

ne þ δn�e where ne is the electron density corresponding to
the pressure P such that

P≡ PeðneÞ þ PLðne; Z; Z0Þ: ð33Þ

Solving Eqs. (31) and (32) to first order in δn�e yields
δn−e ¼ 0 and

δnþe ¼½PLðne;Z;Z0Þ−PLðne;Z−ΔZ;Z0−ΔZ0Þ�
�∂Pe

∂ne
�

−1
:

ð34Þ
In the strongly quantizing regime with xe ≫ 1, Pe ≈
mec2n2eπ2λ3e=B⋆ so that Eq. (34) can be expressed as
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δnþe ≈ neB
Cα

3ð4π2Þ1=3
�
ne
neB

�
1=3

Δf; ð35Þ

where α ¼ e2=ðℏcÞ is the fine structure constant and

Δf ≡ fðZ; Z0Þ − fðZ − ΔZ; Z0 − ΔZ0Þ: ð36Þ
As previously discussed, we expect ne ≈ neB in the
core of the most massive magnetic white dwarfs. Since
α=ð3ð4π2Þ1=3Þ≃ 1=1400, we thus find that δn�e ≪ neB.
The stability of the stellar core against electron captures

is embedded in the inequality

gðn−e ; Z; Z0Þ < gðnþe ; Z − ΔZ; Z0 − ΔZ0Þ: ð37Þ
Since n−e ≈ nþe ≈ ne, the inequality (37) can be approx-
imately expressed as

μeΔZ̄ þ 4

3
Ce2n1=3e ΔðZ̄fðZ; Z0ÞÞ < μ̄βe; ð38Þ

where

ΔZ̄≡ ξΔZ þ ξ0ΔZ0; ð39Þ
μ̄βe ≡ ξμβeðA; ZÞ þ ξ0μβeðA0; Z0Þ; ð40Þ

μβeðA; ZÞ≡ EðA; Z − ΔZÞ − EðA; ZÞ þ ΔZmec2; ð41Þ

μβeðA0; Z0Þ≡ EðA0; Z0 − ΔZ0Þ − EðA0; Z0Þ þ ΔZ0mec2;

ð42Þ

and ΔðZ̄fðZ; Z0ÞÞ denotes the difference in Z̄fðZ; Z0Þ
before and after the captures, i.e.

ΔðZ̄fðZ; Z0ÞÞ ¼ Z̄fðZ; Z0Þ
− ðZ̄ − ΔZ̄ÞfðZ − ΔZ; Z0 − ΔZ0Þ: ð43Þ

The left-hand side of the inequality (38) increases with
electron density hence with pressure, and will therefore
reach the threshold value given by μ̄βe at some pressure Pβ.
However, as previously discussed, the pressure in the core
of super-Chandrasekhar magnetic white dwarfs will be
approximately limited by PB. The core will thus become
unstable against electron captures whenever Pβ < PB. This
situation occurs if the magnetic field strength exceeds some
threshold value, denoted by Bβ⋆. Indeed, setting ne ¼ neB ∝
B3=2⋆ and using μe ≈ 2π2mec2λ3eneB=B⋆ ∝

ffiffiffiffiffiffi
B⋆

p
, the

inequality (38) can be expressed as B⋆ < Bβ⋆, where

Bβ⋆ ≈
1

2

�
μ̄βe

mec2ΔZ̄

�2�
1þ

�
4

π

�
2=3 Cα

3

ΔðZ̄fðZ; Z0ÞÞ
ΔZ̄

�
−2
:

ð44Þ
At sufficiently high pressures, the quantum-zero point

fluctuations of nuclei about their equilibrium position may

become large enough to trigger pycnonuclear fusion
reactions

A
ZX þ A

ZX → 2A
2ZY; ð45Þ

and similarly for the nuclei A0
Z0X0. The threshold pressure

Pβð2A; 2ZÞ for the onset of electron capture by the daughter
nucleus 2A

2ZY is generally lower than the corresponding
pressure PβðA; ZÞ for the original nucleus A

ZX. For this
reason, pycnonuclear fusion reactions, if they occur at a
pressure Ppyc < Pβð2A; 2ZÞ, further reduce the maximum
strength of the magnetic field in the core of white dwarfs.
The corresponding value of the magnetic field strength can
be easily obtained from Eq. (44).

IV. RESULTS AND DISCUSSION

The core of a white dwarf is expected to contain mainly
carbon and oxygen, the primary ashes of helium burning.
However, the cores of somewhite dwarfs may be composed
of other elements like helium [39–41], neon and magne-
sium [42], or even much heavier elements like iron. Iron
white dwarfs could be formed from the explosive ignition
of electron degenerate oxygen-neon-magnesium cores [43],
or from failed detonation supernovae [44]. One possible
candidate of iron white dwarfs is WD0433þ 270 [45].
The masses of these nuclei have all been measured in the

laboratory. Using the latest experimental data from the
Atomic Mass Evaluation 2012 [46], we have solved
numerically the set of equations (31), (32) and (37)
considering different matter composition and crystal struc-
tures. The nuclear masses can be obtained from the
tabulated atomic masses after subtracting out the binding
energy of the atomic electrons; however the differences are
very small [47] and have been ignored here. We have used
the values of the various constants from CODATA 2010
[48]. We have considered the following three different
processes: (i) ΔZ ¼ 1, ΔZ0 ¼ 0, (ii) ΔZ ¼ 0, ΔZ0 ¼ 1, and
(iii) ΔZ ¼ 1, ΔZ0 ¼ 1. For the peculiar case of helium
white dwarfs, we have also examined electron captures
accompanied by neutron emission, i.e. 4Heþ e− →
3Hþ nþ νe, since this process generally occurs at a lower
density (see, e.g., Ref. [1]). The formalism for treating this
case is developed in Appendix B.
The lowest values of Bβ⋆ and the corresponding mass

density are indicated in Tables II and III. The threshold
magnetic field strength Bβ⋆ is found to be highly dependent
on the composition of the white-dwarf core, ranging from
867 for 4He down to 6.5 for 40Ca. As a consequence, the
occurrence of pycnonuclear fusion reactions would dras-
tically reduce the magnetic field strength in the most
massive white dwarfs, e.g., from 383 to 74 for the fusion
of 12C into 24Mg, from 240 to 9.7 for the fusion 16O in 32S,
or from 115 to 6.5 for the fusion of 20Ne into 40Ca.
However, the rates at which pycnonuclear fusion reactions
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occur still remain very uncertain (see, e.g., Ref. [49]). The
dependence of Bβ⋆ on the lattice structure is very small, as
can be easily understood from Eq. (44). Table III also
shows that the magnetic field strength Bβ⋆ in heterogeneous
structures is almost completely determined by the most
unstable ion species regardless of the proportion. As shown
in Tables IV and V, the error of Eq. (44) lies below 1% for
12C and 16O, the primary constituents of white dwarfs, and
amounts at most to ∼9% for 40Ca.

The presence of ultrastrong magnetic fields may change
nuclear masses [50–52], an effect which we haven’t taken
into account. In order to assess the corresponding error in
Bβ⋆, we have estimated the change δE ≡ EðBβ⋆Þ − Eð0Þ in
the mass excess induced by a magnetic field for various
nuclei expected to be found in the core of white dwarfs.
For this purpose, we have carried out fully self-consistent
relativistic mean-field calculations, as described in
Ref. [52] except that we have now considered density-
dependent meson-nucleon couplings using the DD-ME2
parameter set [53]. More specifically, for each nucleus A

ZX
and its daughter nucleus A

Z−1Y, we have computed δEðA; ZÞ
and δEðA; Z − 1Þ for the same magnetic field strength
Bβ⋆ðAZXÞ, as given in Table II. Using Eq. (44) we have
estimated the relative error in Bβ⋆ as

δBβ⋆
Bβ⋆

¼ 2δμ̄βeðA; ZÞ
μ̄βeðA; ZÞ

; ð46Þ

where

δμ̄βe ≡ ξδμβeðA; ZÞ þ ξ0δμβeðA0; Z0Þ; ð47Þ

δμβeðA; ZÞ≡ δEðA; Z − ΔZÞ − δEðA; ZÞ: ð48Þ

TABLE II. Magnetic field strength Bβ⋆ above which the core
of the most massive white dwarfs becomes unstable against
electron captures for different compositions. The corresponding
average mass density is given by ρ. The core is assumed to be
made of homogeneous crystalline structures. The values of Bβ⋆
are given for bcc, fcc and hcp lattices since the results are the
same for the adopted accuracy. Values in parentheses are for a
sc lattice.

A
ZX Bβ⋆ ρ (g cm−3)
4He 867.0 (866.8) 1.05 × 1011
12C 383.2 (382.9) 3.10 × 1010
16O 239.7 (239.5) 1.53 × 1010
22Ne 259.6 (259.3) 1.90 × 1010
21Ne 77.3 (77.2) 2.95 × 109 (2.94 × 109)
20Ne 114.6 (114.5) 5.07 × 109 (5.06 × 109)
23Na 48.1 (48.0) 1.44 × 109
24Mg 73.7 (73.6) 2.61 × 109
25Mg 38.1 (38.0) 1.01 × 109 (1.00 × 109)
26Mg 198.2 (198.00) 1.25 × 1010
32S 9.71 (9.69) 1.25 × 108
40Ca 6.45 (6.43) 6.76 × 107 (6.74 × 107)
44Ca 80.2 (80.0) 3.26 × 109 (3.25 × 109)
56Fe 37.3 (37.2) 1.01 × 109

TABLE III. Same as Table II for heterogeneous crystalline
structures.

% A
ZX % A0

Z0X0 lattice Bβ⋆ ρ (g cm−3)

50% 12C 50% 16O sc 239.4 1.53 × 1010

50% 12C 50% 16O bcc 239.5 1.53 × 1010

50% 12C 50% 16O hcp 239.3 1.53 × 1010

75% 12C 25% 16O fcc 239.3 1.53 × 1010

25% 12C 75% 16O fcc 239.5 1.55 × 1010

50% 20Ne 50% 16O sc 114.4 5.06 × 109

50% 20Ne 50% 16O bcc 114.5 5.06 × 109

50% 20Ne 50% 16O hcp 114.4 5.06 × 109

75% 20Ne 25% 16O fcc 114.5 5.06 × 109

25% 20Ne 75% 16O fcc 114.4 5.06 × 109

50% 16O 50% 24Mg sc 73.5 2.61 × 109

50% 16O 50% 24Mg bcc 73.6 2.61 × 109

50% 16O 50% 24Mg hcp 73.5 2.60 × 109

75% 16O 25% 24Mg fcc 73.5 2.60 × 109

25% 16O 75% 24Mg fcc 73.6 2.61 × 109

TABLE V. Relative error of Eq. (44) as compared to numerical
results shown in Table III. The stellar core is assumed to be made
of heterogeneous crystalline structures with a bcc lattice.

% A
ZX % A0

Z0X0 Error (%)

50% 12C 50% 16O 0.8
50% 20Ne 50% 16O 1.1
50% 24Mg 50% 16O 1.5

TABLE IV. Relative error of Eq. (44) as compared to numerical
results shown in Table II. The stellar core is assumed to be made
of homogeneous crystalline structures with a bcc lattice.

A
ZX Error (%)

12C 0.5
16O 0.7
22Ne 0.8
21Ne 1.2
20Ne 1.0
23Na 1.7
24Mg 1.4
25Mg 1.9
26Mg 1.0
32S 6.3
40Ca 9.2
44Ca 1.6
56Fe 2.7
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δμβeðA0; Z0Þ≡ δEðA0; Z0 − ΔZ0Þ − δEðA0; Z0Þ: ð49Þ

Results are summarized in Table VI. We have not consid-
ered 4He since a mean-field approach is questionable for
such a light nucleus. The errors δE in the mass excess of the
daughter nuclei A

Z−1Y are found to be larger than for the
nuclei A

ZX, the notable exception being 23Na. The reason
lies in the fact that for a given magnetic field strength,
the structure of odd nuclei is generally more affected than
that of even-even nuclei. The corresponding errors in Bβ⋆
vary appreciably from one nucleus to another. Although
δBβ⋆=Bβ⋆ ≲ 10%, for 12C, 16O and Ne isotopes, much larger
deviations are observed for the corresponding end-products
of pycnonuclear fusion reactions, namely 24Mg, 32S and Ca
isotopes, respectively. The errors on the average mass
density in the core of super-Chandrasekhar white dwarfs
can be estimated as

δρ

ρ
¼ 3

2

δBβ⋆
Bβ⋆

; ð50Þ

where we have used Eq. (17).
Although our calculations of Bβ⋆ have been restricted to

T ¼ 0, the results we have obtained still remain valid at
finite temperatures T > 0 provided the following condi-
tions are fulfilled: (i) the core of white dwarfs has crystal-
lized, (ii) the electron gas is highly degenerate, and (iii) the
magnetic field is strongly quantizing. The first condition
reads T < Tm, where Tm is the crystallization temperature,
defined as (see, e.g., Ref. [38])

Tm ¼ e2

aekBΓm
Z5=3; ð51Þ

where ae ¼ ð3=ð4πneÞÞ1=3 is the electron-sphere radius,
kB is the Boltzmann’s constant, and Γm is the Coulomb
coupling parameter at melting. Remarking that in the
stellar core ne ¼ neB, and using Eq. (16) with B⋆ ¼ Bβ⋆,
the crystallization temperature can be expressed as

Tm ¼ e2

λekB

Z5=3

Γm

�
2

ffiffiffi
2

p

3π

�1=3 ffiffiffiffiffiffi
Bβ⋆

q
: ð52Þ

For a classical one-component plasma Γm ≈ 175 [38].
Adopting this value yields

Tm ≈ 1.66 × 105Z5=3

ffiffiffiffiffiffi
Bβ⋆

q
K: ð53Þ

The second condition is satisfied if the temperature is lower
than the Fermi temperature defined by

TF ¼
μe −mec2

kB
: ð54Þ

In the stellar core, the electron chemical potential is given

by μe ¼ mec2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Bβ⋆

p
(see Appendix A), so that

TF ¼
mec2

kB

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Bβ⋆

q
− 1

�

≈ 5.93 × 109
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2Bβ⋆
q

− 1
�
K: ð55Þ

Finally, the last condition requires ne < neB and T < TB
with (see, e.g., Ref. [38])

TB ¼ ℏωc

kB
; ð56Þ

ωc ¼ eB=ðmecÞ being the electron cyclotron frequency.
Using Eq. (9) with B⋆ ¼ Bβ⋆ leads to

TB ¼ mec2

kB
Bβ⋆ ≈ 5.93 × 109Bβ⋆ K: ð57Þ

The temperatures Tm, TF and TB are indicated in Tables VII
and VIII for different core compositions. The lowest
temperature is found to be Tm, with values comparable
to those prevailing in white dwarfs. However, these values
of Tm are probably underestimated since strongly magnet-
ized Coulomb crystals tend to melt at a higher temperature
[54]. In addition, we have shown that the magnetic field
strength Bβ⋆ is almost independent of the spatial arrange-
ment of ions. We therefore anticipate that our calculations
provide fairly accurate estimates of Bβ⋆, even at temper-
atures T > Tm.
So far we have implicitly assumed that electron captures

occur on a very short timescale as compared to typical
stellar evolutionary timescales so that white dwarfs with
central densities ∼ρB and magnetic field strength B⋆ > Bβ⋆

TABLE VI. Change in mass excess of nuclei A
ZX due to the

presence of a strong magnetic field and estimated error on the
magnetic field strength Bβ⋆ above which the most massive white
dwarfs become unstable against electron captures. Values in
parentheses are the changes in the mass excess of the daughter
nuclei A

Z−1Y.

A
ZX δE (keV) δBβ⋆=Bβ⋆ (%)

12C −5 (697) 10.1
16O 0 (−57) −0.8
22Ne −1 (151) 2.7
21Ne −19 (117) 4.4
20Ne 0 (169) 4.5
23Na 358 (−13) −15.2
24Mg 0 (621) 20.6
25Mg −11 (337) 16.0
26Mg −2 (493) 10.0
32S 0 (489) 44.0
40Ca 0 (346) 38.0
44Ca 0 (469) 15.1
56Fe 0 (52) 2.5
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would almost immediately collapse. We have tested this
assumption by estimating electron capture rates. Although
the magnetic field can impact the rate of electron captures,
the effects of the magnetic field is negligible at densities
ρ ≈ ρB [33] (the rates only depend on B⋆ indirectly through
the actual value of ρB). Therefore, we have calculated
electron captures as in the absence of magnetic fields at the
density ρ ¼ ρB, using the nuclear model described in
Refs. [55,56]. In this model, the single-nucleon basis
and the occupation factors in the target nucleus are
calculated using the finite-temperature Skyrme Hartree-
Fock (HF) method. The Jπ ¼ 0�; 1�; 2� charge-exchange
transitions are determined in the finite-temperature
random-phase approximation (RPA). This scheme is self-
consistent; i.e., both the HF and the RPA equations are
based on the same Skyrme functional. The functional
employed in this work is the Brussels-Montreal Skyrme
functional BSk17 [57]. The dependence of the rates on the
magnetic field only arises from the electron chemical
potential, which we set equal to μe ¼ ℏcð3π2neBÞ1=3 with
neB given by Eq. (16). Results are summarized in Table IX.
We find that strongly magnetized white dwarfs with central
densities ∼ρB would be highly unstable since electrons in

their core would be captured at a rate of the order 102–105

per second.

V. CONCLUSION

The onset of electron captures sets an upper limit on the
strongest possible magnetic fields in the core of the most
massive white dwarfs. Results are summarized in Tables II
and III. The limiting magnetic field strength Bβ⋆ is approx-
imately given by Eq. (44), from which the central mass
density can be inferred using Eq. (17). Although Bβ⋆ is
almost independent of the spatial arrangement of ions, it is
extremely sensitive to the core composition. The strongest
possible magnetic fields are predicted to be found in pure
helium white dwarfs. However, the presence of heavier
elements in the stellar core considerably lowers the value
of Bβ⋆. More importantly, the value of Bβ⋆ is dramatically
reduced if pycnonuclear fusion reactions are allowed. All
in all, our estimates of the magnetic field strengths are
significantly lower than those expected to be found in the
core of the putative super-Chandrasekhar white dwarfs
proposed in Refs. [22–27]. This confirms the results we
obtained in our previous analysis [28]. Although stars
endowed with strong central magnetic fields such that
B⋆ ≥ 1 and B⋆ < Bβ⋆ would be stable against electron
captures, their global stability is not guaranteed and needs
to be further studied using realistic equations of state of
strongly magnetized matter, such as those obtained in
this work.
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TABLE VII. Characteristic temperatures (in K) in the core of a
strongly magnetized white dwarf for different compositions. The
core is assumed to be made of homogeneous crystalline structures
with a bcc lattice.

A
ZX TF (K) TB (K) Tm (K)

4He 2.4 × 1011 5.1 × 1012 1.6 × 107
12C 1.6 × 1011 2.3 × 1012 6.4 × 107
16O 1.2 × 1011 1.4 × 1012 8.2 × 107
22Ne 1.3 × 1011 1.5 × 1012 1.2 × 108
21Ne 6.8 × 1010 4.6 × 1011 6.8 × 107
20Ne 8.4 × 1010 6.8 × 1011 8.2 × 107
23Na 5.3 × 1010 2.9 × 1011 6.3 × 107
24Mg 6.6 × 1010 4.4 × 1011 9.0 × 107
32S 2.1 × 1010 5.8 × 1010 5.3 × 107
40Ca 1.6 × 1010 3.8 × 1010 6.2 × 107
44Ca 6.9 × 1010 4.8 × 1011 2.2 × 108

TABLE VIII. Same as Table VII for heterogeneous crystalline
structures.

% A
ZX % A0

Z0X0 lattice TF (K) TB (K) Tm (K)

50% 12C 50% 16O bcc 1.2 × 1011 1.4 × 1012 6.7 × 107

75% 12C 25% 16O fcc 1.2 × 1011 1.4 × 1012 5.9 × 107

25% 12C 75% 16O fcc 1.1 × 1011 1.1 × 1012 6.5 × 107

50% 20Ne 50% 16O bcc 8.4 × 1010 6.8 × 1011 7.0 × 107

75% 20Ne 25% 16O fcc 8.4 × 1010 6.8 × 1011 7.6 × 107

25% 20Ne 75% 16O fcc 8.4 × 1010 6.8 × 1011 6.3 × 107

50% 16O 50% 24Mg bcc 6.6 × 1010 4.4 × 1011 6.8 × 107

75% 16O 25% 24Mg fcc 6.6 × 1010 4.4 × 1011 5.7 × 107

25% 16O 75% 24Mg fcc 6.6 × 1010 4.4 × 1011 7.9 × 107

TABLE IX. Electron capture rates for some nuclei expected to
be found in the core of a super-Chandrasekhar magnetic white
dwarf with a central density given by ρB, and for two different
magnetic field strengths B⋆.

rate (s−1)
Species B⋆ ¼ 2 × 103 B⋆ ¼ 2 × 104

12C 3.5 × 103 6.2 × 104
16O 4.4 × 102 1.3 × 104
20Ne 1.3 × 104 1.1 × 105
22Ne 2.8 × 103 4.5 × 104
24Mg 3.6 × 104 2.6 × 105
32S 1.2 × 105 6.8 × 105
40Ca 1.7 × 104 2.2 × 105
44Ca 4.7 × 103 8.7 × 104
56Fe 1.3 × 105 7.9 × 105

CHAMEL et al. PHYSICAL REVIEW D 90, 043002 (2014)

043002-8



APPENDIX A: SOFTENING OF THE
EQUATION OF STATE OF A RELATIVISTIC

ELECTRON GAS IN A STRONGLY
QUANTIZING MAGNETIC FIELD

It has been known for a long time that the presence of a
strongly quantizing magnetic field considerably softens the
equation of state of cold dense matter [58] (see also chapter
4 from Ref. [38] and references therein). In this appendix,
we briefly review the calculation of the pressure P and its
partial derivative ∂P=∂ρ.
In the strongly quantizing regime, only the lowest level

ν ¼ 0 is filled so that νmax ¼ 0. This situation occurs
whenever the electron chemical potential μe is lower than
the energy ϵ1ðpz ¼ 0Þ ¼ mec2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B⋆

p
, i.e. whenever

xe ≤
ffiffiffiffiffiffiffiffi
2B⋆

p
or equivalently ne ≤ neB ¼ B3=2⋆ =ð ffiffiffi

2
p

π2λ3eÞ.
In this limiting case, the electron pressure is given by

Pe ¼
B⋆mec2

ð2πÞ2λ3e
ψ−ðxeÞ; ðA1Þ

with

xe ¼
2π2λ3ene

B⋆
: ðA2Þ

The electron chemical potential can be obtained from

γe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2e

q
: ðA3Þ

The stiffness of the equation of state can be characterized
by the adiabatic index defined by

Γe ≡ ne
Pe

∂Pe

∂ne
����
B⋆
; ðA4Þ

where the partial derivative is taken at fixed value of the
magnetic field strength. In the limit xe ≪ 1, the electron
pressure is approximately given by

Pe ≈
1

3
mec2n3e

�
2π2λ3e
B⋆

�
2

; ðA5Þ

and therefore Γe ≈ 3. In the other limit xe ≫ 1 and
xe ≤

ffiffiffiffiffiffiffiffi
2B⋆

p
, the electron pressure is approximately

given by

P≃ Pe ≈ mec2n2e
π2λ3e
B⋆

; ðA6Þ

and Γe ≈ 2.
Let us now consider that the levels ν ¼ 0 and ν ¼ 1 are

filled so that νmax ¼ 1. Equation (10) thus reads

ne ¼
2B⋆

ð2πÞ2λ3e

� ffiffiffiffiffiffiffiffiffiffiffiffi
γ2e − 1

q
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2e − 1 − 2B⋆

q �
: ðA7Þ

Solving this equation for γe yields

γe ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 24B⋆ þ 5x2e − 4xe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6B⋆ þ x2e

qr
; ðA8Þ

where xe ¼ 2π2λ3ene=B⋆. Equation (A8) is the only sol-
ution lying in the range

ϵ1ðpz ¼ 0Þ ≤ γemec2 ≤ ϵ2ðpz ¼ 0Þ; ðA9Þ
the lower and upper bounds corresponding to the complete
filling of the levels ν ¼ 0 and ν ¼ 1, respectively. Using
Eqs. (7) and (A7), this range of values for the chemical
potential can be equivalently expressed as

ffiffiffiffiffiffiffiffi
2B⋆

p
≤ xe ≤ 2ð1þ

ffiffiffi
2

p
Þ

ffiffiffiffiffiffi
B⋆

p
; ðA10Þ

neB ≤ ne ≤ neB2; ðA11Þ

where neB2 ¼
ffiffiffi
2

p ð1þ ffiffiffi
2

p ÞneB.
The partial derivative of γe with respect to xe at constant

B⋆ is given by

∂γe
∂xe

����
B⋆

¼ 5xe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6B⋆ þ x2e

p
− 4ð3B⋆ þ x2eÞ

9γe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6B⋆ þ x2e

p : ðA12Þ

It is readily seen that this derivative vanishes for xe ¼ffiffiffiffiffiffiffiffi
2B⋆

p
, i.e., when the level ν ¼ 0 is completely filled.

On the other hand, we find from Eq. (14) and γemec2 ¼
e1ðpz ¼ 0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B⋆
p

that the partial derivative of the
pressure with respect to γe is given by

∂Pe

∂γe
����
B⋆

¼ mec2

λ3e

2B5=2⋆
π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2B⋆
1þ 4B⋆

s
: ðA13Þ

Consequently, combining Eqs. (A12) and (A13) using the
chain rule shows that the partial derivative of the pressure
with respect to the electron density vanishes whenever the
level ν ¼ 1 starts to be filled,

∂Pe

∂ne
����
B⋆

¼ ð2πÞ2λ3e
2B⋆

∂Pe

∂γe
����
B⋆

∂γe
∂xe

����
B⋆

¼ 0; ðA14Þ

therefore, Γe ¼ 0. Note that the adiabatic index varies
discontinuously at ne ¼ neB, dropping from Γe ¼ 2 to
Γe ¼ 0. The variation of Γe with the electron density is
shown in Fig. 2. Using Eqs. (A6), (4), (5), and (16), we find
that the lattice pressure is negligible for ne ≈ neB:

PL

Pe
≈
Cα
3

� ffiffiffi
2

p

π

�2=3

fðZ; Z0Þ ≪ 1: ðA15Þ
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Since PL ≪ Pe and ρ ¼ nem=ye, we obtain ∂P=∂ρ ≈ 0 for
ρ ¼ ρB: Landau quantization thus leads to a strong soft-
ening of the equation of state.

APPENDIX B: STABILITY OF
DENSE MATTER AGAINST

NEUTRON EMISSION

At high pressures, the nucleus A
ZX (similarly for the

nucleus A0
Z0X0) may become unstable against the capture of

electrons accompanied by the emission of free neutrons.
The nucleus A

ZX will thus transform into a nucleus A−1
Z−1Y

(with proton number Z − 1 and mass number A − 1) with
the emission of a neutron n and an electron neutrino νe:

A
ZX þ e− → A−1

Z−1Y þ nþ νe: ðB1Þ

In order to examine the occurrence of such a process, we
have to generalize the expression of the Gibbs free energy
per nucleon so as to include the contribution of free
neutrons. In the following, we shall consider homogeneous
crystalline structures for simplicity. However, the gener-
alization to heterogeneous structures is straightforward.
From the general definition (25) and neglecting the effect

of free neutrons on nuclei, it can be easily seen that the
neutron contribution to g will be simply given by nnμn=n,
where μn is the neutron chemical potential. Let us deter-
mine the expression of the Gibbs free energy per nucleon of
nuclei coexisting with free neutrons. The average baryon
number density is now given by

n ¼ ðA − 1ÞnX þ nn: ðB2Þ

Note that one neutron is associated with each nucleus so
that the neutron density is given by

nn ¼ nX: ðB3Þ
Therefore, substituting Eq. (B3) in (B2) shows that Eq. (27)
still holds. The electric charge neutrality leads to

ne ¼ ðZ − 1ÞnX: ðB4Þ
Approximating the neutron chemical potential by the
neutron rest mass energy μn ≈ mnc2, we finally obtain

gn ¼
�
1 −

1

A

�
mc2 þmnc2

A
þ EðA − 1; Z − 1Þ

A

þ Z − 1

A

�
μe −mec2 þ

4

3

ELðZ − 1Þ
ne

�
; ðB5Þ

where the subscript n is to remind that the electron capture
is accompanied by neutron emission. The core of white
dwarfs will be stable against the process (B1) whenever

gðn−e ; ZÞ < gnðnþe ; Z − 1Þ: ðB6Þ

Neglecting the contribution of free neutrons to the pressure,
the electron densities n�e will still be given by Eqs. (31)
and (32). Since n−e ≈ nþe ≈ ne, the inequality (B6) can be
approximately expressed as

μe þ
4

3
Ce2n1=3e ðZ5=3 − ðZ − 1Þ5=3Þ < μβne ; ðB7Þ

where

μβne ðA; ZÞ≡ EðA − 1; Z − 1Þ − EðA; ZÞ þQ; ðB8Þ

with Q≡ ðmn þme −mÞc2. Following the same line of
arguments as those leading to Eq. (44), it can be easily seen
that the core of the most massive white dwarfs will be

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
n

e
/n

eB2

0

0.5

1

1.5

2

2.5

3

Γ e

FIG. 2. Adiabatic indexΓe of a relativistic electron gas in a strong
magnetic fieldwithB⋆ ¼ 1000, as a function of the electron density
ne in units of the electron density neB2 at which electrons start to
populate the level ν ¼ 2. Note that in this case neB ≈ 0.29neB2.

TABLE X. Electron chemical potentials for the onset of
electron captures with and without neutron emission in the core
of the most massive magnetic white dwarfs. See text for details.

A
ZX μβne (MeV) μβe (MeV)

4He 21.107 22.707
12C 17.25 13.88
16O 13.420 10.932
20Ne 14.137 7.536
21Ne 14.297 6.195
22Ne 16.559 11.329
56Fe 11.476 4.206
23Na 10.087 4.887
24Mg 12.986 6.027
32S 10.157 2.222
40Ca 9.621 1.822
44Ca 13.476 6.199
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unstable against electron captures accompanied by neutron
emission if the magnetic field strength exceeds some
threshold value, approximately given by

Bβn⋆ ≈ Bβ⋆
�
μβne

μβe

�2

: ðB9Þ

This shows that the stability of the star will be limited
by neutron emission rather than electron capture alone
whenever μβne < μβe. As shown in Table X, this situation
only occurs for helium white dwarfs. In this case,
Bβn⋆ ≈ 867 (ρ ≈ 1.1 × 1011 g cm−3) whereas Bβ⋆ ≈
1003 (ρ ≈ 1.3 × 1011 g cm−3).
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