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In this paper we present a hierarchical data analysis pipeline for all-sky searches of continuous
gravitational wave signals, like those emitted by spinning neutron stars asymmetric with respect to the
rotation axis, with unknown position, rotational frequency, and spin-down. The core of the pipeline is an
incoherent step based on a particularly efficient implementation of the Hough transform, which we call
frequency-Hough, that maps the data time-frequency plane to the source frequency and spin-down plane
for each fixed direction in the sky. Theoretical ROCs and sensitivity curves are computed and the
dependency on various thresholds is discussed. A comparison of the sensitivity loss with respect to an
“optimal” method is also presented. Several other novelties, with respect to other wide-parameter analysis
pipelines, are also outlined. They concern, in particular, the construction of the grid in the parameter space,
with over-resolution in frequency and parameter refinement, candidate selection, and various data cleaning
steps that are introduced to improve search sensitivity and rejection of false candidates.
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I. INTRODUCTION

Continuous gravitational wave signals (CW) emitted by
asymmetric rotating neutron stars are among the sources
currently searched in the data of interferometric gravita-
tional wave detectors. About 109 neutron stars are expected
to exist in the Galaxy. Of these, only about 2,400 have been
detected through their electromagnetic emission, like pul-
sars. A fraction of the unseen population of neutron stars
could in principle emit gravitational waves in the sensitivity
band of detectors, and it is therefore very important to
develop efficient data analysis strategies to search the
signals they emit. Various mechanisms have been proposed
that could allow for a time-varying mass quadrupole in
these stars, thus producing CW, like a residual crustal
deformation or distortion induced by the inner magnetic
field (see e.g., [1] for a review).
Roughly speaking, CW searches are divided into two

types: targeted (when the source position and phase param-
eters are known with high accuracy such as in the case of
known pulsars) and all-sky (also called “blind” or “wide-
band,” in which those parameters are unknown and a wide
portion of the parameter space is explored. In fact, “inter-
mediate” cases have also been considered; these include
narrow-band searches [2,3] and directed searches [4].
While targeted searches can be performed using optimal

methods, based on matched filtering [5–7], this is practi-
cally impossible for blind searches, due to the huge number
of points in the parameter space that must be typically
explored. For this reason hierarchical procedures have
been developed [8–11] that allow a large reduction in
the computational cost of the analysis at the price of a

relatively small loss in sensitivity. Such methods typically
consist of dividing the whole data set into short pieces, each
analyzed coherently, which are then combined incoher-
ently, i.e., losing the phase information. Basically, three
different kinds of incoherent steps have been proposed: the
stack-slide, the PowerFlux, and the Hough transform. The
stack-slide procedure [12,13] averages the normalized
power from the Fourier transform of 30-minute segments
of the calibrated detector strain data. The PowerFlux
schema [8,14] can be seen as a variation of the stack-slide,
in which the power is weighted before summing. The
weights are chosen depending on the detector noise level
and antenna pattern in such a way to maximize the signal-
to-noise ratio (SNR). The Hough transform method [15–17]
sums weighted counts, depending upon whether the equal-
ized power in a Fourier transform bin exceeds a certain
threshold and, depending on the specific algorithm imple-
mentation, other possible conditions are met. It is used for
both short- (of the order of the hour) and long- (of the order
of the day) time baseline searches. An optimal, at least
theoretically, incoherent method has also been studied
[18,19] in the context of long-time baseline searches. In
fact, in some cases different implementation of the same
schema has been proposed. For instance, at least two flavors
of the Hough transform method exist: the standard one
[15,16], also used in the popular Einstein@Home hierar-
chical pipeline [9], in which for each fixed value of the
frequency and frequency derivative(s) a mapping between
the time and frequency plane and the source position is
done, and a newer one, called frequency-Hough (FH) [20],
which is based, for each fixed sky location, in a mapping
between the time and frequency plane and the source
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frequency and spin-down plane. The FH transform has some
important advantages with respect to the standard imple-
mentations both because a smaller sensitivity loss due to the
digitizations involved in the procedure can be achieved
without increasing the computational load and in terms of
robustness with respect to disturbances.
In this paper we discuss a hierarchical procedure

designed to effectively cope with the unavoidable problems
arising when real data are used and pay attention to the
practical implementative aspects of the analysis algorithms.
The core of the pipeline is the FH, which we fully
characterize from a statistical point of view. Moreover,
we describe many other novel features with respect to other
proposed hierarchical schemes (see e.g., [8,9]), regarding
in particular the construction of the grid in the parameter
space, the criteria for selecting candidates and the various
cleaning steps applied to improve sensitivity and the
capability of disregarding false candidates.
The plan of the paper is the following. In Sec. II we

describe the type of gravitational wave signals for which we
are looking. In Sec. III we schematically present the whole
scheme of the hierarchical procedure of which the FH
constitutes the core. Details are given in the next sections.
In Sec. IV the short FFT database is described. In Sec. V the
collection of time and frequency peaks, called the peakmap,
which is the input to the FH transform, is discussed.
Section VI is dedicated to the FH transform. In Sec. VII
we outline the construction of the coarse grid in the
parameter space. In Sec. VIII we describe the criteria for
selecting candidates at the output of the FH. In Sec. IX a
refined analysis step around coarse candidates is presented.
Candidate clustering and coincidences are discussed in
Sec. X. Section XI is about the final verification and follow-
up step of the analysis procedure. Section XII is devoted
to the theoretical computation of ROC curves and search
sensitivity. The next section, Sec. XIII, is about the
various cleaning steps that are applied in order to discard
disturbances. Finally, in Sec. XIV conclusions and future
prospects are discussed. Some mathematical and imple-
mentative details are given in the Appendix.

II. CONTINUOUS GRAVITATIONAL WAVE
SIGNALS FROM SPINNING NEUTRON STARS

The expected quadrupolar gravitational-wave signal at
the detector from a nonaxisymmetric neutron star steadily
spinning about one of its principal axis is at twice the
rotation frequency frot, with a strain of [21]

hðtÞ ¼ H0ðHþAþ þH×A×Þe|ðωðtÞtþΦ0Þ; ð1Þ

where taking the real part is understood. The signal

frequency and phase at time t0 are, respectively, f0 ¼
ωðt0Þ
2π ¼ 2frotðt0Þ and Φ0. The two complex amplitudes
Hþ and H× are given, respectively, by

Hþ ¼ cos 2ψ − |η sin 2ψffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

p ð2Þ

H× ¼ sin 2ψ þ |η cos 2ψffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

p ð3Þ

in which η is the ratio of the polarization ellipse semi-minor
to semi-major axis and the polarization angle ψ defines the
direction of the major axis with respect to the celestial
parallel of the source (counterclockwise). The parameter η
varies in the range ½−1; 1�, where η ¼ 0 for a linearly
polarized wave and η ¼ �1 for a circularly polarized wave
(η ¼ 1 if the circular rotation is counterclockwise). The
functions Aþ and A× describe the detector response as a
function of time and are given by

Aþ ¼ a0 þ a1c cosΩ⊕tþ a1s sinΩ⊕t

þ a2c cos 2Ω⊕tþ a2s sin 2Ω⊕t; ð4Þ

A× ¼ b1c cosΩ⊕tþ b1s sinΩ⊕t

þ b2c cos 2Ω⊕tþ b2s sin 2Ω⊕t; ð5Þ

where Ω⊕ is the Earth sidereal angular frequency and with
the coefficients depending on the source position and
detector position and orientation on the Earth [21].
As discussed in [22] the strain described by Eq. (1) is

equivalent to the standard expression (see e.g., [23])

hðtÞ ¼ 1

2
Fþðt;ψÞh0ð1þ cos2ιÞ cosΦðtÞ

þ F×ðt;ψÞh0 cos ι sinΦðtÞ. ð6Þ

Here Fþ; F× are the “classical” beam-pattern functions,
ι is the angle between the star rotation axis and the line of
sight; the amplitude

h0 ¼
4π2G
c4

Izzεf20
d

ð7Þ

depends on Izz, which is the star moment of inertia with
respect to the principal axis aligned with the rotation axis,
on ε ¼ Ixx − Iyy=Izz which is the equatorial ellipticity
expressed in terms of principal moments of inertia and
on d, which is the source distance. While estimations of
the maximum braking strain that a neutron star crust can
sustain have been done and strongly depend on its structure
and equation of state (see e.g., [24–26]), the actual
ellipticity is largely unknown. The relation between H0

and h0 is given by

H0 ¼ h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6cos2ιþ cos4ι

4

r
ð8Þ

while

ASTONE et al. PHYSICAL REVIEW D 90, 042002 (2014)

042002-2



η ¼ −
2 cos ι

1þ cos2ι
. ð9Þ

In Eq. (1) the signal angular frequency ωðtÞ is a function
of time, and then the signal phase

ΦðtÞ ¼
Z

t

t0

ωðt0Þdt0 ð10Þ

is not that of a simple monochromatic signal and depends
on both the intrinsic rotational frequency and frequency
derivatives of the neutron star and on Doppler and
propagation effects. These effects include relativistic mod-
ulations caused by the Earth’s orbital and rotational motion
[27] and the presence of massive bodies in the solar system
close to the line-of-sight to the pulsar. The received
Doppler-shifted frequency fðtÞ is related to the emitted
frequency f0ðtÞ by the well-known relation (valid in the
nonrelativistic approximation)

fðtÞ ¼ 1

2π

dΦðtÞ
dt

¼ f0ðtÞ
�
1þ ~v · n̂

c

�
; ð11Þ

where ~v ¼ ~vorb þ ~vrot is the detector velocity with respect
to the Solar system barycenter (SSB), sum of the Earth
orbital velocity around the Sun, ~vorb, and of the Earth
rotation velocity, ~vrot, while n̂ is the versor identifying
the source position and c is the light velocity. In terms of
equatorial coordinates ðα; δÞ, the components of the versor
n̂ are (cos α cos δ, sin α sin δ, sin δ).
The intrinsic signal frequency f0ðtÞ slowly decreases

in time due to the source spin-down, associated to the
rotational energy loss following emission of electromag-
netic and/or gravitational radiation. The spin-down can be
described through a series expansion

f0ðtÞ ¼ f0 þ _f0ðt − t0Þ þ
f̈0
2
ðt − t0Þ2 þ � � � ð12Þ

In general a CW depends then on 3þ s parameters:
position, frequency, and s spin-down parameters.

III. SCHEME OF THE HIERARCHICAL
PROCEDURE

All-sky searches cannot be afforded with a completely
coherent method, due to the huge dimension of the
parameter space which poses challenging computational
problems [12,28]. Moreover, a completely coherent search
would not be robust towards unpredictable phase variations
of the signal during the observation time. For these reasons
hierarchical schemes have been developed. The hierarchi-
cal scheme we present starts from the detector calibrated
data. The first step consists in constructing a short FFT
database (SFDB) [29] where each FFT is built from a data

chunk of duration, called coherence time, short enough
such that if a signal is present its frequency, which is
modified by the Doppler and spin-down described in
previous section, remains within a frequency bin. The
FFT duration is then a function of the search frequency,
with longer FFTs allowed at lower frequencies. From the
SFDB we create a time-frequency map, called peakmap
[16,30], obtained selecting the most significant peaks on
equalized periodograms. The peakmap is the input of the
incoherent step, based on the FH transform [20]. In the FH
transform we take into account also noise slow nonstatio-
narity and the varying detector sensitivity caused by the
time-dependent radiation pattern. The most significant
candidates are selected at this stage using a coarse grid
in the parameter space and an effective way to avoid
blinding by particularly disturbed frequency bands. For
each coarse candidate a refined search is run again on the
neighborhood of the candidate parameters and the final
first-level refined candidates are selected. Candidates are
then clustered, grouping together those occupying nearby
points in the parameter space. In order to significantly
reduce the false alarm probability, coincidences are done
among clusters of candidates obtained in the analysis of
different data sets (of the same detector or of different
detectors). Over coincident candidates, after a verification
step, a follow-up, with a longer coherence time, is applied.
The choice of using “short” FFTs is similar to the one

done, for instance, in the PowerFlux pipeline [14] and the
standard Hough transform search described in [10].
Another popular hierarchical pipeline, Einstein@Home
[9], uses the F-statistic [23,31] coherently computed on
about one-day data segments from multiple detectors,
followed by the standard Hough transform as incoherent
step. At least theoretically this clearly gives a gain in
sensitivity. On the other hand, this choice is less robust
against unforseen GW signal frequency modulations on
time scales smaller than about 1 day while, on the contrary,
splitting the data in a larger number of shorter segments
is also more robust against disturbances in one segment.
We expect that the use, in the pipeline we have developed,
of the FH transform, of the refinement only around coarse
candidates, and various aggressive cleaning steps allows
to significantly improve the detection efficiency and to
partially compensate the shorter FFT length against a lower
computational load. By the way, each pipeline uses its
optimization tricks and its cleaning procedures so that a
comparison of the performance of our analysis pipeline
with other methods would be really meaningful only if real
data were used but is outside the scope of this paper.
In Fig. (1) the main steps of the hierarchical procedure

are shown and will be discussed in following sections,
briefly recalling those already presented in previous papers,
and focusing attention on new choices and improvements
with the aim of presenting a coherent and unified view of
the full analysis pipeline.

METHOD FOR ALL-SKY SEARCHES OF CONTINUOUS … PHYSICAL REVIEW D 90, 042002 (2014)

042002-3



IV. SHORT FFT DATA BASE

The SFDB construction and characteristics have been
described in [29]. Shortly, it is a collection of FFTs
obtained from detector calibrated data divided into inter-
laced (by half) chunks of proper time duration, each
windowed in order to reduce the dispersion of power
due to their finite length. The time duration TFFT of
each FFT is chosen using the criterium that if a signal is
present the frequency spread due to the Doppler effect is
smaller than a frequency bin during the time TFFT. It can be
shown [28] that the maximum FFT duration is given by
∼1.1 × 105=

ffiffiffiffiffiffiffiffiffi
fmax

p
seconds where fmax is the maximum

frequency of the FFT in Hertz. A data cleaning procedure,
described in [30], is applied in time-domain when con-
structing the data base, see Sec. XIII, in such a way to not

throw away available data and at the same time to improve
the sensitivity through the identification and removal of
large and short time duration disturbances.
Given that the maximum FFT duration is a function of

the frequency, the SFDB is divided into blocks covering
different frequency ranges, with FFT length depending
on the maximum block frequency. In Table I we give a
possible organization of the SFDB in terms of frequency
bands, their corresponding sampling times and FFT time
durations. Table II shows another possible choice, aimed to
contain the computational cost, obviously with a conse-
quent loss of sensitivity at high frequency. In the remaining
of the paper most of the examples and plots involving the
SFDB refer to this choice.
For each FFT also a lower resolution auto-regressive

estimation of the average spectrum, called very short FFT
is computed and stored in the database.

V. PEAKMAP

For each of the N FFTs in the SFDB we compute the
periodogram, Sp;iðfÞ, i ¼ 1;…N, i.e., the square modulus
of the FFT, and then the ratio between the periodogram and
the auto-regressive average spectrum estimation, SAR;iðfÞ:

Rði; jÞ ¼ SP;iðfÞ
SAR;iðfÞ

; i ¼ 1;…N ð13Þ

where the ratio is computed frequency bin by frequency
bin and j runs over the frequency bins of the ith FFT. The
function Rði; jÞ is compared to a threshold θ and the
frequency bins which are above the threshold and are local
maxima are selected. Each pair made of a selected
frequency bin and of the initial time of the corresponding
FFT is a peak. Note that, differently from what is done in
the stack-slide [12] and PowerFlux schema [14], the peak
amplitude is not taken into account. The collection of all

FIG. 1. Scheme of the hierarchical pipeline. See text for a
description of the various blocks.

TABLE I. The table shows a possible organization of the short FFT data base, using four frequency bands. TFFT is
the time duration of each FFT, δt is the sampling time, δf is the frequency resolution of the FFT and Nf the number
of frequency bins.

B [Hz] TFFT [s] δt [s] δf [Hz] Nf

512–2048 1024 2.44 × 10−4 (1=4096) 9.77 × 10−4 (1=1024) 1.57 × 106

128–512 4096 9.77 × 10−4 (1=1024) 2.44 × 10−4 (1=4096) 1.57 × 106

32–128 8192 3.91 × 10−3 (1=256) 1.22 × 10−4 (1=8192) 7.86 × 105

10–32 16384 1.56 × 10−2 (1=64) 6.10 × 10−5 (1=16384) 3.60 × 105

TABLE II. Another possible organization of the SFDB, which reduces the computational load by penalizing a bit
the sensitivity at high frequency.

B [Hz] TFFT [s] δt [s] δf [Hz] Nf

128–2048 1024 2.44 × 10−4 (1=4096) 9.77 × 10−4 (1=1024) 1.97 × 106

10–128 8192 3.91 × 10−3 (1=256) 1.22 × 10−5 (1=8192) 9.67 × 105
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the peaks, considering all the FFTs of the SFDB forms the
peakmap. Selecting peaks which are above the threshold
and also local maxima has some important advantages with
respect to the choice done, e.g., in [9,15], where only the
first condition is considered: less sensitivity to spectral
disturbances (i.e., better robustness) and a significantly
lower computational cost of the analysis, because the
number of peaks is smaller. On the other hand, as we will
see, this choice implies also a very small theoretical
sensitivity loss.
The Hough transform is computed starting from the

peak-map. If a peak is selected at the level of the peakmap it
will contribute to the Hough number count, even if it is due
to noise. On the other hand, if a signal peak is missed at the
peakmap level it will not contribute to the Hough map. Let
us indicate with p0 ¼ Pðθ; 0Þ the probability of selecting a
noise peak above the threshold θ in the peakmap and with
pλ ¼ Pðθ; λÞ the probability when a signal with spectral
amplitude (in units of equalized noise) λ is present. This is
defined as

λ ¼ 4j ~hðfÞj2
TFFTSnðfÞ

; ð14Þ

where ~hðfÞ ¼ Rþ∞
−∞ hðtÞe−j2πftdt is the Fourier transform of

the signal hðtÞ and SnðfÞ is the detector uni-lateral noise
spectral density. In practice, p0 is the false alarm proba-
bility for noise peak selection, while 1 − pλ is the false
dismissal probability for signal peak selection. In case of
gaussian noise the probability distribution of the power in
each bin of a periodogram is exponential with mean value
equal to the standard deviation. For the peakmap, given that
dividing the periodogram by the auto-regressive average
spectrum estimation we are in fact making an equalization,
the probability distribution is still exponential with mean
value and standard deviation equal to 1. Then, p0 can be
computed observing that the probability of having in the jth
frequency bin of the ith FFT a value of the ratio Rði; jÞ
between x and xþ dx is e−xdx. The probability that given
value is also a local maxima is easily obtained multiplying
by the probability that the two neighboring bins have a
smaller value, that is ð1 − e−xÞ2. Then the probability of
having a local maxima above a threshold θ is

p0¼
Z þ∞

θ
e−xð1−e−xÞ2dx¼e−θ−e−2θþ1

3
e−3θ. ð15Þ

The probability of having n peaks in a peakmap is a
binomial with expectation value mp0 and standard
deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp0ð1 − p0Þ

p
, being m ¼ N · Nf the total

number of bins in the peakmap.
In presence of a signal with spectral amplitude λ the

probability density of the spectrum is a normalized non-
central χ2 with 2 degrees of freedom and noncentrality
parameter λ:

pðx; λÞ ¼ eð−x−λ
2
ÞI0

� ffiffiffiffiffiffiffi
2xλ

p �
; ð16Þ

where I0 is the modified Bessel function of zeroth order,
which has mean value x̄ ¼ 1þ λ

2
and variance σ2x ¼ 1þ λ.

For small signals, i.e., λ ≪ x we have that

eð−x−λ
2
Þ ≈ e−x

�
1 −

λ

2

�

I0
� ffiffiffiffiffiffiffi

2xλ
p �

≈ 1þ 2xλ
4

ð17Þ

then

pðx; λÞ ≈ e−x
�
1 −

λ

2
þ λ

2
x

�
. ð18Þ

The probability of selecting a local maxima above a
threshold can be computed as before:

pλ ¼
Z þ∞

θ
pðx; λÞ

�Z
x

0

pðx0; λÞdx0
�

2

dx. ð19Þ

The inner integral is equal to 1 − e−x − λ
2
xe−x and the final

result, by keeping terms only up to oðλÞ is

pλ ≈ p0 þ
λ

2
θðe−θ − 2e−2θ þ e−3θÞ. ð20Þ

The choice of the threshold θ, which impact on the search
sensitivity and computational weight of the analysis, will
be discussed in Sec. XII.

VI. FREQUENCY-HOUGH TRANSFORM

The Hough transform is a processing techniques for
robust pattern extraction mainly from digital images. In
CW searches it is used to map points in the time/frequency
plane which follow the pattern expected from a signal into
the signal parameter space. As mentioned in Sec. I, various
implementations of the Hough transform exist. Here we
summarize the basic concepts of the FH transform, first
introduced in [20]. We assume the second order spin-down
can be neglected. As will be shown in Sec. VII this
corresponds to a constrain on the so-called minimum spin
down age. The FH consists in a linear mapping between the
detector time and source Doppler-corrected frequency
plane into the source intrinsic frequency and spin-down
plane. If f is the signal frequency at the detector (Doppler
corrected for a given sky direction), f0 the source intrinsic
frequency at time t0, _f0 the first spin-down parameter and t
the time at the detector, we have that

f ¼ f0 þ _f0ðt − t0Þ. ð21Þ

Hence
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_f0 ¼ −
f0

t − t0
þ f
t − t0

. ð22Þ

The input plane is obtained from the original peakmap by
correcting it for the Doppler shift due to the Earth motion
for each point in the sky grid we analyze. As, by
construction, each FFT in the SFDB is short enough that
the signal power is confined within a single frequency bin,
see Sec. IV, the removal of the Doppler effect from the
original peakmap consists in a simple shifting of the
peakmap bins. Each point in the input plane ðt − t0; fÞ
is transformed into a straight line in the ðf0; _f0Þ Hough
plane, with slope −1=ðt − t0Þ. In fact, by taking into
account the width δfH of the frequency bins in the input
plane, see Eq. (28), each peak is transformed into a stripe
delimited by two parallel straight lines and covering a range
of spin-down values given by

−
f0

t − t0
þ f − δfH=2

t − t0
< _f0 < −

f0
t − t0

þ f þ δfH=2
t − t0

.

ð23Þ

In each bin of the frequency/spin-down plane touched by
a stripe the number count is increased by one. For each
fixed direction in the sky, the set of number counts in the
frequency and spin-down bins constitutes an Hough map
(or Hough histogram). The number count n in a given bin
can be seen as the sum of binary counts ni, which takes
value 0 or 1:

n ¼
XN
i¼1

ni. ð24Þ

The probability distribution of the Hough map is then
binomial, i.e., the probability of having a number count n in
a given pixel of a map built starting from N FFTs is the
same for both the classical Hough and the FH and is given
by [15]

Pnðθ; λÞ ¼
�
N
n

�
ηnð1 − ηÞN−n; ð25Þ

where η ¼ p0 when no signal is present and η ¼ pλ when a
signal is present. The mean and variance of the number
count are, respectively,

μ ¼ Nη

σ2 ¼ Nηð1 − ηÞ: ð26Þ

In presence of a signal strong enough the stripes
corresponding to the various input peaks, when the correct
source position is considered, intersect in the transformed
plane identifying the intrinsic frequency and spin-down of
the source. In practice, we are interested in those bins of the

Hough map where the number count is high with respect to
the average value. The slope of these stripes depends on the
choice of the reference time t0. By putting the reference
time in the middle of the observation time it is possible to
see that the signal affects the smallest possible number of
pixels in the parameter space, thus reducing the contami-
nation of nearby pixels.
The FH transform, and the specific way in which it

is implemented, presents some relevant differences with
respect to typical implementations of the standard
Hough transform [15,16], where the transformation is
between the time-frequency peakmap and the celestial
sphere, which is not computationally light due to the
nonlinearity of the mapping. This has some important
consequences. First of all, to reduce the computational
effort, “look-up tables” are used in the standard Hough to
speed up the mapping between the input and transformed
planes and this introduces further digitization errors in
addition to those intrinsic to the Hough mapping and due to
the finite resolution. Again to reduce the computational
load of the analysis, fast algorithms have been developed,
which require the use of a rectangular grid in the sky.
Compared to the grid actually used for the FH, see Sec. VII,
the rectangular one has over-resolution in some regions
of the sky, which increases the number of points in the
parameter space. Moreover the use of the sky as the space
to spot candidates is very prone to artifacts: some regions
are always “privileged”, that is they have a higher number
of candidates with respect to the expectation. On the other
hand, in the FH enhancing the frequency resolution does
not cost from a computational point of view but reduces
the discretization loss due to the finite size of the bins. The
effect of over-resolution in frequency has been studied with
simulated signals in [20] and the main result is that using
an over-resolution factor in frequency of 10 also affects
the efficiency loss associated with the sky grid and gives an
overall efficiency loss of about 13% with respect to about
25% if the over-resolution is not used, with a ratio of the
sensitivity losses of ∼0.87. At fixed sensitivity this corre-
sponds, as a consequence of the fact that the strain
sensitivity goes as T1=4

FFT and the computing cost as T3
FFT

(considering only the first order spin-down), to a reduction
in computing cost of more than a factor of 5. These results
have been obtained by making a comparison with a specific
implementation of the standard Hough transform described
in [11] where over-resolution is not applied. A comparison
with other implementations could give different results.
The effect of frequency over-resolution on the digitization
loss for each of the parameters is discussed in Sec. VII.
Finally the adaptivity, that is the use of weights to take into
account noise nonstationarity and the time-varying detector
beam pattern functions, introduced for all the existing
implementations of the Hough transform [16,17,20], is
very simple and “natural” to implement in the FH, as each
Hough map is done for a single sky position and then the
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weighting due to the detector beam-pattern function is done
simply by multiplying all the map pixels by the same
number. For the adaptive Hough transform the map
amplitude (which is no more an integer number) at a given
bin can be written as

n ¼
XN
i¼1

wini; ð27Þ

where the weights wi, for a given sky location, depend on
the average detector response and average detector noise
level in the ith FFT.
In the following figures we show a few examples of the

FH transform, using one of the hardware injections (HI) in
Virgo VSR2 run, that is CW injected through the detector
hardware for testing purposes. The so-called pulsar3
has been injected to simulate a CW with frequency f0 ¼
108.8572 Hz at epoch MJD 52944, spin-down _f0 ¼
−1.46 × 10−17 Hz=s and coming from right ascension
α ¼ 178.37° and declination δ ¼ −33.43°. The spin-down
is practically zero given the resolution we would have in
the analysis of VSR2 data. The amplitude for this signal,
h0 ¼ 8.3 × 10−24, is quite large given the sensitivity of
VSR2 data in that frequency region. Figure 2 shows the
peakmap around the frequency of the HI: the signal track
on the time/frequency plane is clearly visible by eye.
Figure 3 shows the Adaptive FH map around the HI, using
the parameter space grid described in Sec. VII. The signal
parameters are identified by the pixel in the map with the
highest number count. Figure 4 shows the projection of
the Hough map on the frequency axis. The presence of the
signal is very well evident also in this plot. To build the map
of Fig. 3 the reference time has been taken in the middle
of VSR2 run. This choice minimizes the uncertainty on
source parameters. As an example, in Fig. 5 the Hough map
obtained by taking the reference time at the beginning of
the run is shown.

VII. COARSE GRID IN THE
PARAMETER SPACE

In this section we discuss how to build the coarse grid in
the parameter space, frequency, spin-down and sky position,
where coarse candidates are selected, as anticipated inSec. III.
This is partly basedon the results of [20],with some important
improvements. The refined step, around the candidates found,
is described in Sec. IX. The use of coarse and refined grids
has been also adopted in [9], but in the context of a different
analysis pipeline and with relevant differences in the
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FIG. 2 (color online). Peakmap around the frequency of the HI
pulsar3, with f0 ¼ 108.8572 Hz, injected in Virgo VSR2 data.
Time is since the beginning of the run. The signal track is clearly
visible, due to its very large amplitude.
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FIG. 3. Adaptive FH map around HI pulsar3, at frequency
f0 ¼ 108.8572 Hz. The reference time here is the middle of the
observation time.
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FIG. 4 (color online). Projection of the Hough map shown in
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FIG. 5. Adaptive Hough map around HI pulsar3, with fre-
quency f0 ¼ 108.8572 Hz, having chosen the beginning time of
the run as reference time.
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implementation. Two important points are: a) we use over-
resolution in frequency already at the coarse step, without
increasing the computational load of the analysis; b) while
we build a refined grid only around coarse candidates, in [9]
the refined grid covers the whole parameter space.

A. Grid in frequency

The “natural” grid step in frequency, δf ¼ 1
TFFT

, is fixed
when constructing the SFDB. As shown in [20], however,
the transformation from the peakmap to the Hough plane is
not computationally bounded by the size of the frequency
bin, as it only affects the size of the Hough map. As already
mentioned in Sec. VI this means that we can increase the
frequency resolution to reduce the digitalization loss. To
quantify the effect and to do a reasonable choice of the
frequency over-resolution factor, simulations have been
done [20], by studying the loss for injected signals in the
absence of noise. The study has lead to identify as a
reasonable choice a frequency over-resolution factor
Kf ¼ 10, both for the coarse and the refined steps. The
actual frequency bin width is then

δfH ¼ δf
Kf

. ð28Þ

With this choice, in the case of TFFT ¼ 1024 s, the
frequency digitalization loss, in amplitude, is of about
3.6%, which has to be compared to a loss of ∼12% for
Kf ¼ 1. The number of frequency bins in the full band
from 0 to 1

2δt Hz is

Nf ¼ Kf
TFFT

2δt
¼ 1

2δt · δfH
. ð29Þ

B. Grid in spin-down

The “natural” step for spin-down of order j, δfðjÞ is
computed by imposing that the associated frequency
variation over the observation time Tobs is of one bin,

δfðjÞ

j!
Tj
obs ¼ δf; ð30Þ

that is δ _f ≡ δfð1Þ ¼ δf
Tobs

, δf̈ ≡ δfð2Þ ¼ 2 δf
T2
obs

and so on. As

reported in [28], the number of values of spin-downvalues of
order j can be determined by using the following equation:

NðjÞ
sd ¼ TFFT

δt

�
Tobs

τmin

�
j
; ð31Þ

where τmin ¼ MINðf0_f0Þ is the minimum spin-down age

considered in the analysis. The total number of points in
the spin-down space is

Nsd ¼
Y
j≤jmax

NðjÞ
sd ; ð32Þ

where themaximumorderjmax tobeconsidered is the lastone

which hasNðjÞ
sd ≥ 1. The choice of τmin has a relevant impact

on the computational load of the analysis. Figure 6 gives, for
different values of τmin, between 100 years and 10000 years,
the corresponding maximum spin-down order that must be
taken into account for an observation time Tobs ¼ 1 year and
two different sets of FFTs, of duration, respectively, 1024 s
(maximum frequency 2048 Hz) and 8192 s (maximum
frequency 128 Hz). From the figures we see that for a
one-year observation time, the minimum spin-down age in
order to have only the first spin-down parameter is 2100 yr
for TFFT ¼ 1024 s and 1500 yr for TFFT ¼ 8192 s. Current
analysis procedures include only the first-order spin-down.
The first-order spin-down resolution can be generalized

as follows:

δ _f ¼ δf
TobsK _f

; ð33Þ

allowing for an over-resolution factor K _f. The choice we
have done for the coarse step of the search is K _f ¼ 1. The
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FIG. 6. Minimum spin-down age τmin as a function of the spin down order j, for an observation time of Tobs ¼ 1 year and two different
FFT durations, TFFT ¼ 1024 s (maximum frequency 2048 Hz) and 8192 s (maximum frequency 128 Hz).
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use of an over-resolution factor for the spin-down would in
fact have a relevant impact on the computing load (as the
evaluation of the spin-down has to be done by cycling on all
the values). Besides this, the amplitude digitalization loss is
∼3.6% for K _f ¼ 1, small enough to justify the choice we
have done. K _f > 1 will be used in the refined step.
Instead of fixing a value for τmin and then use

Eqs. (31), (32) to compute the corresponding number of
spin-down values, we could fix the number of spin-down
value Nsd we want to search. The corresponding minimum
spin-down age would then be given by

τmin ¼
2fmax

Nsdδ _f
; ð34Þ

where fmax is the maximum frequency of the search band.

C. Grid in the sky

The procedure to construct the sky grid is based on what
described in [20]. Let us consider two hypothetical sources,
emitting a signal at the same frequency f0, having the same
ecliptic latitude β and a small angular separation in the
ecliptic longitude, γ. Because of the detector motion, the
separation between the two sources can be seen as a time
delay Δt ≈ γ=Ωorb, where Ωorb is the Earth orbital angular
velocity (we are neglecting the Earth rotation). The signals
they emit are subject to the Doppler effect, described by
Eq. (11), so that the frequency at the detector is

fðtÞ≃ f0

�
1þ ~v · n̂

c

�

≈ f0

�
1þΩorbRorb cos β sinðΩorbtÞ

c

�
; ð35Þ

where Rorb is the radius of the Earth orbit. The observed
frequency variation during Δt is given by

df
dt

Δt ≈ f0
Ω2

orbRorb cos β cosðΩorbtÞ
c

Δt: ð36Þ

The maximum value of this variation is

Δfmax ¼ f0
ΩorbRorbγ cos β

c
: ð37Þ

If we fix Δfmax ¼ δf we find the angular resolution along
the longitude which is, in radians,

δλ≡ γ ¼ c
f0ΩorbRorbTFFT cos β

¼ 1=ðND cos βÞ; ð38Þ

where ND is

ND ¼ f0ΩorbRorbTFFT

c
: ð39Þ

We can derive this last equation also considering the
maximum Doppler band, BD ¼ f0ΩorbRorb

c , and noticing that
ND ¼ BD

δf is the number of frequency bins in it. We now
repeat the same reasoning supposing the two sources at the
same frequency f0 and same ecliptical longitude λ. The
derivative of the frequency with respect to the latitude β is

df
dβ

¼ −
f0ΩorbRorb sin β sinðΩorbtÞ

c
: ð40Þ

The frequency variation corresponding to a small angular
separation γ0 along the ecliptical declination is df

dβ γ
0, with

maximum value

Δfmax ¼
���� dfdβ γ0

����
max

¼
���� f0ΩorbRorb sin βγ0

c

����: ð41Þ

As before, imposing Δfmax ¼ δf, we obtain the angular
resolution along the declination:

δβ≡ γ0 ¼ c
f0ΩorbRorbTFFT sin β

¼ 1=ðND sin βÞ: ð42Þ

Using Eqs. (38), (42) we construct the grid on the sky;
see Appendix C for some implementative details of the
procedure. The points of the grid are not uniformly
distributed. With a simulation we have estimated the
number of points in the grid Nsky which is, in the high-
frequency limit,

Nsky ≃ 4πKskyN2
D: ð43Þ

Ksky is an over-resolution factor, which can be chosen to
be greater than 1 to enhance the efficiency but unfortu-
nately also the number of artifacts, or less than 1 to save
computing cost and to reduce the number of artifacts,
obviously worsening the efficiency. By “artifacts” here we
mean the spurious combinations of frequency and spin-
down which produce candidates all due to one single “true”
signal. In [20] we have estimated the loss of sensitivity
due to the discretization of the sky. For a fixed Ksky this a
function of the frequency over-resolution factor Kf. In
particular the amplitude loss for Ksky ¼ 1, which is our
standard choice for the coarse grid, is about 10% using
Kf ¼ 10 while it would be ∼14%when no frequency over-
resolution is done as in the standard Hough transform. For
Ksky ¼ 1 the number of points given by Eq. (43) is a factor
of π smaller than for the standard Hough transform.
Figure 7 shows the sky grid for a (maximum) frequency

of 200 Hz and TFFT ¼ 1024 s. Figure 8 shows the number
Nsky of points in the grid as a function of the frequency, in
the two cases of TFFT ¼ 1024 s and 8192 s.
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VIII. SELECTION OF FIRST-LEVEL
CANDIDATES

As briefly outlined at the beginning of Sec. III, after the
Hough transform has been computed for a given data set, a
number of first-level candidates is selected, taking those
with highest significance measured, for instance, by the
critical ratio (CR), defined in Sec. XII, and which will be
used for the next steps of the analysis. This number is
chosen as a compromise between the need from one hand to
have a manageable amount of candidates and to the other
to limit the sensitivity loss that the selection implies, see
Sec. XII. In fact choosing a reasonable threshold on the
CR we can expect that most of the selected candidates are
false. In order to reduce the false alarm probability, another
set of candidates is selected analyzing a different data set,
belonging to the same detector or not, and coincidences
among the two sets of candidates are done. Indeed, given
the persistent nature of CW, a signal producing a candidate
in a data set will produce a candidate with (approximately)
the same parameters in another data set, even if this covers a
different time span. In principle, that is neglecting the fact

that due to the noise the candidates corresponding to a
signal could have slightly different parameters in the two
analyses and then that a coincidence window must be used,
the number of coincidences is given by, see Appendix A

Nc ≈
Ncand1 · Ncand2

Ntot
; ð44Þ

where Ncand1; Ncand2 is the number of candidates selected
on the two data sets, while Ntot ¼ Nf · Nsky · Nsd is the
total number of points in the source parameter space,
assumed to be the same for the two analyses. By using
Eqs. (29), (31), (43) we can write

Ntot ≈ 5.6π × 10−9KfKsky

�
TFFT

δt

�
3þjmax Y

j≤jmax

�
Tobs

τmin

�
j
;

ð45Þ

where the productory is done over all values of j ≤ jmax
such that NðjÞ

sd , defined by Eq. (31), is ≥ 1. For instance,
taking δt ¼ 1=4096 s, TFFT ¼ 1024 s, Tobs ¼ 1 yr and
τmin ¼ 103 yr we have jmax ¼ 2 and Ntot ≃ 2.28 × 1017

where we have used Kf ¼ 10 and Ksky ¼ 1, see also
Table III. If we decide to select 109 candidates in each
data set we would have, theoretically, about four coinci-
dences if the noise was Gaussian. In fact, we fix the
theoretical number of coincident candidates we want to
follow-up, Nc, and determine the corresponding number of
candidates to be selected in each data set. Assuming for
simplicity Ncand1 ¼ Ncand2 ¼ Ncand, from Eq. (44) we get

Ncand ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcNskyNfNsd

p
: ð46Þ

In practice, the full frequency range considered in the
analysis is split, for computational efficiency reasons, in a
number nband of nonoverlapping bands (e.g., 1 Hz wide)
each of which is analyzed separately and independently of
the others. For a given band width, the number of points in
the corresponding portion of the parameter space increases
with the square of the band maximum frequency, see
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FIG. 7 (color online). Sky grid in ecliptical coordinates, for
TFFT ¼ 1024 s, frequency f0 ¼ 200 Hz andKsky ¼ 1. Each point
in the plot defines the center of a sky cell.
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Eqs. (39), (43). Let us then consider the last band of the full
frequency range we are exploring, i.e., that with the highest
frequency, and fix the number Nc;max of surviving candi-
dates we want to have after coincidences with the corre-
sponding band of another data set. Let also indicate with
N sky;max the number of sky points in this band. The
corresponding number of candidates to be selected before
coincidences, in order to haveNc;max coincident candidates,
is given by Eq. (46) replacing Nc with Nc;max and Nsky with
Nsky;max:

Ncand;max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc;maxNsky;maxNfNsd

p
: ð47Þ

We now impose that the number of coincidences in all
the bands is the same, that isNc;i ¼ Nc;max, where the index
i ¼ 1;…nband indicates the ith band. Hence, the number of
candidates to be selected in the ith band is

Ncand;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc;maxNsky;iNfNsd

p
; ð48Þ

where Nsky;i is the number of sky cells in the ith band and
we are assuming for simplicity that all the bands have
the same width so that Nf and Nsd are constant. In order to
have a uniform number of coincidences in each frequency
band and for each band in each sky cell, the number of
candidates that will be selected for each cell of the sky is
given by

NðcellÞ
cand;i ¼

Ncand;i

Nsky;i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc;maxNfNsd

Nsky;i

s
: ð49Þ

In Sec. X we will see in some more detail how coincidences
are done in practice.
We now focus attention on the practical procedure to

select candidates from a Hough map. Once we have fixed
the size of the frequency bands on which to run the search,
the total number of candidates to be selected in each
of them Ncand;i and the number of candidates in each cell of

the sky,NðcellÞ
cand;i, we face the problem of not being blinded by

the presence of disturbances, which could still pollute

subbands of the ith band, even after having performed all
the cleaning steps described in Sec. XIII. We have designed
a procedure for candidate selection to this purpose. For

each sky cell, we divide the ith band into nsb ¼ NðcellÞ
cand;i

subbands and select the most significant candidate in each
of them, for all the possible spin-down values. In this way
the selection of a uniform distribution of candidates is done
in each band and the blinding effect due to possible large
disturbances is eliminated. A further step can consist in the
selection of “second order” candidates. Once the highest
candidate in each subband has been selected, an exclusion
region of, e.g., �4 frequency bins around it is established.
We can now look for the second highest candidate in that
subband and select it only if well separated in frequency
from the first one, e.g., by at least �8 frequency bins. In
this way we expect in general to select two candidates per
subband and to have 1 candidate only when the highest
candidate is due to a big disturbance, or a particularly
strong HI, as in the following example, which would
produce several other neighboring candidates. This pro-
cedure would imply a nearly doubling of the final number
of candidates with respect to the initial choice. Figure (9)
gives and example of what happens around one HI, pulsar3,
which is well visible and identified by the highest (red)
pixel. The figure shows the Hough map number count of
the candidates, for a range of values of the ecliptical
longitude λ, around the frequency of the HI. In this example
the number of subbands is nsb ¼ 23, each of width
0.043 Hz. This explains the presence of (almost) empty
regions around the pixels due to the HI.

IX. REFINED GRID IN THE
PARAMETER SPACE

As already briefly mentioned in Sec. III, once a candi-
date is selected using the coarse grid in the parameter space,
the FH transform is run again in a small volume of the
parameter space around it using a refined grid. For each
coarse candidate only one refined candidate is selected. The
refinement has not any influence on the search sensitivity,
which is fixed once the candidates are selected. On the

TABLE III. Relevant quantities and thresholds for various choices of TFFT and τmin and assuming Tobs ¼ 1 yr,Kf ¼ 10,Ksky ¼ 1. For
TFFT ¼ 1024 s the number of (interlaced) FFTs in Tobs is N ¼ 61594 and we assume to analyze the whole frequency band, between 10
and 2048 Hz, and to select 109 candidates. For TFFT ¼ 8192 s the number of (interlaced) FFTs is N ¼ 7699 and we assume to analyze
the frequency band between 10 and 128 Hz, and to select 107 candidates. δt is the sampling time, jmax is the maximum spin-down order
to be considered, Ntot is the total number of points in the source parameter space [Eq. (45)], Pfa is the false alarm probability [Eq. (61)],
nthr is the corresponding threshold on the Hough map number count [Eq. (57)], and CRthr is the threshold on the critical ratio used to
select candidates [Eq. (62)]. Λ1 is the sensitivity coefficient appearing in Eq. (66) while Λ is the coefficient in Eq. (67).

δt [s] TFFT [s] τmin [yr] kmax Ntot Pfa nthr CRthr Λ1 Λ

2.44 × 10−4 1024 1,000 2 2.0 × 1017 5.00 × 10−9 4916 5.73 22.54 13.49
2.44 × 10−4 1024 5,000 1 9.7 × 1015 1.03 × 10−7 4891 5.19 20.89 12.99
3.9 × 10−3 8192 1000 2 6.4 × 1015 1.56 × 10−9 678 5.92 23.12 13.67
3.9 × 10−3 8192 5,000 1 6.1 × 1014 1.64 × 10−8 672 5.53 21.93 13.31

METHOD FOR ALL-SKY SEARCHES OF CONTINUOUS … PHYSICAL REVIEW D 90, 042002 (2014)

042002-11



other hand it is very important when coincidences among
candidates found in different data sets are done. In fact, it
allows to reduce the uncertainty in the candidate parameters
and consequently to use a smaller coincidence window,
which implies a smaller number of coincident candidates.
The construction of the refined grid is described in the
following.

A. Refined grid in frequency

As already explained in Sec. VII, the grid in frequency
uses an over-resolution factor, which we have fixed to 10,
both for the coarse and refined steps. No further refinement
is needed. A range of �1 coarse bins are considered for the
refinement.

B. Refined grid in spin-down

We enhance spin-down resolution by using K _f > 1
during the refined step. This is a rather delicate point in
view of the coincidence step. The parameters of a candidate
refer to a given reference time, typically the middle time
of the corresponding data set. When coincidences among
candidates of different data sets are done, the parameters
of each pair of candidates must be obviously referred to the
same time. In particular, this means that the candidate
frequency must be shifted by using the corresponding spin-
down value. Then the uncertainty in the estimation of the
candidate spin-down value, δ _f, will result in an uncertainty
in the estimation of the frequency of the candidate possibly
larger than the frequency bin and given by Δf ¼ δ _f × ΔT,
being ΔT the difference between the middle time of a given
data set and the new reference time used for coincidences.

It is then clear that the better is the accuracy in spin-down
estimation and the better it is, because the resulting
uncertainty in frequency will be smaller. The smaller is
the uncertainty in frequency and the smaller can be chosen
the coincidence window, which will result in a smaller
number of coincidence candidates. On the other hand,
increasing the spin-down resolution implies a bigger
computational load so, as usual, a compromise must be
found. Figure 10 shows, by plotting on both axes the spin-
down values, an example of the coarse grid (red dots) and
the refined grid (blue dots), in the case K _f ¼ 6, for an
hypothetical candidate, evidenced by a circle in the plot.
The coarse interval between the spin-down of the candidate
and the next value (on both sides) is divided into K _f pieces.
The refined search range includes 2K _f on the left of the
coarse original value, and ð2K _f − 1Þ on the right, so that
two coarse bins are covered on both sides. This choice is
dictated by the fact that the refinement is in parallel done
also on the position of the source and so a coarse candidate
could be found with a refined spin-down value outside the
original coarse bin.

C. Refined grid in the sky

The refinement of the sky position of each candidate is
done by using a rectangular region centered at the candidate
coordinates. The over-resolution factor, K̂sky, is different
from the over-resolution Ksky in Sec. VII as it is a
refinement constrained to be symmetric around the candi-
date. The distance between the estimated latitude (longi-
tude) and the next latitude (longitude) point in the coarse
grid is divided into K̂sky points, as shown in Fig. 11. Here
the coarse grid is indicated by red points and the refined by
black asterisks and K̂sky ¼ 5 in this example which refers to
a (maximum) frequency of 100 Hz and TFFT ¼ 1024 s. For
a given coarse candidate the refined coordinates we
consider are those forming a number of “layers” Nlayers
around the candidate and centered on it, where K̂sky ¼
2Nlayers þ 1. Nlayers ¼ 2 in the example given. Figure 11

FIG. 9 (color online). The figure shows the Hough map
amplitude for the selected candidates, for a range of values of
the ecliptical longitude λ, around the frequency of the HI pulsar3.
The empty regions around the HI are due to the selection
procedure, as explained in the text. The few candidates appearing
around the HI are of “second order.”
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FIG. 10 (color online). Spin-down grid around an hypothetical
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shows also the layers around an hypothetical candidate and
the K̂sky × K̂sky (25 in this case) refined points in the grid,
which are those touched by the black rectangles.

X. CANDIDATE CLUSTERING
AND COINCIDENCES

As already explained, coincidences among two, or more,
candidate sets are done in order to strongly reduce the false
alarm probability. This is a fundamental step in a wide-
parameter search to make the next steps of the analysis
feasible.
In fact candidates in each set are organized in clusters.

To define a cluster we first introduce a norm in the
candidate parameter space. Given two candidates, each
defined by a set of four parameter values, ~c1¼ðλ1;β1;
f1; _f1Þ and ~c2 ¼ ðλ2; β2; f2; _f2Þ, respectively, we define
their distance as

d ¼ ∥~c1 − ~c2∥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2λ þ k2β þ k2f þ k2_f

q
; ð50Þ

where kλ ¼ jλ2−λ1j
δλ is the difference in number of bins

between the ecliptical longitudes of the two candidates,
being δλ ¼ 0

dλ1þdλ2
2 is the mean value of the width of the

coarse bins in the ecliptical longitude for the two candidates
(which can be different because the resolution in longitude
depends on the longitude itself), and similarly for the other
terms. A cluster is defined as the subset of candidates such
that each of them has a distance from at least another
candidate of the same subset less or equal than a given
values, e.g., d ≤ 4. Clusterization is useful as it may give
hints on the common origin of the candidates belonging to

the same cluster. For instance a very large cluster or a
cluster which candidates have position near the poles is
likely due to some disturbance.
Although in Sec. VIII the choice of the number of

candidates has been discussed without considering any
uncertainty in candidate parameters, in fact when coinci-
dences are done it is necessary to choose a coincidence
window associated to each candidate. Its width is chosen as
a compromise between the need to not increasing too much
the number of coincident candidates and the need to not
discard real signal candidates that, due to noise, could be
found with slightly different parameters in the analyzed
data sets. In practice, coincidence windows of a few bins
for each parameter are a reasonable choice. The number of
expected coincident candidates as a function of the coinci-
dence window is given by Eq. (A14), and will be larger
than the number estimated from Eq. (44). Moreover, if the
selection of “second order” candidates is done, the actual
number of candidates is nearly doubled, see discussion at
the end of Sec. VIII, with a further increase in the number
of coincidences. On the other hand, however, in order to
largely reduce the number of coincidences due to noise, a
possible way to proceed is that of making coincidences
among clusters (two clusters are coincident if at least a pair
of candidates are coincident) and then considering not all
the coincident pairs but only those (one or a few) which are
nearest. This clearly implies a reduction of sensitivity. The
actual choice of the procedure to be used depends on the
characteristics of the data being analyzed.

XI. CANDIDATES VERIFICATION
AND FOLLOW-UP

Surviving candidates after coincidences are subject to a
verification step that allows to furtherly increase confidence
in detection or to discard them. The verification consists
in the application of various criteria not directly to the
coincidences but, rather, to the candidates that originated
them or even to the peaks in the peakmap that originated
the candidates. Among the most important there is a
comparison between the signal amplitudes associated to
the candidates which generated a given coincidence. If two
coincident candidates are due to a real signal we expect
the signal amplitude to be the same in the two data sets. The
application of this criterium requires a good calibration of
the FH transform, that is the knowledge of the relation
between the Hough map amplitude and signal amplitude.
Another criterium consists in looking at the peaks in the
peakmap which originated the coincident candidates. If
they are due to a real signal we expect the peaks to be
properly distributed in time. For instance, if the peaks
which generate a candidate are strongly concentrated in a
short period of time this is a clue of its noise origin. One
more verification step is based on the detector radiation
pattern corresponding to the coincident candidates position.
We expect that the number of peaks in the peakmap which
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FIG. 11 (color online). An example of refined sky grid. Red
dots define points of the coarse grid, black asterisks are points of
the refined grid. The black rectangles defines the two “layers”
that identify the refinement region around an hypothetical
candidate.
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contribute to these candidates follows the radiation pattern,
with a smaller number of peaks when the detector ori-
entation is “bad” and larger when it is “good.” See also [32]
for another possible candidate verification criterium.
Candidates which pass also the verification step are

subject to a follow-up analysis in which a small portion of
the parameter space around each of them is analyzed with a
longer coherence time. This implies the construction of a
new set of longer FFTs and, possibly, a new Hough
transform. See e.g., [33,34] for proposed follow-up pro-
cedures. Details of the follow-up procedure will be dis-
cussed elsewhere. It is important to stress that both the
verification and the follow-up do not increase the search
sensitivity, which is basically set by the initial length of
FFTs and by the thresholds used to select peaks in the
peakmap and candidates on the Hough map. If a signal
is missed at the first Hough step it will be no more
recovered. On the contrary, verification and follow-up
allow to strongly increase the detection confidence. In
particular, increasing the coherence time from, say, TFFT to
T 0
FFT determines a signal-to-noise ratio increase of a factorffiffiffiffiffiffiffi
T 0
FFT

TFFT

q
at the follow-up coherent step. Obviously, also a

much better determination of the signal parameters is
possible.

XII. SEARCH SENSITIVITY ESTIMATION

In this section we compute the theoretical sensitivity of
the analysis method, showing in particular the dependency
on the thresholds for peaks and candidate selection. Also
Receiver Operating Characteristic curves are computed
assuming Gaussian noise. Sensitivity loss due to digitiza-
tions, discussed in Sec. VI, is not taken into account here.

A. Threshold for peaks selection

Let us introduce the critical ratio, which is a random
variable measuring the statistical significance of the num-
ber count n found in a given pixel of an Hough map, with
respect to the expected value in presence of noise alone,

CR ¼ n − Np0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np0ð1 − p0Þ

p ; ð51Þ

where N is the number of FFTs. The probability p0

depends on the threshold for peak selection, θthr, see
Eq. (15). The choice of θthr influences the search sensitivity
and its computational weight. A criterion that can be used
for the choice of the threshold is the maximization of the
expectation value of the critical ratio which, assuming a
signal of spectral amplitude λ is present, is given by

μCRðθ; λÞ ¼
Nðpλ − p0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np0ð1 − p0Þ

p ¼
ffiffiffiffi
N

p
Φðθ; λÞ: ð52Þ

By plotting Φ as a function of θ for different values of λ we
can decide where to put the threshold [see Fig. (12)]. In
principle, the optimal value of the threshold is that
maximizing the function Φ. In practice, given that it is a
rather smooth function of θ we can choose a value of the
threshold slightly larger than that corresponding to the
maximum. A reasonable choice is θthr ¼ 2.5, independ-
ently of the signal amplitude over a large and reasonable
range. This implies a small sensitivity loss (of ∼1%) and a
significant reduction in the expected number of peaks
(about a factor of 2) with respect to the optimal threshold.
The corresponding probability of selecting a noise peak is
p0 ¼ Pðθthr; 0Þ ¼ 0.0755. In Fig. 12 the Φ function is
plotted also for the case in which the peaks are selected
according to the simpler criteria of being above the
threshold (not necessarily local maxima), as used in
[15]. At fixed λ the value of Φ is slightly larger than in
the case the local maxima criterium is used meaning a small
gain in sensitivity, less than 5% over a wide and reasonable
range of λ. On the other hand, selecting local maxima, as
we do, has two important advantages. First, the number of
selected peaks is p0

e−θthr
smaller. For instance, for θthr ¼ 2.5

we have a reduction of about 9%. This implies a reduction
of the analysis computational load. Second, our criteria is
more robust against disturbances. It is quite likely that a
disturbance in the data does not affect just a single
frequency bin but also its neighbors. Selecting only local
maxima clearly makes this problem less relevant.
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FIG. 12 (color online). Φ function, Eq. (52), as a function of the
threshold θ for peak selection for different values of signal
amplitude, from λ ¼ 0.1 (lower curves) to λ ¼ 0.6 (upper curve),
with step of 0.1. Blue continuous curves correspond to the choice
of local maxima above the threshold, while red dashed curves
corresponds to the case in which selected peaks are not neces-
sarily local maxima.
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B. Threshold for selection of candidates

Given the large parameter space we want to explore we
need to select a manageable number of candidates to which
further steps of the analysis will be applied, see Sec. VIII.
For simplicity, in this section we do not take into account
that the number of selected candidates will be frequency
dependent and that the FFT duration, TFFT, will be different
in different frequency band. As a result, the sensitivity
formula, given by Eq. (67), depends on the frequency only
through the detector noise spectrum SnðfÞ. In practice,
both the threshold on the critical ratio, CRthr, and TFFT will
be a function of the frequency. Let us indicate with nthr the
threshold on the number count used to select candidates on
a Hough map. The corresponding false alarm probability is

Pfa ¼
XN
n¼nthr

Pnðθthr; 0Þ; ð53Þ

while the false dismissal probability is

Pfd ¼
Xnthr−1
n¼0

Pnðθthr; λÞ; ð54Þ

where Pn is given by Eq. (25). To write some useful
equations we use the Gaussian approximation to the
binomial distribution

Pnðθthr; λÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−
ðn−μÞ2
2σ2 ; ð55Þ

whereμ andσ aregivenbyEq. (26). Itworks fine as longasN
is large and η is not too near 0 or 1. With our typical values
(N≈ a few thousands, η ≥ 0.0755) the approximation is very
good [see Fig. (13)]. Using this approximation we can
compute analytically the threshold on the number of candi-
dates corresponding to a fixed value of false alarm proba-
bility, by writing Eq. (53) as

Z
∞

nthr

Pnðθthr; 0Þdn ¼ Pfa; ð56Þ

hence

nthrðN; θthr; PfaÞ ¼ Np0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Np0ð1 − p0Þ

p
erfc−1ð2PfaÞ;

ð57Þ

where erfc−1 is the inverse of the complementary error
function, which is defined as erfcðxÞ ¼ 2ffiffi

π
p

Rþ∞
x e−t

2

dt.
Inverting Eq. (57) we can write the false alarm probability
as a function of the threshold

Pfa ¼
1

2
erfc

�
nthr − Np0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Np0ð1 − p0Þ

p �
: ð58Þ

In Fig. (14) the false alarmprobability is plotted as a function
of nthr. The corresponding false dismissal probability,
defined by Eq. (54), is

Pfd ¼
1

2
erfc

�
Npλ − nthrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Npλð1 − pλÞ

p �
: ð59Þ

The detection probability is given byPd ¼ 1 − Pfd. It is easy
to see that, as expected, Pd ¼ Pfa for λ ¼ 0.
In practice, the selection of candidates could be done by

putting a threshold on the CR. We can compute such
threshold in the following way. Given the number of
candidates we decide to select, Ncand, from Eq. (58), using
the definition of critical ratio, Eq. (51), the false alarm
probability can be expressed as

Pfa ¼
1

2
erfc

�
CRthrffiffiffi

2
p

�
; ð60Þ

where CRthr is the value of critical ratio corresponding
to nthr. On the other hand, given that the candidates we
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FIG. 13 (color online). Binomial distribution for N ¼ 3000 and
p0 ¼ 0.075 (histogram with blue dots) and its gaussian approxi-
mation (continuous line).
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FIG. 14 (color online). False alarm probability as a function of
the threshold for candidates selection, nthr, considering a total
observation time of 1 year, TFFT ¼ 1024 s (N ¼ 61; 594) and
p0 ¼ 0.0755, see Eq. (58). With these choices the mean value and
standard deviation of the number count distribution are, respec-
tively, 4650.3 and 65.6.
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select are those with the highest CR, it immediately
follows that

Pfa ¼
Ncand

Ntot
; ð61Þ

where Ntot is the total number of points in the source
parameter space, given by Eq. (45). Note that Ntot is
computed referring to the coarse grid in the parameter
space. As explained in Sec. IX, the refined step is only
meant to improve accuracy in candidate parameters and
does not affect the search sensitivity. Using Eq. (57), we
derive the threshold on the number count and, with
Eq. (51), the threshold on the critical ratio

CRthr ¼
ffiffiffi
2

p
erfc−1

�
2
Ncand

Ntot

�
: ð62Þ

In Fig. 15 the threshold on the critical ratio is plotted
as a function of the false alarm probability. Note that
CRthr ¼ 0 for Pfa ¼ 0.5. In Table III various quantities
discussed in this and in the next section are given for
different choices of the search parameters.

A useful figure of merit characterizing the performance
of a given filtering procedure is the ROC (Receiver
Operating Characteristics), which is a plot, for different
signal amplitudes, of the detection probability Pd as a
function of the false alarm probability Pfa. In Figs. 16 and
17 some ROC curves are shown assuming to have one year
of data with a noise spectral density Sn ¼ 3.6 × 10−45 1

Hz
and, respectively, TFFT ¼ 1024 (N ¼ 61594) and TFFT ¼
8192 (N ¼ 7699). In Fig. 18 the detection probability is
plotted as a function of the signal amplitude again assuming
Sn ¼ 3.6 × 10−45 1

Hz, an FFT duration of TFFT ¼ 8192
and Tobs ¼ 1 yr.

C. Sensitivity

The sensitivity, at a given confidence level Γ (e.g., 95%),
is defined as the minimum signal amplitude which would
produce a candidate in a fraction ≥ Γ of a large number of
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FIG. 16 (color online). ROC curves for a total observation time
Tobs ¼ 1 yr, a noise spectral density Sn ¼ 3.6 × 10−45 1

Hz, an FFT
duration TFFT ¼ 1024 s (N ¼ 61594) and θthr ¼ 2.5. From
bottom to top, the signal spectral amplitudes are 0, 0.0014,
.0056, 0.0126, 0.0225, 0.0352, 0.0507 which corresponds,
through Eq. (B19), to strain amplitudes from 0 to 1.2 × 10−24

with steps of 2 × 10−25.
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FIG. 15 (color online). Thresholdon thecritical ratio forcandidate
selection as a function of the false alarm probability, Eq. (62).
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FIG. 18 (color online). Detection probability as a function of
the signal amplitude for false alarm probability Pfa ¼ 0.01 again
assuming Sn ¼ 3.6 × 10−45 1

Hz, an FFT duration of TFFT ¼ 8192
and Tobs ¼ 1 yr.
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FIG. 17 (color online). ROC curves for a total observation time
Tobs ¼ 1 yr, a noise level Sn ¼ 3.6 × 10−45 1

Hz, an FFT duration
TFFT ¼ 8192 s (N ¼ 7699) and θthr ¼ 2.5. From bottom to top,
the signal spectral amplitudes are 0, 0.0113, .0451, 0.1014,
0.1803, 0.2817, 0.4057 which corresponds, through Eq. (B19), to
strain amplitudes from 0 to 1.2 × 10−24 with steps of 2 × 10−25.
Note that only the first four curves are visible. For larger signal
amplitudes the detection probability is basically one for all false
alarm probabilities.
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repeated experiments. It does not depend on the actual
result of the analysis. To compute it we start from the
expression for the probability of selecting a candidate as a
function of the signal amplitude and impose that it is equal
to Γ:

Pn>nthrðλÞ ¼
Z

∞

nthr

Pnðθthr; λÞdn ¼ Γ: ð63Þ

Using the Gaussian approximation we have

erfc

�
nthr − Npλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Npλð1 − pλÞ

p �
¼ 2Γ: ð64Þ

Note that this equation can be obtained from Eq. (59) by
putting Γ ¼ 1 − Pfd and using the identity erfcðxÞ ¼
2 − erfcð−xÞ. From the previous equation, using
Eq. (57), together with Eq. (61), we can write

Np0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Np0ð1 − p0Þ

p
erfc−1

�
2
Ncand

Ntot

�
− Npλ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Npλð1 − pλÞ

p
erfc−1ð2ΓÞ ¼ 0: ð65Þ

Solving this equation using the small signal approxima-
tion of Eq. (20), as discussed in Appendix B, we find the
minimum detectable spectral amplitude

λmin ≈
2

θthr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1 − p0Þ

Np2
1

s �
CRthr −

ffiffiffi
2

p
erfc−1ð2ΓÞ

�
¼ Λ1ffiffiffiffi

N
p ;

ð66Þ

where p1 ¼ e−θthr − 2e−2θthr þ e−3θthr . The coefficient Λ1

is given in Table III for various choices of the search
parameters. As shown in Appendix B, the minimum
detectable spectral amplitude of Eq. (66) corresponds to
a minimum detectable strain amplitude h0;min given by

h0;min ≈
4.02

N1=4θ1=2thr

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ
TFFT

s �
p0ð1 − p0Þ

p2
1

�
1=4

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRthr −

ffiffiffi
2

p
erfc−1ð2ΓÞ

q

¼ Λ

N1=4

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ
TFFT

s
: ð67Þ

The coefficient Λ is given in Table III for different values
of the search parameters. By inverting Eq. (67), at fixed
false alarm—i.e., fixed CRthr—we can express the detec-
tion probability Γ as a function of the sensitivity

Γ ¼ 1

2
erfc

�
1ffiffiffi
2

p
�
CRthr −

h20;min

β2

��
; ð68Þ

where

β ¼ 4.02

N1=4θ1=2thr

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ
TFFT

s �
1 − p0

p0

�
1=4

: ð69Þ

The 95% confidence level sensitivities are plotted in
Fig. 19 using a typical Virgo VSR4 run sensitivity curve
(Tobs ≃ 90 days) and the planned Advanced Virgo sensi-
tivity curve (assuming Tobs ¼ 1 year). Upper plot covers
the range 10–2048 Hz and has been obtained taking
TFFT ¼ 1024 s and assuming to select 109 candidates,
while the bottom plot, which refers to the frequency range
10–128 Hz, has been obtained using TFFT ¼ 8192 seconds
and assuming to select 107 candidates. In both cases
τmin ¼ 1000 years has been taken.

D. Sensitivity loss with respect to the
optimal method

The optimal method to search for a monochromatic
signal of unknown frequency consists in computing an
estimation of the power spectrum, e.g., by means of the
periodogram, and searching for statistically significant
peaks. By making a periodogram of length Tobs we have
an amplitude SNR
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FIG. 19 (color online). 95% confidence level sensitivity curves
computed using Eq. (67) and taking a typical Virgo VSR4
sensitivity curve (upper blue curve) and the planned Advanced
Virgo sensitivity curve (lower red curve) with Tobs ¼ 1 year.
Upper plot has been obtained using TFFT ¼ 1024 seconds and
assuming to select 109 candidates, while the bottom plot, which
refers to the frequency range 10–128 Hz, has been obtained
taking TFFT ¼ 8192 seconds and assuming to select 107 candi-
dates. In both cases τmin ¼ 1000 years is used.
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SNRopt ¼
h0
2

ffiffiffiffiffiffiffiffiffiffiffi
Tobs

SnðfÞ

s
: ð70Þ

The corresponding nominal sensitivity (i.e., corresponding
to SNR ¼ 1) is

h̄0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ
Tobs

s
: ð71Þ

The most basic incoherent combination of the data consists
in dividing the observation period inM pieces and compute
the spectrum for each and then sum. In this case we have
(see e.g., [35])

SNRM ¼ h0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tobs

SnðfÞ
ffiffiffiffiffi
M

p
s

¼ SNRopt

M1=4 : ð72Þ

The corresponding nominal sensitivity is

h̄0;M ¼ h̄0M1=4: ð73Þ

For instance, for Tobs ¼ 1 yr and TFFT ¼ 1024 s we
have M ¼ 61594 (assuming the FFT are interlaced by
half). This implies a nominal sensitivity loss of the
incoherent combination with respect to the optimal analysis
of ð61594Þ1=4 ¼ 15.7.
In practice, when a wide-parameter search is done even

in the case of an optimal analysis we need anyway to set a
threshold to select a reasonable number of candidates. As
the spectral power is distributed exponentially, the prob-
ability of having in a given frequency bin a power S larger
than a threshold Sthr is

PðS > SthrÞ ¼ e−Sthr : ð74Þ
If we impose that the number of candidates above Sthr is
Ncand, then we have Ntot · e−Sthr ¼ Ncand and

Sthr ¼ − log

�
Ncand

Ntot

�
; ð75Þ

where Ntot is the total number of points in the source
parameter space. For instance, taking δt ¼ 2.44 × 10−4 s,
Tobs ¼ 1 yr and τmin ¼ 103 yr we find jmax ¼ 3 and
Ntot ≃ 8.20 × 1040 and the threshold we should choose is

Sthr ¼ − log

�
109

8.2 × 1040

�
¼ 73.5: ð76Þ

The spectrum distribution in presence of a signal of
amplitude λ is a noncentral χ2 with two degrees of freedom,
see Eq. (16). The probability of having a value of the
spectrum, in a given frequency bin, larger than a threshold
Sthr is then

PðS > Sthr; λÞ ¼
Z

∞

Sthr

e−S−
λ
2I0ð

ffiffiffiffiffiffiffiffi
2Sλ

p
Þ: ð77Þ

This is the detection probability. We can compute the
sensitivity by determining that value of signal amplitude,
λmin, such that the detection probability is, e.g., Γ ¼ 0.95.
This can be done numerically. For instance for Γ ¼ 0.95
we find λmin ¼ 188.4. In order to compare this optimal
sensitivity to the Hough transform sensitivity it is more
convenient to work with h0 instead of λ. In terms of
averaged h0 the optimal sensitivity, assuming to select 109

candidates, can be written as

h0;opt ≃ 39

ffiffiffiffiffiffiffiffi
Sn
Tobs

s
; ð78Þ

while the Hough sensitivity is given by Eq. (67). The ratio
of the latter to the former is, for Γ ¼ 0.95

R≃ Λ

39N1=4
FFT

ffiffiffiffiffiffiffiffiffiffi
Tobs

TFFT

s
≃ Λ

46.4

�
Tobs

TFFT

�
1=4

: ð79Þ

Taking, e.g., Tobs ¼ 1 yr, TFFT ¼ 1024 s, and τ ¼ 1; 000 yr,
the ratio is R ∼ 3.7, while it is about 2.3 for TFFT ¼ 8192
seconds. Then, even if the nominal sensitivity loss can be
large, the actual loss, by taking into account the need to
select a given number of candidates, is much smaller.
This is due to the different probability distribution of the
quantities over which candidates are selected, power
spectrum for the optimal analysis, critical ratio (or number
count) for the Hough transform.

XIII. REMOVAL OF TIME AND FREQUENCY
DOMAIN DISTURBANCES

The presence of time and frequency domain disturbances
in detector data affects the search and, if they are not
properly removed, reduces the search sensitivity or even
blinds the search at given times and/or in given frequency
bands. The effect in the analysis varies, depending on their
nature and on their amplitude. It is therefore very important
to apply procedures to safely remove them or reduce their
effect, without contaminating a possible CW signal. The
disturbances can be catalogued as “time domain glitches”,
which enhance the noise level of the detector in a wide
frequency band, “spectral lines of constant frequency”,
sometimes of known origin, like calibration lines or lines
whose origin has been discovered by studying the behavior
of the detector and the surrounding environment, and
“spectral wandering lines”, where the frequency of the
disturbance moves in time, which are typically of unknown
origin and might be present only for a few days or even
hours. Moreover, simulated signals from spinning neutron
stars are injected in the detector for testing purposes
(hardware injections). To do real analyses, however, these
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signals have to be removed, as they are clear “artifacts” and
in some cases so huge that the discovery of real GW signals
around the frequency of the injection could be impossible.
Different kind of disturbances are identified and

removed by using different techniques, which are applied
in different steps of the analysis, as described below.

A. Removal of time domain glitches

Time domain glitches are identified and removed during
the construction of the SFDB. This kind of disturbances
shows up randomly and enhances the noise level in a wide
frequency band. The size of the affected frequency band
depends on the structure of the glitch. The procedure we
apply has been described in [30] and is only summarized
here. We identify big glitches by the application of a high-
pass bilateral filter to the data. The filter is bilateral as the
high-passed data have to be in phase with the original data.
The cutoff of the high-pass filter depends of the maximum
frequency of the FFTs we are constructing (e.g., it can be
100 Hz for the 1024 s FFTs, whose maximum frequency is
2048 Hz) We then subtract these glitches from the original
time series, with the advantage of not reducing the
observation time, an important requirement for CW
searches, and of not substituting the data with zeroes,
which would cause an evident loss of any information
present in them. It is not possible to quantify the overall
effect of this cleaning in a general way, as the actual
improvement depends on the characteristics of the detector
and of the specific data set considered. But we consider this
procedure important in any case: depending on the situation
the final effect will be more or less relevant but, as a basic
principle, it is important to remove these artifacts by
maintaining the information in the data and avoiding to
reduce the observing time, which affects the final sensi-
tivity of the search. References [30] and [36] describe two
opposite situations: a very big improvement in sensitivity in
one case, and a nearly null improvement in the other case.

B. Removal of spectral wandering lines

Noise spectral lines present in the FFTs, if strong enough
to be local maxima of the equalized spectrum, are selected
by the procedure which constructs the peakmaps and if
persistent enough their final effect in the Hough analysis
and in the extraction of the candidates can be dramatic. If
the frequency of these disturbances changes with time,
either randomly or according to some rule, it is clearly not
optimal to veto the whole band affected by the line, as this
would imply the removal of too many data. It is therefore
important to develop a method which is able to remove only
the time and frequency bins of the peakmap really touched
by the noise line. The idea is to construct an histogram of a
low resolution (both in time and in frequency) peakmap,
which we call “gross histogram.” The choice for the gross
resolution is mainly made by considering the possible
presence of a CW signal, which must have a completely

negligible effect after the integration (as we do not want
to remove it) and a reasonable time extent for detector
nonstationarities. Over a time scale of the order of one day
or less the Doppler effect which matters is only that due to
the Earth rotation, which size is f0

ΩrotR⊕
c Hz, being Ωrot the

Earth rotation angular frequency and R⊕ the Earth radius,
which gives, for example, ∼1.9 × 10−4 Hz at a frequency
of 128 Hz. A possible reasonable choice could be ΔtH ¼
12 hours for time resolution and ΔfH ¼ 0.01 Hz for
frequency resolution. In this way any real CW signal
would be completely confined within one bin and would
not significantly contribute to the histogram. The choice of
the threshold to veto the (gross) bins containing artifacts
can be done with the following reasoning. The distribution
of the average noise in each peakmap is binomial with
parameter p0 ≃ 0.0755, as shown in Sec. V, and the
expected value in a single gross bin is EH ¼ N × p0,
where N ¼ ΔtH

TFFT
· ΔfHδf is the number of “points” in it. For

FFTs interlaced by the half it can be also written as
2ΔtH · ΔfH. Thus the expected value and the standard
deviation do not depend on the frequency band considered,
at least ideally, and the threshold to veto artifacts can be
fixed on the basis of the value of N. As an example,
for (overlapping by the half) FFTs of duration 8192 s
and considering ΔtH ¼ 12 hours, ΔfH ¼ 0.01 Hz we
have N ≃ 864. The expected value of the distribution
is thus EH ¼ 65 and the standard deviation σH ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np0ð1 − p0Þ

p ¼ 7.8. A reasonable choice for the thresh-
old can be given by 2–3 standard deviations from the
expected value, which in the example given corresponds
to the range 80–88. The gross bins with amplitude above the
threshold are removed from the peakmap before applying the
FH transform. Figure 20 shows an example of the cleaning
effect on VSR2 data in the frequency range 50–55 Hz. The
left plot is the gross histogram of the peakmap and the right
plot is the same after the cleaning procedure, having put the
threshold for the veto to 80. The presence of a wandering
line, which roughly moves from 52.2 to 52.5 Hz is evident
in the upper plot and the fact it has been removed by the
cleaning is visible in the bottom plot by following the
dark track.

C. Removal of spectral lines of constant frequency

The presence of spectral lines of constant frequency
would also affect the Hough analysis and the candidates
selection, but in this case the removal of the disturbed bins
in the peakmap is much simpler than in the previous case,
as here the affected frequency band is very small. Different
similar procedures can be used for this.
One possibility is to use the list of known lines and

remove all the frequency bins in the list. This is very simple
and fast, but usually the frequency resolution used for
detector characterization is worse compared to the one of
typical CW analyses. As a consequence by using this
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method the frequency bins removed will be more than what
really needed.
Another possibility is to run a “persistency” analysis on

the peakmaps, by histogramming the frequency bins and
deciding a proper threshold on the basis of some statistical
properties of the histograms. We can use the average and
standard deviation of the number count to decide the
threshold or we can use a better “robust” statistic, as the
one described in Appendix D, which is based on the median
rather than the mean, much less affected by tails in the
distribution. All the frequency bins exceeding the chosen
threshold are then removed from the analysis. The advan-
tage here is that this is also quite simple and the frequency
resolution is the same used in the analysis.
Still another option is based on the Hough procedure

that can be used to identify these disturbances, by comput-
ing it on the peakmaps without any Doppler correction
and looking for spin-down values around zero, e.g.,
_f ¼ 0� δ _f, to admit some variation in the frequency of
the artifact. This has the advantage of identifying disturb-
ances which would show up in the real analysis, reducing
the amount of manipulation on the data.
To correctly use the last two procedures the comparison

of all the removed lines with the list of known disturbances
produced by detector characterization studies (e.g., done in
Virgo using the NoEMi tool [37]) is mandatory. In fact true

CW signals with negligible Doppler modulation, as those
near the ecliptic poles, might be seen as disturbances here.
Thus, all the lines removed by the procedure and not in
the known lines list will then be studied to understand if
they were due to the instrument and, if not, analyzed, by
removing the veto.

D. Removal of hardware injections

The removal of the hardware injections possibly present
in the band to be analyzed, is another very important step of
the procedure. Given the fact that the parameters of these
signals are known, their removal from the peakmap is pretty
simple and precise: we can remove the exact bins where
the injections were done, by using the known frequency,
spin-down and by evaluating the Doppler effect. In Fig. 2
we have already shown the peakmap of VSR2 Virgo data
around one hardware injection. The procedure is designed
to remove the signal bins, which are the dark blue dots. The
fact that in this example the signal is so huge that the track
is visible with naked eyes does not mean anything for the
removal procedure, which is based only on the known
information about the injected parameters and not on the
signal amplitude.

XIV. CONCLUSIONS

In this paper we have described a new hierarchical
analysis method for the all-sky search of continuous
gravitational wave signals. Particular attention has been
put in properly taking into account issues related to the use
of real data and the computational aspects. Several novel-
ties with respect to other similar methods are discussed.
The core of the pipeline is the frequency-Hough transform,
a particularly efficient implementation of the Hough trans-
form, which is used as incoherent step of the analysis. Both
a coarse and a refined grid in the parameter space are used
to select the candidates. The coarse grid is heavily over-
resolved in frequency without increasing the computational
load of the analysis, thanks to the features of the FH. This
allows to significantly reduce the sensitivity loss associated
to digitization. Coarse candidates are selected in a way to
minimize the blinding effect of disturbances present in the
data. Once coarse candidates have been chosen, a refined
analysis using over-resolution also in sky position and
spin-down is performed only around them, still using the
FH. This allows to reduce the uncertainty in candidate
parameters, which is crucial for the coincidence step. In
fact, in order to reduce the false alarm probability given the
sets of candidates found in the analysis of two (or more)
data sets belonging to different runs of the same detector
or to different detectors, coincidences are done and only
surviving candidates are further processed. Having a more
accurate determination of candidate parameters implies a
smaller number of surviving candidates after coincidences.
Coincidences are preceded by a clusterization step in which
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FIG. 20. An example of the removal of spectral wandering lines
on VSR2 data, in the frequency range 50–55 Hz. The upper plot
is the gross histogram of the peakmap while the bottom plot is the
same after the cleaning procedure, having put the threshold
for the veto to 80. Here the darkest spots correspond to the
removed bins, and in fact the removal of the wandering line
around 54.2–54.5 Hz is well evident being tracked by a dark path.
The two histograms have different scales on the z-axis, as the
maximum value after the cleaning is 80.
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nearby candidates are grouped together. Coincident can-
didates are subject to a verification step with the aim of
discarding them or significantly improve the detection
efficiency. Finally on remaining candidates a follow-up
with longer coherence time is applied, which allows to
increase the signal-to-noise ratio of detected signals and
to better estimate their parameters. Moreover, several data
cleaning procedures are applied in order to remove noise
disturbances and then improve the search sensitivity. First,
the removal of short duration time domain glitches is done
before constructing the SFDB. Then, three further cleaning
steps are applied at the level of the peakmaps. Wandering
spectral lines are carefully removed by using a low-
resolution histogram of the peakmap. Three alternative
methods to identify and cancel spectral lines of constant
frequency are presented. Hardware injected signals are also
removed bin by bin in the peakmap.
In the immediate we plan to apply this method to the

analysis of Virgo VSR2 and VSR4 data. In particular, the
low frequency sensitivity of these data is significantly
better than that of LIGO data over which wide-parameter
searches of CW have been concentrated so far. More in the
future we will use it to analyze data from advanced Virgo
and LIGO detectors, which will start their science runs in
2015–2016.
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APPENDIX A: THEORY OF COINCIDENCES

In this section we derive the number of expected
coincidences among two sets of candidates, in the hypoth-
esis of Gaussian noise. In any realistic case each candidate
must be associated with a coincidence window, which is a
small volume of the parameter space around the candidate
parameters. Two candidates belonging to two different sets
are coincident when they coincidence windows overlap.
Let us then assume to have two sets of candidates,

belonging to two different detectors or two different runs of
the same detector, with N1 and N2 elements, respectively.
Each candidate is completely defined by the values of M
parameters. in the all-sky search described in this paper we
have M ¼ 4 (position, frequency, first order spin-down).
Let us indicate with mi;j the number of values the jth
parameter can assume for candidates of the ith set, i.e., the
number of cell (e.g., the number of frequency bins or the
number of different spin-down values). Let us assume
that, with respect to a given parameter, the candidates are
distributed uniformly. Then, the probability of having k
candidates, among those of the ith set, in a given cell of the
jth parameter is given by a Poisson distribution

Pðk; μi;jÞ ¼
μki;j
k!

e−μi;j ; ðA1Þ

where

μi;j ¼
Ni

mi;j
: ðA2Þ

The probability of having 0 candidates in a given cell is

P0 ¼ Pð0; μi;jÞ ¼ e−μi;j : ðA3Þ
Hence, the probability of having at least k consecutive
empty cells is

P0;k ¼ Pk
0 ¼ e−kμi;j : ðA4Þ

Let us now consider a coincidence window (symmetric
with respect to the central value) wi;j ¼ 2ni;j þ 1,
expressed as a number of cells and introduce the total
coincidence window wj ¼ 2ðn1;j þ n2;jÞ þ 1. Given a can-
didate of the first set, if it does not coincide, with respect to
the parameter jth, with a candidate of the second set within
the window wj this means that between the two nearest
candidates of the second set there must be at least wj empty
cells and this has probability

P
wj

0 ¼ e−wj·μ2;j ; ðA5Þ
assuming the grid step is the same. Hence, the probability
that a candidate in the first set is coincident with at least
one candidate of the second set is

P1→2 ¼ 1 − e−wj·μ2;j : ðA6Þ
Then, the expect number of coincidence of the candidate of
the first set with at least one candidate of the second set is

Ncoinc;1 ¼ N1 · P1→2: ðA7Þ
Similarly, the expected number of candidates of the
second set in coincidence with at least one candidate of
the first set is

Ncoinc;2 ¼ N2 · P2→1: ðA8Þ
These relations can be easily generalized to the case in

which coincidences are done among more than one
parameter. In the general case the total number of cells
in the parameter space for candidates of the ith set is

mi ¼
YM
j¼1

mi;j: ðA9Þ

The expected number of coincidences is given by

Ncoinc;1 ¼ N1

�
1 − e

−N2

Q
M
j¼1

wj
m1;j

�
; ðA10Þ
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Ncoinc;2 ¼ N2

�
1 − e

−N1

Q
M
j¼1

wj
m2;j

�
: ðA11Þ

If μi;j ≪ 1, which will be well satisfied in general, we can
use the approximation e−αx ≈ 1 − αx to obtain

Ncoinc;1 ≈ N1 · N2

YM
j¼1

wj

m1;j
ðA12Þ

Ncoinc;2 ≈ N1 · N2

YM
j¼1

wj

m2;j
: ðA13Þ

If the grid in the parameter space is the same for both
candidate sets, i.e., m1 ¼ m2 ¼ m, then we have

Ncoinc ¼ Ncoinc;1 ¼ Ncoinc;2 ≈ N1 · N2

YM
j¼1

wj

mj
: ðA14Þ

In the ideal case in which no window is used, i.e., wj ¼ 1
for all js, we would have simply

Ncoinc ≈
N1 · N2

m
; ðA15Þ

where m ¼ Q
M
j¼1mj is the total number of cells in the

parameter space.

APPENDIX B: SENSITIVITY EVALUATION

Using the small signal approximation, Eq. (20), and
neglecting terms of order oðλ2Þ and higher Eq. (65) can be
written as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Np0ð1−p0Þ

p
erfc−1

�
2
Ncand

Ntot

�
−Np1θthr

λ

2

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N

�
p0ð1−p0Þþp1θthr

λ

2
ð1− 2p0Þ

�s
erfc−1ð2ΓÞ ¼ 0:

ðB1Þ

Equation (B1) can be put in the form

ðAþ BλÞ2 ¼ CþDλ; ðB2Þ

where

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Np0ð1 − p0Þ

p
erfc−1

�
2
Ncand

Ntot

�

B ¼ −Np1

θthr
2

C ¼ 2Np0ð1 − p0Þðerfc−1ð2ΓÞÞ2

D ¼ 2Np1ð1 − 2p0Þ
θthr
2

ðerfc−1ð2ΓÞÞ2: ðB3Þ

By writing Eq. (B2) as

B2λ2 þ ð2AB −DÞλþ A2 − C ¼ 0; ðB4Þ

we can write the solution as

λ ¼ −2ABþD� ffiffiffiffi
Δ

p

2B2
; ðB5Þ

where

Δ ¼ D2 − 4ABDþ 4B2C: ðB6Þ

For any reasonable value of N, of Ncand and Ntot, and given
the values of p0 and θthr it comes out thatD ≪ AB, then the
solution can be written as

λ ≈ −
A
B
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ADþ BC

B3

r
: ðB7Þ

We take as physical solution that having the minus sign,
because the minimum detectable amplitude must increase
as Γ becomes larger than 0.5 (erfc−1ð2ΓÞ ¼ 0 for Γ ¼ 0.5
and becomes negative for Γ > 0.5):

λmin ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Np0ð1 − p0Þ

p
erfc−1ð2 Ncand

Ntot
Þ

Np1
θthr
2

− 2
ffiffiffi
2

p erfc−1ð2ΓÞ
Np1θthr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Np0ð1 − p0Þ

p
ð1 − 2p0Þerfc−1

�
2
Ncand

Ntot

�
þ Np0ð1 − p0Þ.

s

ðB8Þ

As for typical values of N we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Np0ð1 − p0Þ

p ð1 − 2p0Þerfc−1ð2 Ncand
Ntot

Þ ≪ 2Np0ð1 − p0Þ, then

λmin ≈
2

ffiffiffi
2

p

θthr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1 − p0Þ

Np2
1

s �
erfc−1

�
2
Ncand

Ntot

�
− erfc−1ð2ΓÞ

�
¼ 2

θthr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1 − p0Þ

Np2
1

s
ðCRthr −

ffiffiffi
2

p
erfc−1ð2ΓÞÞ: ðB9Þ
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Now we want to express the sensitivity in terms of the
minimum detectable strain amplitude, h0;min. We follow
here the discussion in [15]. The GW signal can bewritten as

hðtÞ ¼ Fþh0þ cos ðϕðtÞÞ þ F×h0× sin ðϕðtÞÞ

h0þ ¼ h0
1þ cos2ι

2

h0× ¼ h0 cos ι: ðB10Þ

In order to arrive to an expression for the minimum
detectable strain amplitude, h0;min we explicitly compute
the signal Fourier transform that appears in Eq. (14) and
then average over the various parameters. The Fourier
transforms of the sine and cosine with frequency f0 are

Y1ðfÞ ¼
ðδðf − f0Þ þ δðf þ f0ÞÞ

2

Y2ðfÞ ¼ −j
ðδðf − f0Þ − δðf þ f0ÞÞ

2
: ðB11Þ

In a time TFFT the signal frequency does not shift by more
than half a frequency bin, by construction, and can be
considered roughly constant. The Fourier transform of a
finite length signal is the convolution of the Fourier
transform of the signal with the Fourier transform of a
rectangular window of length TFFT:

ZðfÞ ¼
Z þ∞

−∞
Yðf0Þ · sin πðf − f0ÞTFFT

πðf − f0Þ df0: ðB12Þ

In the case of our sinusoidal signals, by taking as the signal
frequency the frequency fk at the bin center and consid-
ering only positive frequencies we have

Z1ðfÞ ¼
h0
2

sin πðf − fkÞTFFT

πðf − fkÞ

Z2ðfÞ ¼ −j
h0
2

sin πðf − fkÞTFFT

πðf − fkÞ
. ðB13Þ

So the Fourier transform of the finite length GW signal
given by Eq. (B10) is

~hðfÞ ≈ TFFT
ðFþAþ − jF×A×Þ

2

sin πðf − fkÞTFFT

πðf − fkÞTFFT
:

ðB14Þ

The square modulus is:

j ~hðfÞj2 ≈ T2
FFT

ðFþAþ þ F×A×Þ2
4

�
sin πðf − fkÞTFFT

πðf − fkÞTFFT

�
2

:

ðB15Þ

We now take the average of all varying quantities. The
two beam pattern functions Fþ; F× depend on the source
position and wave polarization angle. It easy to verify that

hF2þiα;δ;ψ ¼ hF2
×iα;δ;ψ ¼ 1

5

hFþ · F×iα;δ;ψ ¼ 0: ðB16Þ

The two amplitudes Aþ; A× depend on the angle ι between
the star rotation axis and the line of sight and

hA2þ þA2
×icos ι ¼

1

2

Z
1

−1

��
1þ cos2ι

2

�
2

þ cos2ι

�
d cos ι¼ 4

5
:

ðB17Þ
We average the frequency dependent part of Eq. (B15) over
f in the range ½fk − δf

2
; fk þ δf

2
�. By changing variable,

x ¼ πðf − fkÞTFFT, we have

1

δf

Z
fkþδf

2

fk−
δf
2

�
sin ðπðf − fkÞTFFTÞ

πðf − fkÞTFFT

�
2

df

¼ 1

π

Z
π=2

−π=2

sin2x
x2

dx ¼ 2.4308
π

: ðB18Þ

In terms of the signal spectral amplitude we can then write

hλiα;δ;ψ ;f ≈
4h20
SnðfÞ

2.4308
25π

TFFT: ðB19Þ

We now equate Eq. (B19) to Eq. (B9) finding the minimum
signal amplitude h0;min that would produce a candidate in
the Hough map:

h0;min ≈
4.02

N1=4θ1=2thr

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ
TFFT

s �
p0ð1 − p0Þ

p2
1

�
1=4

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRthr −

ffiffiffi
2

p
erfc−1ð2ΓÞ

q ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ
TFFT

s
: ðB20Þ

APPENDIX C: CONSTRUCTION OF THE
COARSE GRID IN THE SKY

We give here some detail on the practical construction of
the coarse grid in the sky, described in Sec. VII. We start
from a set of 3 points at different ecliptic latitude, the poles
and the equator:

β1 ¼ π=2; βN ¼ −π=2; βNþ1
2
¼ 0:

The odd integer N is to be determined, together with the
remaining grid points along the latitude, βi with i ¼ 1…N.
To do this we need to find the costant K < 1 such that,
given
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βi ¼ βi−1 −
K

ND sinðβi−1Þ
; ðC1Þ

we get βi� ¼ 0, having started to iterate from i ¼ N. Once
we have found i� we can get N ¼ 2i� − 1. Hence, found all
the βi, we can find

Δλi ¼
H

ND cos β
; ðC2Þ

where H < 1 is the maximum value such that Δλi is a
submultiple of 2π.

APPENDIX D: ROBUST STATISTIC

The presence of disturbances in real data, both in time
and frequency domain, leads to the need to use robust veto
criteria, as discussed in Sec. XIII. To this purpose the use of

statistical procedures based on the median of the popula-
tion, rather than on the mean, is often useful being the
median much more robust with respect to the presence of
tails in the distribution of a given random variable. We have
used the median to construct a robust estimator of the
dispersion parameter, and used it instead of the classical
standard deviation. The robust statistic consists in describ-
ing the statistical properties of a random variable x through
the median mð1Þ ¼ medianðxÞ and a dispersion parameter
defined as

mð2Þ ¼ medianðabsðxÞ −mð1ÞÞ
c

; ðD1Þ

where c ¼ 0.6745 is a normalization factor such that, if
the distribution of x is normal, then mð2Þ is the standard
deviation.
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