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Supergravity models of natural inflation and its generalizations are presented. These models are special
examples of the class of supergravity models proposed in [R. Kallosh and A. Linde, J. Cosmol. Astropart.
Phys. 11 (2010) 011; R. Kallosh, A. Linde, and T. Rube, Phys. Rev. D 83, 043507 (2011)], which have
a shift symmetric Kähler potential, superpotential linear in goldstino, and stable Minkowski vacua.
We present a class of supergravity models with arbitrary potentials modulated by sinusoidal oscillations,
similar to the potentials associated with axion monodromy models. We show that one can implement
natural inflation in supergravity even in the models of a single axion field with axion parameters Oð1Þ.
We also discuss the irrational axion landscape in supergravity, which describes a potential with an infinite
number of stable Minkowski and metastable dS minima.
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I. INTRODUCTION

It appears that one of the popular models of inflation,
called natural inflation [1], which was proposed 24 years
ago, has not yet been generalized to supergravity with
stabilization of all moduli. The goal is to find a supergravity
model that would lead to the natural inflation potential of
the axion field ϕ

V ¼ Λ4

�
1 − cos

ϕ

f

�
ð1Þ

with Minkowski minimum at ϕ ¼ 0. The supergravity
axion valley models proposed and studied in [2,3], and
used more recently in [4], almost did the job. They have the
following Kähler potential and superpotential

K ¼ ðT þ T̄Þ2
2

; W ¼ W0 þ Ae−aT þ Be−bT: ð2Þ

The real part of the modulus is stabilized in this model and
the imaginary part plays the role of the light axion ϕ. The
resulting potential is almost of the form (1). However, in
this class of models the minimum of the potential is in AdS
space. Therefore one has to specify an uplifting procedure,
which uplifts the AdS minimum to a Minkowski one, or
even better, to a de Sitter minimum with a tiny cosmo-
logical constant. Various uplifting procedures have been
proposed over the years, but some of them cannot be
described at the supergravity level, whereas some others
may lead to modification of the functional form of the
potential upon uplifting. As a result, to the best of our
knowledge, explicit supergravity models realizing such an
uplifting in a way consistent with moduli stabilization and

leading to natural inflation (1) are still unavailable. For a
recent discussion of the axion inflation models see for
instance [5,6].
The purpose of this note is to present a very simple

supergravity model with nonnegative potential which upon
stabilization of the noninflaton moduli produces the natural
inflation potential (1). It will be achieved in the context of
the general class of models [7] describing chaotic inflation
in supergravity. This class of models generalized the
supergravity realization of the simplest chaotic inflation
scenario m2

2
ϕ2 proposed in [8].

The class of models developed in [7] has a built-in
feature which makes the potential non-negative. The super-
potential in these models is linear in the goldstino super-
field S, whereas the Kähler potential is some function of
either Φþ Φ̄ or Φþ Φ̄, and of SS̄:

W ¼ SfðΦÞ; K ¼ KððΦ� Φ̄Þ2; SS̄Þ: ð3Þ

The Kähler potential KððΦ� Φ̄Þ2; SS̄Þ does not depend on
one of the combinations (Φ∓Φ̄), which plays the role of the
inflaton field in this scenario. If one can stabilize the field S
at S ¼ 0, thenW ¼ 0, and the potential becomes manifestly
non-negative:

V ¼ eKðjDWj2 − 3W2ÞjS¼0 ¼ eK∂SW∂ S̄W̄ ≥ 0: ð4Þ

If, in addition, one can ensure that one of the combinations
of the fields (Φ� Φ̄), which is orthogonal to the inflaton
field, vanishes during inflation, then the inflaton potential
becomes

V ¼ jfðΦÞj2: ð5Þ

The required stabilization conditions are rather mild, which
allows us to have a functional freedom in the choice of the
inflaton potential in supergravity [7].

*kallosh@stanford.edu
†alinde@stanford.edu
‡bert.vercnocke@uva.nl

PHYSICAL REVIEW D 90, 041303(R) (2014)

1550-7998=2014=90(4)=041303(5) 041303-1 © 2014 American Physical Society

RAPID COMMUNICATIONS

http://dx.doi.org/10.1103/PhysRevD.90.041303
http://dx.doi.org/10.1103/PhysRevD.90.041303
http://dx.doi.org/10.1103/PhysRevD.90.041303
http://dx.doi.org/10.1103/PhysRevD.90.041303


As we see, this class of models can easily incorporate
natural inflation. Moreover, by a simple extension of the
supergravity versions of natural inflation, one can find a
family of positive definite inflationary potentials of arbi-
trary shape modulated by sinusoidal oscillations. These
potentials are similar to the string theory inflaton potentials
associated with axion monodromy [9,10].

II. NATURAL INFLATION IN SUPERGRAVITY

We discuss various supergravity embeddings of natural
inflation and related models. They all depend on two
complex fields: T and a goldstino S. Following the
discussion above, we use Kähler potentials which depend
on either of the combinations T � T̄, of the form

K� ¼ �ðT � T̄Þ2
2

þ SS̄ − gðSS̄Þ2: ð6Þ

The term gðSS̄Þ2 is introduced for stabilization of the field S
at S ¼ 0, and the inflaton is the combination T∓T̄ not
appearing in the Kähler potential.

A. Model 1

The superpotential and Kähler potential are

W ¼ Λ2ffiffiffi
2

p Sð1 − e−aTÞ; K ¼ Kþ: ð7Þ

For convenience we introduce the canonically normalized
real fields ϕ; β; s; α:

T ¼ β þ iϕffiffiffi
2

p ; S ¼ αþ isffiffiffi
2

p : ð8Þ

We find that the potential has a minimum at S ¼ 0 and
T þ T̄ ¼ 0 and at aϕ=

ffiffiffi
2

p ¼ 2πn.
We have computed the masses of the fields β;α; s and

have found that the stability analysis of [7] applies: the
masses of the fields are of the order of the Hubble
parameter during slow roll inflation, under the condition
that g≳ 1=12. Namely,

m2
β

H2
¼ 6þ 3

2
a2 þ 3

4
a2
�
sin

aϕ

2
ffiffiffi
2

p
�−2

; ð9Þ

m2
s

H2
¼ 12gþ 3

4
a2
�
sin

aϕ

2
ffiffiffi
2

p
�−2

: ð10Þ

Since the potential only depends on SS̄ ¼ s2 þ α2, α and s
have the same mass.
Thus, during inflation the field T þ T̄ is heavy and

quickly reaches its minimum at T þ T̄ ¼ 0. The field S is
also heavy, for g≳ 1=12, and also vanishes. However, one
may have an interesting scenario even if one discards the

stabilization term gðSS̄Þ2. Then the field S remains light,
and its perturbations can be generated during inflation.
If the field S rapidly decays at the end of inflation, these
fluctuations remain inconsequential. However, if it is
stable, or decays long after the end of inflation, one can
obtain isocurvature fluctuations, or additional adiabatic
perturbations via the curvaton mechanism [11]. The infla-
ton field ϕ remains light and has the following potential:

VjS¼0;TþT̄¼0 ¼ Λ4

�
1 − cos

aϕffiffiffi
2

p
�
; ð11Þ

in agreement with (5).
We present the picture of the potential during inflation

in Fig. 1.

B. Model 2

The superpotential and Kähler potential are

W ¼
ffiffiffi
2

p
Λ2S sin

aT
2

; K ¼ K−: ð12Þ

During inflation the bosonic stabilized model is the same
as Model 1 for the canonically normalized real fields

T ¼ ϕþ iβffiffiffi
2

p ; S ¼ sþ iαffiffiffi
2

p ; ð13Þ

with the inflaton potential

VjS¼0;TþT̄¼0 ¼ 2Λ4

�
sin

aϕ

2
ffiffiffi
2

p
�

2

¼ Λ4

�
1 − cos

aϕffiffiffi
2

p
�
:

ð14Þ

FIG. 1 (color online). Potential of the natural inflation model
(7) in supergravity at S ¼ 0 and T ¼ βþiϕffiffi

2
p . During inflation β ¼ 0

at its minimum and ϕ is the inflaton field with the potential (1).
This plot is made for a ¼ 0.1. All fields are given in Planck units,
and the potential is in units Λ4.
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However, in general, Model 2 is slightly different, and
there is a small difference in masses of the stabilized fields:

m2
β

H2
¼ 6þ 3

4
a2
�
sin

aϕ

2
ffiffiffi
2

p
�−2

; ð15Þ

m2
s

H2
¼ 12g − 3

4
a2 þ 3

4
a2
�
sin

aϕ

2
ffiffiffi
2

p
�−2

: ð16Þ

The potential is very similar to the one of Model 1 shown
in Fig. 1.

C. Model 3

Here we show how the replacement of all scalars of the
type z → iz works when we start with Model 2 and create
this Model 3. We start with Model 2 in (12) in the form

W ¼ iΛ2ffiffiffi
2

p Sðe−iaT − eiaTÞ; K ¼ K− ð17Þ

and perform the following change of variables T → iT and
S → iS. We find

W ¼ Λ2ffiffiffi
2

p Sðe−aT − eaTÞ; K ¼ Kþ; ð18Þ

where the inflaton is now the imaginary part of a scalar T.
It leads to exactly the same physics as Model 2, and very
similar physics compared to Model 1. The relevant poten-
tial is, therefore, given again (approximately) by Fig. 1.

D. Model 4

Finally we give a supergravity model reminiscent of a
potential with a sum of several cosines as in [3,4]. The
superpotential and Kähler potential are

W ¼
ffiffiffi
2

p
Λ2S

�
A sin

aT
2

þ B sin
bT
2

�
; K ¼ K−: ð19Þ

The inflaton potential is

V ¼ 2Λ4

�
A sin

aϕ

2
ffiffiffi
2

p þ B sin
bϕ

2
ffiffiffi
2

p
�

2

: ð20Þ

III. IRRATIONAL AXION LANDSCAPE

Now we make what could seem a minor modification of
the previous model, but we find a dramatically different
potential. The Kähler potential now is K ¼ Kþ, and the
superpotential slightly differs from (18)

W ¼ Λ2Sð1 − Ae−aT − Be−bTÞ: ð21Þ

The potential at S ¼ T þ T̄ ¼ 0 is

V ¼ Λ4

�
1þ A2 þ B2 − 2A cos

aϕffiffiffi
2

p

þ 2AB cos
ða − bÞϕffiffiffi

2
p − 2B cos

bϕffiffiffi
2

p
�
: ð22Þ

This potential has an interesting behavior discussed in
[3,4], but now we have its explicit supergravity imple-
mentation without any need for an uplifting. As discussed
long ago by Banks et al. [12], a particularly rich behavior is
possible if the ratio a

b ¼ q is irrational. This leads to a
landscape-type structure of the potential with an infinite
number of different stable Minkowski vacua and metastable
dS vacua with different values of the cosmological constant
(see Fig. 2). If one of the constants a and b in this scenario
is irrational, we have an infinite number of possible dS
minima, which allows us to solve the cosmological
constant problem using anthropic considerations.
Moreover, inflationary predictions in this scenario

depend on the behavior of the inflaton potential in the
vicinity of each of these dS vacua. As a result, one can have
a broad spectrum of possibilities which allows us to fit a
large variety of observational data within the context of a
single model with a small number of parameters.

IV. INFLATION FOR A;B≳ 1

Until now, we discussed the scenario with a; b ≪ 1.
However, string theory suggests that the parameters
a; b≳ 1. Can we still have natural inflation in that case?
Let us consider a model with

W ¼ Λ2Sðe−aT − e−bTÞ; K ¼ Kþ: ð23Þ

We will assume that a; b ≳ 1, a − b ≪ 1. One can show
that in this case inflation is indeed possible.

2000 4000 6000 8000 10 000
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V

FIG. 2 (color online). Irrational axion potential for A ¼ B ¼ 1,
a ¼ 0.01

ffiffiffi
3

p
, b ¼ 0.005

ffiffiffi
7

p
. The field is shown in Planck units,

from 0 to 10,000. This may create an impression that the potential
is very steep, but in fact the potential is very flat and allows
chaotic inflation. Just as in the string landscape scenario [13–18],
inflation may end in any of the infinitely many metastable dS
vacua with different values of the cosmological constant [12].
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The absolute minimum of the potential in this theory is at
T ¼ 0. However, one can show that inflation occurs in the
regime of a slow roll from the saddle point of the potential
with ReT ¼ a=2. ReT remains very close to a=2 during
inflation, and only in the very end it starts moving towards
the global minimum with T ¼ 0. The inflaton potential in
this theory is well approximated by

V ¼ 2Λ4e−a
2=2

�
1 − cos

ða − bÞϕffiffiffi
2

p
�

ð24Þ

This potential allows inflation even for a; b ≫ 1 if the
difference between a and b is small, ja − bj ≪ 1. A similar
idea, in a different context, was used in the racetrack
inflation model [19], and then applied to natural inflation in
[3]. In this way, one can bring natural inflation one step
closer toward its implementation in string theory. Note that
we were able to do it in the theory of a single axion field.
A similar mechanism may work in the inflationary

theory of many axion fields [20]. Until now, the multiaxion
natural inflation scenario has not been implemented in
supergravity. The simplest way to do it is to consider two
axion fields, T ¼ βþiϕffiffi

2
p andU ¼ γþiχffiffi

2
p , with the superpotential

W ¼ Λ2SðAe−aT þ Be−bT þ C−cU þDe−dUÞ ð25Þ

and the Kähler potential

K ¼ ðT þ T̄Þ2
2

þ ðU þ ŪÞ2
2

þ SS̄ − gðSS̄Þ2: ð26Þ

For a proper choice of parameters, the potential of the fields
has inflationary flat directions, as shown in Fig. 3.
Thus one can have inflation in such models as well.

However, a full description of inflation in multiaxion

models in supergravity can be rather involved. In general,
all fields, including their real and imaginary parts, may
evolve simultaneously during inflation, which makes
investigation of inflation in such models more complicated
than in the simple single-inflaton field (23).

V. MODULATED CHAOTIC
INFLATION POTENTIALS

Here we propose supergravity models closely related to
the explicitly bosonic models in [10] for oscillations in the
CMB from axion monodromy inflation. We take a generic
function fðTÞ in the superpotential complemented by some
sinusoidal modulation of the form

W ¼ S½fðTÞ þ A sinðaTÞ�; K ¼ K−: ð27Þ

Here T ¼ ϕþiβffiffi
2

p . If needed, one can also add to the Kähler

potential the stabilization term ðT þ T̄Þ2SS̄ for stabilization
of β, but usually it is not required [7]. For S ¼ β ¼ 0, one
finds the inflaton potential

V ¼
�
f

�
ϕffiffiffi
2

p
�
þ A sin

aϕffiffiffi
2

p
�
2

: ð28Þ

In the limit when fð ϕffiffi
2

p Þ ≫ A sin aϕffiffi
2

p the modulation of

the inflaton potential is small and we find

V ≈ f2
�

ϕffiffiffi
2

p
�
þ 2Af

�
ϕffiffiffi
2

p
�
sin

aϕffiffiffi
2

p : ð29Þ

It is only slightly different from potentials with modulation
studied in the literature (see [10] and references therein).

FIG. 3 (color online). Inflationary potential for natural inflation
in the theory of two scalar fields, T ¼ βþiϕffiffi

2
p and U ¼ γþiχffiffi

2
p , as a

function of the fields ϕ and χ. The potential shown in units
of Λ4, with all other parameters of the superpotential Oð1Þ.
Nevertheless, flat inflationary valleys are formed for
ja − bj ≪ 1 or jc − dj ≪ 1.

FIG. 4 (color online). Potential of the modulated chaotic
inflation in supergravity (30) at S ¼ 0 and T ¼ βþiϕffiffi

2
p , for

a ¼ 1, b ¼ 1.3. It is similar to the potentials encountered in
axion monodromy models [9,10]. Fields are shown in Planck
mass units, the scale of the potential is in units Λ4.
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They assumed that the amplitude of modulation is constant,
whereas in our case it is proportional to fð ϕffiffi

2
p Þ. The

difference is not crucial because fð ϕffiffi
2

p Þ may not change

much on scales studied by the CMB observations.
A similar scenario can be also implemented in a different

context. We can consider, for example, the following
supergravity model which produces a quadratic axion
potential with sinusoidal modulations:

W ¼ Λ2Sð1 − e−aT þ bTÞ; K ¼ Kþ: ð30Þ
We plot the potential V at S ¼ 0 in Fig. 4. The potential as a
function of the inflaton is

V ¼ Λ4

�
b2

2
ϕ2 þ

ffiffiffi
2

p
bϕ sin

aϕffiffiffi
2

p þ 4 sin2
aϕffiffiffi
2

p
�
: ð31Þ

In conclusion, we have presented here a supersymmetric
version of natural inflation [1] and of the models with
arbitrary potentials modulated by sinusoidal oscillations,

similar to the potentials associated with axion monodromy
models [9,10]. The corresponding supergravity models are
simple and have Minkowski vacua. We have shown that
one can implement natural inflation in supergravity even in
the models of a single axion field with axion parameters
Oð1Þ. Embedding of the irrational axion models [12] in
supergravity allows many stable Minkowski vacua and
metastable dS vacua with different values of the cosmo-
logical constant. It would be interesting to explore a
possible relation of such supergravity models to the string
theory landscape.

ACKNOWLEDGMENTS

We are grateful to Diederik Roest, Eva Silverstein,
Alexander Westphal and Timm Wrase for discussions of
closely related issues. This work is supported by the SITP
and by NSF Grant No. PHY-1316699. The work of R. K. is
also supported by the Templeton grant “Quantum Gravity
frontier.” B. V. gratefully acknowledges the Fulbright
Commission Belgium for financial support.

[1] K. Freese, J. A. Frieman, and A. V. Olinto, Phys. Rev. Lett.
65, 3233 (1990); F. C. Adams, J. R. Bond, K. Freese, J. A.
Frieman, and A. V. Olinto, Phys. Rev. D 47, 426 (1993);
K. Freese and W. H. Kinney, arXiv:1403.5277.

[2] R. Kallosh, Lect. Notes Phys. 738, 119 (2008).
[3] R. Kallosh, N. Sivanandam, and M. Soroush, Phys. Rev. D

77, 043501 (2008).
[4] M. Czerny, T. Higaki, and F. Takahashi, Phys. Lett. B 734,

167 (2014).
[5] D. Baumann and L. McAllister, arXiv:1404.2601.
[6] E. Pajer and M. Peloso, Classical Quantum Gravity 30,

214002 (2013).
[7] R. Kallosh and A. Linde, J. Cosmol. Astropart. Phys. 11

(2010) 011; R. Kallosh, A. Linde, and T. Rube, Phys. Rev. D
83, 043507 (2011).

[8] M. Kawasaki, M. Yamaguchi, and T. Yanagida, Phys. Rev.
Lett. 85, 3572 (2000).

[9] E. Silverstein and A. Westphal, Phys. Rev. D 78, 106003
(2008); L. McAllister, E. Silverstein, and A.Westphal, Phys.
Rev. D 82, 046003 (2010).

[10] R. Flauger, L. McAllister, E. Pajer, A. Westphal, and G. Xu,
J. Cosmol. Astropart. Phys. 06 (2010) 009; R. Easther and

R. Flauger, J. Cosmol. Astropart. Phys. 02 (2014) 037; T.
Kobayashi, O. Seto, and Y. Yamaguchi, arXiv:1404.5518.

[11] V. Demozzi, A. Linde, and V. Mukhanov, J. Cosmol.
Astropart. Phys. 04 (2011) 013.

[12] T. Banks, M. Dine, and N. Seiberg, Phys. Lett. B 273, 105
(1991).

[13] A. D. Linde, Phys. Lett. B 175, 395 (1986).
[14] W. Lerche, D. Lust, and A. N. Schellekens, Nucl. Phys.

B287, 477 (1987).
[15] R. Bousso and J. Polchinski, J. High Energy Phys. 06 (2000)

006.
[16] S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, Phys.

Rev. D 68, 046005 (2003).
[17] M. R. Douglas, J. High Energy Phys. 05 (2003) 046.
[18] L. Susskind, in Universe or Multiverse? edited by B. Carr

(Cambridge University Press, Cambridge, England, 2009),
pp. 247–266.

[19] J. J. Blanco-Pillado, C. P. Burgess, J. M. Cline, C. Escoda,
M. Gomez-Reino, R. Kallosh, A. D. Linde, and F. Quevedo,
J. High Energy Phys. 11 (2004) 063.

[20] J. E. Kim, H. P. Nilles, and M. Peloso, J. Cosmol. Astropart.
Phys. 01 (2005) 005.

NATURAL INFLATION IN SUPERGRAVITY AND BEYOND PHYSICAL REVIEW D 90, 041303(R) (2014)

041303-5

RAPID COMMUNICATIONS

http://dx.doi.org/10.1103/PhysRevLett.65.3233
http://dx.doi.org/10.1103/PhysRevLett.65.3233
http://dx.doi.org/10.1103/PhysRevD.47.426
http://arXiv.org/abs/1403.5277
http://dx.doi.org/10.1007/978-3-540-74353-8
http://dx.doi.org/10.1103/PhysRevD.77.043501
http://dx.doi.org/10.1103/PhysRevD.77.043501
http://dx.doi.org/10.1016/j.physletb.2014.05.041
http://dx.doi.org/10.1016/j.physletb.2014.05.041
http://arXiv.org/abs/1404.2601
http://dx.doi.org/10.1088/0264-9381/30/21/214002
http://dx.doi.org/10.1088/0264-9381/30/21/214002
http://dx.doi.org/10.1088/1475-7516/2010/11/011
http://dx.doi.org/10.1088/1475-7516/2010/11/011
http://dx.doi.org/10.1103/PhysRevD.83.043507
http://dx.doi.org/10.1103/PhysRevD.83.043507
http://dx.doi.org/10.1103/PhysRevLett.85.3572
http://dx.doi.org/10.1103/PhysRevLett.85.3572
http://dx.doi.org/10.1103/PhysRevD.78.106003
http://dx.doi.org/10.1103/PhysRevD.78.106003
http://dx.doi.org/10.1103/PhysRevD.82.046003
http://dx.doi.org/10.1103/PhysRevD.82.046003
http://dx.doi.org/10.1088/1475-7516/2010/06/009
http://dx.doi.org/10.1088/1475-7516/2014/02/037
http://arXiv.org/abs/1404.5518
http://dx.doi.org/10.1088/1475-7516/2011/04/013
http://dx.doi.org/10.1088/1475-7516/2011/04/013
http://dx.doi.org/10.1016/0370-2693(91)90561-4
http://dx.doi.org/10.1016/0370-2693(91)90561-4
http://dx.doi.org/10.1016/0370-2693(86)90611-8
http://dx.doi.org/10.1016/0550-3213(87)90115-5
http://dx.doi.org/10.1016/0550-3213(87)90115-5
http://dx.doi.org/10.1088/1126-6708/2000/06/006
http://dx.doi.org/10.1088/1126-6708/2000/06/006
http://dx.doi.org/10.1103/PhysRevD.68.046005
http://dx.doi.org/10.1103/PhysRevD.68.046005
http://dx.doi.org/10.1088/1126-6708/2003/05/046
http://dx.doi.org/10.1088/1126-6708/2004/11/063
http://dx.doi.org/10.1088/1475-7516/2005/01/005
http://dx.doi.org/10.1088/1475-7516/2005/01/005

