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We attempt to describe the interplay of confinement and chiral symmetry breaking in QCD by using the
string model. We argue that in the quasi-Abelian picture of confinement based on the condensation of
magnetic monopoles and the dual Meissner effect, the world sheet dynamics of the confining string can be
effectively described by the 1þ 1 dimensional massless electrodynamics, which is exactly soluble. The
transverse plane distribution of the chromoelectric field stretched between the quark and antiquark sources
can then be attributed to the fluctuations in the position of the string. The dependence of the chiral
condensate in the string on the (chromo-)electric field can be evaluated analytically, and is determined by
the chiral anomaly and the θ-vacuum structure. Therefore, our picture allows us to predict the distribution
of the chiral condensate in the plane transverse to the axis connecting the quark and antiquark. This
prediction is compared to the lattice QCD results; a good agreement is found.
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The interplay of confinement and chiral symmetry
breaking in QCD is among the most prominent unsolved
problems in modern physics. In fact, none of the two
phenomena have been understood from the first principles
so far. It thus may be useful to address a much more modest
problem of understanding how the chiral symmetry break-
ing can occur once the presence of a confining background
is assumed; this will be the subject of our paper.
We consider the mechanism of confinement based on the

dual Meissner effect, as originally proposed by Nambu and
Mandelstam [1,2]. Seiberg and Witten [3] have demon-
strated that this scenario is realized in N ¼ 2 supersym-
metric Yang-Mills theory, where magnetic monopoles
at strong coupling become massless and condense. The
resulting low-energy effective theory takes the form of
an Abelian gauge theory with matter. A small deformation
of the N ¼ 2 theory down to N ¼ 1 then leads to the
emergence of the Abelian string that confines electric
charges [3].
The confinement mechanism in QCD may be different

and can involve non-Abelian strings (for a recent review,
see [4]). Nevertheless, the quasi-Abelian picture based on
the dual Meissner effect is supported by a number of lattice
QCD studies, e.g. [5–9]. Most (but not all—see [10]) of
these studies rely on the use of a specific gauge—so-called
“maximal Abelian projection.” Let us summarize the
arguments justifying this quasi-Abelian approach.
The basic observation is that the symmetry group SUðNÞ

of non-Abelian gauge theories is compact, i.e. it is a
topological group with a compact topology [for example,
a sphere for SUð2Þ]. The perturbation theory ignores
this underlying topology, and this is a source of the
disconnect that currently exists between the perturbative

and nonperturbative approaches to QCD [11,12]. The
gauge fixing condition is at the root of the problem,
since in general it leads to the emergence of unphysical
propagating modes [12,13]. These unphysical modes can
be removed in so-called “nonpropagating” or “unitary”
gauges; this leads to the emergence of singularities in
space-time, which have a physical meaning [12]. For
example, in the Abelian Higgs theory, this singularity
describes a stringlike magnetic vortex; the dynamics along
the vortex line is effectively ð1þ 1Þ dimensional. The
topological structure of the vortex is a consequence of the
compact topology of the Uð1Þ gauge group.
For non-Abelian gauge theories, the approach proposed

in [12] is the following: first, fix the non-Abelian part of the
gauge redundancy by reducing the gauge symmetry SUðNÞ
to that of the maximal Abelian subgroup Uð1ÞN−1; we
thus get the theory with N − 1 different kinds of electric
charges. The nonpropagating gauge condition leads to
pointlike singularities in 3D space that are interpreted as
magnetic monopoles with respect to Uð1ÞN−1. The com-
pactness of Uð1ÞN−1 ⊂ SUðNÞ is essential for this argu-
ment; for example in QCD the magnetic monopoles realize
the map π2ðSUð3Þ=½Uð1Þ�2Þ ¼ Z2. If these magnetic
monopoles condense in the vacuum, they repel the electric
fields and lead to the confinement of electric charges by
means of the dual Meissner effect. The electric-magnetic
duality plays an important role here; indeed, it is manifest
in the Seiberg-Witten approach [3]. The pointlike singu-
larities emerge only when the maximal Abelian subgroup
Uð1ÞN−1 is unbroken; this is called the “Abelian projection”
of SUðNÞ [12].
Assuming this scenario for QCD, the magnetic monop-

oles condense in the vacuum, leading to the emergence of
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confining Abelian electric flux tubes connecting quarks and
antiquarks. These flux tubes are dual analogs of Abrikosov-
Nilesen-Olesen (ANO) vortices in type II superconductors.
It is well known that when a theory possesses charged
massless chiral fermions, they can be localized within the
cores of ANO vortices that contain magnetic field. The
dynamics of these localized fermions is described by an
effective ð1þ 1Þ dimensional theory, see e.g. [14]—the
fermions can freely propagate along the vortex but cannot
escape into the bulk of a superconductor. In the dual
Meissner picture of confinement, the QCD string is a dual
ANO vertex containing the Abelian electric field.
Just like in the original ANO vertex, the core of a

confining QCD string can contain localized charged chiral
fermions, and their dynamics is described by an effective
ð1þ 1Þ dimensional theory. The Abelian gauge theory with
massless fermions in ð1þ 1Þ dimensions is well known—it
is the Schwinger model with the Lagrangian given by

L ¼ −
1

4
FμνFμν þ ψ̄ðiγμ∂μ − gγμAμÞψ ; ð1Þ

where g is the coupling constant with the dimension of
mass. The theory is exactly soluble and possesses confine-
ment, chiral symmetry breaking, axial anomaly, and the
periodic θ-vacuum [15–17]. In particular, it allows a
computation of the chiral condensate as a function of
electric field [18]. Namely, the presence of the background
electric field suppresses the magnitude of the chiral con-
densate, with a periodic dependence that originates from
the θ-vacuum of the theory.
The string breaking in Schwinger model results from the

periodic θ dependence, since the electric field in ð1þ 1Þ
dimensions plays the role of θ ¼ 2πE=g angle, creating the
imbalance between the left- and right-moving chiral fer-
mions [17]. It is tempting to speculate that in full ð3þ 1Þ
dual Meissner picture the image of this string breaking
process involves the Witten effect [19]: magnetic monop-
oles at finite θ acquire an electric charge, which allows
them to screen the confining potential—see [20] for a
specific realization of this scenario for non-Abelian strings
in dense QCD. The resulting dyon would thus behave as a
fermion (or as a bosonic kink in the bosonized description
of the Schwinger model), and may play the role of the
produced quark.
Long time ago it was proposed to consider the

Schwinger model as an effective theory of nonperturbative
string fragmentation [21], see also [22–24]. Recently, we
have revisited this approach by finding an explicit exact
solution for the theory coupled to external fast quark
sources [25,26]. We found that the model provides a
reasonably good description of the data on jet fragmenta-
tion in eþe− annihilation, multiparticle production in pp
collisions, and the jet quenching in quark-gluon plasma.
We have also identified the phenomenon of coherent

coupled oscillations of chiral and vector charges in this

theory [27], which can be viewed as a ð1þ 1Þ analog of the
“chiral magnetic wave” [28,29] in ð3þ 1Þ dimensions—
indeed, both excitations are driven by the chiral anomaly,
and the chiral magnetic wave is described by a ð1þ 1Þ
theory in the limit of a strong magnetic field. We argued
that this coherent oscillation of vector (electric) charge acts
as an intense source of soft photon production, and may
explain the ubiquitous enhancement of soft photons
observed in hadronic processes [27].
In lattice QCD studies, the observation of the electric

flux tube between color charges presents a clear indication
of confinement. It has been observed that the transverse
profile of the electric field resembles that of ANO vortex
[6,9]. Recently a measurement of the chiral condensate in
the presence of static charge was performed [31]. The chiral
condensate was found to be suppressed around the string,
which indicates a partial restoration of chiral symmetry in
the confining background.
We will now argue that this partial restoration of chiral

symmetry can be described if one assumes the presence
of a “thin” ð1þ 1Þ dimensional string with a position
fluctuating in the transverse plane, as shown in Fig. 1.
Let us denote the physical ð3þ 1Þ dimensional electric

field measured on the lattice by E3þ1
physðxtÞ (xt is the

coordinate in the plane transverse to the flux) and the
electric field along the thin string in the ð1þ 1Þ description
by E1þ1. We assume that both descriptions of the string
should yield the same string tension, so the energy per unit
length of the string should be equal:

1

2

Z
d2xtðE3þ1

physðxtÞÞ2 ¼
1

2
ðE1þ1Þ2: ð2Þ

Let us now introduce PðxtÞ as the probability for finding
the thin string in the transverse plane at a position xt.
From the condition (2), we can constrain this probability
distribution:

ðE3þ1
physðxtÞÞ2 ¼ ðE1þ1Þ2PðxtÞ: ð3Þ

FIG. 1. Thin string fluctuating in the transverse plane.
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Since

Z
d2xtPðxtÞ ¼ 1; ð4Þ

the requirement (2) is fulfilled.
Now we can use the lattice data on the distribution of

electric field to extract the probability distribution (3). The
knowledge of the dependence of the chiral condensate in
the 1þ 1 dimensional theory on the electric field together
with the probability distribution will then allow us to
predict the distribution of the chiral condensate around the
confining flux tube.
The Schwinger model is exactly soluble by bosonization

[16,17]:

ψ̄γμ∂μψ →
1

2
∂μϕ∂μϕ

ψ̄γμψ → −
1ffiffiffi
π

p ϵμν∂νϕ

ψ̄γμγ5ψ →
1ffiffiffi
π

p ∂μϕ: ð5Þ

Using these relations in the original Lagrangian (1), it can
be shown that the original massless fermionic theory is
equivalent to the theory of a free massive scalar

L ¼ 1

2
∂μϕ∂μϕ −

1

2

g2

π
ϕ2: ð6Þ

The expression for the chiral condensate in terms of the
scalar field is

ψ̄ψ ¼ −
geγ

2π3=2
cosð2 ffiffiffi

π
p

ϕÞ; ð7Þ

where γ ≈ 0.5772 is the Euler number.
The chiral condensate can be evaluated through the

Feynman-Hellmann theorem by differentiating the energy
of the ground state in the presence of an electric field E1þ1

with respect to the fermion mass m, in the chiral limit
m ¼ 0 [18]:

hψ̄ψðxÞiE1þ1 ¼ −
geγ

2π3=2
cos

�
2πE1þ1

g

�
; ð8Þ

where x is the longitudinal coordinate. We see that the value
of the condensate is constant along the string and depends
only on the value of the background electric field.
Let us now assume that the thin string fluctuates in

the transverse plane (see Fig. 1), and the corresponding
probability distribution is PðxtÞ normalized by (4). If the
effective radius of the string is a, then the probability to find
a string at a given transverse position is given by the
integral of PðxtÞ over the string area, i.e. πa2PðxtÞ. If the

string with its electric field is present at a given xt, it will
modify the value of the chiral condensate according to (8).
If not, then there will be no electric field and the chiral
condensate will not be modified, so within the Schwinger
model it would be given by

hψ̄ψiðE1þ1 ¼ 0Þ≡ hψ̄ψi0:
Therefore in this picture the chiral condensate in the
transverse plane can be computed as

hψ̄ψðxtÞi ¼ ð1 − πa2PðxtÞÞhψ̄ψi0
þ πa2PðxtÞhψ̄ψiE1þ1 : ð9Þ

We will see below that from the fit to the lattice data the
value of the effective radius of the string a appears
comparable to the lattice spacing, i.e. the string is indeed
“thin.”
In a recent lattice study [31], the authors compute on the

lattice the following observable that quantifies the effect of
confining flux tube on the chiral condensate:

rðxtÞ ¼
hq̄qðxtÞWi
hq̄qihWi ; ð10Þ

whereW is the Wilson loop operator of the static quarks. In
our model, this quantity is given by

rðxtÞ ¼
hψ̄ψðxtÞi
hψ̄ψi0

: ð11Þ

The suppression of the chiral condensate has been also
described recently in terms of the σ meson cloud surround-
ing the string [30].
To evaluate this quantity from (9), we now need an

independent information on the probability distribution
PðxtÞ. Since PðxtÞ is the probability to find a longitudinal
chromoelectric field at a given point xt, the most direct
source of information about it is the profile of chromo-
electric field in the confining flux tube. There have been
many lattice studies of the profile of the chromoelectric
field between two static color charges. Here we use the
recent lattice results of [9]. The measured chromoelectric
field, as a function of the transverse coordinate, was shown
to be described well by the following parametrization:

EðxtÞ ¼
ϕ

2π

μ2

α

K0½ðμ2x2t þ α2Þ1=2�
K1ðαÞ

; ð12Þ

where the values of the parameters above depend on the
lattice coupling constant β ¼ 2N=g2 and the number of
“cooling steps” used to remove the short wavelength
fluctuations. In [9], the parameters μ;ϕ and α were
computed for four values of the coupling. In Fig. 2, we
plot the profile of the electric field as a function of the
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transverse coordinate, computed at β ¼ 6.01 with 10
cooling steps. We still have to fix the value of a in order
to compare with data. Using the values of parameters given
above, we found that the value a ¼ 1.12alatt, where alatt is
the lattice spacing (which also depends on the coupling),
provides a good description of the chiral condensate
distribution in the vicinity of the flux tube, as shown in
Fig. 3. The effective radius of the string appears compa-
rable to the lattice spacing, so it is indeed “thin.”
From Fig. 3, one can see that our simple model of

fluctuating thin string describes the lattice results quite
well. This lends additional support to the dual Meissner
mechanism of confinement, and suggests that the longi-
tudinal dynamics along the core of the string can be
adequately described by the dimensionally reduced
ð1þ 1Þ dimensional model. In the future, it would be
interesting to extend this approach to non-Abelian strings.

Another promising direction is to apply our findings to
the phenomenology of nonperturbative jet fragmentation.
We have already observed that the longitudinal momentum
distributions within a jet are adequately described by the
ð1þ 1Þ string model [25–27]. The Fourier transform of the
transverse coordinate distribution of the “thin string”
extracted from the lattice data in this paper may allow us
to describe also the nonperturbative transverse momentum
distribution inside the jet; this introduces the “intrinsic”
transverse momentum kt ∼ 1 GeV as required by the data.
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